//===- DWARFContext.cpp ---------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAddr.h" #include "llvm/DebugInfo/DWARF/DWARFDebugArangeSet.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAranges.h" #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" #include "llvm/DebugInfo/DWARF/DWARFDebugMacro.h" #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h" #include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h" #include "llvm/DebugInfo/DWARF/DWARFDie.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/DebugInfo/DWARF/DWARFGdbIndex.h" #include "llvm/DebugInfo/DWARF/DWARFListTable.h" #include "llvm/DebugInfo/DWARF/DWARFLocationExpression.h" #include "llvm/DebugInfo/DWARF/DWARFRelocMap.h" #include "llvm/DebugInfo/DWARF/DWARFSection.h" #include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h" #include "llvm/DebugInfo/DWARF/DWARFUnitIndex.h" #include "llvm/DebugInfo/DWARF/DWARFVerifier.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Object/Decompressor.h" #include "llvm/Object/MachO.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/RelocationResolver.h" #include "llvm/Support/Casting.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Error.h" #include "llvm/Support/Format.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include using namespace llvm; using namespace dwarf; using namespace object; #define DEBUG_TYPE "dwarf" using DWARFLineTable = DWARFDebugLine::LineTable; using FileLineInfoKind = DILineInfoSpecifier::FileLineInfoKind; using FunctionNameKind = DILineInfoSpecifier::FunctionNameKind; void fixupIndexV4(DWARFContext &C, DWARFUnitIndex &Index) { using EntryType = DWARFUnitIndex::Entry::SectionContribution; using EntryMap = DenseMap; EntryMap Map; const auto &DObj = C.getDWARFObj(); if (DObj.getCUIndexSection().empty()) return; uint64_t Offset = 0; uint32_t TruncOffset = 0; DObj.forEachInfoDWOSections([&](const DWARFSection &S) { if (!(C.getParseCUTUIndexManually() || S.Data.size() >= std::numeric_limits::max())) return; DWARFDataExtractor Data(DObj, S, C.isLittleEndian(), 0); while (Data.isValidOffset(Offset)) { DWARFUnitHeader Header; if (Error ExtractionErr = Header.extract( C, Data, &Offset, DWARFSectionKind::DW_SECT_INFO)) { C.getWarningHandler()( createError("Failed to parse CU header in DWP file: " + toString(std::move(ExtractionErr)))); Map.clear(); break; } auto Iter = Map.insert({TruncOffset, {Header.getOffset(), Header.getNextUnitOffset() - Header.getOffset()}}); if (!Iter.second) { logAllUnhandledErrors( createError("Collision occured between for truncated offset 0x" + Twine::utohexstr(TruncOffset)), errs()); Map.clear(); return; } Offset = Header.getNextUnitOffset(); TruncOffset = Offset; } }); if (Map.empty()) return; for (DWARFUnitIndex::Entry &E : Index.getMutableRows()) { if (!E.isValid()) continue; DWARFUnitIndex::Entry::SectionContribution &CUOff = E.getContribution(); auto Iter = Map.find(CUOff.getOffset()); if (Iter == Map.end()) { logAllUnhandledErrors(createError("Could not find CU offset 0x" + Twine::utohexstr(CUOff.getOffset()) + " in the Map"), errs()); break; } CUOff.setOffset(Iter->second.getOffset()); if (CUOff.getOffset() != Iter->second.getOffset()) logAllUnhandledErrors(createError("Length of CU in CU index doesn't " "match calculated length at offset 0x" + Twine::utohexstr(CUOff.getOffset())), errs()); } } void fixupIndexV5(DWARFContext &C, DWARFUnitIndex &Index) { DenseMap Map; const auto &DObj = C.getDWARFObj(); DObj.forEachInfoDWOSections([&](const DWARFSection &S) { if (!(C.getParseCUTUIndexManually() || S.Data.size() >= std::numeric_limits::max())) return; DWARFDataExtractor Data(DObj, S, C.isLittleEndian(), 0); uint64_t Offset = 0; while (Data.isValidOffset(Offset)) { DWARFUnitHeader Header; if (Error ExtractionErr = Header.extract( C, Data, &Offset, DWARFSectionKind::DW_SECT_INFO)) { C.getWarningHandler()( createError("Failed to parse CU header in DWP file: " + toString(std::move(ExtractionErr)))); break; } bool CU = Header.getUnitType() == DW_UT_split_compile; uint64_t Sig = CU ? *Header.getDWOId() : Header.getTypeHash(); Map[Sig] = Header.getOffset(); Offset = Header.getNextUnitOffset(); } }); if (Map.empty()) return; for (DWARFUnitIndex::Entry &E : Index.getMutableRows()) { if (!E.isValid()) continue; DWARFUnitIndex::Entry::SectionContribution &CUOff = E.getContribution(); auto Iter = Map.find(E.getSignature()); if (Iter == Map.end()) { logAllUnhandledErrors( createError("Could not find unit with signature 0x" + Twine::utohexstr(E.getSignature()) + " in the Map"), errs()); break; } CUOff.setOffset(Iter->second); } } void fixupIndex(DWARFContext &C, DWARFUnitIndex &Index) { if (Index.getVersion() < 5) fixupIndexV4(C, Index); else fixupIndexV5(C, Index); } template static T &getAccelTable(std::unique_ptr &Cache, const DWARFObject &Obj, const DWARFSection &Section, StringRef StringSection, bool IsLittleEndian) { if (Cache) return *Cache; DWARFDataExtractor AccelSection(Obj, Section, IsLittleEndian, 0); DataExtractor StrData(StringSection, IsLittleEndian, 0); Cache = std::make_unique(AccelSection, StrData); if (Error E = Cache->extract()) llvm::consumeError(std::move(E)); return *Cache; } std::unique_ptr DWARFContext::DWARFContextState::parseMacroOrMacinfo(MacroSecType SectionType) { auto Macro = std::make_unique(); auto ParseAndDump = [&](DWARFDataExtractor &Data, bool IsMacro) { if (Error Err = IsMacro ? Macro->parseMacro(SectionType == MacroSection ? D.compile_units() : D.dwo_compile_units(), SectionType == MacroSection ? D.getStringExtractor() : D.getStringDWOExtractor(), Data) : Macro->parseMacinfo(Data)) { D.getRecoverableErrorHandler()(std::move(Err)); Macro = nullptr; } }; const DWARFObject &DObj = D.getDWARFObj(); switch (SectionType) { case MacinfoSection: { DWARFDataExtractor Data(DObj.getMacinfoSection(), D.isLittleEndian(), 0); ParseAndDump(Data, /*IsMacro=*/false); break; } case MacinfoDwoSection: { DWARFDataExtractor Data(DObj.getMacinfoDWOSection(), D.isLittleEndian(), 