//===- DWARFDebugFrame.h - Parsing of .debug_frame ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/DebugInfo/DIContext.h" #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Errc.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; using namespace dwarf; static void printRegister(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH, unsigned RegNum) { if (MRI) { if (Optional LLVMRegNum = MRI->getLLVMRegNum(RegNum, IsEH)) { if (const char *RegName = MRI->getName(*LLVMRegNum)) { OS << RegName; return; } } } OS << "reg" << RegNum; } UnwindLocation UnwindLocation::createUnspecified() { return {Unspecified}; } UnwindLocation UnwindLocation::createUndefined() { return {Undefined}; } UnwindLocation UnwindLocation::createSame() { return {Same}; } UnwindLocation UnwindLocation::createIsConstant(int32_t Value) { return {Constant, InvalidRegisterNumber, Value, None, false}; } UnwindLocation UnwindLocation::createIsCFAPlusOffset(int32_t Offset) { return {CFAPlusOffset, InvalidRegisterNumber, Offset, None, false}; } UnwindLocation UnwindLocation::createAtCFAPlusOffset(int32_t Offset) { return {CFAPlusOffset, InvalidRegisterNumber, Offset, None, true}; } UnwindLocation UnwindLocation::createIsRegisterPlusOffset(uint32_t RegNum, int32_t Offset, Optional AddrSpace) { return {RegPlusOffset, RegNum, Offset, AddrSpace, false}; } UnwindLocation UnwindLocation::createAtRegisterPlusOffset(uint32_t RegNum, int32_t Offset, Optional AddrSpace) { return {RegPlusOffset, RegNum, Offset, AddrSpace, true}; } UnwindLocation UnwindLocation::createIsDWARFExpression(DWARFExpression Expr) { return {Expr, false}; } UnwindLocation UnwindLocation::createAtDWARFExpression(DWARFExpression Expr) { return {Expr, true}; } void UnwindLocation::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH) const { if (Dereference) OS << '['; switch (Kind) { case Unspecified: OS << "unspecified"; break; case Undefined: OS << "undefined"; break; case Same: OS << "same"; break; case CFAPlusOffset: OS << "CFA"; if (Offset == 0) break; if (Offset > 0) OS << "+"; OS << Offset; break; case RegPlusOffset: printRegister(OS, MRI, IsEH, RegNum); if (Offset == 0 && !AddrSpace) break; if (Offset >= 0) OS << "+"; OS << Offset; if (AddrSpace) OS << " in addrspace" << *AddrSpace; break; case DWARFExpr: Expr->print(OS, DIDumpOptions(), MRI, nullptr, IsEH); break; case Constant: OS << Offset; break; } if (Dereference) OS << ']'; } raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS, const UnwindLocation &UL) { UL.dump(OS, nullptr, false); return OS; } bool UnwindLocation::operator==(const UnwindLocation &RHS) const { if (Kind != RHS.Kind) return false; switch (Kind) { case Unspecified: case Undefined: case Same: return true; case CFAPlusOffset: return Offset == RHS.Offset && Dereference == RHS.Dereference; case RegPlusOffset: return RegNum == RHS.RegNum && Offset == RHS.Offset && Dereference == RHS.Dereference; case DWARFExpr: return *Expr == *RHS.Expr && Dereference == RHS.Dereference; case Constant: return Offset == RHS.Offset; } return false; } void RegisterLocations::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH) const { bool First = true; for (const auto &RegLocPair : Locations) { if (First) First = false; else OS << ", "; printRegister(OS, MRI, IsEH, RegLocPair.first); OS << '='; RegLocPair.second.dump(OS, MRI, IsEH); } } raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS, const RegisterLocations &RL) { RL.dump(OS, nullptr, false); return OS; } void UnwindRow::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH, unsigned IndentLevel) const { OS.indent(2 * IndentLevel); if (hasAddress()) OS << format("0x%" PRIx64 ": ", *Address); OS << "CFA="; CFAValue.dump(OS, MRI, IsEH); if (RegLocs.hasLocations()) { OS << ": "; RegLocs.dump(OS, MRI, IsEH); } OS << "\n"; } raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS, const UnwindRow &Row) { Row.dump(OS, nullptr, false, 0); return OS; } void UnwindTable::dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH, unsigned IndentLevel) const { for (const UnwindRow &Row : Rows) Row.dump(OS, MRI, IsEH, IndentLevel); } raw_ostream &llvm::dwarf::operator<<(raw_ostream &OS, const UnwindTable &Rows) { Rows.dump(OS, nullptr, false, 0); return OS; } Expected UnwindTable::create(const FDE *Fde) { const CIE *Cie = Fde->getLinkedCIE(); if (Cie == nullptr) return createStringError(errc::invalid_argument, "unable to get CIE for FDE at offset 0x%" PRIx64, Fde->getOffset()); // Rows will be empty if there are no CFI instructions. if (Cie->cfis().empty() && Fde->cfis().empty()) return UnwindTable(); UnwindTable