//===- DWARFUnit.cpp ------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFUnit.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h" #include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h" #include "llvm/DebugInfo/DWARF/DWARFDie.h" #include "llvm/DebugInfo/DWARF/DWARFExpression.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/DebugInfo/DWARF/DWARFListTable.h" #include "llvm/DebugInfo/DWARF/DWARFObject.h" #include "llvm/DebugInfo/DWARF/DWARFSection.h" #include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Path.h" #include #include #include #include #include #include using namespace llvm; using namespace dwarf; void DWARFUnitVector::addUnitsForSection(DWARFContext &C, const DWARFSection &Section, DWARFSectionKind SectionKind) { const DWARFObject &D = C.getDWARFObj(); addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangesSection(), &D.getLocSection(), D.getStrSection(), D.getStrOffsetsSection(), &D.getAddrSection(), D.getLineSection(), D.isLittleEndian(), false, false, SectionKind); } void DWARFUnitVector::addUnitsForDWOSection(DWARFContext &C, const DWARFSection &DWOSection, DWARFSectionKind SectionKind, bool Lazy) { const DWARFObject &D = C.getDWARFObj(); addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangesDWOSection(), &D.getLocDWOSection(), D.getStrDWOSection(), D.getStrOffsetsDWOSection(), &D.getAddrSection(), D.getLineDWOSection(), C.isLittleEndian(), true, Lazy, SectionKind); } void DWARFUnitVector::addUnitsImpl( DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section, const DWARFDebugAbbrev *DA, const DWARFSection *RS, const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS, const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO, bool Lazy, DWARFSectionKind SectionKind) { DWARFDataExtractor Data(Obj, Section, LE, 0); // Lazy initialization of Parser, now that we have all section info. if (!Parser) { Parser = [=, &Context, &Obj, &Section, &SOS, &LS](uint64_t Offset, DWARFSectionKind SectionKind, const DWARFSection *CurSection, const DWARFUnitIndex::Entry *IndexEntry) -> std::unique_ptr { const DWARFSection &InfoSection = CurSection ? *CurSection : Section; DWARFDataExtractor Data(Obj, InfoSection, LE, 0); if (!Data.isValidOffset(Offset)) return nullptr; DWARFUnitHeader Header; if (Error ExtractErr = Header.extract(Context, Data, &Offset, SectionKind)) { Context.getWarningHandler()(std::move(ExtractErr)); return nullptr; } if (!IndexEntry && IsDWO) { const DWARFUnitIndex &Index = getDWARFUnitIndex( Context, Header.isTypeUnit() ? DW_SECT_EXT_TYPES : DW_SECT_INFO); if (Index) { if (Header.isTypeUnit()) IndexEntry = Index.getFromHash(Header.getTypeHash()); else if (auto DWOId = Header.getDWOId()) IndexEntry = Index.getFromHash(*DWOId); } if (!IndexEntry) IndexEntry = Index.getFromOffset(Header.getOffset()); } if (IndexEntry && !Header.applyIndexEntry(IndexEntry)) return nullptr; std::unique_ptr U; if (Header.isTypeUnit()) U = std::make_unique(Context, InfoSection, Header, DA, RS, LocSection, SS, SOS, AOS, LS, LE, IsDWO, *this); else U = std::make_unique(Context, InfoSection, Header, DA, RS, LocSection, SS, SOS, AOS, LS, LE, IsDWO, *this); return U; }; } if (Lazy) return; // Find a reasonable insertion point within the vector. We skip over // (a) units from a different section, (b) units from the same section // but with lower offset-within-section. This keeps units in order // within a section, although not necessarily within the object file, // even if we do lazy parsing. auto I = this->begin(); uint64_t Offset = 0; while (Data.isValidOffset(Offset)) { if (I != this->end() && (&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) { ++I; continue; } auto U = Parser(Offset, SectionKind, &Section, nullptr); // If parsing failed, we're done with this section. if (!U) break; Offset = U->getNextUnitOffset(); I = std::next(this->insert(I, std::move(U))); } } DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr Unit) { auto I = llvm::upper_bound(*this, Unit, [](const std::unique_ptr &LHS, const std::unique_ptr &RHS) { return LHS->getOffset() < RHS->getOffset(); }); return this->insert(I, std::move(Unit))->get(); } DWARFUnit *DWARFUnitVector::getUnitForOffset(uint64_t Offset) const { auto end = begin() + getNumInfoUnits(); auto *CU = std::upper_bound(begin(), end, Offset, [](uint64_t LHS, const std::unique_ptr &RHS) { return LHS < RHS->getNextUnitOffset(); }); if (CU != end && (*CU)->getOffset() <= Offset) return CU->get(); return nullptr; } DWARFUnit * DWARFUnitVector::getUnitForIndexEntry(const DWARFUnitIndex::Entry &E) { const auto *CUOff = E.getContribution(DW_SECT_INFO); if (!CUOff) return nullptr; uint64_t Offset = CUOff->getOffset(); auto end = begin() + getNumInfoUnits(); auto *CU = std::upper_bound(begin(), end, CUOff->getOffset(), [](uint64_t LHS, const std::unique_ptr &RHS) { return LHS < RHS->getNextUnitOffset(); }); if (CU != end && (*CU)->getOffset() <= Offset) return CU->get(); if (!Parser) return nullptr; auto U = Parser(Offset, DW_SECT_INFO, nullptr, &E); if (!U) return nullptr; auto *NewCU = U.get(); this->insert(CU, std::move(U)); ++NumInfoUnits; return NewCU; } DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section, const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA, const DWARFSection *RS, const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS, const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO, const DWARFUnitVector &UnitVector) : Context(DC), InfoSection(Section), Header(Header), Abbrev(DA), RangeSection(RS), LineSection(LS), StringSection(SS), StringOffsetSection(SOS), AddrOffsetSection(AOS), IsLittleEndian(LE), IsDWO(IsDWO), UnitVector(UnitVector) { clear(); } DWARFUnit::~DWARFUnit() = default; DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const { return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, IsLittleEndian, getAddressByteSize()); } std::optional DWARFUnit::getAddrOffsetSectionItem(uint32_t Index) const { if (!AddrOffsetSectionBase) { auto R = Context.info_section_units(); // Surprising if a DWO file has more than one skeleton unit in it - this // probably shouldn't be valid, but if a use case is found, here's where to // support it (probably have to linearly search for the matching skeleton CU // here) if (IsDWO && hasSingleElement(R)) return (*R.begin())->getAddrOffsetSectionItem(Index); return std::nullopt; } uint64_t Offset = *AddrOffsetSectionBase + Index * getAddressByteSize(); if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize()) return std::nullopt; DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection, IsLittleEndian, getAddressByteSize()); uint64_t Section; uint64_t Address = DA.getRelocatedAddress(&Offset, &Section); return {{Address, Section}}; } Expected DWARFUnit::getStringOffsetSectionItem(uint32_t Index) const { if (!StringOffsetsTableContribution) return make_error( "DW_FORM_strx used without a valid string offsets table", inconvertibleErrorCode()); unsigned ItemSize = getDwarfStringOffsetsByteSize(); uint64_t Offset = getStringOffsetsBase() + Index * ItemSize; if (StringOffsetSection.Data.size() < Offset + ItemSize) return make_error("DW_FORM_strx uses index " + Twine(Index) + ", which is too large", inconvertibleErrorCode()); DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, IsLittleEndian, 0); return DA.getRelocatedValue(ItemSize, &Offset); } Error DWARFUnitHeader::extract(DWARFContext &Context, const DWARFDataExtractor &debug_info, uint64_t *offset_ptr, DWARFSectionKind SectionKind) { Offset = *offset_ptr; Error Err = Error::success(); IndexEntry = nullptr; std::tie(Length, FormParams.Format) = debug_info.getInitialLength(offset_ptr, &Err); FormParams.Version = debug_info.getU16(offset_ptr, &Err); if (FormParams.Version >= 5) { UnitType = debug_info.getU8(offset_ptr, &Err); FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err); AbbrOffset = debug_info.getRelocatedValue( FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err); } else { AbbrOffset = debug_info.getRelocatedValue( FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err); FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err); // Fake a unit type based on the section type. This isn't perfect, // but distinguishing compile and type units is generally enough. if (SectionKind == DW_SECT_EXT_TYPES) UnitType = DW_UT_type; else UnitType = DW_UT_compile; } if (isTypeUnit()) { TypeHash = debug_info.getU64(offset_ptr, &Err); TypeOffset = debug_info.getUnsigned( offset_ptr, FormParams.getDwarfOffsetByteSize(), &Err); } else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton) DWOId = debug_info.getU64(offset_ptr, &Err); if (Err) return joinErrors( createStringError( errc::invalid_argument, "DWARF unit at 0x%8.8" PRIx64 " cannot be parsed:", Offset), std::move(Err)); // Header fields all parsed, capture the size of this unit header. assert(*offset_ptr - Offset <= 255 && "unexpected header size"); Size = uint8_t(*offset_ptr - Offset); uint64_t NextCUOffset = Offset + getUnitLengthFieldByteSize() + getLength(); if (!debug_info.isValidOffset(getNextUnitOffset() - 1)) return createStringError(errc::invalid_argument, "DWARF unit from offset 0x%8.8" PRIx64 " incl. " "to offset 0x%8.8" PRIx64 " excl. " "extends past section size 0x%8.8zx", Offset, NextCUOffset, debug_info.size()); if (!DWARFContext::isSupportedVersion(getVersion())) return createStringError( errc::invalid_argument, "DWARF