//===--------- JITLinkGeneric.cpp - Generic JIT linker utilities ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Generic JITLinker utility class. // //===----------------------------------------------------------------------===// #include "JITLinkGeneric.h" #include "llvm/Support/BinaryStreamReader.h" #include "llvm/Support/MemoryBuffer.h" #define DEBUG_TYPE "jitlink" namespace llvm { namespace jitlink { JITLinkerBase::~JITLinkerBase() {} void JITLinkerBase::linkPhase1(std::unique_ptr Self) { LLVM_DEBUG({ dbgs() << "Starting link phase 1 for graph " << G->getName() << "\n"; }); // Prune and optimize the graph. if (auto Err = runPasses(Passes.PrePrunePasses)) return Ctx->notifyFailed(std::move(Err)); LLVM_DEBUG({ dbgs() << "Link graph \"" << G->getName() << "\" pre-pruning:\n"; G->dump(dbgs()); }); prune(*G); LLVM_DEBUG({ dbgs() << "Link graph \"" << G->getName() << "\" post-pruning:\n"; G->dump(dbgs()); }); // Run post-pruning passes. if (auto Err = runPasses(Passes.PostPrunePasses)) return Ctx->notifyFailed(std::move(Err)); // Sort blocks into segments. auto Layout = layOutBlocks(); // Allocate memory for segments. if (auto Err = allocateSegments(Layout)) return Ctx->notifyFailed(std::move(Err)); LLVM_DEBUG({ dbgs() << "Link graph \"" << G->getName() << "\" before post-allocation passes:\n"; G->dump(dbgs()); }); // Run post-allocation passes. if (auto Err = runPasses(Passes.PostAllocationPasses)) return Ctx->notifyFailed(std::move(Err)); // Notify client that the defined symbols have been assigned addresses. LLVM_DEBUG(dbgs() << "Resolving symbols defined in " << G->getName() << "\n"); if (auto Err = Ctx->notifyResolved(*G)) return Ctx->notifyFailed(std::move(Err)); auto ExternalSymbols = getExternalSymbolNames(); // If there are no external symbols then proceed immediately with phase 2. if (ExternalSymbols.empty()) { LLVM_DEBUG({ dbgs() << "No external symbols for " << G->getName() << ". Proceeding immediately with link phase 2.\n"; }); // FIXME: Once callee expressions are defined to be sequenced before // argument expressions (c++17) we can simplify this. See below. auto &TmpSelf = *Self; TmpSelf.linkPhase2(std::move(Self), AsyncLookupResult(), std::move(Layout)); return; } // Otherwise look up the externals. LLVM_DEBUG({ dbgs() << "Issuing lookup for external symbols for " << G->getName() << " (may trigger materialization/linking of other graphs)...\n"; }); // We're about to hand off ownership of ourself to the continuation. Grab a // pointer to the context so that we can call it to initiate the lookup. // // FIXME: Once callee expressions are defined to be sequenced before argument // expressions (c++17) we can simplify all this to: // // Ctx->lookup(std::move(UnresolvedExternals), // [Self=std::move(Self)](Expected Result) { // Self->linkPhase2(std::move(Self), std::move(Result)); // }); auto *TmpCtx = Ctx.get(); TmpCtx->lookup(std::move(ExternalSymbols), createLookupContinuation( [S = std::move(Self), L = std::move(Layout)]( Expected LookupResult) mutable { auto &TmpSelf = *S; TmpSelf.linkPhase2(std::move(S), std::move(LookupResult), std::move(L)); })); } void JITLinkerBase::linkPhase2(std::unique_ptr Self, Expected LR, SegmentLayoutMap Layout) { LLVM_DEBUG({ dbgs() << "Starting link phase 2 for graph " << G->getName() << "\n"; }); // If the lookup failed, bail out. if (!LR) return deallocateAndBailOut(LR.takeError()); // Assign addresses to external addressables. applyLookupResult(*LR); // Copy