UT; UnwindRow Row; Row.setAddress(Fde->getInitialLocation()); UT.EndAddress = Fde->getInitialLocation() + Fde->getAddressRange(); if (Error CieError = UT.parseRows(Cie->cfis(), Row, nullptr)) return std::move(CieError); // We need to save the initial locations of registers from the CIE parsing // in case we run into DW_CFA_restore or DW_CFA_restore_extended opcodes. const RegisterLocations InitialLocs = Row.getRegisterLocations(); if (Error FdeError = UT.parseRows(Fde->cfis(), Row, &InitialLocs)) return std::move(FdeError); // May be all the CFI instructions were DW_CFA_nop amd Row becomes empty. // Do not add that to the unwind table. if (Row.getRegisterLocations().hasLocations() || Row.getCFAValue().getLocation() != UnwindLocation::Unspecified) UT.Rows.push_back(Row); return UT; } Expected UnwindTable::create(const CIE *Cie) { // Rows will be empty if there are no CFI instructions. if (Cie->cfis().empty()) return UnwindTable(); UnwindTable UT; UnwindRow Row; if (Error CieError = UT.parseRows(Cie->cfis(), Row, nullptr)) return std::move(CieError); // May be all the CFI instructions were DW_CFA_nop amd Row becomes empty. // Do not add that to the unwind table. if (Row.getRegisterLocations().hasLocations() || Row.getCFAValue().getLocation() != UnwindLocation::Unspecified) UT.Rows.push_back(Row); return UT; } // See DWARF standard v3, section 7.23 const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0; const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f; Error CFIProgram::parse(DWARFDataExtractor Data, uint64_t *Offset, uint64_t EndOffset) { DataExtractor::Cursor C(*Offset); while (C && C.tell() < EndOffset) { uint8_t Opcode = Data.getRelocatedValue(C, 1); if (!C) break; // Some instructions have a primary opcode encoded in the top bits. if (uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK) { // If it's a primary opcode, the first operand is encoded in the bottom // bits of the opcode itself. uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK; switch (Primary) { case DW_CFA_advance_loc: case DW_CFA_restore: addInstruction(Primary, Op1); break; case DW_CFA_offset: addInstruction(Primary, Op1, Data.getULEB128(C)); break; default: llvm_unreachable("invalid primary CFI opcode"); } continue; } // Extended opcode - its value is Opcode itself. switch (Opcode) { default: return createStringError(errc::illegal_byte_sequence, "invalid extended CFI opcode 0x%" PRIx8, Opcode); case DW_CFA_nop: case DW_CFA_remember_state: case DW_CFA_restore_state: case DW_CFA_GNU_window_save: // No operands addInstruction(Opcode); break; case DW_CFA_set_loc: // Operands: Address addInstruction(Opcode, Data.getRelocatedAddress(C)); break; case DW_CFA_advance_loc1: // Operands: 1-byte delta addInstruction(Opcode, Data.getRelocatedValue(C, 1)); break; case DW_CFA_advance_loc2: // Operands: 2-byte delta addInstruction(Opcode, Data.getRelocatedValue(C, 2)); break; case DW_CFA_advance_loc4: // Operands: 4-byte delta addInstruction(Opcode, Data.getRelocatedValue(C, 4)); break; case DW_CFA_restore_extended: case DW_CFA_undefined: case DW_CFA_same_value: case DW_CFA_def_cfa_register: case DW_CFA_def_cfa_offset: case DW_CFA_GNU_args_size: // Operands: ULEB128 addInstruction(Opcode, Data.getULEB128(C)); break; case DW_CFA_def_cfa_offset_sf: // Operands: SLEB128 addInstruction(Opcode, Data.getSLEB128(C)); break; case DW_CFA_LLVM_def_aspace_cfa: case DW_CFA_LLVM_def_aspace_cfa_sf: { auto RegNum = Data.getULEB128(C); auto CfaOffset = Opcode == DW_CFA_LLVM_def_aspace_cfa ? Data.getULEB128(C) : Data.getSLEB128(C); auto AddressSpace = Data.getULEB128(C); addInstruction(Opcode, RegNum, CfaOffset, AddressSpace); break; } case DW_CFA_offset_extended: case DW_CFA_register: case DW_CFA_def_cfa: case DW_CFA_val_offset: { // Operands: ULEB128, ULEB128 // Note: We can not embed getULEB128 directly into function // argument list. getULEB128 changes Offset and order of evaluation // for arguments is unspecified. uint64_t op1 = Data.getULEB128(C); uint64_t op2 = Data.getULEB128(C); addInstruction(Opcode, op1, op2); break; } case DW_CFA_offset_extended_sf: case DW_CFA_def_cfa_sf: case DW_CFA_val_offset_sf: { // Operands: ULEB128, SLEB128 // Note: see comment for the previous case uint64_t op1 = Data.getULEB128(C); uint64_t op2 = (uint64_t)Data.getSLEB128(C); addInstruction(Opcode, op1, op2); break; } case DW_CFA_def_cfa_expression: { uint64_t ExprLength = Data.getULEB128(C); addInstruction(Opcode, 0); StringRef Expression = Data.getBytes(C, ExprLength); DataExtractor Extractor(Expression, Data.isLittleEndian(), Data.getAddressSize()); // Note. We