unit at offset 0x%8.8" PRIx64 " " "has unsupported version %" PRIu16 ", supported are 2-%u", Offset, getVersion(), DWARFContext::getMaxSupportedVersion()); // Type offset is unit-relative; should be after the header and before // the end of the current unit. if (isTypeUnit() && TypeOffset < Size) return createStringError(errc::invalid_argument, "DWARF type unit at offset " "0x%8.8" PRIx64 " " "has its relocated type_offset 0x%8.8" PRIx64 " " "pointing inside the header", Offset, Offset + TypeOffset); if (isTypeUnit() && TypeOffset >= getUnitLengthFieldByteSize() + getLength()) return createStringError( errc::invalid_argument, "DWARF type unit from offset 0x%8.8" PRIx64 " incl. " "to offset 0x%8.8" PRIx64 " excl. has its " "relocated type_offset 0x%8.8" PRIx64 " pointing past the unit end", Offset, NextCUOffset, Offset + TypeOffset); if (Error SizeErr = DWARFContext::checkAddressSizeSupported( getAddressByteSize(), errc::invalid_argument, "DWARF unit at offset 0x%8.8" PRIx64, Offset)) return SizeErr; // Keep track of the highest DWARF version we encounter across all units. Context.setMaxVersionIfGreater(getVersion()); return Error::success(); } bool DWARFUnitHeader::applyIndexEntry(const DWARFUnitIndex::Entry *Entry) { assert(Entry); assert(!IndexEntry); IndexEntry = Entry; if (AbbrOffset) return false; auto *UnitContrib = IndexEntry->getContribution(); if (!UnitContrib || UnitContrib->getLength() != (getLength() + getUnitLengthFieldByteSize())) return false; auto *AbbrEntry = IndexEntry->getContribution(DW_SECT_ABBREV); if (!AbbrEntry) return false; AbbrOffset = AbbrEntry->getOffset(); return true; } Error DWARFUnit::extractRangeList(uint64_t RangeListOffset, DWARFDebugRangeList &RangeList) const { // Require that compile unit is extracted. assert(!DieArray.empty()); DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, IsLittleEndian, getAddressByteSize()); uint64_t ActualRangeListOffset = RangeSectionBase + RangeListOffset; return RangeList.extract(RangesData, &ActualRangeListOffset); } void DWARFUnit::clear() { Abbrevs = nullptr; BaseAddr.reset(); RangeSectionBase = 0; LocSectionBase = 0; AddrOffsetSectionBase = std::nullopt; SU = nullptr; clearDIEs(false); AddrDieMap.clear(); if (DWO) DWO->clear(); DWO.reset(); } const char *DWARFUnit::getCompilationDir() { return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr); } void DWARFUnit::extractDIEsToVector( bool AppendCUDie, bool AppendNonCUDies, std::vector &Dies) const { if (!AppendCUDie && !AppendNonCUDies) return; // Set the offset to that of the first DIE and calculate the start of the // next compilation unit header. uint64_t DIEOffset = getOffset() + getHeaderSize(); uint64_t NextCUOffset = getNextUnitOffset(); DWARFDebugInfoEntry DIE; DWARFDataExtractor DebugInfoData = getDebugInfoExtractor(); // The end offset has been already checked by DWARFUnitHeader::extract. assert(DebugInfoData.isValidOffset(NextCUOffset - 1)); std::vector Parents; std::vector PrevSiblings; bool IsCUDie = true; assert( ((AppendCUDie && Dies.empty()) || (!AppendCUDie && Dies.size() == 1)) && "Dies array is not empty"); // Fill Parents and Siblings stacks with initial value. Parents.push_back(UINT32_MAX); if (!AppendCUDie) Parents.push_back(0); PrevSiblings.push_back(0); // Start to extract dies. do { assert(Parents.size() > 0 && "Empty parents stack"); assert((Parents.back() == UINT32_MAX || Parents.back() <= Dies.size()) && "Wrong parent index"); // Extract die. Stop if any error occurred. if (!DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset, Parents.back())) break; // If previous sibling is remembered then update it`s SiblingIdx field. if (PrevSiblings.back() > 0) { assert(PrevSiblings.back() < Dies.size() && "Previous sibling index is out of Dies boundaries"); Dies[PrevSiblings.back()].setSiblingIdx(Dies.size()); } // Store die into the Dies vector. if (IsCUDie) { if (AppendCUDie) Dies.push_back(DIE); if (!AppendNonCUDies) break; // The average bytes per DIE entry has been seen to be // around 14-20 so let's pre-reserve the needed memory for // our DIE entries accordingly. Dies.reserve(Dies.size() + getDebugInfoSize() / 14); } else { // Remember last previous sibling. PrevSiblings.back() = Dies.size(); Dies.push_back(DIE); } // Check for new children scope. if (const DWARFAbbreviationDeclaration *AbbrDecl = DIE.getAbbreviationDeclarationPtr()) { if (AbbrDecl->hasChildren()) { if (AppendCUDie || !IsCUDie) { assert(Dies.size() > 0 && "Dies does not contain any die"); Parents.push_back(Dies.size() - 1); PrevSiblings.push_back(0); } } else if (IsCUDie) // Stop if we have single compile unit die w/o children. break; } else { // NULL DIE: finishes current children scope. Parents.pop_back(); PrevSiblings.pop_back(); } if (IsCUDie) IsCUDie = false; // Stop when compile unit die is removed from the parents stack. } while (Parents.size() > 1); } void DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) { if (Error e = tryExtractDIEsIfNeeded(CUDieOnly)) Context.getRecoverableErrorHandler()(std::move(e)); } Error DWARFUnit::tryExtractDIEsIfNeeded(bool CUDieOnly) { if ((CUDieOnly && !DieArray.empty()) || DieArray.size() > 1) return Error::success(); // Already parsed. bool HasCUDie = !DieArray.empty(); extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray); if (DieArray.empty()) return Error::success(); // If CU DIE was just parsed, copy several attribute values from it. if (HasCUDie) return Error::success(); DWARFDie UnitDie(this, &DieArray[0]); if (std::optional DWOId = toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id))) Header.setDWOId(*DWOId); if (!IsDWO) { assert(AddrOffsetSectionBase == std::nullopt); assert(RangeSectionBase == 0); assert(LocSectionBase == 0); AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base)); if (!AddrOffsetSectionBase) AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base)); RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0); LocSectionBase = toSectionOffset(UnitDie.find(DW_AT_loclists_base), 0); } // In general, in DWARF v5 and beyond we derive the start of the unit's // contribution to the string offsets table from the unit DIE's // DW_AT_str_offsets_base attribute. Split DWARF units do not use this // attribute, so we assume that there is a contribution to the string // offsets table starting at offset 0 of the debug_str_offsets.dwo section. // In both cases we need to determine the format of the contribution, // which may differ from the unit's format. DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, IsLittleEndian, 0); if (IsDWO || getVersion() >= 5) { auto StringOffsetOrError = IsDWO ? determineStringOffsetsTableContributionDWO(DA) : determineStringOffsetsTableContribution(DA); if (!StringOffsetOrError) return createStringError(errc::invalid_argument, "invalid reference to or invalid content in " ".debug_str_offsets[.dwo]: " + toString(StringOffsetOrError.takeError())); StringOffsetsTableContribution = *StringOffsetOrError; } // DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to // describe address ranges. if (getVersion() >= 5) { // In case of DWP, the base offset from the index has to be added. if (IsDWO) { uint64_t ContributionBaseOffset = 0; if (auto *IndexEntry = Header.getIndexEntry()) if (auto *Contrib = IndexEntry->getContribution(DW_SECT_RNGLISTS)) ContributionBaseOffset = Contrib->getOffset(); setRangesSection( &Context.getDWARFObj().getRnglistsDWOSection(), ContributionBaseOffset + DWARFListTableHeader::getHeaderSize(Header.getFormat())); } else setRangesSection(&Context.getDWARFObj().getRnglistsSection(), toSectionOffset(UnitDie.find(DW_AT_rnglists_base), DWARFListTableHeader::getHeaderSize( Header.getFormat()))); } if (IsDWO) { // If we are reading a package file, we need to adjust the location list // data based on the index entries. StringRef Data = Header.getVersion() >= 5 ? Context.getDWARFObj().getLoclistsDWOSection().Data : Context.getDWARFObj().getLocDWOSection().Data; if (auto *IndexEntry = Header.getIndexEntry()) if (const auto *C = IndexEntry->getContribution( Header.getVersion() >= 5 ? DW_SECT_LOCLISTS : DW_SECT_EXT_LOC)) Data = Data.substr(C->getOffset(), C->getLength()); DWARFDataExtractor DWARFData(Data, IsLittleEndian, getAddressByteSize()); LocTable = std::make_unique(DWARFData, Header.getVersion()); LocSectionBase = DWARFListTableHeader::getHeaderSize(Header.getFormat()); } else if (getVersion() >= 5) { LocTable = std::make_unique( DWARFDataExtractor(Context.getDWARFObj(), Context.getDWARFObj().getLoclistsSection(), IsLittleEndian, getAddressByteSize()), getVersion()); } else { LocTable = std::make_unique(DWARFDataExtractor( Context.getDWARFObj(), Context.getDWARFObj().getLocSection(), IsLittleEndian, getAddressByteSize())); } // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for // skeleton CU DIE, so that DWARF users not aware of it are not broken. return Error::success(); } bool DWARFUnit::parseDWO(StringRef DWOAlternativeLocation) { if (IsDWO) return false; if (DWO) return false; DWARFDie UnitDie = getUnitDIE(); if (!UnitDie) return false; auto DWOFileName = getVersion() >= 5 ? dwarf::toString(UnitDie.find(DW_AT_dwo_name)) : dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name)); if (!DWOFileName) return false; auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir)); SmallString<16> AbsolutePath; if (sys::path::is_relative(*DWOFileName) && CompilationDir && *CompilationDir) { sys::path::append(AbsolutePath, *CompilationDir); } sys::path::append(AbsolutePath, *DWOFileName); auto DWOId = getDWOId(); if (!DWOId) return false; auto DWOContext = Context.getDWOContext(AbsolutePath); if (!DWOContext) { // Use the alternative location to get the DWARF context for the DWO object. if (DWOAlternativeLocation.empty()) return false; // If the alternative context does not correspond to the original DWO object // (different hashes), the below 'getDWOCompileUnitForHash' call will catch // the issue, with a returned null context. DWOContext = Context.getDWOContext(DWOAlternativeLocation); if (!DWOContext) return false; } DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId); if (!DWOCU) return false; DWO = std::shared_ptr(std::move(DWOContext), DWOCU); DWO->setSkeletonUnit(this); // Share .debug_addr and .debug_ranges section with compile unit in .dwo if (AddrOffsetSectionBase) DWO->setAddrOffsetSection(AddrOffsetSection, *AddrOffsetSectionBase); if (getVersion() == 4) { auto DWORangesBase = UnitDie.getRangesBaseAttribute(); DWO->setRangesSection(RangeSection, DWORangesBase.value_or(0)); } return true; } void DWARFUnit::clearDIEs(bool KeepCUDie) { // Do not use resize() + shrink_to_fit() to free memory occupied by dies. // shrink_to_fit() is a *non-binding* request to reduce capacity() to size(). // It depends on the implementation whether the request is fulfilled. // Create a new vector with a small capacity and assign it to the DieArray to // have previous contents freed. DieArray = (KeepCUDie && !DieArray.empty()) ? std::vector({DieArray[0]}) : std::vector(); } Expected DWARFUnit::findRnglistFromOffset(uint64_t Offset) { if (getVersion() <= 4) { DWARFDebugRangeList RangeList; if (Error E = extractRangeList(Offset, RangeList)) return std::move(E); return RangeList.getAbsoluteRanges(getBaseAddress()); } DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, IsLittleEndian, Header.getAddressByteSize()); DWARFDebugRnglistTable RnglistTable; auto RangeListOrError = RnglistTable.findList(RangesData, Offset); if (RangeListOrError) return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this); return RangeListOrError.takeError(); } Expected DWARFUnit::findRnglistFromIndex(uint32_t Index) { if (auto Offset = getRnglistOffset(Index)) return findRnglistFromOffset(*Offset); return createStringError(errc::invalid_argument, "invalid range list table index %d (possibly " "missing the entire range list table)", Index); } Expected DWARFUnit::collectAddressRanges() { DWARFDie UnitDie = getUnitDIE(); if (!UnitDie) return createStringError(errc::invalid_argument, "No unit DIE"); // First, check if unit DIE describes address ranges for the whole unit. auto CUDIERangesOrError = UnitDie.getAddressRanges(); if (!CUDIERangesOrError) return createStringError(errc::invalid_argument, "decoding address ranges: %s", toString(CUDIERangesOrError.takeError()).c_str()); return *CUDIERangesOrError; } Expected DWARFUnit::findLoclistFromOffset(uint64_t Offset) { DWARFLocationExpressionsVector Result; Error InterpretationError = Error::success(); Error ParseError = getLocationTable().visitAbsoluteLocationList( Offset, getBaseAddress(), [this](uint32_t Index) { return getAddrOffsetSectionItem(Index); }, [&](Expected L) { if (L) Result.push_back(std::move(*L)); else InterpretationError = joinErrors(L.takeError(), std::move(InterpretationError)); return !InterpretationError; }); if (ParseError || InterpretationError) return joinErrors(std::move(ParseError), std::move(InterpretationError)); return Result; } void DWARFUnit::updateAddressDieMap(DWARFDie Die) { if (Die.isSubroutineDIE()) { auto DIERangesOrError = Die.getAddressRanges(); if (DIERangesOrError) { for (const auto &R : DIERangesOrError.get()) { // Ignore 0-sized ranges. if (R.LowPC == R.HighPC) continue; auto B = AddrDieMap.upper_bound(R.LowPC); if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) { // The range is a sub-range of existing ranges, we need to split the // existing range. if (R.HighPC < B->second.first) AddrDieMap[R.HighPC] = B->second; if (R.LowPC > B->first) AddrDieMap[B->first].first = R.LowPC; } AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die); } } else llvm::consumeError(DIERangesOrError.takeError()); } // Parent DIEs are added to the AddrDieMap prior to the Children DIEs to // simplify the logic to update AddrDieMap. The child's range will always // be equal or smaller than the parent's range. With this assumption, when // adding one range into the map, it will at most split a range into 3 // sub-ranges. for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling()) updateAddressDieMap(Child); } DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) { extractDIEsIfNeeded(false); if (AddrDieMap.empty()) updateAddressDieMap(getUnitDIE()); auto R = AddrDieMap.upper_bound(Address); if (R == AddrDieMap.begin()) return DWARFDie(); // upper_bound's previous item contains Address. --R; if (Address >= R->second.first) return DWARFDie(); return R->second.second; } void DWARFUnit::updateVariableDieMap(DWARFDie Die) { for (DWARFDie Child : Die) { if (isType(Child.getTag())) continue; updateVariableDieMap(Child); } if (Die.getTag() != DW_TAG_variable) return; Expected Locations = Die.getLocations(DW_AT_location); if (!Locations) { // Missing DW_AT_location is fine here. consumeError(Locations.takeError()); return; } uint64_t Address = UINT64_MAX; for (const DWARFLocationExpression &Location : *Locations) { uint8_t AddressSize = getAddressByteSize(); DataExtractor Data(Location.Expr, isLittleEndian(), AddressSize); DWARFExpression Expr(Data, AddressSize); auto It = Expr.begin(); if (It == Expr.end()) continue; // Match exactly the main sequence used to describe global variables: // `DW_OP_addr[x] [+ DW_OP_plus_uconst]`. Currently, this is the sequence // that LLVM produces for DILocalVariables and DIGlobalVariables. If, in // future, the DWARF producer (`DwarfCompileUnit::addLocationAttribute()` is // a good starting point) is extended to use further expressions, this code // needs to be updated. uint64_t LocationAddr; if (It->getCode() == dwarf::DW_OP_addr) { LocationAddr = It->getRawOperand(0); } else if (It->getCode() == dwarf::DW_OP_addrx) { uint64_t DebugAddrOffset = It->getRawOperand(0); if (auto Pointer = getAddrOffsetSectionItem(DebugAddrOffset)) { LocationAddr = Pointer->Address; } } else { continue; } // Read the optional 2nd operand, a DW_OP_plus_uconst. if (++It != Expr.end()) { if (It->getCode() != dwarf::DW_OP_plus_uconst) continue; LocationAddr += It->getRawOperand(0); // Probe for a 3rd operand, if it exists, bail. if (++It != Expr.end()) continue; } Address = LocationAddr; break; } // Get the size of the global variable. If all else fails (i.e. the global has // no type), then we use a size of one to still allow symbolization of the // exact address. uint64_t GVSize = 1; if (Die.getAttributeValueAsReferencedDie(DW_AT_type)) if (std::optional Size = Die.getTypeSize(getAddressByteSize())) GVSize = *Size; if (Address != UINT64_MAX) VariableDieMap[Address] = {Address + GVSize, Die}; } DWARFDie DWARFUnit::getVariableForAddress(uint64_t Address) { extractDIEsIfNeeded(false); auto RootDie = getUnitDIE(); auto RootLookup = RootsParsedForVariables.insert(RootDie.getOffset()); if (RootLookup.second) updateVariableDieMap(RootDie); auto R = VariableDieMap.upper_bound(Address); if (R == VariableDieMap.begin()) return DWARFDie(); // upper_bound's previous item contains Address. --R; if (Address >= R->second.first) return DWARFDie(); return R->second.second; } void DWARFUnit::getInlinedChainForAddress(uint64_t Address, SmallVectorImpl &InlinedChain) { assert(InlinedChain.empty()); // Try to look for subprogram DIEs in the DWO file. parseDWO(); // First, find the subroutine that contains the given address (the leaf // of inlined chain). DWARFDie SubroutineDIE = (DWO ? *DWO : *this).getSubroutineForAddress(Address); while (SubroutineDIE) { if (SubroutineDIE.isSubprogramDIE()) { InlinedChain.push_back(SubroutineDIE); return; } if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine) InlinedChain.push_back(SubroutineDIE); SubroutineDIE = SubroutineDIE.getParent(); } } const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context, DWARFSectionKind Kind) { if (Kind == DW_SECT_INFO) return Context.getCUIndex(); assert(Kind == DW_SECT_EXT_TYPES); return Context.getTUIndex(); } DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) { if (const DWARFDebugInfoEntry *Entry = getParentEntry(Die)) return DWARFDie(this, Entry); return DWARFDie(); } const DWARFDebugInfoEntry * DWARFUnit::getParentEntry(const DWARFDebugInfoEntry *Die) const { if (!Die) return nullptr; assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size()); if (std::optional ParentIdx = Die->getParentIdx()) { assert(*ParentIdx < DieArray.size() && "ParentIdx is out of DieArray boundaries"); return getDebugInfoEntry(*ParentIdx); } return nullptr; } DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) { if (const DWARFDebugInfoEntry *Sibling = getSiblingEntry(Die)) return DWARFDie(this, Sibling); return DWARFDie(); } const DWARFDebugInfoEntry * DWARFUnit::getSiblingEntry(const DWARFDebugInfoEntry *Die) const { if (!Die) return nullptr; assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size()); if (std::optional