block content to working memory. copyBlockContentToWorkingMemory(Layout, *Alloc); LLVM_DEBUG({ dbgs() << "Link graph \"" << G->getName() << "\" before pre-fixup passes:\n"; G->dump(dbgs()); }); if (auto Err = runPasses(Passes.PreFixupPasses)) return deallocateAndBailOut(std::move(Err)); LLVM_DEBUG({ dbgs() << "Link graph \"" << G->getName() << "\" before copy-and-fixup:\n"; G->dump(dbgs()); }); // Fix up block content. if (auto Err = fixUpBlocks(*G)) return deallocateAndBailOut(std::move(Err)); LLVM_DEBUG({ dbgs() << "Link graph \"" << G->getName() << "\" after copy-and-fixup:\n"; G->dump(dbgs()); }); if (auto Err = runPasses(Passes.PostFixupPasses)) return deallocateAndBailOut(std::move(Err)); // FIXME: Use move capture once we have c++14. auto *UnownedSelf = Self.release(); auto Phase3Continuation = [UnownedSelf](Error Err) { std::unique_ptr Self(UnownedSelf); UnownedSelf->linkPhase3(std::move(Self), std::move(Err)); }; Alloc->finalizeAsync(std::move(Phase3Continuation)); } void JITLinkerBase::linkPhase3(std::unique_ptr Self, Error Err) { LLVM_DEBUG({ dbgs() << "Starting link phase 3 for graph " << G->getName() << "\n"; }); if (Err) return deallocateAndBailOut(std::move(Err)); Ctx->notifyFinalized(std::move(Alloc)); LLVM_DEBUG({ dbgs() << "Link of graph " << G->getName() << " complete\n"; }); } Error JITLinkerBase::runPasses(LinkGraphPassList &Passes) { for (auto &P : Passes) if (auto Err = P(*G)) return Err; return Error::success(); } JITLinkerBase::SegmentLayoutMap JITLinkerBase::layOutBlocks() { SegmentLayoutMap Layout; /// Partition blocks based on permissions and content vs. zero-fill. for (auto *B : G->blocks()) { auto &SegLists = Layout[B->getSection().getProtectionFlags()]; if (!B->isZeroFill()) SegLists.ContentBlocks.push_back(B); else SegLists.ZeroFillBlocks.push_back(B); } /// Sort blocks within each list. for (auto &KV : Layout) { auto CompareBlocks = [](const Block *LHS, const Block *RHS) { // Sort by section, address and size if (LHS->getSection().getOrdinal() != RHS->getSection().getOrdinal()) return LHS->getSection().getOrdinal() < RHS->getSection().getOrdinal(); if (LHS->getAddress() != RHS->getAddress()) return LHS->getAddress() < RHS->getAddress(); return LHS->getSize() < RHS->getSize(); }; auto &SegLists = KV.second; llvm::sort(SegLists.ContentBlocks, CompareBlocks); llvm::sort(SegLists.ZeroFillBlocks, CompareBlocks); } LLVM_DEBUG({ dbgs() << "Computed segment ordering:\n"; for (auto &KV : Layout) { dbgs() << " Segment " << static_cast(KV.first) << ":\n"; auto &SL = KV.second; for (auto &SIEntry : {std::make_pair(&SL.ContentBlocks, "content block"), std::make_pair(&SL.ZeroFillBlocks, "zero-fill block")}) { dbgs() << " " << SIEntry.second << ":\n"; for (auto *B : *SIEntry.first) dbgs() << " " << *B << "\n"; } } }); return Layout; } Error JITLinkerBase::allocateSegments(const SegmentLayoutMap &Layout) { // Compute segment sizes and allocate memory. LLVM_DEBUG(dbgs() << "JIT linker requesting: { "); JITLinkMemoryManager::SegmentsRequestMap Segments; for (auto &KV : Layout) { auto &Prot = KV.first; auto &SegLists = KV.second; uint64_t SegAlign = 1; // Calculate segment content size. size_t SegContentSize = 0; for (auto *B : SegLists.ContentBlocks) { SegAlign = std::max(SegAlign, B->getAlignment()); SegContentSize = alignToBlock(SegContentSize, *B); SegContentSize += B->getSize(); } uint64_t SegZeroFillStart = SegContentSize; uint64_t SegZeroFillEnd = SegZeroFillStart; for (auto *B : SegLists.ZeroFillBlocks) { SegAlign = std::max(SegAlign, B->getAlignment()); SegZeroFillEnd = alignToBlock(SegZeroFillEnd, *B); SegZeroFillEnd += B->getSize(); } Segments[Prot] = {SegAlign, SegContentSize, SegZeroFillEnd - SegZeroFillStart}; LLVM_DEBUG({ dbgs() << (&KV == &*Layout.begin() ? "" : "; ") << static_cast(Prot) << ": alignment = " << SegAlign << ", content size = " << SegContentSize << ", zero-fill size = " << (SegZeroFillEnd - SegZeroFillStart); }); } LLVM_DEBUG(dbgs() << " }\n"); if (auto AllocOrErr = Ctx->getMemoryManager().allocate(Ctx->getJITLinkDylib(), Segments)) Alloc = std::move(*AllocOrErr); else return AllocOrErr.takeError(); LLVM_DEBUG({ dbgs() << "JIT linker got memory (working -> target):\n"; for (auto &KV : Layout) { auto Prot = static_cast(KV.first); dbgs() << " " << Prot << ": " << (const void *)Alloc->getWorkingMemory(Prot).data() << " -> " << formatv("{0:x16}", Alloc->getTargetMemory(Prot)) << "\n"; } }); // Update block target addresses. for (auto &KV : Layout) { auto &Prot = KV.first; auto &SL = KV.second; JITTargetAddress NextBlockAddr = Alloc->getTargetMemory(static_cast(Prot)); for (auto *SIList : {&SL.ContentBlocks, &SL.ZeroFillBlocks}) for (auto *B : *SIList) { NextBlockAddr = alignToBlock(NextBlockAddr, *B); B->setAddress(NextBlockAddr); NextBlockAddr += B->getSize(); } } return Error::success(); } JITLinkContext::LookupMap JITLinkerBase::getExternalSymbolNames() const { // Identify unresolved external symbols. JITLinkContext::LookupMap UnresolvedExternals; for (auto *Sym : G->external_symbols()) { assert(Sym->getAddress() == 0 && "External has already been assigned an address"); assert(Sym->getName() != StringRef() && Sym->getName() != "" && "Externals must be named"); SymbolLookupFlags LookupFlags = Sym->getLinkage() == Linkage::Weak ? SymbolLookupFlags::WeaklyReferencedSymbol : SymbolLookupFlags::RequiredSymbol; UnresolvedExternals[Sym->getName()] = LookupFlags; } return UnresolvedExternals; } void JITLinkerBase::applyLookupResult(AsyncLookupResult Result) { for (auto *Sym : G->external_symbols()) { assert(Sym->getOffset() == 0 && "External symbol is not at the start of its addressable block"); assert(Sym->getAddress() == 0 && "Symbol already resolved"); assert(!Sym->isDefined() && "Symbol being resolved is already defined"); auto ResultI = Result.find(Sym->getName()); if (ResultI != Result.end()) Sym->getAddressable().setAddress(ResultI->second.getAddress()); else assert(Sym->getLinkage() == Linkage::Weak && "Failed to resolve non-weak reference"); } LLVM_DEBUG({ dbgs() << "Externals after applying lookup result:\n"; for (auto *Sym : G->external_symbols()) dbgs() << " " << Sym->getName() << ": " << formatv("{0:x16}", Sym->getAddress()) << "\n"; }); } void JITLinkerBase::copyBlockContentToWorkingMemory( const SegmentLayoutMap &Layout, JITLinkMemoryManager::Allocation &Alloc) { LLVM_DEBUG(dbgs() << "Copying block content:\n"); for (auto &KV : Layout) { auto &Prot = KV.first; auto &SegLayout = KV.second; auto SegMem = Alloc.getWorkingMemory(static_cast(Prot)); char *LastBlockEnd = SegMem.data(); char *BlockDataPtr = LastBlockEnd; LLVM_DEBUG({ dbgs() << " Processing segment " << static_cast(Prot) << " [ " << (const void *)SegMem.data() << " .. " << (const void *)((char *)SegMem.data() + SegMem.size()) << " ]\n Processing content sections:\n"; }); for (auto *B : SegLayout.ContentBlocks) { LLVM_DEBUG(dbgs() << " " << *B << ":\n"); // Pad to