do not pass the DWARF format to DWARFExpression, because // DW_OP_call_ref, the only operation which depends on the format, is // prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5. Instructions.back().Expression = DWARFExpression(Extractor, Data.getAddressSize()); break; } case DW_CFA_expression: case DW_CFA_val_expression: { uint64_t RegNum = Data.getULEB128(C); addInstruction(Opcode, RegNum, 0); uint64_t BlockLength = Data.getULEB128(C); StringRef Expression = Data.getBytes(C, BlockLength); DataExtractor Extractor(Expression, Data.isLittleEndian(), Data.getAddressSize()); // Note. We do not pass the DWARF format to DWARFExpression, because // DW_OP_call_ref, the only operation which depends on the format, is // prohibited in call frame instructions, see sec. 6.4.2 in DWARFv5. Instructions.back().Expression = DWARFExpression(Extractor, Data.getAddressSize()); break; } } } *Offset = C.tell(); return C.takeError(); } StringRef CFIProgram::callFrameString(unsigned Opcode) const { return dwarf::CallFrameString(Opcode, Arch); } const char *CFIProgram::operandTypeString(CFIProgram::OperandType OT) { #define ENUM_TO_CSTR(e) \ case e: \ return #e; switch (OT) { ENUM_TO_CSTR(OT_Unset); ENUM_TO_CSTR(OT_None); ENUM_TO_CSTR(OT_Address); ENUM_TO_CSTR(OT_Offset); ENUM_TO_CSTR(OT_FactoredCodeOffset); ENUM_TO_CSTR(OT_SignedFactDataOffset); ENUM_TO_CSTR(OT_UnsignedFactDataOffset); ENUM_TO_CSTR(OT_Register); ENUM_TO_CSTR(OT_AddressSpace); ENUM_TO_CSTR(OT_Expression); } return ""; } llvm::Expected CFIProgram::Instruction::getOperandAsUnsigned(const CFIProgram &CFIP, uint32_t OperandIdx) const { if (OperandIdx >= MaxOperands) return createStringError(errc::invalid_argument, "operand index %" PRIu32 " is not valid", OperandIdx); OperandType Type = CFIP.getOperandTypes()[Opcode][OperandIdx]; uint64_t Operand = Ops[OperandIdx]; switch (Type) { case OT_Unset: case OT_None: case OT_Expression: return createStringError(errc::invalid_argument, "op[%" PRIu32 "] has type %s which has no value", OperandIdx, CFIProgram::operandTypeString(Type)); case OT_Offset: case OT_SignedFactDataOffset: case OT_UnsignedFactDataOffset: return createStringError( errc::invalid_argument, "op[%" PRIu32 "] has OperandType OT_Offset which produces a signed " "result, call getOperandAsSigned instead", OperandIdx); case OT_Address: case OT_Register: case OT_AddressSpace: return Operand; case OT_FactoredCodeOffset: { const uint64_t CodeAlignmentFactor = CFIP.codeAlign(); if (CodeAlignmentFactor == 0) return createStringError( errc::invalid_argument, "op[%" PRIu32 "] has type OT_FactoredCodeOffset but code alignment " "is zero", OperandIdx); return Operand * CodeAlignmentFactor; } } llvm_unreachable("invalid operand type"); } llvm::Expected CFIProgram::Instruction::getOperandAsSigned(const CFIProgram &CFIP, uint32_t OperandIdx) const { if (OperandIdx >= MaxOperands) return createStringError(errc::invalid_argument, "operand index %" PRIu32 " is not valid", OperandIdx); OperandType Type = CFIP.getOperandTypes()[Opcode][OperandIdx]; uint64_t Operand = Ops[OperandIdx]; switch (Type) { case OT_Unset: case OT_None: case OT_Expression: return createStringError(errc::invalid_argument, "op[%" PRIu32 "] has type %s which has no value", OperandIdx, CFIProgram::operandTypeString(Type)); case OT_Address: case OT_Register: case OT_AddressSpace: return createStringError( errc::invalid_argument, "op[%" PRIu32 "] has OperandType %s which produces an unsigned result, " "call getOperandAsUnsigned instead", OperandIdx, CFIProgram::operandTypeString(Type)); case OT_Offset: return (int64_t)Operand; case OT_FactoredCodeOffset: case OT_SignedFactDataOffset: { const int64_t DataAlignmentFactor = CFIP.dataAlign(); if (DataAlignmentFactor == 0) return createStringError(errc::invalid_argument, "op[%" PRIu32 "] has type %s but data " "alignment is zero", OperandIdx, CFIProgram::operandTypeString(Type)); return int64_t(Operand) * DataAlignmentFactor; } case OT_UnsignedFactDataOffset: { const int64_t DataAlignmentFactor = CFIP.dataAlign(); if (DataAlignmentFactor == 0) return createStringError(errc::invalid_argument, "op[%" PRIu32 "] has type OT_UnsignedFactDataOffset but data " "alignment is zero", OperandIdx); return Operand * DataAlignmentFactor; } } llvm_unreachable("invalid operand type"); } Error UnwindTable::parseRows(const CFIProgram &CFIP, UnwindRow &Row, const RegisterLocations *InitialLocs) { std::vector RegisterStates; for (const CFIProgram::Instruction &Inst : CFIP) { switch (Inst.Opcode) { case dwarf::DW_CFA_set_loc: { // The DW_CFA_set_loc instruction