//===----- CompileOnDemandLayer.cpp - Lazily emit IR on first call --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h" #include "llvm/ADT/Hashing.h" #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/Support/FormatVariadic.h" #include using namespace llvm; using namespace llvm::orc; static ThreadSafeModule extractSubModule(ThreadSafeModule &TSM, StringRef Suffix, GVPredicate ShouldExtract) { auto DeleteExtractedDefs = [](GlobalValue &GV) { // Bump the linkage: this global will be provided by the external module. GV.setLinkage(GlobalValue::ExternalLinkage); // Delete the definition in the source module. if (isa(GV)) { auto &F = cast(GV); F.deleteBody(); F.setPersonalityFn(nullptr); } else if (isa(GV)) { cast(GV).setInitializer(nullptr); } else if (isa(GV)) { // We need to turn deleted aliases into function or variable decls based // on the type of their aliasee. auto &A = cast(GV); Constant *Aliasee = A.getAliasee(); assert(A.hasName() && "Anonymous alias?"); assert(Aliasee->hasName() && "Anonymous aliasee"); std::string AliasName = std::string(A.getName()); if (isa(Aliasee)) { auto *F = cloneFunctionDecl(*A.getParent(), *cast(Aliasee)); A.replaceAllUsesWith(F); A.eraseFromParent(); F->setName(AliasName); } else if (isa(Aliasee)) { auto *G = cloneGlobalVariableDecl(*A.getParent(), *cast(Aliasee)); A.replaceAllUsesWith(G); A.eraseFromParent(); G->setName(AliasName); } else llvm_unreachable("Alias to unsupported type"); } else llvm_unreachable("Unsupported global type"); }; auto NewTSM = cloneToNewContext(TSM, ShouldExtract, DeleteExtractedDefs); NewTSM.withModuleDo([&](Module &M) { M.setModuleIdentifier((M.getModuleIdentifier() + Suffix).str()); }); return NewTSM; } namespace llvm { namespace orc { class PartitioningIRMaterializationUnit : public IRMaterializationUnit { public: PartitioningIRMaterializationUnit(ExecutionSession &ES, const IRSymbolMapper::ManglingOptions &MO, ThreadSafeModule TSM, CompileOnDemandLayer &Parent) : IRMaterializationUnit(ES, MO, std::move(TSM)), Parent(Parent) {} PartitioningIRMaterializationUnit( ThreadSafeModule TSM, Interface I, SymbolNameToDefinitionMap SymbolToDefinition, CompileOnDemandLayer &Parent) : IRMaterializationUnit(std::move(TSM), std::move(I), std::move(SymbolToDefinition)), Parent(Parent) {} private: void materialize(std::unique_ptr R) override { Parent.emitPartition(std::move(R), std::move(TSM), std::move(SymbolToDefinition)); } void discard(const JITDylib &V, const SymbolStringPtr &Name) override { // All original symbols were materialized by the CODLayer and should be // final. The function bodies provided by M should never be overridden. llvm_unreachable("Discard should never be called on an " "ExtractingIRMaterializationUnit"); } mutable std::mutex SourceModuleMutex; CompileOnDemandLayer &Parent; }; Optional CompileOnDemandLayer::compileRequested(GlobalValueSet Requested) { return std::move(Requested); } Optional CompileOnDemandLayer::compileWholeModule(GlobalValueSet Requested) { return None; } CompileOnDemandLayer::CompileOnDemandLayer( ExecutionSession &ES, IRLayer &BaseLayer, LazyCallThroughManager &LCTMgr, IndirectStubsManagerBuilder BuildIndirectStubsManager) : IRLayer(ES, BaseLayer.getManglingOptions()), BaseLayer(BaseLayer), LCTMgr(LCTMgr), BuildIndirectStubsManager(std::move(BuildIndirectStubsManager)) {} void CompileOnDemandLayer::setPartitionFunction(PartitionFunction Partition) { this->Partition = std::move(Partition); } void CompileOnDemandLayer::setImplMap(ImplSymbolMap *Imp) { this->AliaseeImpls = Imp; } void CompileOnDemandLayer::emit( std::unique_ptr R, ThreadSafeModule