//===- DWARFVerifier.cpp --------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFVerifier.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" #include "llvm/DebugInfo/DWARF/DWARFAttribute.h" #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" #include "llvm/DebugInfo/DWARF/DWARFDie.h" #include "llvm/DebugInfo/DWARF/DWARFExpression.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/DebugInfo/DWARF/DWARFLocationExpression.h" #include "llvm/DebugInfo/DWARF/DWARFObject.h" #include "llvm/DebugInfo/DWARF/DWARFSection.h" #include "llvm/DebugInfo/DWARF/DWARFUnit.h" #include "llvm/Object/Error.h" #include "llvm/Support/DJB.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/WithColor.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; using namespace dwarf; using namespace object; namespace llvm { class DWARFDebugInfoEntry; } std::optional DWARFVerifier::DieRangeInfo::insert(const DWARFAddressRange &R) { auto Begin = Ranges.begin(); auto End = Ranges.end(); auto Pos = std::lower_bound(Begin, End, R); if (Pos != End) { DWARFAddressRange Range(*Pos); if (Pos->merge(R)) return Range; } if (Pos != Begin) { auto Iter = Pos - 1; DWARFAddressRange Range(*Iter); if (Iter->merge(R)) return Range; } Ranges.insert(Pos, R); return std::nullopt; } DWARFVerifier::DieRangeInfo::die_range_info_iterator DWARFVerifier::DieRangeInfo::insert(const DieRangeInfo &RI) { if (RI.Ranges.empty()) return Children.end(); auto End = Children.end(); auto Iter = Children.begin(); while (Iter != End) { if (Iter->intersects(RI)) return Iter; ++Iter; } Children.insert(RI); return Children.end(); } bool DWARFVerifier::DieRangeInfo::contains(const DieRangeInfo &RHS) const { auto I1 = Ranges.begin(), E1 = Ranges.end(); auto I2 = RHS.Ranges.begin(), E2 = RHS.Ranges.end(); if (I2 == E2) return true; DWARFAddressRange R = *I2; while (I1 != E1) { bool Covered = I1->LowPC <= R.LowPC; if (R.LowPC == R.HighPC || (Covered && R.HighPC <= I1->HighPC)) { if (++I2 == E2) return true; R = *I2; continue; } if (!Covered) return false; if (R.LowPC < I1->HighPC) R.LowPC = I1->HighPC; ++I1; } return false; } bool DWARFVerifier::DieRangeInfo::intersects(const DieRangeInfo &RHS) const { auto I1 = Ranges.begin(), E1 = Ranges.end(); auto I2 = RHS.Ranges.begin(), E2 = RHS.Ranges.end(); while (I1 != E1 && I2 != E2) { if (I1->intersects(*I2)) return true; if (I1->LowPC < I2->LowPC) ++I1; else ++I2; } return false; } bool DWARFVerifier::verifyUnitHeader(const DWARFDataExtractor DebugInfoData, uint64_t *Offset, unsigned UnitIndex, uint8_t &UnitType, bool &isUnitDWARF64) { uint64_t AbbrOffset, Length; uint8_t AddrSize = 0; uint16_t Version; bool Success = true; bool ValidLength = false; bool ValidVersion = false; bool ValidAddrSize = false; bool ValidType = true; bool ValidAbbrevOffset = true; uint64_t OffsetStart = *Offset; DwarfFormat Format; std::tie(Length, Format) = DebugInfoData.getInitialLength(Offset); isUnitDWARF64 = Format == DWARF64; Version = DebugInfoData.getU16(Offset); if (Version >= 5) { UnitType = DebugInfoData.getU8(Offset); AddrSize = DebugInfoData.getU8(Offset); AbbrOffset = isUnitDWARF64 ? DebugInfoData.getU64(Offset) : DebugInfoData.getU32(Offset); ValidType = dwarf::isUnitType(UnitType); } else { UnitType = 0; AbbrOffset = isUnitDWARF64 ? DebugInfoData.getU64(Offset) : DebugInfoData.getU32(Offset); AddrSize = DebugInfoData.getU8(Offset); } Expected AbbrevSetOrErr = DCtx.getDebugAbbrev()->getAbbreviationDeclarationSet(AbbrOffset); if (!AbbrevSetOrErr) { ValidAbbrevOffset = false; // FIXME: A problematic debug_abbrev section is reported below in the form // of a `note:`. We should propagate this error there (or elsewhere) to // avoid losing the specific problem with the debug_abbrev section. consumeError(AbbrevSetOrErr.takeError()); } ValidLength = DebugInfoData.isValidOffset(OffsetStart + Length + 3); ValidVersion = DWARFContext::isSupportedVersion(Version); ValidAddrSize = DWARFContext::isAddressSizeSupported(AddrSize); if (!ValidLength || !ValidVersion || !ValidAddrSize || !ValidAbbrevOffset || !ValidType) { Success = false; error() << format("Units[%d] - start offset: 0x%08" PRIx64 " \n", UnitIndex, OffsetStart); if (!ValidLength) note() << "The length for this unit is too " "large for the .debug_info provided.\n"; if (!ValidVersion) note() << "The 16 bit unit header version is not valid.\n"; if (!ValidType) note() << "The unit type encoding is not valid.\n"; if (!ValidAbbrevOffset) note() << "The offset into the .debug_abbrev section is " "not valid.\n"; if (!ValidAddrSize) note() << "The address size is unsupported.\n"; } *Offset = OffsetStart + Length + (isUnitDWARF64 ? 12 : 4); return Success; } bool DWARFVerifier::verifyName(const DWARFDie &Die) { // FIXME Add some kind of record of which DIE names have already failed and // don't bother checking a DIE that uses an already failed DIE. std::string ReconstructedName; raw_string_ostream OS(ReconstructedName); std::string OriginalFullName; Die.getFullName(OS, &OriginalFullName); OS.flush(); if (OriginalFullName.empty() || OriginalFullName == ReconstructedName) return false; error() << "Simplified template DW_AT_name could not be reconstituted:\n" << formatv(" original: {0}\n" " reconstituted: {1}\n", OriginalFullName, ReconstructedName); dump(Die) << '\n'; dump(Die.getDwarfUnit()->getUnitDIE()) << '\n'; return true; } unsigned DWARFVerifier::verifyUnitContents(DWARFUnit &Unit, ReferenceMap &UnitLocalReferences, ReferenceMap &CrossUnitReferences) { unsigned NumUnitErrors = 0; unsigned NumDies = Unit.getNumDIEs(); for (unsigned I = 0; I < NumDies; ++I) { auto Die = Unit.getDIEAtIndex(I); if (Die.getTag() == DW_TAG_null) continue; for (auto AttrValue : Die.attributes()) { NumUnitErrors += verifyDebugInfoAttribute(Die, AttrValue); NumUnitErrors += verifyDebugInfoForm(Die, AttrValue, UnitLocalReferences, CrossUnitReferences); } NumUnitErrors += verifyName(Die); if (Die.hasChildren()) { if (Die.getFirstChild().isValid() && Die.getFirstChild().getTag() == DW_TAG_null) { warn() << dwarf::TagString(Die.getTag()) << " has DW_CHILDREN_yes but DIE has no children: "; Die.dump(OS); } } NumUnitErrors += verifyDebugInfoCallSite(Die); } DWARFDie Die = Unit.getUnitDIE(/* ExtractUnitDIEOnly = */ false); if (!Die) { error() << "Compilation unit without DIE.\n"; NumUnitErrors++; return NumUnitErrors; } if (!dwarf::isUnitType(Die.getTag())) { error() << "Compilation unit root DIE is not a unit DIE: " << dwarf::TagString(Die.getTag()) << ".\n"; NumUnitErrors++; } uint8_t UnitType = Unit.getUnitType(); if (!DWARFUnit::isMatchingUnitTypeAndTag(UnitType, Die.getTag())) { error() << "Compilation unit type (" << dwarf::UnitTypeString(UnitType) << ") and root DIE (" << dwarf::TagString(Die.getTag()) << ") do not match.