takes a single operand that // represents a target address. The required action is to create a new // table row using the specified address as the location. All other // values in the new row are initially identical to the current row. // The new location value is always greater than the current one. If // the segment_size field of this FDE's CIE is non- zero, the initial // location is preceded by a segment selector of the given length llvm::Expected NewAddress = Inst.getOperandAsUnsigned(CFIP, 0); if (!NewAddress) return NewAddress.takeError(); if (*NewAddress <= Row.getAddress()) return createStringError( errc::invalid_argument, "%s with adrress 0x%" PRIx64 " which must be greater than the " "current row address 0x%" PRIx64, CFIP.callFrameString(Inst.Opcode).str().c_str(), *NewAddress, Row.getAddress()); Rows.push_back(Row); Row.setAddress(*NewAddress); break; } case dwarf::DW_CFA_advance_loc: case dwarf::DW_CFA_advance_loc1: case dwarf::DW_CFA_advance_loc2: case dwarf::DW_CFA_advance_loc4: { // The DW_CFA_advance instruction takes a single operand that // represents a constant delta. The required action is to create a new // table row with a location value that is computed by taking the // current entry’s location value and adding the value of delta * // code_alignment_factor. All other values in the new row are initially // identical to the current row. Rows.push_back(Row); llvm::Expected Offset = Inst.getOperandAsUnsigned(CFIP, 0); if (!Offset) return Offset.takeError(); Row.slideAddress(*Offset); break; } case dwarf::DW_CFA_restore: case dwarf::DW_CFA_restore_extended: { // The DW_CFA_restore instruction takes a single operand (encoded with // the opcode) that represents a register number. The required action // is to change the rule for the indicated register to the rule // assigned it by the initial_instructions in the CIE. if (InitialLocs == nullptr) return createStringError( errc::invalid_argument, "%s encountered while parsing a CIE", CFIP.callFrameString(Inst.Opcode).str().c_str()); llvm::Expected RegNum = Inst.getOperandAsUnsigned(CFIP, 0); if (!RegNum) return RegNum.takeError(); if (Optional O = InitialLocs->getRegisterLocation(*RegNum)) Row.getRegisterLocations().setRegisterLocation(*RegNum, *O); else Row.getRegisterLocations().removeRegisterLocation(*RegNum); break; } case dwarf::DW_CFA_offset: case dwarf::DW_CFA_offset_extended: case dwarf::DW_CFA_offset_extended_sf: { llvm::Expected RegNum = Inst.getOperandAsUnsigned(CFIP, 0); if (!RegNum) return RegNum.takeError(); llvm::Expected Offset = Inst.getOperandAsSigned(CFIP, 1); if (!Offset) return Offset.takeError(); Row.getRegisterLocations().setRegisterLocation( *RegNum, UnwindLocation::createAtCFAPlusOffset(*Offset)); break; } case dwarf::DW_CFA_nop: break; case dwarf::DW_CFA_remember_state: RegisterStates.push_back(Row.getRegisterLocations()); break; case dwarf::DW_CFA_restore_state: if (RegisterStates.empty()) return createStringError(errc::invalid_argument, "DW_CFA_restore_state without a matching " "previous DW_CFA_remember_state"); Row.getRegisterLocations() = RegisterStates.back(); RegisterStates.pop_back(); break; case dwarf::DW_CFA_GNU_window_save: switch (CFIP.triple()) { case Triple::aarch64: case Triple::aarch64_be: case Triple::aarch64_32: { // DW_CFA_GNU_window_save is used for different things on different // architectures. For aarch64 it is known as // DW_CFA_AARCH64_negate_ra_state. The action is to toggle the // value of the return address state between 1 and 0. If there is // no rule for the AARCH64_DWARF_PAUTH_RA_STATE register, then it // should be initially set to 1. constexpr uint32_t AArch64DWARFPAuthRaState = 34; auto LRLoc = Row.getRegisterLocations().getRegisterLocation( AArch64DWARFPAuthRaState); if (LRLoc) { if (LRLoc->getLocation() == UnwindLocation::Constant) { // Toggle the constant value from 0 to 1 or 1 to 0. LRLoc->setConstant(LRLoc->getConstant() ^ 1); } else { return createStringError( errc::invalid_argument, "%s encountered when existing rule for this register is not " "a constant", CFIP.callFrameString(Inst.Opcode).str().c_str()); } } else { Row.getRegisterLocations().setRegisterLocation( AArch64DWARFPAuthRaState, UnwindLocation::createIsConstant(1)); } break; } case Triple::sparc: case Triple::sparcv9: case Triple::sparcel: for (uint32_t RegNum = 16; RegNum < 32; ++RegNum) { Row.getRegisterLocations().setRegisterLocation( RegNum, UnwindLocation::createAtCFAPlusOffset((RegNum - 16) * 8)); } break; default: { return createStringError( errc::not_supported, "DW_CFA opcode %#x is not supported for