TSM) { assert(TSM && "Null module"); auto &ES = getExecutionSession(); // Sort the callables and non-callables, build re-exports and lodge the // actual module with the implementation dylib. auto &PDR = getPerDylibResources(R->getTargetJITDylib()); SymbolAliasMap NonCallables; SymbolAliasMap Callables; TSM.withModuleDo([&](Module &M) { // First, do some cleanup on the module: cleanUpModule(M); }); for (auto &KV : R->getSymbols()) { auto &Name = KV.first; auto &Flags = KV.second; if (Flags.isCallable()) Callables[Name] = SymbolAliasMapEntry(Name, Flags); else NonCallables[Name] = SymbolAliasMapEntry(Name, Flags); } // Create a partitioning materialization unit and lodge it with the // implementation dylib. if (auto Err = PDR.getImplDylib().define( std::make_unique( ES, *getManglingOptions(), std::move(TSM), *this))) { ES.reportError(std::move(Err)); R->failMaterialization(); return; } if (!NonCallables.empty()) if (auto Err = R->replace(reexports(PDR.getImplDylib(), std::move(NonCallables), JITDylibLookupFlags::MatchAllSymbols))) { getExecutionSession().reportError(std::move(Err)); R->failMaterialization(); return; } if (!Callables.empty()) { if (auto Err = R->replace( lazyReexports(LCTMgr, PDR.getISManager(), PDR.getImplDylib(), std::move(Callables), AliaseeImpls))) { getExecutionSession().reportError(std::move(Err)); R->failMaterialization(); return; } } } CompileOnDemandLayer::PerDylibResources & CompileOnDemandLayer::getPerDylibResources(JITDylib &TargetD) { std::lock_guard Lock(CODLayerMutex); auto I = DylibResources.find(&TargetD); if (I == DylibResources.end()) { auto &ImplD = getExecutionSession().createBareJITDylib(TargetD.getName() + ".impl"); JITDylibSearchOrder NewLinkOrder; TargetD.withLinkOrderDo([&](const JITDylibSearchOrder &TargetLinkOrder) { NewLinkOrder = TargetLinkOrder; }); assert(!NewLinkOrder.empty() && NewLinkOrder.front().first == &TargetD && NewLinkOrder.front().second == JITDylibLookupFlags::MatchAllSymbols && "TargetD must be at the front of its own search order and match " "non-exported symbol"); NewLinkOrder.insert(std::next(NewLinkOrder.begin()), {&ImplD, JITDylibLookupFlags::MatchAllSymbols}); ImplD.setLinkOrder(NewLinkOrder, false); TargetD.setLinkOrder(std::move(NewLinkOrder), false); PerDylibResources PDR(ImplD, BuildIndirectStubsManager()); I = DylibResources.insert(std::make_pair(&TargetD, std::move(PDR))).first; } return I->second; } void CompileOnDemandLayer::cleanUpModule(Module &M) { for (auto &F : M.functions()) { if (F.isDeclaration()) continue; if (F.hasAvailableExternallyLinkage()) { F.deleteBody(); F.setPersonalityFn(nullptr); continue; } } } void CompileOnDemandLayer::expandPartition(GlobalValueSet &Partition) { // Expands the partition to ensure the following rules hold: // (1) If any alias is in the partition, its aliasee is also in the partition. // (2) If any aliasee is in the partition, its aliases are also in the // partiton. // (3) If any global variable is in the partition then all global variables // are in the partition. assert(!Partition.empty() && "Unexpected empty partition"); const Module &M = *(*Partition.begin())->getParent(); bool ContainsGlobalVariables = false; std::vector GVsToAdd; for (auto *GV : Partition) if (isa(GV)) GVsToAdd.push_back( cast(cast(GV)->getAliasee())); else if (isa(GV)) ContainsGlobalVariables = true; for (auto &A : M.aliases()) if (Partition.count(cast(A.getAliasee()))) GVsToAdd.push_back(&A); if (ContainsGlobalVariables) for (auto &G : M.globals()) GVsToAdd.push_back(&G); for (auto *GV : GVsToAdd) Partition.insert(GV); } void CompileOnDemandLayer::emitPartition( std::unique_ptr