\n"; NumUnitErrors++; } // According to DWARF Debugging Information Format Version 5, // 3.1.2 Skeleton Compilation Unit Entries: // "A skeleton compilation unit has no children." if (Die.getTag() == dwarf::DW_TAG_skeleton_unit && Die.hasChildren()) { error() << "Skeleton compilation unit has children.\n"; NumUnitErrors++; } DieRangeInfo RI; NumUnitErrors += verifyDieRanges(Die, RI); return NumUnitErrors; } unsigned DWARFVerifier::verifyDebugInfoCallSite(const DWARFDie &Die) { if (Die.getTag() != DW_TAG_call_site && Die.getTag() != DW_TAG_GNU_call_site) return 0; DWARFDie Curr = Die.getParent(); for (; Curr.isValid() && !Curr.isSubprogramDIE(); Curr = Die.getParent()) { if (Curr.getTag() == DW_TAG_inlined_subroutine) { error() << "Call site entry nested within inlined subroutine:"; Curr.dump(OS); return 1; } } if (!Curr.isValid()) { error() << "Call site entry not nested within a valid subprogram:"; Die.dump(OS); return 1; } std::optional CallAttr = Curr.find( {DW_AT_call_all_calls, DW_AT_call_all_source_calls, DW_AT_call_all_tail_calls, DW_AT_GNU_all_call_sites, DW_AT_GNU_all_source_call_sites, DW_AT_GNU_all_tail_call_sites}); if (!CallAttr) { error() << "Subprogram with call site entry has no DW_AT_call attribute:"; Curr.dump(OS); Die.dump(OS, /*indent*/ 1); return 1; } return 0; } unsigned DWARFVerifier::verifyAbbrevSection(const DWARFDebugAbbrev *Abbrev) { if (!Abbrev) return 0; Expected AbbrDeclsOrErr = Abbrev->getAbbreviationDeclarationSet(0); if (!AbbrDeclsOrErr) { error() << toString(AbbrDeclsOrErr.takeError()) << "\n"; return 1; } const auto *AbbrDecls = *AbbrDeclsOrErr; unsigned NumErrors = 0; for (auto AbbrDecl : *AbbrDecls) { SmallDenseSet AttributeSet; for (auto Attribute : AbbrDecl.attributes()) { auto Result = AttributeSet.insert(Attribute.Attr); if (!Result.second) { error() << "Abbreviation declaration contains multiple " << AttributeString(Attribute.Attr) << " attributes.\n"; AbbrDecl.dump(OS); ++NumErrors; } } } return NumErrors; } bool DWARFVerifier::handleDebugAbbrev() { OS << "Verifying .debug_abbrev...\n"; const DWARFObject &DObj = DCtx.getDWARFObj(); unsigned NumErrors = 0; if (!DObj.getAbbrevSection().empty()) NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrev()); if (!DObj.getAbbrevDWOSection().empty()) NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrevDWO()); return NumErrors == 0; } unsigned DWARFVerifier::verifyUnits(const DWARFUnitVector &Units) { unsigned NumDebugInfoErrors = 0; ReferenceMap CrossUnitReferences; unsigned Index = 1; for (const auto &Unit : Units) { OS << "Verifying unit: " << Index << " / " << Units.getNumUnits(); if (const char* Name = Unit->getUnitDIE(true).getShortName()) OS << ", \"" << Name << '\"'; OS << '\n'; OS.flush(); ReferenceMap UnitLocalReferences; NumDebugInfoErrors += verifyUnitContents(*Unit, UnitLocalReferences, CrossUnitReferences); NumDebugInfoErrors += verifyDebugInfoReferences( UnitLocalReferences, [&](uint64_t Offset) { return Unit.get(); }); ++Index; } NumDebugInfoErrors += verifyDebugInfoReferences( CrossUnitReferences, [&](uint64_t Offset) -> DWARFUnit * { if (DWARFUnit *U = Units.getUnitForOffset(Offset)) return U; return nullptr; }); return NumDebugInfoErrors; } unsigned DWARFVerifier::verifyUnitSection(const DWARFSection &S) { const DWARFObject &DObj = DCtx.getDWARFObj(); DWARFDataExtractor DebugInfoData(DObj, S, DCtx.isLittleEndian(), 0); unsigned NumDebugInfoErrors = 0; uint64_t Offset = 0, UnitIdx = 0; uint8_t UnitType = 0; bool isUnitDWARF64 = false; bool isHeaderChainValid = true; bool hasDIE = DebugInfoData.isValidOffset(Offset); DWARFUnitVector TypeUnitVector; DWARFUnitVector CompileUnitVector; /// A map that tracks all references (converted absolute references) so we /// can verify each reference points to a valid DIE and not an offset that /// lies between to valid DIEs. ReferenceMap CrossUnitReferences; while (hasDIE) { if (!verifyUnitHeader(DebugInfoData, &Offset, UnitIdx, UnitType, isUnitDWARF64)) { isHeaderChainValid = false; if (isUnitDWARF64) break; } hasDIE = DebugInfoData.isValidOffset(Offset); ++UnitIdx; } if (UnitIdx == 0 && !hasDIE) { warn() << "Section is empty.\n"; isHeaderChainValid = true; } if (!isHeaderChainValid) ++NumDebugInfoErrors; return NumDebugInfoErrors; } unsigned DWARFVerifier::verifyIndex(StringRef Name, DWARFSectionKind InfoColumnKind, StringRef IndexStr) { if (IndexStr.empty()) return 0; OS << "Verifying " << Name << "...\n"; DWARFUnitIndex Index(InfoColumnKind); DataExtractor D(IndexStr, DCtx.isLittleEndian(), 0); if (!Index.parse(D)) return 1; using MapType = IntervalMap; MapType::Allocator Alloc; std::vector> Sections(Index.getColumnKinds().size()); for (const DWARFUnitIndex::Entry &E : Index.getRows()) { uint64_t Sig = E.getSignature(); if (!E.getContributions()) continue; for (auto E : enumerate( InfoColumnKind == DW_SECT_INFO ? ArrayRef(E.getContributions(), Index.getColumnKinds().size()) : ArrayRef(E.getContribution(), 1))) { const DWARFUnitIndex::Entry::SectionContribution &SC = E.value(); int Col = E.index(); if (SC.getLength() == 0) continue; if (!Sections[Col]) Sections[Col] = std::make_unique(Alloc); auto &M = *Sections[Col]; auto I = M.find(SC.getOffset()); if (I != M.end() && I.start() < (SC.getOffset() + SC.getLength())) { error() << llvm::formatv( "overlapping index entries for entries {0:x16} " "and {1:x16} for column {2}\n", *I, Sig, toString(Index.getColumnKinds()[Col])); return 1; } M.insert(SC.getOffset(), SC.getOffset() + SC.getLength() - 1, Sig); } } return 0; } bool DWARFVerifier::handleDebugCUIndex() { return verifyIndex(".debug_cu_index", DWARFSectionKind::DW_SECT_INFO, DCtx.getDWARFObj().getCUIndexSection()) == 0; } bool DWARFVerifier::handleDebugTUIndex() { return verifyIndex(".debug_tu_index", DWARFSectionKind::DW_SECT_EXT_TYPES, DCtx.getDWARFObj().getTUIndexSection()) == 0; } bool DWARFVerifier::handleDebugInfo() { const DWARFObject &DObj = DCtx.getDWARFObj(); unsigned NumErrors = 0; OS << "Verifying .debug_info Unit Header Chain...\n"; DObj.forEachInfoSections([&](const DWARFSection &S) { NumErrors += verifyUnitSection(S); }); OS << "Verifying .debug_types Unit Header Chain...\n"; DObj.forEachTypesSections([&](const DWARFSection &S) { NumErrors += verifyUnitSection(S); }); OS << "Verifying non-dwo Units...\n"; NumErrors += verifyUnits(DCtx.getNormalUnitsVector()); OS << "Verifying dwo Units...