architecture %s", Inst.Opcode, Triple::getArchTypeName(CFIP.triple()).str().c_str()); break; } } break; case dwarf::DW_CFA_undefined: { llvm::Expected RegNum = Inst.getOperandAsUnsigned(CFIP, 0); if (!RegNum) return RegNum.takeError(); Row.getRegisterLocations().setRegisterLocation( *RegNum, UnwindLocation::createUndefined()); break; } case dwarf::DW_CFA_same_value: { llvm::Expected RegNum = Inst.getOperandAsUnsigned(CFIP, 0); if (!RegNum) return RegNum.takeError(); Row.getRegisterLocations().setRegisterLocation( *RegNum, UnwindLocation::createSame()); break; } case dwarf::DW_CFA_GNU_args_size: break; case dwarf::DW_CFA_register: { llvm::Expected RegNum = Inst.getOperandAsUnsigned(CFIP, 0); if (!RegNum) return RegNum.takeError(); llvm::Expected NewRegNum = Inst.getOperandAsUnsigned(CFIP, 1); if (!NewRegNum) return NewRegNum.takeError(); Row.getRegisterLocations().setRegisterLocation( *RegNum, UnwindLocation::createIsRegisterPlusOffset(*NewRegNum, 0)); break; } case dwarf::DW_CFA_val_offset: case dwarf::DW_CFA_val_offset_sf: { llvm::Expected RegNum = Inst.getOperandAsUnsigned(CFIP, 0); if (!RegNum) return RegNum.takeError(); llvm::Expected Offset = Inst.getOperandAsSigned(CFIP, 1); if (!Offset) return Offset.takeError(); Row.getRegisterLocations().setRegisterLocation( *RegNum, UnwindLocation::createIsCFAPlusOffset(*Offset)); break; } case dwarf::DW_CFA_expression: { llvm::Expected RegNum = Inst.getOperandAsUnsigned(CFIP, 0); if (!RegNum) return RegNum.takeError(); Row.getRegisterLocations().setRegisterLocation( *RegNum, UnwindLocation::createAtDWARFExpression(*Inst.Expression)); break; } case dwarf::DW_CFA_val_expression: { llvm::Expected RegNum = Inst.getOperandAsUnsigned(CFIP, 0); if (!RegNum) return RegNum.takeError(); Row.getRegisterLocations().setRegisterLocation( *RegNum, UnwindLocation::createIsDWARFExpression(*Inst.Expression)); break; } case dwarf::DW_CFA_def_cfa_register: { llvm::Expected RegNum = Inst.getOperandAsUnsigned(CFIP, 0); if (!RegNum) return RegNum.takeError(); if (Row.getCFAValue().getLocation() != UnwindLocation::RegPlusOffset) Row.getCFAValue() = UnwindLocation::createIsRegisterPlusOffset(*RegNum, 0); else Row.getCFAValue().setRegister(*RegNum); break; } case dwarf::DW_CFA_def_cfa_offset: case dwarf::DW_CFA_def_cfa_offset_sf: { llvm::Expected Offset = Inst.getOperandAsSigned(CFIP, 0); if (!Offset) return Offset.takeError(); if (Row.getCFAValue().getLocation() != UnwindLocation::RegPlusOffset) { return createStringError( errc::invalid_argument, "%s found when CFA rule was not RegPlusOffset", CFIP.callFrameString(Inst.Opcode).str().c_str()); } Row.getCFAValue().setOffset(*Offset); break; } case dwarf::DW_CFA_def_cfa: case dwarf::DW_CFA_def_cfa_sf: { llvm::Expected RegNum = Inst.getOperandAsUnsigned(CFIP, 0); if (!RegNum) return RegNum.takeError(); llvm::Expected Offset = Inst.getOperandAsSigned(CFIP, 1); if (!Offset) return Offset.takeError(); Row.getCFAValue() = UnwindLocation::createIsRegisterPlusOffset(*RegNum, *Offset); break; } case dwarf::DW_CFA_LLVM_def_aspace_cfa: case dwarf::DW_CFA_LLVM_def_aspace_cfa_sf: { llvm::Expected RegNum = Inst.getOperandAsUnsigned(CFIP, 0); if (!RegNum) return RegNum.takeError(); llvm::Expected Offset = Inst.getOperandAsSigned(CFIP, 1); if (!Offset) return Offset.takeError(); llvm::Expected CFAAddrSpace = Inst.getOperandAsUnsigned(CFIP, 2); if (!CFAAddrSpace) return CFAAddrSpace.takeError(); Row.getCFAValue() = UnwindLocation::createIsRegisterPlusOffset( *RegNum, *Offset, *CFAAddrSpace); break; } case dwarf::DW_CFA_def_cfa_expression: Row.getCFAValue() = UnwindLocation::createIsDWARFExpression(*Inst.Expression); break; } } return Error::success(); } ArrayRef CFIProgram::getOperandTypes() { static OperandType OpTypes[DW_CFA_restore + 1][MaxOperands]; static bool Initialized = false; if (Initialized) { return ArrayRef(&OpTypes[0], DW_CFA_restore + 1); } Initialized = true; #define DECLARE_OP3(OP, OPTYPE0, OPTYPE1, OPTYPE2) \ do { \ OpTypes[OP][0] = OPTYPE0; \ OpTypes[OP][1] = OPTYPE1; \ OpTypes[OP][2] = OPTYPE2; \ } while (false) #define DECLARE_OP2(OP, OPTYPE0, OPTYPE1) \ DECLARE_OP3(OP, OPTYPE0, OPTYPE1, OT_None) #define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None) #define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None) DECLARE_OP1(DW_CFA_set_loc, OT_Address); DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset); DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset); DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset); DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset); DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset); DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset); DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset); DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register); DECLARE_OP3(DW_CFA_LLVM_def_aspace_cfa, OT_Register, OT_Offset, OT_AddressSpace); DECLARE_OP3(DW_CFA_LLVM_def_aspace_cfa_sf, OT_Register, OT_SignedFactDataOffset, OT_AddressSpace); DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset); DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset); DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression); DECLARE_OP1(DW_CFA_undefined, OT_Register); DECLARE_OP1(DW_CFA_same_value, OT_Register); DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset); DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset); DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset); DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset); DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset); DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register); DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression); DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression); DECLARE_OP1(DW_CFA_restore, OT_Register); DECLARE_OP1(DW_CFA_restore_extended, OT_Register); DECLARE_OP0(DW_CFA_remember_state); DECLARE_OP0(DW_CFA_restore_state); DECLARE_OP0(DW_CFA_GNU_window_save); DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset); DECLARE_OP0(DW_CFA_nop); #undef DECLARE_OP0 #undef DECLARE_OP1 #undef DECLARE_OP2 return ArrayRef(&OpTypes[0], DW_CFA_restore + 1); } /// Print \p Opcode's operand number \p OperandIdx which has value \p Operand. void CFIProgram::printOperand(raw_ostream &OS, DIDumpOptions DumpOpts, const MCRegisterInfo *MRI, bool IsEH, const Instruction &Instr, unsigned OperandIdx, uint64_t Operand) const { assert(OperandIdx < MaxOperands); uint8_t Opcode = Instr.Opcode; OperandType Type = getOperandTypes()[Opcode][OperandIdx]; switch (Type) { case OT_Unset: { OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to"; auto OpcodeName = callFrameString(Opcode); if (!OpcodeName.empty()) OS << " " << OpcodeName; else OS << format(" Opcode %x", Opcode); break; } case OT_None: break; case OT_Address: OS << format(" %" PRIx64, Operand); break; case OT_Offset: // The offsets are all encoded in a unsigned form, but in practice // consumers use them signed. It's most certainly legacy due to // the lack of signed variants in the first Dwarf standards. OS << format(" %+" PRId64, int64_t(Operand)); break; case OT_FactoredCodeOffset: // Always Unsigned if (CodeAlignmentFactor) OS << format(" %" PRId64, Operand * CodeAlignmentFactor); else OS << format(" %" PRId64 "*code_alignment_factor" , Operand); break; case OT_SignedFactDataOffset: if (DataAlignmentFactor) OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor); else OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand)); break; case OT_UnsignedFactDataOffset: if (DataAlignmentFactor) OS << format(" %" PRId64, Operand * DataAlignmentFactor); else OS << format(" %" PRId64 "*data_alignment_factor" , Operand); break; case OT_Register: OS << ' '; printRegister(OS, MRI, IsEH, Operand); break; case OT_AddressSpace: OS << format(" in addrspace%" PRId64, Operand); break; case OT_Expression: assert(Instr.Expression && "missing DWARFExpression object"); OS << " "; Instr.Expression->print(OS, DumpOpts, MRI, nullptr, IsEH); break; } } void CFIProgram::dump(raw_ostream &OS, DIDumpOptions DumpOpts, const MCRegisterInfo *MRI, bool IsEH, unsigned IndentLevel) const { for (const auto &Instr : Instructions) { uint8_t Opcode = Instr.Opcode; OS.indent(2 * IndentLevel); OS << callFrameString(Opcode) << ":"; for (unsigned i = 0; i < Instr.Ops.size(); ++i) printOperand(OS, DumpOpts, MRI, IsEH, Instr, i, Instr.Ops[i]); OS << '\n'; } } // Returns the CIE identifier to be used by the requested format. // CIE ids for .debug_frame sections are defined in Section 7.24 of DWARFv5. // For CIE ID in .eh_frame sections see // https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html constexpr uint64_t getCIEId(bool IsDWARF64, bool IsEH) { if (IsEH) return 0; if (IsDWARF64) return DW64_CIE_ID; return DW_CIE_ID; } void CIE::dump(raw_ostream &OS, DIDumpOptions DumpOpts, const MCRegisterInfo *MRI, bool IsEH) const { // A CIE with a zero length is a terminator entry in the .eh_frame section. if (IsEH && Length == 0) { OS << format("%08" PRIx64, Offset) << " ZERO terminator\n"; return; } OS << format("%08" PRIx64, Offset) << format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length) << format(" %0*" PRIx64, IsDWARF64 && !IsEH ? 