0); ParseAndDump(Data, /*IsMacro=*/false); break; } case MacroSection: { DWARFDataExtractor Data(DObj, DObj.getMacroSection(), D.isLittleEndian(), 0); ParseAndDump(Data, /*IsMacro=*/true); break; } case MacroDwoSection: { DWARFDataExtractor Data(DObj.getMacroDWOSection(), D.isLittleEndian(), 0); ParseAndDump(Data, /*IsMacro=*/true); break; } } return Macro; } class ThreadUnsafeDWARFContextState : public DWARFContext::DWARFContextState { DWARFUnitVector NormalUnits; std::optional> NormalTypeUnits; std::unique_ptr CUIndex; std::unique_ptr GdbIndex; std::unique_ptr TUIndex; std::unique_ptr Abbrev; std::unique_ptr Loc; std::unique_ptr Aranges; std::unique_ptr Line; std::unique_ptr DebugFrame; std::unique_ptr EHFrame; std::unique_ptr Macro; std::unique_ptr Macinfo; std::unique_ptr Names; std::unique_ptr AppleNames; std::unique_ptr AppleTypes; std::unique_ptr AppleNamespaces; std::unique_ptr AppleObjC; DWARFUnitVector DWOUnits; std::optional> DWOTypeUnits; std::unique_ptr AbbrevDWO; std::unique_ptr MacinfoDWO; std::unique_ptr MacroDWO; struct DWOFile { object::OwningBinary File; std::unique_ptr Context; }; StringMap> DWOFiles; std::weak_ptr DWP; bool CheckedForDWP = false; std::string DWPName; public: ThreadUnsafeDWARFContextState(DWARFContext &DC, std::string &DWP) : DWARFContext::DWARFContextState(DC), DWPName(std::move(DWP)) {} DWARFUnitVector &getNormalUnits() override { if (NormalUnits.empty()) { const DWARFObject &DObj = D.getDWARFObj(); DObj.forEachInfoSections([&](const DWARFSection &S) { NormalUnits.addUnitsForSection(D, S, DW_SECT_INFO); }); NormalUnits.finishedInfoUnits(); DObj.forEachTypesSections([&](const DWARFSection &S) { NormalUnits.addUnitsForSection(D, S, DW_SECT_EXT_TYPES); }); } return NormalUnits; } DWARFUnitVector &getDWOUnits(bool Lazy) override { if (DWOUnits.empty()) { const DWARFObject &DObj = D.getDWARFObj(); DObj.forEachInfoDWOSections([&](const DWARFSection &S) { DWOUnits.addUnitsForDWOSection(D, S, DW_SECT_INFO, Lazy); }); DWOUnits.finishedInfoUnits(); DObj.forEachTypesDWOSections([&](const DWARFSection &S) { DWOUnits.addUnitsForDWOSection(D, S, DW_SECT_EXT_TYPES, Lazy); }); } return DWOUnits; } const DWARFDebugAbbrev *getDebugAbbrevDWO() override { if (AbbrevDWO) return AbbrevDWO.get(); const DWARFObject &DObj = D.getDWARFObj(); DataExtractor abbrData(DObj.getAbbrevDWOSection(), D.isLittleEndian(), 0); AbbrevDWO = std::make_unique(abbrData); return AbbrevDWO.get(); } const DWARFUnitIndex &getCUIndex() override { if (CUIndex) return *CUIndex; DataExtractor Data(D.getDWARFObj().getCUIndexSection(), D.isLittleEndian(), 0); CUIndex = std::make_unique(DW_SECT_INFO); if (CUIndex->parse(Data)) fixupIndex(D, *CUIndex); return *CUIndex; } const DWARFUnitIndex &getTUIndex() override { if (TUIndex) return *TUIndex; DataExtractor Data(D.getDWARFObj().getTUIndexSection(), D.isLittleEndian(), 0); TUIndex = std::make_unique(DW_SECT_EXT_TYPES); bool isParseSuccessful = TUIndex->parse(Data); // If we are parsing TU-index and for .debug_types section we don't need // to do anything. if (isParseSuccessful && TUIndex->getVersion() != 2) fixupIndex(D, *TUIndex); return *TUIndex; } DWARFGdbIndex &getGdbIndex() override { if (GdbIndex) return *GdbIndex; DataExtractor Data(D.getDWARFObj().getGdbIndexSection(), true /*LE*/, 0); GdbIndex = std::make_unique(); GdbIndex->parse(Data); return *GdbIndex; } const DWARFDebugAbbrev *getDebugAbbrev() override { if (Abbrev) return Abbrev.get(); DataExtractor Data(D.getDWARFObj().getAbbrevSection(), D.isLittleEndian(), 0); Abbrev = std::make_unique(Data); return Abbrev.get(); } const DWARFDebugLoc *getDebugLoc() override { if (Loc) return Loc.get(); const DWARFObject &DObj = D.getDWARFObj(); // Assume all units have the same address byte size. auto Data = D.getNumCompileUnits() ? DWARFDataExtractor(DObj, DObj.getLocSection(), D.isLittleEndian(), D.getUnitAtIndex(0)->getAddressByteSize()) : DWARFDataExtractor("", D.isLittleEndian(), 0); Loc = std::make_unique(std::move(Data)); return Loc.get(); } const DWARFDebugAranges *getDebugAranges() override { if (Aranges) return Aranges.get(); Aranges = std::make_unique(); Aranges->generate(&D); return Aranges.get(); } Expected getLineTableForUnit(DWARFUnit *U, function_ref RecoverableErrorHandler) override { if (!Line) Line = std::make_unique(); auto UnitDIE = U->getUnitDIE(); if (!UnitDIE) return nullptr; auto Offset = toSectionOffset(UnitDIE.find(DW_AT_stmt_list)); if (!Offset) return nullptr; // No line table for this compile unit. uint64_t stmtOffset = *Offset + U->getLineTableOffset(); // See if the line table is cached. if (const DWARFLineTable *lt = Line->getLineTable(stmtOffset)) return lt; // Make sure the offset is good before we try to parse. if (stmtOffset >= U->getLineSection().Data.size()) return nullptr; // We have to parse it first. DWARFDataExtractor Data(U->getContext().getDWARFObj(), U->getLineSection(), U->isLittleEndian(), U->getAddressByteSize()); return Line->getOrParseLineTable(Data, stmtOffset, U->getContext(), U, RecoverableErrorHandler); } void clearLineTableForUnit(DWARFUnit *U) override { if (!Line) return; auto UnitDIE = U->getUnitDIE(); if (!UnitDIE) return; auto Offset = toSectionOffset(UnitDIE.find(DW_AT_stmt_list)); if (!Offset) return; uint64_t stmtOffset = *Offset + U->getLineTableOffset(); Line->clearLineTable(stmtOffset); } Expected getDebugFrame() override { if (DebugFrame) return DebugFrame.get(); const DWARFObject &DObj = D.getDWARFObj(); const DWARFSection &DS = DObj.getFrameSection(); // There's a "bug" in the DWARFv3 standard with respect to the target address // size within debug frame sections. While DWARF is supposed to be independent // of its container, FDEs have fields with size being "target address size", // which isn't specified in DWARF in general. It's only specified for CUs, but // .eh_frame can appear without a .debug_info section. Follow the example of // other tools (libdwarf) and extract this from the container (ObjectFile // provides this information). This