\n"; NumErrors += verifyUnits(DCtx.getDWOUnitsVector()); return NumErrors == 0; } unsigned DWARFVerifier::verifyDieRanges(const DWARFDie &Die, DieRangeInfo &ParentRI) { unsigned NumErrors = 0; if (!Die.isValid()) return NumErrors; DWARFUnit *Unit = Die.getDwarfUnit(); auto RangesOrError = Die.getAddressRanges(); if (!RangesOrError) { // FIXME: Report the error. if (!Unit->isDWOUnit()) ++NumErrors; llvm::consumeError(RangesOrError.takeError()); return NumErrors; } const DWARFAddressRangesVector &Ranges = RangesOrError.get(); // Build RI for this DIE and check that ranges within this DIE do not // overlap. DieRangeInfo RI(Die); // TODO support object files better // // Some object file formats (i.e. non-MachO) support COMDAT. ELF in // particular does so by placing each function into a section. The DWARF data // for the function at that point uses a section relative DW_FORM_addrp for // the DW_AT_low_pc and a DW_FORM_data4 for the offset as the DW_AT_high_pc. // In such a case, when the Die is the CU, the ranges will overlap, and we // will flag valid conflicting ranges as invalid. // // For such targets, we should read the ranges from the CU and partition them // by the section id. The ranges within a particular section should be // disjoint, although the ranges across sections may overlap. We would map // the child die to the entity that it references and the section with which // it is associated. The child would then be checked against the range // information for the associated section. // // For now, simply elide the range verification for the CU DIEs if we are // processing an object file. if (!IsObjectFile || IsMachOObject || Die.getTag() != DW_TAG_compile_unit) { bool DumpDieAfterError = false; for (const auto &Range : Ranges) { if (!Range.valid()) { ++NumErrors; error() << "Invalid address range " << Range << "\n"; DumpDieAfterError = true; continue; } // Verify that ranges don't intersect and also build up the DieRangeInfo // address ranges. Don't break out of the loop below early, or we will // think this DIE doesn't have all of the address ranges it is supposed // to have. Compile units often have DW_AT_ranges that can contain one or // more dead stripped address ranges which tend to all be at the same // address: 0 or -1. if (auto PrevRange = RI.insert(Range)) { ++NumErrors; error() << "DIE has overlapping ranges in DW_AT_ranges attribute: " << *PrevRange << " and " << Range << '\n'; DumpDieAfterError = true; } } if (DumpDieAfterError) dump(Die, 2) << '\n'; } // Verify that children don't intersect. const auto IntersectingChild = ParentRI.insert(RI); if (IntersectingChild != ParentRI.Children.end()) { ++NumErrors; error() << "DIEs have overlapping address ranges:"; dump(Die); dump(IntersectingChild->Die) << '\n'; } // Verify that ranges are contained within their parent. bool ShouldBeContained = !RI.Ranges.empty() && !ParentRI.Ranges.empty() && !(Die.getTag() == DW_TAG_subprogram && ParentRI.Die.getTag() == DW_TAG_subprogram); if (ShouldBeContained && !ParentRI.contains(RI)) { ++NumErrors; error() << "DIE address ranges are not contained in its parent's ranges:"; dump(ParentRI.Die); dump(Die, 2) << '\n'; } // Recursively check children. for (DWARFDie Child : Die) NumErrors += verifyDieRanges(Child, RI); return NumErrors; } unsigned DWARFVerifier::verifyDebugInfoAttribute(const DWARFDie &Die, DWARFAttribute &AttrValue) { unsigned NumErrors = 0; auto ReportError = [&](const Twine &TitleMsg) { ++NumErrors; error() << TitleMsg << '\n'; dump(Die) << '\n'; }; const DWARFObject &DObj = DCtx.getDWARFObj(); DWARFUnit *U = Die.getDwarfUnit(); const auto Attr = AttrValue.Attr; switch (Attr) { case DW_AT_ranges: // Make sure the offset in the DW_AT_ranges attribute is valid. if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) { unsigned DwarfVersion = U->getVersion(); const DWARFSection &RangeSection = DwarfVersion < 5 ? DObj.getRangesSection() : DObj.getRnglistsSection(); if (U->isDWOUnit() && RangeSection.Data.empty()) break; if (*SectionOffset >= RangeSection.Data.size()) ReportError( "DW_AT_ranges offset is beyond " + StringRef(DwarfVersion < 5 ? ".debug_ranges" : ".debug_rnglists") + " bounds: " + llvm::formatv("{0:x8}", *SectionOffset)); break; } ReportError("DIE has invalid DW_AT_ranges encoding:"); break; case DW_AT_stmt_list: // Make sure the offset in the DW_AT_stmt_list attribute is valid. if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) { if (*SectionOffset >= U->getLineSection().Data.size()) ReportError("DW_AT_stmt_list offset is beyond .debug_line bounds: " + llvm::formatv("{0:x8}", *SectionOffset)); break; } ReportError("DIE has invalid DW_AT_stmt_list encoding:"); break; case DW_AT_location: { // FIXME: It might be nice if there's a way to walk location expressions // without trying to resolve the address ranges - it'd be a more efficient // API (since the API is currently unnecessarily resolving addresses for // this use case which only wants to validate the expressions themselves) & // then the expressions could be validated even if the addresses can't be // resolved. // That sort of API would probably look like a callback "for each // expression" with some way to lazily resolve the address ranges when // needed (& then the existing API used here could be built on top of that - // using the callback API to build the data structure and return it). if (Expected> Loc = Die.getLocations(DW_AT_location)) { for (const auto &Entry : *Loc) { DataExtractor Data(toStringRef(Entry.Expr), DCtx.isLittleEndian(), 0); DWARFExpression Expression(Data, U->getAddressByteSize(), U->getFormParams().Format); bool Error = any_of(Expression, [](const DWARFExpression::Operation &Op) { return Op.isError(); }); if (Error || !Expression.verify(U)) ReportError("DIE contains invalid DWARF expression:"); } } else if (Error Err = handleErrors( Loc.takeError(), [&](std::unique_ptr E) { return U->isDWOUnit() ? Error::success() : Error(std::move(E)); })) ReportError(toString(std::move(Err))); break; } case DW_AT_specification: case DW_AT_abstract_origin: { if (auto ReferencedDie = Die.getAttributeValueAsReferencedDie(Attr)) { auto DieTag = Die.getTag(); auto RefTag = ReferencedDie.getTag(); if (DieTag == RefTag) break; if (DieTag == DW_TAG_inlined_subroutine && RefTag == DW_TAG_subprogram) break; if (DieTag == DW_TAG_variable && RefTag == DW_TAG_member) break; // This might be reference to a function declaration. if (DieTag == DW_TAG_GNU_call_site && RefTag == DW_TAG_subprogram) break; ReportError("DIE with tag " + TagString(DieTag) + " has " + AttributeString(Attr) + " that points to DIE with " "incompatible tag " + TagString(RefTag)); } break; } case DW_AT_type: { DWARFDie TypeDie = Die.getAttributeValueAsReferencedDie(DW_AT_type); if (TypeDie && !isType(TypeDie.getTag())) { ReportError("DIE has " + AttributeString(Attr) + " with incompatible tag " + TagString(TypeDie.getTag())); } break; } case DW_AT_call_file: case DW_AT_decl_file: { if (auto FileIdx = AttrValue.Value.getAsUnsignedConstant()) { if (U->isDWOUnit() && !U->isTypeUnit()) break; const auto *LT = U->getContext().getLineTableForUnit(U); if (LT) { if (!LT->hasFileAtIndex(*FileIdx)) { bool IsZeroIndexed = LT->Prologue.getVersion() >= 5; if (std::optional LastFileIdx = LT->getLastValidFileIndex()) { ReportError("DIE has " + AttributeString(Attr) + " with an invalid file index " + llvm::formatv("{0}", *FileIdx) + " (valid values are [" + (IsZeroIndexed ? "0-" : "1-") + llvm::formatv("{0}", *LastFileIdx) + "])"); } else { ReportError("DIE has " + AttributeString(Attr) + " with an invalid file index " + llvm::formatv("{0}", *FileIdx) + " (the file table in the prologue is empty)"); } } } else { ReportError("DIE has " + AttributeString(Attr) + " that references a file with index " + llvm::formatv("{0}", *FileIdx) + " and the compile unit has no line table"); } } else { ReportError("DIE has " + AttributeString(Attr) + " with invalid encoding"); } break; } case DW_AT_call_line: case DW_AT_decl_line: { if (!AttrValue.Value.getAsUnsignedConstant()) { ReportError("DIE has " + AttributeString(Attr) + " with invalid encoding"); } break; } default: break; } return NumErrors; } unsigned DWARFVerifier::verifyDebugInfoForm(const DWARFDie &Die, DWARFAttribute &AttrValue, ReferenceMap &LocalReferences, ReferenceMap &CrossUnitReferences) { auto DieCU = Die.getDwarfUnit(); unsigned NumErrors = 0; const auto Form = AttrValue.Value.getForm(); switch (Form) { case DW_FORM_ref1: case DW_FORM_ref2: case DW_FORM_ref4: case DW_FORM_ref8: case DW_FORM_ref_udata: { // Verify all CU relative references are valid CU offsets. std::optional RefVal = AttrValue.Value.getAsReference(); assert(RefVal); if (RefVal) { auto CUSize = DieCU->getNextUnitOffset() - DieCU->getOffset(); auto CUOffset = AttrValue.Value.getRawUValue(); if (CUOffset >= CUSize) { ++NumErrors; error() << FormEncodingString(Form) << " CU offset " << format("0x%08" PRIx64, CUOffset) << " is invalid (must be less than CU size of " << format("0x%08" PRIx64, CUSize) << "):\n"; Die.dump(OS, 0, DumpOpts); dump(Die) << '\n'; } else { // Valid reference, but we will verify it points to an actual // DIE later. LocalReferences[*RefVal].insert(Die.getOffset()); } } break; } case DW_FORM_ref_addr: { // Verify all absolute DIE references have valid offsets in the // .debug_info section. std::optional RefVal = AttrValue.Value.getAsReference(); assert(RefVal); if (RefVal) { if (*RefVal >= DieCU->getInfoSection().Data.size()) { ++NumErrors; error() << "DW_FORM_ref_addr offset beyond .debug_info " "bounds:\n"; dump(Die) << '\n'; } else { // Valid reference, but we will verify it points to an actual // DIE later. CrossUnitReferences[*RefVal].insert(Die.getOffset()); } } break; } case DW_FORM_strp: case DW_FORM_strx: case DW_FORM_strx1: case DW_FORM_strx2: case DW_FORM_strx3: case DW_FORM_strx4: case DW_FORM_line_strp: { if (Error E = AttrValue.Value.getAsCString().takeError()) { ++NumErrors; error() << toString(std::move(E)) << ":\n"; dump(Die) << '\n'; } break; } default: break; } return NumErrors; } unsigned DWARFVerifier::verifyDebugInfoReferences( const ReferenceMap &References, llvm::function_ref GetUnitForOffset) { auto GetDIEForOffset = [&](uint64_t Offset) { if (DWARFUnit *U = GetUnitForOffset(Offset)) return U->getDIEForOffset(Offset); return DWARFDie(); }; unsigned NumErrors = 0; for (const std::pair> &Pair : References) { if (GetDIEForOffset(Pair.first)) continue; ++NumErrors; error() << "invalid DIE reference " << format("0x%08" PRIx64, Pair.first) << ". Offset is in between DIEs:\n"; for (auto Offset : Pair.second) dump(GetDIEForOffset(Offset)) << '\n'; OS << "\n"; } return NumErrors; } void DWARFVerifier::verifyDebugLineStmtOffsets() { std::map StmtListToDie; for (const auto &CU : DCtx.compile_units()) { auto Die = CU->getUnitDIE(); // Get the attribute value as a section offset. No need to produce an // error here if the encoding isn't correct because we validate this in // the .debug_info verifier. auto StmtSectionOffset = toSectionOffset(Die.find(DW_AT_stmt_list)); if (!StmtSectionOffset) continue; const uint64_t LineTableOffset = *StmtSectionOffset; auto LineTable = DCtx.getLineTableForUnit(CU.get()); if (LineTableOffset < DCtx.getDWARFObj().getLineSection().Data.size()) { if (!LineTable) { ++NumDebugLineErrors; error() << ".debug_line[" << format("0x%08" PRIx64, LineTableOffset) << "] was not able to be parsed for CU:\n"; dump(Die) << '\n'; continue; } } else { // Make sure we don't get a valid line table back if the offset is wrong. assert(LineTable == nullptr); // Skip this line table as it isn't valid. No need to create an error // here because we validate this in the .debug_info verifier. continue; } auto Iter = StmtListToDie.find(LineTableOffset); if (Iter != StmtListToDie.end()) { ++NumDebugLineErrors; error() << "two compile unit DIEs, " << format("0x%08" PRIx64, Iter->second.getOffset()) << " and " << format("0x%08" PRIx64, Die.getOffset()) << ", have the same DW_AT_stmt_list section offset:\n"; dump(Iter->second); dump(Die) << '\n'; // Already verified this line table before, no need to do it again. continue; } StmtListToDie[LineTableOffset] = Die; } } void DWARFVerifier::verifyDebugLineRows() { for (const auto &CU : DCtx.compile_units()) { auto Die = CU->getUnitDIE(); auto LineTable = DCtx.getLineTableForUnit(CU.get()); // If there is no line table we will have created an error in the // .debug_info verifier or in verifyDebugLineStmtOffsets(). if (!LineTable) continue; // Verify prologue. bool isDWARF5 = LineTable->Prologue.getVersion() >= 5; uint32_t MaxDirIndex = LineTable->Prologue.IncludeDirectories.size(); uint32_t MinFileIndex = isDWARF5 ? 