SiblingIdx = Die->getSiblingIdx()) { assert(*SiblingIdx < DieArray.size() && "SiblingIdx is out of DieArray boundaries"); return &DieArray[*SiblingIdx]; } return nullptr; } DWARFDie DWARFUnit::getPreviousSibling(const DWARFDebugInfoEntry *Die) { if (const DWARFDebugInfoEntry *Sibling = getPreviousSiblingEntry(Die)) return DWARFDie(this, Sibling); return DWARFDie(); } const DWARFDebugInfoEntry * DWARFUnit::getPreviousSiblingEntry(const DWARFDebugInfoEntry *Die) const { if (!Die) return nullptr; assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size()); std::optional ParentIdx = Die->getParentIdx(); if (!ParentIdx) // Die is a root die, there is no previous sibling. return nullptr; assert(*ParentIdx < DieArray.size() && "ParentIdx is out of DieArray boundaries"); assert(getDIEIndex(Die) > 0 && "Die is a root die"); uint32_t PrevDieIdx = getDIEIndex(Die) - 1; if (PrevDieIdx == *ParentIdx) // Immediately previous node is parent, there is no previous sibling. return nullptr; while (DieArray[PrevDieIdx].getParentIdx() != *ParentIdx) { PrevDieIdx = *DieArray[PrevDieIdx].getParentIdx(); assert(PrevDieIdx < DieArray.size() && "PrevDieIdx is out of DieArray boundaries"); assert(PrevDieIdx >= *ParentIdx && "PrevDieIdx is not a child of parent of Die"); } return &DieArray[PrevDieIdx]; } DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) { if (const DWARFDebugInfoEntry *Child = getFirstChildEntry(Die)) return DWARFDie(this, Child); return DWARFDie(); } const DWARFDebugInfoEntry * DWARFUnit::getFirstChildEntry(const DWARFDebugInfoEntry *Die) const { if (!Die) return nullptr; assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size()); if (!Die->hasChildren()) return nullptr; // TODO: Instead of checking here for invalid die we might reject // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector). // We do not want access out of bounds when parsing corrupted debug data. size_t I = getDIEIndex(Die) + 1; if (I >= DieArray.size()) return nullptr; return &DieArray[I]; } DWARFDie DWARFUnit::getLastChild(const DWARFDebugInfoEntry *Die) { if (const DWARFDebugInfoEntry *Child = getLastChildEntry(Die)) return DWARFDie(this, Child); return DWARFDie(); } const DWARFDebugInfoEntry * DWARFUnit::getLastChildEntry(const DWARFDebugInfoEntry *Die) const { if (!Die) return nullptr; assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size()); if (!Die->hasChildren()) return nullptr; if (std::optional SiblingIdx = Die->getSiblingIdx()) { assert(*SiblingIdx < DieArray.size() && "SiblingIdx is out of DieArray boundaries"); assert(DieArray[*SiblingIdx - 1].getTag() == dwarf::DW_TAG_null && "Bad end of children marker"); return &DieArray[*SiblingIdx - 1]; } // If SiblingIdx is set for non-root dies we could be sure that DWARF is // correct and "end of children marker" must be found. For root die we do not // have such a guarantee(parsing root die might be stopped if "end of children // marker" is missing, SiblingIdx is always zero for root die). That is why we // do not use assertion for checking for "end of children marker" for root // die. // TODO: Instead of checking here for invalid die we might reject // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector). if (getDIEIndex(Die) == 0 && DieArray.size() > 1 && DieArray.back().getTag() == dwarf::DW_TAG_null) { // For the unit die we might take last item from DieArray. assert(getDIEIndex(Die) == getDIEIndex(const_cast(this)->getUnitDIE()) && "Bad unit die"); return &DieArray.back(); } return nullptr; } const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const { if (!Abbrevs) { Expected AbbrevsOrError = Abbrev->getAbbreviationDeclarationSet(getAbbreviationsOffset()); if (!AbbrevsOrError) { // FIXME: We should propagate this error upwards. consumeError(AbbrevsOrError.takeError()); return nullptr; } Abbrevs = *AbbrevsOrError; } return Abbrevs; } std::optional DWARFUnit::getBaseAddress() { if (BaseAddr) return BaseAddr; DWARFDie UnitDie = (SU ? SU : this)->getUnitDIE(); std::optional PC = UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc}); BaseAddr = toSectionedAddress(PC); return BaseAddr; } Expected StrOffsetsContributionDescriptor::validateContributionSize( DWARFDataExtractor &DA) { uint8_t EntrySize = getDwarfOffsetByteSize(); // In order to ensure that we don't read a partial record at the end of // the section we validate for a multiple of the entry size. uint64_t ValidationSize = alignTo(Size, EntrySize); // Guard against overflow. if (ValidationSize >= Size) if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize)) return *this; return createStringError(errc::invalid_argument, "length exceeds section size"); } // Look for a DWARF64-formatted