problem is fixed in DWARFv4 // See this dwarf-discuss discussion for more details: // http://lists.dwarfstd.org/htdig.cgi/dwarf-discuss-dwarfstd.org/2011-December/001173.html DWARFDataExtractor Data(DObj, DS, D.isLittleEndian(), DObj.getAddressSize()); auto DF = std::make_unique(D.getArch(), /*IsEH=*/false, DS.Address); if (Error E = DF->parse(Data)) return std::move(E); DebugFrame.swap(DF); return DebugFrame.get(); } Expected getEHFrame() override { if (EHFrame) return EHFrame.get(); const DWARFObject &DObj = D.getDWARFObj(); const DWARFSection &DS = DObj.getEHFrameSection(); DWARFDataExtractor Data(DObj, DS, D.isLittleEndian(), DObj.getAddressSize()); auto DF = std::make_unique(D.getArch(), /*IsEH=*/true, DS.Address); if (Error E = DF->parse(Data)) return std::move(E); EHFrame.swap(DF); return EHFrame.get(); } const DWARFDebugMacro *getDebugMacinfo() override { if (!Macinfo) Macinfo = parseMacroOrMacinfo(MacinfoSection); return Macinfo.get(); } const DWARFDebugMacro *getDebugMacinfoDWO() override { if (!MacinfoDWO) MacinfoDWO = parseMacroOrMacinfo(MacinfoDwoSection); return MacinfoDWO.get(); } const DWARFDebugMacro *getDebugMacro() override { if (!Macro) Macro = parseMacroOrMacinfo(MacroSection); return Macro.get(); } const DWARFDebugMacro *getDebugMacroDWO() override { if (!MacroDWO) MacroDWO = parseMacroOrMacinfo(MacroDwoSection); return MacroDWO.get(); } const DWARFDebugNames &getDebugNames() override { const DWARFObject &DObj = D.getDWARFObj(); return getAccelTable(Names, DObj, DObj.getNamesSection(), DObj.getStrSection(), D.isLittleEndian()); } const AppleAcceleratorTable &getAppleNames() override { const DWARFObject &DObj = D.getDWARFObj(); return getAccelTable(AppleNames, DObj, DObj.getAppleNamesSection(), DObj.getStrSection(), D.isLittleEndian()); } const AppleAcceleratorTable &getAppleTypes() override { const DWARFObject &DObj = D.getDWARFObj(); return getAccelTable(AppleTypes, DObj, DObj.getAppleTypesSection(), DObj.getStrSection(), D.isLittleEndian()); } const AppleAcceleratorTable &getAppleNamespaces() override { const DWARFObject &DObj = D.getDWARFObj(); return getAccelTable(AppleNamespaces, DObj, DObj.getAppleNamespacesSection(), DObj.getStrSection(), D.isLittleEndian()); } const AppleAcceleratorTable &getAppleObjC() override { const DWARFObject &DObj = D.getDWARFObj(); return getAccelTable(AppleObjC, DObj, DObj.getAppleObjCSection(), DObj.getStrSection(), D.isLittleEndian()); } std::shared_ptr getDWOContext(StringRef AbsolutePath) override { if (auto S = DWP.lock()) { DWARFContext *Ctxt = S->Context.get(); return std::shared_ptr(std::move(S), Ctxt); } std::weak_ptr *Entry = &DWOFiles[AbsolutePath]; if (auto S = Entry->lock()) { DWARFContext *Ctxt = S->Context.get(); return std::shared_ptr(std::move(S), Ctxt); } const DWARFObject &DObj = D.getDWARFObj(); Expected> Obj = [&] { if (!CheckedForDWP) { SmallString<128> DWPName; auto Obj = object::ObjectFile::createObjectFile( this->DWPName.empty() ? (DObj.getFileName() + ".dwp").toStringRef(DWPName) : StringRef(this->DWPName)); if (Obj) { Entry = &DWP; return Obj; } else { CheckedForDWP = true; // TODO: Should this error be handled (maybe in a high verbosity mode) // before falling back to .dwo files? consumeError(Obj.takeError()); } } return object::ObjectFile::createObjectFile(AbsolutePath); }(); if (!Obj) { // TODO: Actually report errors helpfully. consumeError(Obj.takeError()); return nullptr; } auto S = std::make_shared(); S->File = std::move(Obj.get()); // Allow multi-threaded access if there is a .dwp file as the CU index and // TU index might be accessed from multiple threads. bool ThreadSafe = isThreadSafe(); S->Context = DWARFContext::create( *S->File.getBinary(), DWARFContext::ProcessDebugRelocations::Ignore, nullptr, "", WithColor::defaultErrorHandler, WithColor::defaultWarningHandler, ThreadSafe); *Entry = S; auto *Ctxt = S->Context.get(); return std::shared_ptr(std::move(S), Ctxt); } bool isThreadSafe() const override { return false; } const DenseMap &getNormalTypeUnitMap() { if (!NormalTypeUnits) { NormalTypeUnits.emplace(); for (const auto &U :D.normal_units()) { if (DWARFTypeUnit *TU = dyn_cast(U.get())) (*NormalTypeUnits)[TU->getTypeHash()] = TU; } } return *NormalTypeUnits; } const DenseMap &getDWOTypeUnitMap() { if (!DWOTypeUnits) { DWOTypeUnits.emplace(); for (const auto &U :D.dwo_units()) { if (DWARFTypeUnit *TU = dyn_cast(U.get())) (*DWOTypeUnits)[TU->getTypeHash()] = TU; } } return *DWOTypeUnits; } const DenseMap & getTypeUnitMap(bool IsDWO) override { if (IsDWO) return getDWOTypeUnitMap(); else return getNormalTypeUnitMap(); } }; class ThreadSafeState : public ThreadUnsafeDWARFContextState { std::recursive_mutex Mutex; public: ThreadSafeState(DWARFContext &DC, std::string &DWP) : ThreadUnsafeDWARFContextState(DC, DWP) {} DWARFUnitVector &getNormalUnits() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getNormalUnits(); } DWARFUnitVector &getDWOUnits(bool Lazy) override { std::unique_lock LockGuard(Mutex); // We need to not do lazy parsing when we need thread safety as // DWARFUnitVector, in lazy mode, will slowly add things to itself and // will cause problems in a multi-threaded environment. return ThreadUnsafeDWARFContextState::getDWOUnits(false); } const DWARFUnitIndex &getCUIndex() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getCUIndex(); } const DWARFDebugAbbrev *getDebugAbbrevDWO() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getDebugAbbrevDWO(); } const DWARFUnitIndex &getTUIndex() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getTUIndex(); } DWARFGdbIndex &getGdbIndex() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getGdbIndex(); } const DWARFDebugAbbrev *getDebugAbbrev() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getDebugAbbrev(); } const DWARFDebugLoc *getDebugLoc() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getDebugLoc(); } const DWARFDebugAranges *getDebugAranges() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getDebugAranges(); } Expected