0 : 1; uint32_t FileIndex = MinFileIndex; StringMap FullPathMap; for (const auto &FileName : LineTable->Prologue.FileNames) { // Verify directory index. if (FileName.DirIdx > MaxDirIndex) { ++NumDebugLineErrors; error() << ".debug_line[" << format("0x%08" PRIx64, *toSectionOffset(Die.find(DW_AT_stmt_list))) << "].prologue.file_names[" << FileIndex << "].dir_idx contains an invalid index: " << FileName.DirIdx << "\n"; } // Check file paths for duplicates. std::string FullPath; const bool HasFullPath = LineTable->getFileNameByIndex( FileIndex, CU->getCompilationDir(), DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FullPath); assert(HasFullPath && "Invalid index?"); (void)HasFullPath; auto It = FullPathMap.find(FullPath); if (It == FullPathMap.end()) FullPathMap[FullPath] = FileIndex; else if (It->second != FileIndex) { warn() << ".debug_line[" << format("0x%08" PRIx64, *toSectionOffset(Die.find(DW_AT_stmt_list))) << "].prologue.file_names[" << FileIndex << "] is a duplicate of file_names[" << It->second << "]\n"; } FileIndex++; } // Verify rows. uint64_t PrevAddress = 0; uint32_t RowIndex = 0; for (const auto &Row : LineTable->Rows) { // Verify row address. if (Row.Address.Address < PrevAddress) { ++NumDebugLineErrors; error() << ".debug_line[" << format("0x%08" PRIx64, *toSectionOffset(Die.find(DW_AT_stmt_list))) << "] row[" << RowIndex << "] decreases in address from previous row:\n"; DWARFDebugLine::Row::dumpTableHeader(OS, 0); if (RowIndex > 0) LineTable->Rows[RowIndex - 1].dump(OS); Row.dump(OS); OS << '\n'; } // Verify file index. if (!LineTable->hasFileAtIndex(Row.File)) { ++NumDebugLineErrors; error() << ".debug_line[" << format("0x%08" PRIx64, *toSectionOffset(Die.find(DW_AT_stmt_list))) << "][" << RowIndex << "] has invalid file index " << Row.File << " (valid values are [" << MinFileIndex << ',' << LineTable->Prologue.FileNames.size() << (isDWARF5 ? ")" : "]") << "):\n"; DWARFDebugLine::Row::dumpTableHeader(OS, 0); Row.dump(OS); OS << '\n'; } if (Row.EndSequence) PrevAddress = 0; else PrevAddress = Row.Address.Address; ++RowIndex; } } } DWARFVerifier::DWARFVerifier(raw_ostream &S, DWARFContext &D, DIDumpOptions DumpOpts) : OS(S), DCtx(D), DumpOpts(std::move(DumpOpts)), IsObjectFile(false), IsMachOObject(false) { if (const auto *F = DCtx.getDWARFObj().getFile()) { IsObjectFile = F->isRelocatableObject(); IsMachOObject = F->isMachO(); } } bool DWARFVerifier::handleDebugLine() { NumDebugLineErrors = 0; OS << "Verifying .debug_line...\n"; verifyDebugLineStmtOffsets(); verifyDebugLineRows(); return NumDebugLineErrors == 0; } unsigned DWARFVerifier::verifyAppleAccelTable(const DWARFSection *AccelSection, DataExtractor *StrData, const char *SectionName) { unsigned NumErrors = 0; DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), *AccelSection, DCtx.isLittleEndian(), 0); AppleAcceleratorTable AccelTable(AccelSectionData, *StrData); OS << "Verifying " << SectionName << "...\n"; // Verify that the fixed part of the header is not too short. if (!AccelSectionData.isValidOffset(AccelTable.getSizeHdr())) { error() << "Section is too small to fit a section header.\n"; return 1; } // Verify that the section is not too short. if (Error E = AccelTable.extract()) { error() << toString(std::move(E)) << '\n'; return 1; } // Verify that all buckets have a valid hash index or are empty. uint32_t NumBuckets = AccelTable.getNumBuckets(); uint32_t NumHashes = AccelTable.getNumHashes(); uint64_t BucketsOffset = AccelTable.getSizeHdr() + AccelTable.getHeaderDataLength(); uint64_t HashesBase = BucketsOffset + NumBuckets * 4; uint64_t OffsetsBase = HashesBase + NumHashes * 4; for (uint32_t BucketIdx = 0; BucketIdx < NumBuckets; ++BucketIdx) { uint32_t HashIdx = AccelSectionData.getU32(&BucketsOffset); if (HashIdx >= NumHashes && HashIdx != UINT32_MAX) { error() << format("Bucket[%d] has invalid hash index: %u.\n", BucketIdx, HashIdx); ++NumErrors; } } uint32_t NumAtoms = AccelTable.getAtomsDesc().size(); if (NumAtoms == 0) { error() << "No atoms: failed to read HashData.\n"; return 1; } if (!AccelTable.validateForms()) { error() << "Unsupported form: failed to read HashData.\n"; return 1; } for (uint32_t HashIdx = 0; HashIdx < NumHashes; ++HashIdx) { uint64_t HashOffset = HashesBase + 4 * HashIdx; uint64_t DataOffset = OffsetsBase + 4 * HashIdx; uint32_t Hash = AccelSectionData.getU32(&HashOffset); uint64_t HashDataOffset = AccelSectionData.getU32(&DataOffset); if (!AccelSectionData.isValidOffsetForDataOfSize(HashDataOffset, sizeof(uint64_t))) { error() << format("Hash[%d] has invalid HashData offset: " "0x%08" PRIx64 ".\n", HashIdx, HashDataOffset); ++NumErrors; } uint64_t StrpOffset; uint64_t StringOffset; uint32_t StringCount = 0; uint64_t Offset; unsigned Tag; while ((StrpOffset = AccelSectionData.getU32(&HashDataOffset)) != 0) { const uint32_t NumHashDataObjects = AccelSectionData.getU32(&HashDataOffset); for (uint32_t HashDataIdx = 0; HashDataIdx < NumHashDataObjects; ++HashDataIdx) { std::tie(Offset, Tag) = AccelTable.readAtoms(&HashDataOffset); auto Die = DCtx.getDIEForOffset(Offset); if (!Die) { const uint32_t BucketIdx = NumBuckets ? (Hash % NumBuckets) : UINT32_MAX; StringOffset = StrpOffset; const char *Name = StrData->getCStr(&StringOffset); if (!Name) Name = ""; error() << format( "%s Bucket[%d] Hash[%d] = 0x%08x " "Str[%u] = 0x%08" PRIx64 " DIE[%d] = 0x%08" PRIx64 " " "is not a valid DIE offset for \"%s\".\n", SectionName, BucketIdx, HashIdx, Hash, StringCount, StrpOffset, HashDataIdx, Offset, Name); ++NumErrors; continue; } if ((Tag != dwarf::DW_TAG_null) && (Die.getTag() != Tag)) { error() << "Tag " << dwarf::TagString(Tag) << " in accelerator table does not match Tag " << dwarf::TagString(Die.getTag()) << " of DIE[" << HashDataIdx << "].\n"; ++NumErrors; } } ++StringCount; } } return NumErrors; } unsigned DWARFVerifier::verifyDebugNamesCULists(const DWARFDebugNames &AccelTable) { // A map from CU offset to the (first) Name Index offset which claims to index // this CU. DenseMap CUMap; const uint64_t NotIndexed = std::numeric_limits::max(); CUMap.reserve(DCtx.getNumCompileUnits()); for (const auto &CU : DCtx.compile_units()) CUMap[CU->getOffset()] = NotIndexed; unsigned NumErrors = 0; for (const DWARFDebugNames::NameIndex &NI : AccelTable) { if (NI.getCUCount() == 0) { error() << formatv("Name Index @ {0:x} does not index any CU\n", NI.getUnitOffset()); ++NumErrors; continue; } for (uint32_t CU = 0, End = NI.getCUCount(); CU < End; ++CU) { uint64_t Offset = NI.getCUOffset(CU); auto Iter = CUMap.find(Offset); if (Iter == CUMap.end()) { error() << formatv( "Name Index @ {0:x} references a non-existing CU @ {1:x}\n", NI.getUnitOffset(), Offset); ++NumErrors; continue; } if (Iter->second != NotIndexed) { error() << formatv("Name Index @ {0:x} references a CU @ {1:x}, but " "this CU is already indexed by Name Index @ {2:x}\n", NI.getUnitOffset(), Offset, Iter->second); continue; } Iter->second = NI.getUnitOffset(); } } for (const auto &KV : CUMap) { if (KV.second == NotIndexed) warn() << formatv("CU @ {0:x} not covered by any Name Index\n", KV.first); } return NumErrors; } unsigned DWARFVerifier::verifyNameIndexBuckets(const DWARFDebugNames::NameIndex &NI, const DataExtractor &StrData) { struct BucketInfo { uint32_t Bucket; uint32_t Index; constexpr BucketInfo(uint32_t Bucket, uint32_t Index) : Bucket(Bucket), Index(Index) {} bool operator<(const BucketInfo &RHS) const { return Index < RHS.Index; } }; uint32_t NumErrors = 0; if (NI.getBucketCount() == 0) { warn() << formatv("Name Index @ {0:x} does not contain a hash table.