contribution to the string offsets table // starting at a given offset and record it in a descriptor. static Expected parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) { if (!DA.isValidOffsetForDataOfSize(Offset, 16)) return createStringError(errc::invalid_argument, "section offset exceeds section size"); if (DA.getU32(&Offset) != dwarf::DW_LENGTH_DWARF64) return createStringError(errc::invalid_argument, "32 bit contribution referenced from a 64 bit unit"); uint64_t Size = DA.getU64(&Offset); uint8_t Version = DA.getU16(&Offset); (void)DA.getU16(&Offset); // padding // The encoded length includes the 2-byte version field and the 2-byte // padding, so we need to subtract them out when we populate the descriptor. return StrOffsetsContributionDescriptor(Offset, Size - 4, Version, DWARF64); } // Look for a DWARF32-formatted contribution to the string offsets table // starting at a given offset and record it in a descriptor. static Expected parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) { if (!DA.isValidOffsetForDataOfSize(Offset, 8)) return createStringError(errc::invalid_argument, "section offset exceeds section size"); uint32_t ContributionSize = DA.getU32(&Offset); if (ContributionSize >= dwarf::DW_LENGTH_lo_reserved) return createStringError(errc::invalid_argument, "invalid length"); uint8_t Version = DA.getU16(&Offset); (void)DA.getU16(&Offset); // padding // The encoded length includes the 2-byte version field and the 2-byte // padding, so we need to subtract them out when we populate the descriptor. return StrOffsetsContributionDescriptor(Offset, ContributionSize - 4, Version, DWARF32); } static Expected parseDWARFStringOffsetsTableHeader(DWARFDataExtractor &DA, llvm::dwarf::DwarfFormat Format, uint64_t Offset) { StrOffsetsContributionDescriptor Desc; switch (Format) { case dwarf::DwarfFormat::DWARF64: { if (Offset < 16) return createStringError(errc::invalid_argument, "insufficient space for 64 bit header prefix"); auto DescOrError = parseDWARF64StringOffsetsTableHeader(DA, Offset - 16); if (!DescOrError) return DescOrError.takeError(); Desc = *DescOrError; break; } case dwarf::DwarfFormat::DWARF32: { if (Offset < 8) return createStringError(errc::invalid_argument, "insufficient space for 32 bit header prefix"); auto DescOrError = parseDWARF32StringOffsetsTableHeader(DA, Offset - 8); if (!DescOrError) return DescOrError.takeError(); Desc = *DescOrError; break; } } return Desc.validateContributionSize(DA); } Expected> DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA) { assert(!IsDWO); auto OptOffset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base)); if (!OptOffset) return std::nullopt; auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), *OptOffset); if (!DescOrError) return DescOrError.takeError(); return *DescOrError; } Expected> DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA) { assert(IsDWO); uint64_t Offset = 0; auto IndexEntry = Header.getIndexEntry(); const auto *C = IndexEntry ? IndexEntry->getContribution(DW_SECT_STR_OFFSETS) : nullptr; if (C) Offset = C->getOffset(); if (getVersion() >= 5) { if (DA.getData().data() == nullptr) return std::nullopt; Offset += Header.getFormat() == dwarf::DwarfFormat::DWARF32 ? 8 : 16; // Look for a valid contribution at the given offset. auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset); if (!DescOrError) return DescOrError.takeError(); return *DescOrError; } // Prior to DWARF v5, we derive the contribution size from the // index table (in a package file). In a .dwo file it is simply // the length of the string offsets section. StrOffsetsContributionDescriptor Desc; if (C) Desc = StrOffsetsContributionDescriptor(C->getOffset(), C->getLength(), 4, Header.getFormat()); else if (!IndexEntry && !StringOffsetSection.Data.empty()) Desc = StrOffsetsContributionDescriptor(0, StringOffsetSection.Data.size(), 4, Header.getFormat()); else return std::nullopt; auto DescOrError = Desc.validateContributionSize(DA); if (!DescOrError) return DescOrError.takeError(); return *DescOrError; } std::optional DWARFUnit::getRnglistOffset(uint32_t Index) { DataExtractor RangesData(RangeSection->Data, IsLittleEndian, getAddressByteSize()); DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection, IsLittleEndian, 0); if (std::optional Off = llvm::DWARFListTableHeader::getOffsetEntry( RangesData, RangeSectionBase, getFormat(), Index)) return *Off + RangeSectionBase; return std::nullopt; } std::optional DWARFUnit::getLoclistOffset(uint32_t Index) { if (std::optional Off = llvm::DWARFListTableHeader::getOffsetEntry( LocTable->getData(), LocSectionBase, getFormat(), Index)) return *Off + LocSectionBase; return std::nullopt; }