getLineTableForUnit(DWARFUnit *U, function_ref RecoverableErrorHandler) override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getLineTableForUnit(U, RecoverableErrorHandler); } void clearLineTableForUnit(DWARFUnit *U) override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::clearLineTableForUnit(U); } Expected getDebugFrame() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getDebugFrame(); } Expected getEHFrame() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getEHFrame(); } const DWARFDebugMacro *getDebugMacinfo() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getDebugMacinfo(); } const DWARFDebugMacro *getDebugMacinfoDWO() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getDebugMacinfoDWO(); } const DWARFDebugMacro *getDebugMacro() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getDebugMacro(); } const DWARFDebugMacro *getDebugMacroDWO() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getDebugMacroDWO(); } const DWARFDebugNames &getDebugNames() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getDebugNames(); } const AppleAcceleratorTable &getAppleNames() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getAppleNames(); } const AppleAcceleratorTable &getAppleTypes() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getAppleTypes(); } const AppleAcceleratorTable &getAppleNamespaces() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getAppleNamespaces(); } const AppleAcceleratorTable &getAppleObjC() override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getAppleObjC(); } std::shared_ptr getDWOContext(StringRef AbsolutePath) override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getDWOContext(AbsolutePath); } bool isThreadSafe() const override { return true; } const DenseMap & getTypeUnitMap(bool IsDWO) override { std::unique_lock LockGuard(Mutex); return ThreadUnsafeDWARFContextState::getTypeUnitMap(IsDWO); } }; DWARFContext::DWARFContext(std::unique_ptr DObj, std::string DWPName, std::function RecoverableErrorHandler, std::function WarningHandler, bool ThreadSafe) : DIContext(CK_DWARF), RecoverableErrorHandler(RecoverableErrorHandler), WarningHandler(WarningHandler), DObj(std::move(DObj)) { if (ThreadSafe) State = std::make_unique(*this, DWPName); else State = std::make_unique(*this, DWPName); } DWARFContext::~DWARFContext() = default; /// Dump the UUID load command. static void dumpUUID(raw_ostream &OS, const ObjectFile &Obj) { auto *MachO = dyn_cast(&Obj); if (!MachO) return; for (auto LC : MachO->load_commands()) { raw_ostream::uuid_t UUID; if (LC.C.cmd == MachO::LC_UUID) { if (LC.C.cmdsize < sizeof(UUID) + sizeof(LC.C)) { OS << "error: UUID load command is too short.\n"; return; } OS << "UUID: "; memcpy(&UUID, LC.Ptr+sizeof(LC.C), sizeof(UUID)); OS.write_uuid(UUID); Triple T = MachO->getArchTriple(); OS << " (" << T.getArchName() << ')'; OS << ' ' << MachO->getFileName() << '\n'; } } } using ContributionCollection = std::vector>; // Collect all the contributions to the string offsets table from all units, // sort them by their starting offsets and remove duplicates. static ContributionCollection collectContributionData(DWARFContext::unit_iterator_range Units) { ContributionCollection Contributions; for (const auto &U : Units) if (const auto &C = U->getStringOffsetsTableContribution()) Contributions.push_back(C); // Sort the contributions so that any invalid ones are placed at // the start of the contributions vector. This way they are reported // first. llvm::sort(Contributions, [](const std::optional &L, const std::optional &R) { if (L && R) return L->Base < R->Base; return R.has_value(); }); // Uniquify contributions, as it is possible that units (specifically // type units in dwo or dwp files) share contributions. We don't want // to report them more than once. Contributions.erase( std::unique(Contributions.begin(), Contributions.end(), [](const std::optional &L, const std::optional &R) { if (L && R) return L->Base == R->Base && L->Size == R->Size; return false; }), Contributions.end()); return Contributions; } // Dump a DWARF string offsets section. This may be a DWARF v5 formatted // string offsets section, where each compile or type unit contributes a // number of entries (string offsets), with each contribution preceded by // a header containing size and version number. Alternatively, it may be a // monolithic series of string offsets, as generated by the pre-DWARF v5 // implementation of split DWARF; however, in that case we still need to // collect contributions of units because the size of the offsets (4 or 8 // bytes) depends on the format of the referencing unit (DWARF32 or DWARF64). static void dumpStringOffsetsSection(raw_ostream &OS, DIDumpOptions DumpOpts, StringRef SectionName, const DWARFObject &Obj, const DWARFSection &StringOffsetsSection, StringRef StringSection, DWARFContext::unit_iterator_range Units, bool LittleEndian) { auto Contributions = collectContributionData(Units); DWARFDataExtractor StrOffsetExt(Obj, StringOffsetsSection, LittleEndian, 0); DataExtractor StrData(StringSection, LittleEndian, 0); uint64_t SectionSize = StringOffsetsSection.Data.size(); uint64_t Offset = 0; for (auto &Contribution : Contributions) { // Report an ill-formed contribution. if (!Contribution) { OS << "error: invalid contribution to string offsets table in section ." << SectionName << ".\n"; return; } dwarf::DwarfFormat Format = Contribution->getFormat(); int OffsetDumpWidth = 2 * dwarf::getDwarfOffsetByteSize(Format); uint16_t Version = Contribution->getVersion(); uint64_t ContributionHeader = Contribution->Base; // In DWARF v5 there is a contribution header that immediately precedes // the string offsets base (the location we have previously retrieved from // the CU DIE's DW_AT_str_offsets attribute). The header is located either // 8 or 16 bytes before the base, depending on the contribution's format. if (Version >= 5) ContributionHeader -= Format == DWARF32 ? 