//===----- CompileOnDemandLayer.cpp - Lazily emit IR on first call --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" using namespace llvm; using namespace llvm::orc; static ThreadSafeModule extractSubModule(ThreadSafeModule &TSM, StringRef Suffix, GVPredicate ShouldExtract) { auto DeleteExtractedDefs = [](GlobalValue &GV) { // Bump the linkage: this global will be provided by the external module. GV.setLinkage(GlobalValue::ExternalLinkage); // Delete the definition in the source module. if (isa(GV)) { auto &F = cast(GV); F.deleteBody(); F.setPersonalityFn(nullptr); } else if (isa(GV)) { cast(GV).setInitializer(nullptr); } else if (isa(GV)) { // We need to turn deleted aliases into function or variable decls based // on the type of their aliasee. auto &A = cast(GV); Constant *Aliasee = A.getAliasee(); assert(A.hasName() && "Anonymous alias?"); assert(Aliasee->hasName() && "Anonymous aliasee"); std::string AliasName = A.getName(); if (isa(Aliasee)) { auto *F = cloneFunctionDecl(*A.getParent(), *cast(Aliasee)); A.replaceAllUsesWith(F); A.eraseFromParent(); F->setName(AliasName); } else if (isa(Aliasee)) { auto *G = cloneGlobalVariableDecl(*A.getParent(), *cast(Aliasee)); A.replaceAllUsesWith(G); A.eraseFromParent(); G->setName(AliasName); } else llvm_unreachable("Alias to unsupported type"); } else llvm_unreachable("Unsupported global type"); }; auto NewTSM = cloneToNewContext(TSM, ShouldExtract, DeleteExtractedDefs); NewTSM.withModuleDo([&](Module &M) { M.setModuleIdentifier((M.getModuleIdentifier() + Suffix).str()); }); return NewTSM; } namespace llvm { namespace orc { class PartitioningIRMaterializationUnit : public IRMaterializationUnit { public: PartitioningIRMaterializationUnit(ExecutionSession &ES, ThreadSafeModule TSM, VModuleKey K, CompileOnDemandLayer &Parent) : IRMaterializationUnit(ES, std::move(TSM), std::move(K)), Parent(Parent) {} PartitioningIRMaterializationUnit( ThreadSafeModule TSM, SymbolFlagsMap SymbolFlags, SymbolNameToDefinitionMap SymbolToDefinition, CompileOnDemandLayer &Parent) : IRMaterializationUnit(std::move(TSM), std::move(K), std::move(SymbolFlags), std::move(SymbolToDefinition)), Parent(Parent) {} private: void materialize(MaterializationResponsibility R) override { Parent.emitPartition(std::move(R), std::move(TSM), std::move(SymbolToDefinition)); } void discard(const JITDylib &V, const SymbolStringPtr &Name) override { // All original symbols were materialized by the CODLayer and should be // final. The function bodies provided by M should never be overridden. llvm_unreachable("Discard should never be called on an " "ExtractingIRMaterializationUnit"); } mutable std::mutex SourceModuleMutex; CompileOnDemandLayer &Parent; }; Optional CompileOnDemandLayer::compileRequested(GlobalValueSet Requested) { return std::move(Requested); } Optional CompileOnDemandLayer::compileWholeModule(GlobalValueSet Requested) { return None; } CompileOnDemandLayer::CompileOnDemandLayer( ExecutionSession &ES, IRLayer &BaseLayer, LazyCallThroughManager &LCTMgr, IndirectStubsManagerBuilder BuildIndirectStubsManager) : IRLayer(ES), BaseLayer(BaseLayer), LCTMgr(LCTMgr), BuildIndirectStubsManager(std::move(BuildIndirectStubsManager)) {} void CompileOnDemandLayer::setPartitionFunction(PartitionFunction Partition) { this->Partition = std::move(Partition); } void CompileOnDemandLayer::setImplMap(ImplSymbolMap *Imp) { this->AliaseeImpls = Imp; } void CompileOnDemandLayer::emit(MaterializationResponsibility R, ThreadSafeModule TSM) { assert(TSM && "Null module"); auto &ES = getExecutionSession(); // Sort the callables and non-callables, build re-exports and lodge the // actual module with the implementation dylib. auto &PDR = getPerDylibResources(R.getTargetJITDylib()); SymbolAliasMap NonCallables; SymbolAliasMap Callables; TSM.withModuleDo([&](Module &M) { // First, do some cleanup on the module: cleanUpModule(M); MangleAndInterner Mangle(ES, M.getDataLayout()); for (auto &GV : M.global_values()) { if (GV.isDeclaration() || GV.hasLocalLinkage() || GV.hasAppendingLinkage()) continue; auto Name = Mangle(GV.getName()); auto Flags = JITSymbolFlags::fromGlobalValue(GV); if (Flags.isCallable()) Callables[Name] = SymbolAliasMapEntry(Name, Flags); else NonCallables[Name] = SymbolAliasMapEntry(Name, Flags); } }); // Create a partitioning materialization unit and lodge it with the // implementation dylib. if (auto Err = PDR.getImplDylib().define( std::make_unique( ES, std::move(TSM), R.getVModuleKey(), *this))) { ES.reportError(std::move(Err)); R.failMaterialization(); return; } R.replace(reexports(PDR.getImplDylib(), std::move(NonCallables), true)); R.replace(lazyReexports(LCTMgr, PDR.getISManager(), PDR.getImplDylib(), std::move(Callables), AliaseeImpls)); } CompileOnDemandLayer::PerDylibResources & CompileOnDemandLayer::getPerDylibResources(JITDylib &TargetD) { auto I = DylibResources.find(&TargetD); if (I == DylibResources.end()) { auto &ImplD = getExecutionSession().createJITDylib( TargetD.getName() + ".impl", false); TargetD.withSearchOrderDo([&](const JITDylibSearchList &TargetSearchOrder) { auto NewSearchOrder = TargetSearchOrder; assert(!NewSearchOrder.empty() && NewSearchOrder.front().first == &TargetD && NewSearchOrder.front().second == true && "TargetD must be at the front of its own search order and match " "non-exported symbol"); NewSearchOrder.insert(std::next(NewSearchOrder.begin()), {&ImplD, true}); ImplD.setSearchOrder(std::move(NewSearchOrder), false); }); PerDylibResources PDR(ImplD, BuildIndirectStubsManager()); I = DylibResources.insert(std::make_pair(&TargetD, std::move(PDR))).first; } return I->second; } void CompileOnDemandLayer::cleanUpModule(Module &M) { for (auto &F : M.functions()) { if (F.isDeclaration()) continue; if (F.hasAvailableExternallyLinkage()) { F.deleteBody(); F.setPersonalityFn(nullptr); continue; } } } void CompileOnDemandLayer::expandPartition(GlobalValueSet &Partition) { // Expands the partition to ensure the following rules hold: // (1) If any alias is in the partition, its aliasee is also in the partition. // (2) If any aliasee is in the partition, its aliases are also in the // partiton. // (3) If any global variable is in the partition then all global variables // are in the partition. assert(!Partition.empty() && "Unexpected empty partition"); const Module &M = *(*Partition.begin())->getParent(); bool ContainsGlobalVariables = false; std::vector GVsToAdd; for (auto *GV : Partition) if (isa(GV)) GVsToAdd.push_back( cast(cast(GV)->getAliasee())); else if (isa(GV)) ContainsGlobalVariables = true; for (auto &A : M.aliases()) if (Partition.count(cast(A.getAliasee()))) GVsToAdd.push_back(&A); if (ContainsGlobalVariables) for (auto &G : M.globals()) GVsToAdd.push_back(&G); for (auto *GV : GVsToAdd) Partition.insert(GV); } void CompileOnDemandLayer::emitPartition( MaterializationResponsibility R, ThreadSafeModule TSM, IRMaterializationUnit::SymbolNameToDefinitionMap Defs) { // FIXME: Need a 'notify lazy-extracting/emitting' callback to tie the // extracted module key, extracted module, and source module key // together. This could be used, for example, to provide a specific // memory manager instance to the linking layer. auto &ES = getExecutionSession(); GlobalValueSet RequestedGVs; for (auto &Name : R.getRequestedSymbols()) { assert(Defs.count(Name) && "No definition for symbol"); RequestedGVs.insert(Defs[Name]); } /// Perform partitioning with the context lock held, since the partition /// function is allowed to access the globals to compute the partition. auto GVsToExtract = TSM.withModuleDo([&](Module &M) { return Partition(RequestedGVs); }); // Take a 'None' partition to mean the whole module (as opposed to an empty // partition, which means "materialize nothing"). Emit the whole module // unmodified to the base layer. if (GVsToExtract == None) { Defs.clear(); BaseLayer.emit(std::move(R), std::move(TSM)); return; } // If the partition is empty, return the whole module to the symbol table. if (GVsToExtract->empty()) { R.replace(std::make_unique( std::move(TSM), R.getSymbols(), std::move(Defs), *this)); return; } // Ok -- we actually need to partition the symbols. Promote the symbol // linkages/names, expand the partition to include any required symbols // (i.e. symbols that can't be separated from our partition), and // then extract the partition. // // FIXME: We apply this promotion once per partitioning. It's safe, but // overkill. auto ExtractedTSM = TSM.withModuleDo([&](Module &M) -> Expected { auto PromotedGlobals = PromoteSymbols(M); if (!PromotedGlobals.empty()) { MangleAndInterner Mangle(ES, M.getDataLayout()); SymbolFlagsMap SymbolFlags; for (auto &GV : PromotedGlobals) SymbolFlags[Mangle(GV->getName())] = JITSymbolFlags::fromGlobalValue(*GV); if (auto Err = R.defineMaterializing(SymbolFlags)) return std::move(Err); } expandPartition(*GVsToExtract); // Extract the requested partiton (plus any necessary aliases) and // put the rest back into the impl dylib. auto ShouldExtract = [&](const GlobalValue &GV) -> bool { return GVsToExtract->count(&GV); }; return extractSubModule(TSM, ".submodule", ShouldExtract); }); if (!ExtractedTSM) { ES.reportError(ExtractedTSM.takeError()); R.failMaterialization(); return; } R.replace(std::make_unique( ES, std::move(TSM), R.getVModuleKey(), *this)); BaseLayer.emit(std::move(R), std::move(*ExtractedTSM)); } } // end namespace orc } // end namespace llvm