\n", NI.getUnitOffset()); return NumErrors; } // Build up a list of (Bucket, Index) pairs. We use this later to verify that // each Name is reachable from the appropriate bucket. std::vector BucketStarts; BucketStarts.reserve(NI.getBucketCount() + 1); for (uint32_t Bucket = 0, End = NI.getBucketCount(); Bucket < End; ++Bucket) { uint32_t Index = NI.getBucketArrayEntry(Bucket); if (Index > NI.getNameCount()) { error() << formatv("Bucket {0} of Name Index @ {1:x} contains invalid " "value {2}. Valid range is [0, {3}].\n", Bucket, NI.getUnitOffset(), Index, NI.getNameCount()); ++NumErrors; continue; } if (Index > 0) BucketStarts.emplace_back(Bucket, Index); } // If there were any buckets with invalid values, skip further checks as they // will likely produce many errors which will only confuse the actual root // problem. if (NumErrors > 0) return NumErrors; // Sort the list in the order of increasing "Index" entries. array_pod_sort(BucketStarts.begin(), BucketStarts.end()); // Insert a sentinel entry at the end, so we can check that the end of the // table is covered in the loop below. BucketStarts.emplace_back(NI.getBucketCount(), NI.getNameCount() + 1); // Loop invariant: NextUncovered is the (1-based) index of the first Name // which is not reachable by any of the buckets we processed so far (and // hasn't been reported as uncovered). uint32_t NextUncovered = 1; for (const BucketInfo &B : BucketStarts) { // Under normal circumstances B.Index be equal to NextUncovered, but it can // be less if a bucket points to names which are already known to be in some // bucket we processed earlier. In that case, we won't trigger this error, // but report the mismatched hash value error instead. (We know the hash // will not match because we have already verified that the name's hash // puts it into the previous bucket.) if (B.Index > NextUncovered) { error() << formatv("Name Index @ {0:x}: Name table entries [{1}, {2}] " "are not covered by the hash table.\n", NI.getUnitOffset(), NextUncovered, B.Index - 1); ++NumErrors; } uint32_t Idx = B.Index; // The rest of the checks apply only to non-sentinel entries. if (B.Bucket == NI.getBucketCount()) break; // This triggers if a non-empty bucket points to a name with a mismatched // hash. Clients are likely to interpret this as an empty bucket, because a // mismatched hash signals the end of a bucket, but if this is indeed an // empty bucket, the producer should have signalled this by marking the // bucket as empty. uint32_t FirstHash = NI.getHashArrayEntry(Idx); if (FirstHash % NI.getBucketCount() != B.Bucket) { error() << formatv( "Name Index @ {0:x}: Bucket {1} is not empty but points to a " "mismatched hash value {2:x} (belonging to bucket {3}).\n", NI.getUnitOffset(), B.Bucket, FirstHash, FirstHash % NI.getBucketCount()); ++NumErrors; } // This find the end of this bucket and also verifies that all the hashes in // this bucket are correct by comparing the stored hashes to the ones we // compute ourselves. while (Idx <= NI.getNameCount()) { uint32_t Hash = NI.getHashArrayEntry(Idx); if (Hash % NI.getBucketCount() != B.Bucket) break; const char *Str = NI.getNameTableEntry(Idx).getString(); if (caseFoldingDjbHash(Str) != Hash) { error() << formatv("Name Index @ {0:x}: String ({1}) at index {2} " "hashes to {3:x}, but " "the Name Index hash is {4:x}\n", NI.getUnitOffset(), Str, Idx, caseFoldingDjbHash(Str), Hash); ++NumErrors; } ++Idx; } NextUncovered = std::max(NextUncovered, Idx); } return NumErrors; } unsigned DWARFVerifier::verifyNameIndexAttribute( const DWARFDebugNames::NameIndex &NI, const DWARFDebugNames::Abbrev &Abbr, DWARFDebugNames::AttributeEncoding AttrEnc) { StringRef FormName = dwarf::FormEncodingString(AttrEnc.Form); if (FormName.empty()) { error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x}: {2} uses an " "unknown form: {3}.\n", NI.getUnitOffset(), Abbr.Code, AttrEnc.Index, AttrEnc.Form); return 1; } if (AttrEnc.Index == DW_IDX_type_hash) { if (AttrEnc.Form != dwarf::DW_FORM_data8) { error() << formatv( "NameIndex @ {0:x}: Abbreviation {1:x}: DW_IDX_type_hash " "uses an unexpected form {2} (should be {3}).\n", NI.getUnitOffset(), Abbr.Code, AttrEnc.Form, dwarf::DW_FORM_data8); return 1; } } // A list of known index attributes and their expected form classes. // DW_IDX_type_hash is handled specially in the check above, as it has a // specific form (not just a form class) we should expect. struct FormClassTable { dwarf::Index Index; DWARFFormValue::FormClass Class; StringLiteral ClassName; }; static constexpr FormClassTable Table[] = { {dwarf::DW_IDX_compile_unit, DWARFFormValue::FC_Constant, {"constant"}}, {dwarf::DW_IDX_type_unit, DWARFFormValue::FC_Constant, {"constant"}}, {dwarf::DW_IDX_die_offset, DWARFFormValue::FC_Reference, {"reference"}}, {dwarf::DW_IDX_parent, DWARFFormValue::FC_Constant, {"constant"}}, }; ArrayRef TableRef(Table); auto Iter = find_if(TableRef, [AttrEnc](const FormClassTable &T) { return T.Index == AttrEnc.Index; }); if (Iter == TableRef.end()) { warn() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} contains an " "unknown index attribute: {2}.\n", NI.getUnitOffset(), Abbr.Code, AttrEnc.Index); return 0; } if (!DWARFFormValue(AttrEnc.Form).isFormClass(Iter->Class)) { error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x}: {2} uses an " "unexpected form {3} (expected form class {4}).\n", NI.getUnitOffset(), Abbr.Code, AttrEnc.Index, AttrEnc.Form, Iter->ClassName); return 1; } return 0; } unsigned DWARFVerifier::verifyNameIndexAbbrevs(const DWARFDebugNames::NameIndex &NI) { if (NI.getLocalTUCount() + NI.getForeignTUCount() > 0) { warn() << formatv("Name Index @ {0:x}: Verifying indexes of type units is " "not currently supported.\n", NI.getUnitOffset()); return 0; } unsigned NumErrors = 0; for (const auto &Abbrev : NI.getAbbrevs()) { StringRef TagName = dwarf::TagString(Abbrev.Tag); if (TagName.empty()) { warn() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} references an " "unknown tag: {2}.\n", NI.getUnitOffset(), Abbrev.Code, Abbrev.Tag); } SmallSet Attributes; for (const auto &AttrEnc : Abbrev.Attributes) { if (!Attributes.insert(AttrEnc.Index).second) { error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} contains " "multiple {2} attributes.\n", NI.getUnitOffset(), Abbrev.Code, AttrEnc.Index); ++NumErrors; continue; } NumErrors += verifyNameIndexAttribute(NI, Abbrev, AttrEnc); } if (NI.getCUCount() > 1 && !Attributes.count(dwarf::DW_IDX_compile_unit)) { error() << formatv("NameIndex @ {0:x}: Indexing multiple compile units " "and abbreviation {1:x} has no {2} attribute.\n", NI.getUnitOffset(), Abbrev.Code, dwarf::DW_IDX_compile_unit); ++NumErrors; } if (!Attributes.count(dwarf::DW_IDX_die_offset)) { error() << formatv( "NameIndex @ {0:x}: Abbreviation {1:x} has no {2} attribute.