8 : 16; // Detect overlapping contributions. if (Offset > ContributionHeader) { DumpOpts.RecoverableErrorHandler(createStringError( errc::invalid_argument, "overlapping contributions to string offsets table in section .%s.", SectionName.data())); } // Report a gap in the table. if (Offset < ContributionHeader) { OS << format("0x%8.8" PRIx64 ": Gap, length = ", Offset); OS << (ContributionHeader - Offset) << "\n"; } OS << format("0x%8.8" PRIx64 ": ", ContributionHeader); // In DWARF v5 the contribution size in the descriptor does not equal // the originally encoded length (it does not contain the length of the // version field and the padding, a total of 4 bytes). Add them back in // for reporting. OS << "Contribution size = " << (Contribution->Size + (Version < 5 ? 0 : 4)) << ", Format = " << dwarf::FormatString(Format) << ", Version = " << Version << "\n"; Offset = Contribution->Base; unsigned EntrySize = Contribution->getDwarfOffsetByteSize(); while (Offset - Contribution->Base < Contribution->Size) { OS << format("0x%8.8" PRIx64 ": ", Offset); uint64_t StringOffset = StrOffsetExt.getRelocatedValue(EntrySize, &Offset); OS << format("%0*" PRIx64 " ", OffsetDumpWidth, StringOffset); const char *S = StrData.getCStr(&StringOffset); if (S) OS << format("\"%s\"", S); OS << "\n"; } } // Report a gap at the end of the table. if (Offset < SectionSize) { OS << format("0x%8.8" PRIx64 ": Gap, length = ", Offset); OS << (SectionSize - Offset) << "\n"; } } // Dump the .debug_addr section. static void dumpAddrSection(raw_ostream &OS, DWARFDataExtractor &AddrData, DIDumpOptions DumpOpts, uint16_t Version, uint8_t AddrSize) { uint64_t Offset = 0; while (AddrData.isValidOffset(Offset)) { DWARFDebugAddrTable AddrTable; uint64_t TableOffset = Offset; if (Error Err = AddrTable.extract(AddrData, &Offset, Version, AddrSize, DumpOpts.WarningHandler)) { DumpOpts.RecoverableErrorHandler(std::move(Err)); // Keep going after an error, if we can, assuming that the length field // could be read. If it couldn't, stop reading the section. if (auto TableLength = AddrTable.getFullLength()) { Offset = TableOffset + *TableLength; continue; } break; } AddrTable.dump(OS, DumpOpts); } } // Dump the .debug_rnglists or .debug_rnglists.dwo section (DWARF v5). static void dumpRnglistsSection( raw_ostream &OS, DWARFDataExtractor &rnglistData, llvm::function_ref(uint32_t)> LookupPooledAddress, DIDumpOptions DumpOpts) { uint64_t Offset = 0; while (rnglistData.isValidOffset(Offset)) { llvm::DWARFDebugRnglistTable Rnglists; uint64_t TableOffset = Offset; if (Error Err = Rnglists.extract(rnglistData, &Offset)) { DumpOpts.RecoverableErrorHandler(std::move(Err)); uint64_t Length = Rnglists.length(); // Keep going after an error, if we can, assuming that the length field // could be read. If it couldn't, stop reading the section. if (Length == 0) break; Offset = TableOffset + Length; } else { Rnglists.dump(rnglistData, OS, LookupPooledAddress, DumpOpts); } } } static void dumpLoclistsSection(raw_ostream &OS, DIDumpOptions DumpOpts, DWARFDataExtractor Data, const DWARFObject &Obj, std::optional DumpOffset) { uint64_t Offset = 0; while (Data.isValidOffset(Offset)) { DWARFListTableHeader Header(".debug_loclists", "locations"); if (Error E = Header.extract(Data, &Offset)) { DumpOpts.RecoverableErrorHandler(std::move(E)); return; } Header.dump(Data, OS, DumpOpts); uint64_t EndOffset = Header.length() + Header.getHeaderOffset(); Data.setAddressSize(Header.getAddrSize()); DWARFDebugLoclists Loc(Data, Header.getVersion()); if (DumpOffset) { if (DumpOffset >= Offset && DumpOffset < EndOffset) { Offset = *DumpOffset; Loc.dumpLocationList(&Offset, OS, /*BaseAddr=*/std::nullopt, Obj, nullptr, DumpOpts, /*Indent=*/0); OS << "\n"; return; } } else { Loc.dumpRange(Offset, EndOffset - Offset, OS, Obj, DumpOpts); } Offset = EndOffset; } } static void dumpPubTableSection(raw_ostream &OS, DIDumpOptions DumpOpts, DWARFDataExtractor Data, bool GnuStyle) { DWARFDebugPubTable Table; Table.extract(Data, GnuStyle, DumpOpts.RecoverableErrorHandler); Table.dump(OS); } void DWARFContext::dump( raw_ostream &OS, DIDumpOptions DumpOpts, std::array, DIDT_ID_Count> DumpOffsets) { uint64_t DumpType = DumpOpts.DumpType; StringRef Extension = sys::path::extension(DObj->getFileName()); bool IsDWO = (Extension == ".dwo") || (Extension == ".dwp"); // Print UUID header. const auto *ObjFile = DObj->getFile(); if (DumpType & DIDT_UUID) dumpUUID(OS, *ObjFile); // Print a header for each explicitly-requested section. // Otherwise just print one for non-empty sections. // Only print empty .dwo section headers when dumping a .dwo file. bool Explicit = DumpType != DIDT_All && !IsDWO; bool ExplicitDWO = Explicit && IsDWO; auto shouldDump = [&](bool Explicit, const char *Name, unsigned ID, StringRef Section) -> std::optional * { unsigned Mask = 1U << ID; bool Should = (DumpType & Mask) && (Explicit || !Section.empty()); if (!Should) return nullptr; OS << "\n" << Name << " contents:\n"; return &DumpOffsets[ID]; }; // Dump individual sections. if (shouldDump(Explicit, ".debug_abbrev", DIDT_ID_DebugAbbrev, DObj->getAbbrevSection())) getDebugAbbrev()->dump(OS); if (shouldDump(ExplicitDWO, ".debug_abbrev.dwo", DIDT_ID_DebugAbbrev, DObj->getAbbrevDWOSection())) getDebugAbbrevDWO()->dump(OS); auto dumpDebugInfo = [&](const char *Name, unit_iterator_range Units) { OS << '\n' << Name << " contents:\n"; if (auto DumpOffset = DumpOffsets[DIDT_ID_DebugInfo]) for (const auto &U : Units) { U->getDIEForOffset(*DumpOffset) .dump(OS, 0, DumpOpts.noImplicitRecursion()); DWARFDie CUDie = U->getUnitDIE(false); DWARFDie CUNonSkeletonDie = U->getNonSkeletonUnitDIE(false); if (CUNonSkeletonDie && CUDie != CUNonSkeletonDie) { CUNonSkeletonDie.getDwarfUnit() ->getDIEForOffset(*DumpOffset) .dump(OS, 0, DumpOpts.noImplicitRecursion()); } } else for (const auto &U : Units) U->dump(OS, DumpOpts); }; if ((DumpType & DIDT_DebugInfo)) { if (Explicit || getNumCompileUnits()) dumpDebugInfo(".debug_info", info_section_units()); if (ExplicitDWO || getNumDWOCompileUnits()) dumpDebugInfo(".debug_info.dwo", dwo_info_section_units()); } auto dumpDebugType = [&](const char *Name, unit_iterator_range Units) { OS << '\n' << Name << " contents:\n"; for (const auto &U : Units) if (auto DumpOffset = DumpOffsets[DIDT_ID_DebugTypes]) U->getDIEForOffset(*DumpOffset) .dump(OS, 0, DumpOpts.noImplicitRecursion()); else U->dump(OS, DumpOpts); }; if ((DumpType & DIDT_DebugTypes)) { if (Explicit || getNumTypeUnits()) dumpDebugType(".debug_types", types_section_units()); if (ExplicitDWO || getNumDWOTypeUnits()) dumpDebugType(".debug_types.dwo", dwo_types_section_units()); } DIDumpOptions LLDumpOpts = DumpOpts; if (LLDumpOpts.Verbose) LLDumpOpts.DisplayRawContents = true; if (const auto *Off = shouldDump(Explicit, ".debug_loc", DIDT_ID_DebugLoc, DObj->getLocSection().Data)) { getDebugLoc()->dump(OS, *DObj, LLDumpOpts, *Off); } if (const auto *Off = shouldDump(Explicit, ".debug_loclists", DIDT_ID_DebugLoclists, DObj->getLoclistsSection().Data)) { DWARFDataExtractor Data(*DObj, DObj->getLoclistsSection(), isLittleEndian(), 0); dumpLoclistsSection(OS, LLDumpOpts, Data, *DObj, *Off); } if (const auto *Off = shouldDump(ExplicitDWO, ".debug_loclists.dwo", DIDT_ID_DebugLoclists, DObj->getLoclistsDWOSection().Data)) { DWARFDataExtractor Data(*DObj, DObj->getLoclistsDWOSection(), isLittleEndian(), 0); dumpLoclistsSection(OS, LLDumpOpts, Data, *DObj, *Off); } if (const auto *Off = shouldDump(ExplicitDWO, ".debug_loc.dwo", DIDT_ID_DebugLoc, DObj->getLocDWOSection().Data)) { DWARFDataExtractor Data(*DObj, DObj->getLocDWOSection(), isLittleEndian(), 4); DWARFDebugLoclists Loc(Data, /*Version=*/4); if (*Off) { uint64_t Offset = **Off; Loc.dumpLocationList(&Offset, OS, /*BaseAddr=*/std::nullopt, *DObj, nullptr, LLDumpOpts, /*Indent=*/0); OS << "\n"; } else { Loc.dumpRange(0, Data.getData().size(), OS, *DObj, LLDumpOpts); } } if (const std::optional *Off = shouldDump(Explicit, ".debug_frame", DIDT_ID_DebugFrame, DObj->getFrameSection().Data)) { if (Expected DF = getDebugFrame()) (*DF)->dump(OS, DumpOpts, *Off); else RecoverableErrorHandler(DF.takeError()); } if (const std::optional *Off = shouldDump(Explicit, ".eh_frame", DIDT_ID_DebugFrame, DObj->getEHFrameSection().Data)) { if (Expected DF = getEHFrame()) (*DF)->dump(OS, DumpOpts, *Off); else RecoverableErrorHandler(DF.takeError()); } if (shouldDump(Explicit, ".debug_macro", DIDT_ID_DebugMacro, DObj->getMacroSection().Data)) { if (auto Macro = getDebugMacro()) Macro->dump(OS); } if (shouldDump(Explicit, ".debug_macro.dwo", DIDT_ID_DebugMacro, DObj->getMacroDWOSection())) { if (auto MacroDWO = getDebugMacroDWO()) MacroDWO->dump(OS); } if (shouldDump(Explicit, ".debug_macinfo", DIDT_ID_DebugMacro, DObj->getMacinfoSection())) { if (auto Macinfo = getDebugMacinfo()) Macinfo->dump(OS); } if (shouldDump(Explicit, ".debug_macinfo.dwo", DIDT_ID_DebugMacro, DObj->getMacinfoDWOSection())) { if (auto MacinfoDWO = getDebugMacinfoDWO()) MacinfoDWO->dump(OS); } if (shouldDump(Explicit, ".debug_aranges", DIDT_ID_DebugAranges, DObj->getArangesSection())) { uint64_t offset = 0; DWARFDataExtractor arangesData(DObj->getArangesSection(), isLittleEndian(), 0); DWARFDebugArangeSet set; while (arangesData.isValidOffset(offset)) { if (Error E = set.extract(arangesData, &offset, DumpOpts.WarningHandler)) { RecoverableErrorHandler(std::move(E)); break; } set.dump(OS); } } auto DumpLineSection = [&](DWARFDebugLine::SectionParser Parser, DIDumpOptions DumpOpts, std::optional DumpOffset) { while (!Parser.done()) { if (DumpOffset && Parser.getOffset() != *DumpOffset) { Parser.skip(DumpOpts.WarningHandler, DumpOpts.WarningHandler); continue; } OS << "debug_line[" << format("0x%8.8" PRIx64, Parser.getOffset()) << "]\n"; Parser.parseNext(DumpOpts.WarningHandler, DumpOpts.WarningHandler, &OS, DumpOpts.Verbose); } }; auto DumpStrSection = [&](StringRef Section) { DataExtractor StrData(Section, isLittleEndian(), 0); uint64_t Offset = 0; uint64_t StrOffset = 0; while (StrData.isValidOffset(Offset)) { Error Err = Error::success(); const char *CStr = StrData.getCStr(&Offset, &Err); if (Err) { DumpOpts.WarningHandler(std::move(Err)); return; } OS << format("0x%8.8" PRIx64 ": \"", StrOffset); OS.write_escaped(CStr); OS << "\"\n"; StrOffset = Offset; } }; if (const auto *Off = shouldDump(Explicit, ".debug_line", DIDT_ID_DebugLine, DObj->getLineSection().Data)) { DWARFDataExtractor LineData(*DObj, DObj->getLineSection(), isLittleEndian(), 0); DWARFDebugLine::SectionParser Parser(LineData, *this, normal_units()); DumpLineSection(Parser, DumpOpts, *Off); } if (const auto *Off = shouldDump(ExplicitDWO, ".debug_line.dwo", DIDT_ID_DebugLine, DObj->getLineDWOSection().Data)) { DWARFDataExtractor LineData(*DObj, DObj->getLineDWOSection(), isLittleEndian(), 0); DWARFDebugLine::SectionParser Parser(LineData, *this, dwo_units()); DumpLineSection(Parser, DumpOpts, *Off); } if (shouldDump(Explicit, ".debug_cu_index", DIDT_ID_DebugCUIndex, DObj->getCUIndexSection())) { getCUIndex().dump(OS); } if (shouldDump(Explicit, ".debug_tu_index", DIDT_ID_DebugTUIndex, DObj->getTUIndexSection())) { getTUIndex().dump(OS); } if (shouldDump(Explicit, ".debug_str", DIDT_ID_DebugStr, DObj->getStrSection())) DumpStrSection(DObj->getStrSection()); if (shouldDump(ExplicitDWO, ".debug_str.dwo", DIDT_ID_DebugStr, DObj->getStrDWOSection())) DumpStrSection(DObj->getStrDWOSection()); if (shouldDump(Explicit, ".debug_line_str", DIDT_ID_DebugLineStr, DObj->getLineStrSection())) DumpStrSection(DObj->getLineStrSection()); if (shouldDump(Explicit, ".debug_addr", DIDT_ID_DebugAddr, DObj->getAddrSection().Data)) { DWARFDataExtractor AddrData(*DObj, DObj->getAddrSection(), isLittleEndian(), 0); dumpAddrSection(OS, AddrData, DumpOpts, getMaxVersion(), getCUAddrSize()); } if (shouldDump(Explicit, ".debug_ranges", DIDT_ID_DebugRanges, DObj->getRangesSection().Data)) { uint8_t savedAddressByteSize = getCUAddrSize(); DWARFDataExtractor rangesData(*DObj, DObj->getRangesSection(), isLittleEndian(), savedAddressByteSize); uint64_t