16 : 8, getCIEId(IsDWARF64, IsEH)) << " CIE\n" << " Format: " << FormatString(IsDWARF64) << "\n"; if (IsEH && Version != 1) OS << "WARNING: unsupported CIE version\n"; OS << format(" Version: %d\n", Version) << " Augmentation: \"" << Augmentation << "\"\n"; if (Version >= 4) { OS << format(" Address size: %u\n", (uint32_t)AddressSize); OS << format(" Segment desc size: %u\n", (uint32_t)SegmentDescriptorSize); } OS << format(" Code alignment factor: %u\n", (uint32_t)CodeAlignmentFactor); OS << format(" Data alignment factor: %d\n", (int32_t)DataAlignmentFactor); OS << format(" Return address column: %d\n", (int32_t)ReturnAddressRegister); if (Personality) OS << format(" Personality Address: %016" PRIx64 "\n", *Personality); if (!AugmentationData.empty()) { OS << " Augmentation data: "; for (uint8_t Byte : AugmentationData) OS << ' ' << hexdigit(Byte >> 4) << hexdigit(Byte & 0xf); OS << "\n"; } OS << "\n"; CFIs.dump(OS, DumpOpts, MRI, IsEH); OS << "\n"; if (Expected RowsOrErr = UnwindTable::create(this)) RowsOrErr->dump(OS, MRI, IsEH, 1); else { DumpOpts.RecoverableErrorHandler(joinErrors( createStringError(errc::invalid_argument, "decoding the CIE opcodes into rows failed"), RowsOrErr.takeError())); } OS << "\n"; } void FDE::dump(raw_ostream &OS, DIDumpOptions DumpOpts, const MCRegisterInfo *MRI, bool IsEH) const { OS << format("%08" PRIx64, Offset) << format(" %0*" PRIx64, IsDWARF64 ? 16 : 8, Length) << format(" %0*" PRIx64, IsDWARF64 && !IsEH ? 16 : 8, CIEPointer) << " FDE cie="; if (LinkedCIE) OS << format("%08" PRIx64, LinkedCIE->getOffset()); else OS << ""; OS << format(" pc=%08" PRIx64 "...%08" PRIx64 "\n", InitialLocation, InitialLocation + AddressRange); OS << " Format: " << FormatString(IsDWARF64) << "\n"; if (LSDAAddress) OS << format(" LSDA Address: %016" PRIx64 "\n", *LSDAAddress); CFIs.dump(OS, DumpOpts, MRI, IsEH); OS << "\n"; if (Expected RowsOrErr = UnwindTable::create(this)) RowsOrErr->dump(OS, MRI, IsEH, 1); else { DumpOpts.RecoverableErrorHandler(joinErrors( createStringError(errc::invalid_argument, "decoding the FDE opcodes into rows failed"), RowsOrErr.takeError())); } OS << "\n"; } DWARFDebugFrame::DWARFDebugFrame(Triple::ArchType Arch, bool IsEH, uint64_t EHFrameAddress) : Arch(Arch), IsEH(IsEH), EHFrameAddress(EHFrameAddress) {} DWARFDebugFrame::~DWARFDebugFrame() = default; static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data, uint64_t Offset, int Length) { errs() << "DUMP: "; for (int i = 0; i < Length; ++i) { uint8_t c = Data.getU8(&Offset); errs().write_hex(c); errs() << " "; } errs() << "\n"; } Error DWARFDebugFrame::parse(DWARFDataExtractor Data) { uint64_t Offset = 0; DenseMap CIEs; while (Data.isValidOffset(Offset)) { uint64_t StartOffset = Offset; uint64_t Length; DwarfFormat Format; std::tie(Length, Format) = Data.getInitialLength(&Offset); bool IsDWARF64 = Format == DWARF64; // If the Length is 0, then this CIE is a terminator. We add it because some // dumper tools might need it to print something special for such entries // (e.g. llvm-objdump --dwarf=frames prints "ZERO terminator"). if (Length == 0) { auto Cie = std::make_unique( IsDWARF64, StartOffset, 0, 0, SmallString<8>(), 0, 0, 0, 0, 0, SmallString<8>(), 0, 0, None, None, Arch); CIEs[StartOffset] = Cie.get(); Entries.push_back(std::move(Cie)); break; } // At this point, Offset points to the next field after Length. // Length is the structure size excluding itself. Compute an offset one // past the end of the structure (needed to know how many instructions to // read). uint64_t StartStructureOffset = Offset; uint64_t EndStructureOffset = Offset + Length; // The Id field's size depends on the DWARF format Error Err = Error::success(); uint64_t Id = Data.getRelocatedValue((IsDWARF64 && !IsEH) ? 8 : 4, &Offset, /*SectionIndex=*/nullptr, &Err); if (Err) return Err; if (Id == getCIEId(IsDWARF64, IsEH)) { uint8_t Version = Data.getU8(&Offset); const char *Augmentation = Data.getCStr(&Offset); StringRef AugmentationString(Augmentation ? Augmentation : ""); uint8_t AddressSize = Version < 4 ? Data.getAddressSize() : Data.getU8(&Offset); Data.setAddressSize(AddressSize); uint8_t SegmentDescriptorSize = Version < 4 ? 