\n", NI.getUnitOffset(), Abbrev.Code, dwarf::DW_IDX_die_offset); ++NumErrors; } } return NumErrors; } static SmallVector getNames(const DWARFDie &DIE, bool IncludeLinkageName = true) { SmallVector Result; if (const char *Str = DIE.getShortName()) Result.emplace_back(Str); else if (DIE.getTag() == dwarf::DW_TAG_namespace) Result.emplace_back("(anonymous namespace)"); if (IncludeLinkageName) { if (const char *Str = DIE.getLinkageName()) Result.emplace_back(Str); } return Result; } unsigned DWARFVerifier::verifyNameIndexEntries( const DWARFDebugNames::NameIndex &NI, const DWARFDebugNames::NameTableEntry &NTE) { // Verifying type unit indexes not supported. if (NI.getLocalTUCount() + NI.getForeignTUCount() > 0) return 0; const char *CStr = NTE.getString(); if (!CStr) { error() << formatv( "Name Index @ {0:x}: Unable to get string associated with name {1}.\n", NI.getUnitOffset(), NTE.getIndex()); return 1; } StringRef Str(CStr); unsigned NumErrors = 0; unsigned NumEntries = 0; uint64_t EntryID = NTE.getEntryOffset(); uint64_t NextEntryID = EntryID; Expected EntryOr = NI.getEntry(&NextEntryID); for (; EntryOr; ++NumEntries, EntryID = NextEntryID, EntryOr = NI.getEntry(&NextEntryID)) { uint32_t CUIndex = *EntryOr->getCUIndex(); if (CUIndex > NI.getCUCount()) { error() << formatv("Name Index @ {0:x}: Entry @ {1:x} contains an " "invalid CU index ({2}).\n", NI.getUnitOffset(), EntryID, CUIndex); ++NumErrors; continue; } uint64_t CUOffset = NI.getCUOffset(CUIndex); uint64_t DIEOffset = CUOffset + *EntryOr->getDIEUnitOffset(); DWARFDie DIE = DCtx.getDIEForOffset(DIEOffset); if (!DIE) { error() << formatv("Name Index @ {0:x}: Entry @ {1:x} references a " "non-existing DIE @ {2:x}.\n", NI.getUnitOffset(), EntryID, DIEOffset); ++NumErrors; continue; } if (DIE.getDwarfUnit()->getOffset() != CUOffset) { error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched CU of " "DIE @ {2:x}: index - {3:x}; debug_info - {4:x}.\n", NI.getUnitOffset(), EntryID, DIEOffset, CUOffset, DIE.getDwarfUnit()->getOffset()); ++NumErrors; } if (DIE.getTag() != EntryOr->tag()) { error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched Tag of " "DIE @ {2:x}: index - {3}; debug_info - {4}.\n", NI.getUnitOffset(), EntryID, DIEOffset, EntryOr->tag(), DIE.getTag()); ++NumErrors; } auto EntryNames = getNames(DIE); if (!is_contained(EntryNames, Str)) { error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched Name " "of DIE @ {2:x}: index - {3}; debug_info - {4}.\n", NI.getUnitOffset(), EntryID, DIEOffset, Str, make_range(EntryNames.begin(), EntryNames.end())); ++NumErrors; } } handleAllErrors(EntryOr.takeError(), [&](const DWARFDebugNames::SentinelError &) { if (NumEntries > 0) return; error() << formatv("Name Index @ {0:x}: Name {1} ({2}) is " "not associated with any entries.\n", NI.getUnitOffset(), NTE.getIndex(), Str); ++NumErrors; }, [&](const ErrorInfoBase &Info) { error() << formatv("Name Index @ {0:x}: Name {1} ({2}): {3}\n", NI.getUnitOffset(), NTE.getIndex(), Str, Info.message()); ++NumErrors; }); return NumErrors; } static bool isVariableIndexable(const DWARFDie &Die, DWARFContext &DCtx) { Expected> Loc = Die.getLocations(DW_AT_location); if (!Loc) { consumeError(Loc.takeError()); return false; } DWARFUnit *U = Die.getDwarfUnit(); for (const auto &Entry : *Loc) { DataExtractor Data(toStringRef(Entry.Expr), DCtx.isLittleEndian(), U->getAddressByteSize()); DWARFExpression Expression(Data, U->getAddressByteSize(), U->getFormParams().Format); bool IsInteresting = any_of(Expression, [](const DWARFExpression::Operation &Op) { return !Op.isError() && (Op.getCode() == DW_OP_addr || Op.getCode() == DW_OP_form_tls_address || Op.getCode() == DW_OP_GNU_push_tls_address); }); if (IsInteresting) return true; } return false; } unsigned DWARFVerifier::verifyNameIndexCompleteness( const DWARFDie &Die, const DWARFDebugNames::NameIndex &NI) { // First check, if the Die should be indexed. The code follows the DWARF v5 // wording as closely as possible. // "All non-defining declarations (that is, debugging information entries // with a DW_AT_declaration attribute) are excluded." if (Die.find(DW_AT_declaration)) return 0; // "DW_TAG_namespace debugging information entries without a DW_AT_name // attribute are included with the name “(anonymous namespace)”. // All other debugging information entries without a DW_AT_name attribute // are excluded." // "If a subprogram or inlined subroutine is included, and has a // DW_AT_linkage_name attribute, there will be an additional index entry for // the linkage name." auto IncludeLinkageName = Die.getTag() == DW_TAG_subprogram || Die.getTag() == DW_TAG_inlined_subroutine; auto EntryNames = getNames(Die, IncludeLinkageName); if (EntryNames.empty()) return 0; // We deviate from the specification here, which says: // "The name index must contain an entry for each debugging information entry // that defines a named subprogram, label, variable, type, or namespace, // subject to ..." // Explicitly exclude all TAGs that we know shouldn't be indexed. switch (Die.getTag()) { // Compile units and modules have names but shouldn't be indexed. case DW_TAG_compile_unit: case DW_TAG_module: return 0; // Function and template parameters are not globally visible, so we shouldn't // index them. case DW_TAG_formal_parameter: case DW_TAG_template_value_parameter: case DW_TAG_template_type_parameter: case DW_TAG_GNU_template_parameter_pack: case DW_TAG_GNU_template_template_param: return 0; // Object members aren't globally visible. case DW_TAG_member: return 0; // According to a strict reading of the specification, enumerators should not // be indexed (and LLVM currently does not do that). However, this causes // problems for the debuggers, so we may need to reconsider this. case DW_TAG_enumerator: return 0; // Imported declarations should not be indexed according to the specification // and LLVM currently does not do that. case DW_TAG_imported_declaration: return 0; // "DW_TAG_subprogram, DW_TAG_inlined_subroutine, and DW_TAG_label debugging // information entries without an address attribute (DW_AT_low_pc, // DW_AT_high_pc, DW_AT_ranges, or DW_AT_entry_pc) are excluded." case DW_TAG_subprogram: case DW_TAG_inlined_subroutine: case DW_TAG_label: if (Die.findRecursively( {DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_entry_pc})) break; return 0; // "DW_TAG_variable debugging information entries with a DW_AT_location // attribute that includes a DW_OP_addr or DW_OP_form_tls_address operator are // included; otherwise, they are excluded." // // LLVM extension: We also add DW_OP_GNU_push_tls_address to this list. case DW_TAG_variable: if (isVariableIndexable(Die, DCtx)) break; return 0; default: break; } // Now we know that our Die should be present in the Index. Let's check if // that's the case. unsigned NumErrors = 0; uint64_t DieUnitOffset = Die.getOffset() - Die.getDwarfUnit()->getOffset(); for (StringRef Name : EntryNames) { if (none_of(NI.equal_range(Name), [&](const DWARFDebugNames::Entry &E) { return E.getDIEUnitOffset() == DieUnitOffset; })) { error() << formatv("Name Index @ {0:x}: Entry for DIE @ {1:x} ({2}) with " "name {3} missing.