alignment/alignment-offset. BlockDataPtr = alignToBlock(BlockDataPtr, *B); LLVM_DEBUG({ dbgs() << " Bumped block pointer to " << (const void *)BlockDataPtr << " to meet block alignment " << B->getAlignment() << " and alignment offset " << B->getAlignmentOffset() << "\n"; }); // Zero pad up to alignment. LLVM_DEBUG({ if (LastBlockEnd != BlockDataPtr) dbgs() << " Zero padding from " << (const void *)LastBlockEnd << " to " << (const void *)BlockDataPtr << "\n"; }); while (LastBlockEnd != BlockDataPtr) *LastBlockEnd++ = 0; // Copy initial block content. LLVM_DEBUG({ dbgs() << " Copying block " << *B << " content, " << B->getContent().size() << " bytes, from " << (const void *)B->getContent().data() << " to " << (const void *)BlockDataPtr << "\n"; }); memcpy(BlockDataPtr, B->getContent().data(), B->getContent().size()); // Point the block's content to the fixed up buffer. B->setMutableContent({BlockDataPtr, B->getContent().size()}); // Update block end pointer. LastBlockEnd = BlockDataPtr + B->getContent().size(); BlockDataPtr = LastBlockEnd; } // Zero pad the rest of the segment. LLVM_DEBUG({ dbgs() << " Zero padding end of segment from " << (const void *)LastBlockEnd << " to " << (const void *)((char *)SegMem.data() + SegMem.size()) << "\n"; }); while (LastBlockEnd != SegMem.data() + SegMem.size()) *LastBlockEnd++ = 0; } } void JITLinkerBase::deallocateAndBailOut(Error Err) { assert(Err && "Should not be bailing out on success value"); assert(Alloc && "can not call deallocateAndBailOut before allocation"); Ctx->notifyFailed(joinErrors(std::move(Err), Alloc->deallocate())); } void prune(LinkGraph &G) { std::vector Worklist; DenseSet VisitedBlocks; // Build the initial worklist from all symbols initially live. for (auto *Sym : G.defined_symbols()) if (Sym->isLive()) Worklist.push_back(Sym); // Propagate live flags to all symbols reachable from the initial live set. while (!Worklist.empty()) { auto *Sym = Worklist.back(); Worklist.pop_back(); auto &B = Sym->getBlock(); // Skip addressables that we've visited before. if (VisitedBlocks.count(&B)) continue; VisitedBlocks.insert(&B); for (auto &E : Sym->getBlock().edges()) { // If the edge target is a defined symbol that is being newly marked live // then add it to the worklist. if (E.getTarget().isDefined() && !E.getTarget().isLive()) Worklist.push_back(&E.getTarget()); // Mark the target live. E.getTarget().setLive(true); } } // Collect all defined symbols to remove, then remove them. { LLVM_DEBUG(dbgs() << "Dead-stripping defined symbols:\n"); std::vector SymbolsToRemove; for (auto *Sym : G.defined_symbols()) if (!Sym->isLive()) SymbolsToRemove.push_back(Sym); for (auto *Sym : SymbolsToRemove) { LLVM_DEBUG(dbgs() << " " << *Sym << "...\n"); G.removeDefinedSymbol(*Sym); } } // Delete any unused blocks. { LLVM_DEBUG(dbgs() << "Dead-stripping blocks:\n"); std::vector BlocksToRemove; for (auto *B : G.blocks()) if (!VisitedBlocks.count(B)) BlocksToRemove.push_back(B); for (auto *B : BlocksToRemove) { LLVM_DEBUG(dbgs() << " " << *B << "...\n"); G.removeBlock(*B); } } // Collect all external symbols to remove, then remove them. { LLVM_DEBUG(dbgs() << "Removing unused external symbols:\n"); std::vector SymbolsToRemove; for (auto *Sym : G.external_symbols()) if (!Sym->isLive()) SymbolsToRemove.push_back(Sym); for (auto *Sym : SymbolsToRemove) { LLVM_DEBUG(dbgs() << " " << *Sym << "...\n"); G.removeExternalSymbol(*Sym); } } } } // end namespace jitlink } // end namespace llvm