R, ThreadSafeModule TSM, IRMaterializationUnit::SymbolNameToDefinitionMap Defs) { // FIXME: Need a 'notify lazy-extracting/emitting' callback to tie the // extracted module key, extracted module, and source module key // together. This could be used, for example, to provide a specific // memory manager instance to the linking layer. auto &ES = getExecutionSession(); GlobalValueSet RequestedGVs; for (auto &Name : R->getRequestedSymbols()) { if (Name == R->getInitializerSymbol()) TSM.withModuleDo([&](Module &M) { for (auto &GV : getStaticInitGVs(M)) RequestedGVs.insert(&GV); }); else { assert(Defs.count(Name) && "No definition for symbol"); RequestedGVs.insert(Defs[Name]); } } /// Perform partitioning with the context lock held, since the partition /// function is allowed to access the globals to compute the partition. auto GVsToExtract = TSM.withModuleDo([&](Module &M) { return Partition(RequestedGVs); }); // Take a 'None' partition to mean the whole module (as opposed to an empty // partition, which means "materialize nothing"). Emit the whole module // unmodified to the base layer. if (GVsToExtract == None) { Defs.clear(); BaseLayer.emit(std::move(R), std::move(TSM)); return; } // If the partition is empty, return the whole module to the symbol table. if (GVsToExtract->empty()) { if (auto Err = R->replace(std::make_unique( std::move(TSM), MaterializationUnit::Interface(R->getSymbols(), R->getInitializerSymbol()), std::move(Defs), *this))) { getExecutionSession().reportError(std::move(Err)); R->failMaterialization(); return; } return; } // Ok -- we actually need to partition the symbols. Promote the symbol // linkages/names, expand the partition to include any required symbols // (i.e. symbols that can't be separated from our partition), and // then extract the partition. // // FIXME: We apply this promotion once per partitioning. It's safe, but // overkill. auto ExtractedTSM = TSM.withModuleDo([&](Module &M) -> Expected { auto PromotedGlobals = PromoteSymbols(M); if (!PromotedGlobals.empty()) { MangleAndInterner Mangle(ES, M.getDataLayout()); SymbolFlagsMap SymbolFlags; IRSymbolMapper::add(ES, *getManglingOptions(), PromotedGlobals, SymbolFlags); if (auto Err = R->defineMaterializing(SymbolFlags)) return std::move(Err); } expandPartition(*GVsToExtract); // Submodule name is given by hashing the names of the globals. std::string SubModuleName; { std::vector HashGVs; HashGVs.reserve(GVsToExtract->size()); for (auto *GV : *GVsToExtract) HashGVs.push_back(GV); llvm::sort(HashGVs, [](const GlobalValue *LHS, const GlobalValue *RHS) { return LHS->getName() < RHS->getName(); }); hash_code HC(0); for (auto *GV : HashGVs) { assert(GV->hasName() && "All GVs to extract should be named by now"); auto GVName = GV->getName(); HC = hash_combine(HC, hash_combine_range(GVName.begin(), GVName.end())); } raw_string_ostream(SubModuleName) << ".submodule." << formatv(sizeof(size_t) == 8 ? "{0:x16}" : "{0:x8}", static_cast(HC)) << ".ll"; } // Extract the requested partiton (plus any necessary aliases) and // put the rest back into the impl dylib. auto ShouldExtract = [&](const GlobalValue &GV) -> bool { return GVsToExtract->count(&GV); }; return extractSubModule(TSM, SubModuleName , ShouldExtract); }); if (!ExtractedTSM) { ES.reportError(ExtractedTSM.takeError()); R->failMaterialization(); return; } if (auto Err = R->replace(std::make_unique( ES, *getManglingOptions(), std::move(TSM), *this))) { ES.reportError(std::move(Err)); R->failMaterialization(); return; } BaseLayer.emit(std::move(R), std::move(*ExtractedTSM)); } } // end namespace orc } // end namespace llvm