\n", NI.getUnitOffset(), Die.getOffset(), Die.getTag(), Name); ++NumErrors; } } return NumErrors; } unsigned DWARFVerifier::verifyDebugNames(const DWARFSection &AccelSection, const DataExtractor &StrData) { unsigned NumErrors = 0; DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), AccelSection, DCtx.isLittleEndian(), 0); DWARFDebugNames AccelTable(AccelSectionData, StrData); OS << "Verifying .debug_names...\n"; // This verifies that we can read individual name indices and their // abbreviation tables. if (Error E = AccelTable.extract()) { error() << toString(std::move(E)) << '\n'; return 1; } NumErrors += verifyDebugNamesCULists(AccelTable); for (const auto &NI : AccelTable) NumErrors += verifyNameIndexBuckets(NI, StrData); for (const auto &NI : AccelTable) NumErrors += verifyNameIndexAbbrevs(NI); // Don't attempt Entry validation if any of the previous checks found errors if (NumErrors > 0) return NumErrors; for (const auto &NI : AccelTable) for (const DWARFDebugNames::NameTableEntry &NTE : NI) NumErrors += verifyNameIndexEntries(NI, NTE); if (NumErrors > 0) return NumErrors; for (const std::unique_ptr &U : DCtx.compile_units()) { if (const DWARFDebugNames::NameIndex *NI = AccelTable.getCUNameIndex(U->getOffset())) { auto *CU = cast(U.get()); for (const DWARFDebugInfoEntry &Die : CU->dies()) NumErrors += verifyNameIndexCompleteness(DWARFDie(CU, &Die), *NI); } } return NumErrors; } bool DWARFVerifier::handleAccelTables() { const DWARFObject &D = DCtx.getDWARFObj(); DataExtractor StrData(D.getStrSection(), DCtx.isLittleEndian(), 0); unsigned NumErrors = 0; if (!D.getAppleNamesSection().Data.empty()) NumErrors += verifyAppleAccelTable(&D.getAppleNamesSection(), &StrData, ".apple_names"); if (!D.getAppleTypesSection().Data.empty()) NumErrors += verifyAppleAccelTable(&D.getAppleTypesSection(), &StrData, ".apple_types"); if (!D.getAppleNamespacesSection().Data.empty()) NumErrors += verifyAppleAccelTable(&D.getAppleNamespacesSection(), &StrData, ".apple_namespaces"); if (!D.getAppleObjCSection().Data.empty()) NumErrors += verifyAppleAccelTable(&D.getAppleObjCSection(), &StrData, ".apple_objc"); if (!D.getNamesSection().Data.empty()) NumErrors += verifyDebugNames(D.getNamesSection(), StrData); return NumErrors == 0; } bool DWARFVerifier::handleDebugStrOffsets() { OS << "Verifying .debug_str_offsets...\n"; const DWARFObject &DObj = DCtx.getDWARFObj(); bool Success = true; Success &= verifyDebugStrOffsets( ".debug_str_offsets.dwo", DObj.getStrOffsetsDWOSection(), DObj.getStrDWOSection(), &DWARFObject::forEachInfoDWOSections); Success &= verifyDebugStrOffsets( ".debug_str_offsets", DObj.getStrOffsetsSection(), DObj.getStrSection(), &DWARFObject::forEachInfoSections); return Success; } bool DWARFVerifier::verifyDebugStrOffsets( StringRef SectionName, const DWARFSection &Section, StringRef StrData, void (DWARFObject::*VisitInfoSections)( function_ref) const) { const DWARFObject &DObj = DCtx.getDWARFObj(); uint16_t InfoVersion = 0; DwarfFormat InfoFormat = DwarfFormat::DWARF32; (DObj.*VisitInfoSections)([&](const DWARFSection &S) { if (InfoVersion) return; DWARFDataExtractor DebugInfoData(DObj, S, DCtx.isLittleEndian(), 0); uint64_t Offset = 0; InfoFormat = DebugInfoData.getInitialLength(&Offset).second; InfoVersion = DebugInfoData.getU16(&Offset); }); DWARFDataExtractor DA(DObj, Section, DCtx.isLittleEndian(), 0); DataExtractor::Cursor C(0); uint64_t NextUnit = 0; bool Success = true; while (C.seek(NextUnit), C.tell() < DA.getData().size()) { DwarfFormat Format; uint64_t Length; uint64_t StartOffset = C.tell(); if (InfoVersion == 4) { Format = InfoFormat; Length = DA.getData().size(); NextUnit = C.tell() + Length; } else { std::tie(Length, Format) = DA.getInitialLength(C); if (!C) break; if (C.tell() + Length > DA.getData().size()) { error() << formatv( "{0}: contribution {1:X}: length exceeds available space " "(contribution " "offset ({1:X}) + length field space ({2:X}) + length ({3:X}) == " "{4:X} > section size {5:X})\n", SectionName, StartOffset, C.tell() - StartOffset, Length, C.tell() + Length, DA.getData().size()); Success = false; // Nothing more to do - no other contributions to try. break; } NextUnit = C.tell() + Length; uint8_t Version = DA.getU16(C); if (C && Version != 5) { error() << formatv("{0}: contribution {1:X}: invalid version {2}\n", SectionName, StartOffset, Version); Success = false; // Can't parse the rest of this contribution, since we don't know the // version, but we can pick up with the next contribution. continue; } (void)DA.getU16(C); // padding } uint64_t OffsetByteSize = getDwarfOffsetByteSize(Format); DA.setAddressSize(OffsetByteSize); uint64_t Remainder = (Length - 4) % OffsetByteSize; if (Remainder != 0) { error() << formatv( "{0}: contribution {1:X}: invalid length ((length ({2:X}) " "- header (0x4)) % offset size {3:X} == {4:X} != 0)\n", SectionName, StartOffset, Length, OffsetByteSize, Remainder); Success = false; } for (uint64_t Index = 0; C && C.tell() + OffsetByteSize <= NextUnit; ++Index) { uint64_t OffOff = C.tell(); uint64_t StrOff = DA.getAddress(C); // check StrOff refers to the start of a string if (StrOff == 0) continue; if (StrData.size() <= StrOff) { error() << formatv( "{0}: contribution {1:X}: index {2:X}: invalid string " "offset *{3:X} == {4:X}, is beyond the bounds of the string section of length {5:X}\n", SectionName, StartOffset, Index, OffOff, StrOff, StrData.size()); continue; } if (StrData[StrOff - 1] == '\0') continue; error() << formatv("{0}: contribution {1:X}: index {2:X}: invalid string " "offset *{3:X} == {4:X}, is neither zero nor " "immediately following a null character\n", SectionName, StartOffset, Index, OffOff, StrOff); Success = false; } } if (Error E = C.takeError()) { error() << SectionName << ": " << toString(std::move(E)) << '\n'; return false; } return Success; } raw_ostream &DWARFVerifier::error() const { return WithColor::error(OS); } raw_ostream &DWARFVerifier::warn() const { return WithColor::warning(OS); } raw_ostream &DWARFVerifier::note() const { return WithColor::note(OS); } raw_ostream &DWARFVerifier::dump(const DWARFDie &Die, unsigned indent) const { Die.dump(OS, indent, DumpOpts); return OS; }