0 : Data.getU8(&Offset); uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset); int64_t DataAlignmentFactor = Data.getSLEB128(&Offset); uint64_t ReturnAddressRegister = Version == 1 ? Data.getU8(&Offset) : Data.getULEB128(&Offset); // Parse the augmentation data for EH CIEs StringRef AugmentationData(""); uint32_t FDEPointerEncoding = DW_EH_PE_absptr; uint32_t LSDAPointerEncoding = DW_EH_PE_omit; Optional Personality; Optional PersonalityEncoding; if (IsEH) { Optional AugmentationLength; uint64_t StartAugmentationOffset; uint64_t EndAugmentationOffset; // Walk the augmentation string to get all the augmentation data. for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) { switch (AugmentationString[i]) { default: return createStringError( errc::invalid_argument, "unknown augmentation character %c in entry at 0x%" PRIx64, AugmentationString[i], StartOffset); case 'L': LSDAPointerEncoding = Data.getU8(&Offset); break; case 'P': { if (Personality) return createStringError( errc::invalid_argument, "duplicate personality in entry at 0x%" PRIx64, StartOffset); PersonalityEncoding = Data.getU8(&Offset); Personality = Data.getEncodedPointer( &Offset, *PersonalityEncoding, EHFrameAddress ? EHFrameAddress + Offset : 0); break; } case 'R': FDEPointerEncoding = Data.getU8(&Offset); break; case 'S': // Current frame is a signal trampoline. break; case 'z': if (i) return createStringError( errc::invalid_argument, "'z' must be the first character at 0x%" PRIx64, StartOffset); // Parse the augmentation length first. We only parse it if // the string contains a 'z'. AugmentationLength = Data.getULEB128(&Offset); StartAugmentationOffset = Offset; EndAugmentationOffset = Offset + *AugmentationLength; break; case 'B': // B-Key is used for signing functions associated with this // augmentation string break; // This stack frame contains MTE tagged data, so needs to be // untagged on unwind. case 'G': break; } } if (AugmentationLength) { if (Offset != EndAugmentationOffset) return createStringError(errc::invalid_argument, "parsing augmentation data at 0x%" PRIx64 " failed", StartOffset); AugmentationData = Data.getData().slice(StartAugmentationOffset, EndAugmentationOffset); } } auto Cie = std::make_unique( IsDWARF64, StartOffset, Length, Version, AugmentationString, AddressSize, SegmentDescriptorSize, CodeAlignmentFactor, DataAlignmentFactor, ReturnAddressRegister, AugmentationData, FDEPointerEncoding, LSDAPointerEncoding, Personality, PersonalityEncoding, Arch); CIEs[StartOffset] = Cie.get(); Entries.emplace_back(std::move(Cie)); } else { // FDE uint64_t CIEPointer = Id; uint64_t InitialLocation = 0; uint64_t AddressRange = 0; Optional LSDAAddress; CIE *Cie = CIEs[IsEH ? (StartStructureOffset - CIEPointer) : CIEPointer]; if (IsEH) { // The address size is encoded in the CIE we reference. if (!Cie) return createStringError(errc::invalid_argument, "parsing FDE data at 0x%" PRIx64 " failed due to missing CIE", StartOffset); if (auto Val = Data.getEncodedPointer(&Offset, Cie->getFDEPointerEncoding(), EHFrameAddress + Offset)) { InitialLocation = *Val; } if (auto Val = Data.getEncodedPointer( &Offset, Cie->getFDEPointerEncoding(), 0)) { AddressRange = *Val; } StringRef AugmentationString = Cie->getAugmentationString(); if (!AugmentationString.empty()) { // Parse the augmentation length and data for this FDE. uint64_t AugmentationLength = Data.getULEB128(&Offset); uint64_t EndAugmentationOffset = Offset + AugmentationLength; // Decode the LSDA if the CIE augmentation string said we should. if (Cie->getLSDAPointerEncoding() != DW_EH_PE_omit) { LSDAAddress = Data.getEncodedPointer( &Offset, Cie->getLSDAPointerEncoding(), EHFrameAddress ? Offset + EHFrameAddress : 0); } if (Offset != EndAugmentationOffset) return createStringError(errc::invalid_argument, "parsing augmentation data at 0x%" PRIx64 " failed", StartOffset); } } else { InitialLocation = Data.getRelocatedAddress(&Offset); AddressRange = Data.getRelocatedAddress(&Offset); } Entries.emplace_back(new FDE(IsDWARF64, StartOffset, Length, CIEPointer, InitialLocation, AddressRange, Cie, LSDAAddress, Arch)); } if (Error E = Entries.back()->cfis().parse(Data, &Offset, EndStructureOffset)) return E; if (Offset != EndStructureOffset) return createStringError( errc::invalid_argument, "parsing entry instructions at 0x%" PRIx64 " failed", StartOffset); } return Error::success(); } FrameEntry *DWARFDebugFrame::getEntryAtOffset(uint64_t Offset) const { auto It = partition_point(Entries, [=](const std::unique_ptr &E) { return E->getOffset() < Offset; }); if (It != Entries.end() && (*It)->getOffset() == Offset) return It->get(); return nullptr; } void DWARFDebugFrame::dump(raw_ostream &OS, DIDumpOptions DumpOpts, const MCRegisterInfo *MRI, Optional Offset) const { if (Offset) { if (auto *Entry = getEntryAtOffset(*Offset)) Entry->dump(OS, DumpOpts, MRI, IsEH); return; } OS << "\n"; for (const auto &Entry : Entries) Entry->dump(OS, DumpOpts, MRI, IsEH); }