offset = 0; DWARFDebugRangeList rangeList; while (rangesData.isValidOffset(offset)) { if (Error E = rangeList.extract(rangesData, &offset)) { DumpOpts.RecoverableErrorHandler(std::move(E)); break; } rangeList.dump(OS); } } auto LookupPooledAddress = [&](uint32_t Index) -> std::optional { const auto &CUs = compile_units(); auto I = CUs.begin(); if (I == CUs.end()) return std::nullopt; return (*I)->getAddrOffsetSectionItem(Index); }; if (shouldDump(Explicit, ".debug_rnglists", DIDT_ID_DebugRnglists, DObj->getRnglistsSection().Data)) { DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsSection(), isLittleEndian(), 0); dumpRnglistsSection(OS, RnglistData, LookupPooledAddress, DumpOpts); } if (shouldDump(ExplicitDWO, ".debug_rnglists.dwo", DIDT_ID_DebugRnglists, DObj->getRnglistsDWOSection().Data)) { DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsDWOSection(), isLittleEndian(), 0); dumpRnglistsSection(OS, RnglistData, LookupPooledAddress, DumpOpts); } if (shouldDump(Explicit, ".debug_pubnames", DIDT_ID_DebugPubnames, DObj->getPubnamesSection().Data)) { DWARFDataExtractor PubTableData(*DObj, DObj->getPubnamesSection(), isLittleEndian(), 0); dumpPubTableSection(OS, DumpOpts, PubTableData, /*GnuStyle=*/false); } if (shouldDump(Explicit, ".debug_pubtypes", DIDT_ID_DebugPubtypes, DObj->getPubtypesSection().Data)) { DWARFDataExtractor PubTableData(*DObj, DObj->getPubtypesSection(), isLittleEndian(), 0); dumpPubTableSection(OS, DumpOpts, PubTableData, /*GnuStyle=*/false); } if (shouldDump(Explicit, ".debug_gnu_pubnames", DIDT_ID_DebugGnuPubnames, DObj->getGnuPubnamesSection().Data)) { DWARFDataExtractor PubTableData(*DObj, DObj->getGnuPubnamesSection(), isLittleEndian(), 0); dumpPubTableSection(OS, DumpOpts, PubTableData, /*GnuStyle=*/true); } if (shouldDump(Explicit, ".debug_gnu_pubtypes", DIDT_ID_DebugGnuPubtypes, DObj->getGnuPubtypesSection().Data)) { DWARFDataExtractor PubTableData(*DObj, DObj->getGnuPubtypesSection(), isLittleEndian(), 0); dumpPubTableSection(OS, DumpOpts, PubTableData, /*GnuStyle=*/true); } if (shouldDump(Explicit, ".debug_str_offsets", DIDT_ID_DebugStrOffsets, DObj->getStrOffsetsSection().Data)) dumpStringOffsetsSection( OS, DumpOpts, "debug_str_offsets", *DObj, DObj->getStrOffsetsSection(), DObj->getStrSection(), normal_units(), isLittleEndian()); if (shouldDump(ExplicitDWO, ".debug_str_offsets.dwo", DIDT_ID_DebugStrOffsets, DObj->getStrOffsetsDWOSection().Data)) dumpStringOffsetsSection(OS, DumpOpts, "debug_str_offsets.dwo", *DObj, DObj->getStrOffsetsDWOSection(), DObj->getStrDWOSection(), dwo_units(), isLittleEndian()); if (shouldDump(Explicit, ".gdb_index", DIDT_ID_GdbIndex, DObj->getGdbIndexSection())) { getGdbIndex().dump(OS); } if (shouldDump(Explicit, ".apple_names", DIDT_ID_AppleNames, DObj->getAppleNamesSection().Data)) getAppleNames().dump(OS); if (shouldDump(Explicit, ".apple_types", DIDT_ID_AppleTypes, DObj->getAppleTypesSection().Data)) getAppleTypes().dump(OS); if (shouldDump(Explicit, ".apple_namespaces", DIDT_ID_AppleNamespaces, DObj->getAppleNamespacesSection().Data)) getAppleNamespaces().dump(OS); if (shouldDump(Explicit, ".apple_objc", DIDT_ID_AppleObjC, DObj->getAppleObjCSection().Data)) getAppleObjC().dump(OS); if (shouldDump(Explicit, ".debug_names", DIDT_ID_DebugNames, DObj->getNamesSection().Data)) getDebugNames().dump(OS); } DWARFTypeUnit *DWARFContext::getTypeUnitForHash(uint16_t Version, uint64_t Hash, bool IsDWO) { DWARFUnitVector &DWOUnits = State->getDWOUnits(); if (const auto &TUI = getTUIndex()) { if (const auto *R = TUI.getFromHash(Hash)) return dyn_cast_or_null( DWOUnits.getUnitForIndexEntry(*R)); return nullptr; } return State->getTypeUnitMap(IsDWO).lookup(Hash); } DWARFCompileUnit *DWARFContext::getDWOCompileUnitForHash(uint64_t Hash) { DWARFUnitVector &DWOUnits = State->getDWOUnits(LazyParse); if (const auto &CUI = getCUIndex()) { if (const auto *R = CUI.getFromHash(Hash)) return dyn_cast_or_null( DWOUnits.getUnitForIndexEntry(*R)); return nullptr; } // If there's no index, just search through the CUs in the DWO - there's // probably only one unless this is something like LTO - though an in-process // built/cached lookup table could be used in that case to improve repeated // lookups of different CUs in the DWO. for (const auto &DWOCU : dwo_compile_units()) { // Might not have parsed DWO ID yet. if (!DWOCU->getDWOId()) { if (std::optional DWOId = toUnsigned(DWOCU->getUnitDIE().find(DW_AT_GNU_dwo_id))) DWOCU->setDWOId(*DWOId); else // No DWO ID? continue; } if (DWOCU->getDWOId() == Hash) return dyn_cast(DWOCU.get()); } return nullptr; } DWARFDie DWARFContext::getDIEForOffset(uint64_t Offset) { if (auto *CU = State->getNormalUnits().getUnitForOffset(Offset)) return CU->getDIEForOffset(Offset); return DWARFDie(); } bool DWARFContext::verify(raw_ostream &OS, DIDumpOptions DumpOpts) { bool Success = true; DWARFVerifier verifier(OS, *this, DumpOpts); Success &= verifier.handleDebugAbbrev(); if (DumpOpts.DumpType & DIDT_DebugCUIndex) Success &= verifier.handleDebugCUIndex(); if (DumpOpts.DumpType & DIDT_DebugTUIndex) Success &= verifier.handleDebugTUIndex(); if (DumpOpts.DumpType & DIDT_DebugInfo) Success &= verifier.handleDebugInfo(); if (DumpOpts.DumpType & DIDT_DebugLine) Success &= verifier.handleDebugLine(); if (DumpOpts.DumpType & DIDT_DebugStrOffsets) Success &= verifier.handleDebugStrOffsets(); Success &= verifier.handleAccelTables(); return Success; } const DWARFUnitIndex &DWARFContext::getCUIndex() { return State->getCUIndex(); } const DWARFUnitIndex &DWARFContext::getTUIndex() { return State->getTUIndex(); } DWARFGdbIndex &DWARFContext::getGdbIndex() { return State->getGdbIndex(); } const DWARFDebugAbbrev *DWARFContext::getDebugAbbrev() { return State->getDebugAbbrev(); } const DWARFDebugAbbrev *DWARFContext::getDebugAbbrevDWO() { return State->getDebugAbbrevDWO(); } const DWARFDebugLoc *DWARFContext::getDebugLoc() { return State->getDebugLoc(); } const DWARFDebugAranges *DWARFContext::getDebugAranges() { return State->getDebugAranges(); } Expected DWARFContext::getDebugFrame() { return State->getDebugFrame(); } Expected DWARFContext::getEHFrame() { return State->getEHFrame(); } const DWARFDebugMacro *DWARFContext::getDebugMacro() { return State->getDebugMacro(); } const DWARFDebugMacro *DWARFContext::getDebugMacroDWO() { return State->getDebugMacroDWO(); } const DWARFDebugMacro *DWARFContext::getDebugMacinfo() { return State->getDebugMacinfo(); } const DWARFDebugMacro *DWARFContext::getDebugMacinfoDWO() { return State->getDebugMacinfoDWO(); } const DWARFDebugNames &DWARFContext::getDebugNames() { return State->getDebugNames(); } const AppleAcceleratorTable &DWARFContext::getAppleNames() { return State->getAppleNames(); } const AppleAcceleratorTable &DWARFContext::getAppleTypes() { return State->getAppleTypes(); } const AppleAcceleratorTable &DWARFContext::getAppleNamespaces() { return State->getAppleNamespaces(); } const AppleAcceleratorTable &DWARFContext::getAppleObjC() { return State->getAppleObjC(); } const DWARFDebugLine::LineTable * DWARFContext::getLineTableForUnit(DWARFUnit *U) { Expected ExpectedLineTable = getLineTableForUnit(U, WarningHandler); if (!ExpectedLineTable) { WarningHandler(ExpectedLineTable.takeError()); return nullptr; } return *ExpectedLineTable; } Expected DWARFContext::getLineTableForUnit( DWARFUnit *U, function_ref RecoverableErrorHandler) { return State->getLineTableForUnit(U, RecoverableErrorHandler); } void DWARFContext::clearLineTableForUnit(DWARFUnit *U) { return State->clearLineTableForUnit(U); } DWARFUnitVector &DWARFContext::getDWOUnits(bool Lazy) { return State->getDWOUnits(Lazy); } DWARFCompileUnit *DWARFContext::getCompileUnitForOffset(uint64_t Offset) { return dyn_cast_or_null( State->getNormalUnits().getUnitForOffset(Offset)); } DWARFCompileUnit *DWARFContext::getCompileUnitForCodeAddress(uint64_t Address) { uint64_t CUOffset = getDebugAranges()->findAddress(Address); return getCompileUnitForOffset(CUOffset); } DWARFCompileUnit *DWARFContext::getCompileUnitForDataAddress(uint64_t Address) { uint64_t CUOffset = getDebugAranges()->findAddress(Address); if (DWARFCompileUnit *OffsetCU = getCompileUnitForOffset(CUOffset)) return OffsetCU; // Global variables are often missed by the above search, for one of two // reasons: // 1. .debug_aranges may not include global variables. On clang, it seems we // put the globals in the aranges, but this isn't true for gcc. // 2. Even if the global variable is in a .debug_arange, global variables // may not be captured in the [start, end) addresses described by the // parent compile unit. // // So, we walk the CU's and their child DI's manually, looking for the // specific global variable. for (std::unique_ptr &CU : compile_units()) { if (CU->getVariableForAddress(Address)) { return static_cast(CU.get()); } } return nullptr; } DWARFContext::DIEsForAddress DWARFContext::getDIEsForAddress(uint64_t Address, bool CheckDWO) { DIEsForAddress Result; DWARFCompileUnit *CU = getCompileUnitForCodeAddress(Address); if (!CU) return Result; if (CheckDWO) { // We were asked to check the DWO file and this debug information is more // complete that any information in the skeleton compile unit, so search the // DWO first to see if we have a match. DWARFDie CUDie = CU->getUnitDIE(false); DWARFDie CUDwoDie = CU->getNonSkeletonUnitDIE(false); if (CheckDWO && CUDwoDie && CUDie != CUDwoDie) { // We have a DWO file, lets search it. DWARFCompileUnit *CUDwo = dyn_cast_or_null(CUDwoDie.getDwarfUnit()); if (CUDwo) { Result.FunctionDIE = CUDwo->getSubroutineForAddress(Address); if (Result.FunctionDIE) Result.CompileUnit = CUDwo; } } } // Search the normal DWARF if we didn't find a match in the DWO file or if // we didn't check the DWO file above. if (!Result) { Result.CompileUnit = CU; Result.FunctionDIE = CU->getSubroutineForAddress(Address); } std::vector Worklist; Worklist.push_back(Result.FunctionDIE); while (!Worklist.empty()) { DWARFDie DIE = Worklist.back(); Worklist.pop_back(); if (!DIE.isValid()) continue; if (DIE.getTag() == DW_TAG_lexical_block && DIE.addressRangeContainsAddress(Address)) { Result.BlockDIE = DIE; break; } append_range(Worklist, DIE); } return Result; } /// TODO: change input parameter from "uint64_t Address" /// into "SectionedAddress Address" static bool getFunctionNameAndStartLineForAddress( DWARFCompileUnit *CU, uint64_t Address, FunctionNameKind Kind, DILineInfoSpecifier::FileLineInfoKind FileNameKind, std::string &FunctionName, std::string &StartFile, uint32_t &StartLine, std::optional &StartAddress) { // The address may correspond to instruction in some inlined function, // so we have to build the chain of inlined functions and take the // name of the topmost function in it. SmallVector InlinedChain; CU->getInlinedChainForAddress(Address, InlinedChain); if (InlinedChain.empty()) return false; const DWARFDie &DIE = InlinedChain[0]; bool FoundResult = false; const char *Name = nullptr; if (Kind != FunctionNameKind::None && (Name = DIE.getSubroutineName(Kind))) { FunctionName = Name; FoundResult = true; } std::string DeclFile = DIE.getDeclFile(FileNameKind); if (!DeclFile.empty()) { StartFile = DeclFile; FoundResult = true; } if (auto DeclLineResult = DIE.getDeclLine()) { StartLine = DeclLineResult; FoundResult = true; } if (auto LowPcAddr = toSectionedAddress(DIE.find(DW_AT_low_pc))) StartAddress = LowPcAddr->Address; return FoundResult; } static std::optional getExpressionFrameOffset(ArrayRef Expr, std::optional FrameBaseReg) { if (!Expr.empty() && (Expr[0] == DW_OP_fbreg || (FrameBaseReg && Expr[0] == DW_OP_breg0 + *FrameBaseReg))) { unsigned Count; int64_t Offset = decodeSLEB128(Expr.data() + 1, &Count, Expr.end()); // A single DW_OP_fbreg or DW_OP_breg. if (Expr.size() == Count + 1) return Offset; // Same + DW_OP_deref (Fortran arrays look like this). if (Expr.size() == Count + 2 && Expr[Count + 1] == DW_OP_deref) return Offset; // Fallthrough. Do not accept ex. (DW_OP_breg W29, DW_OP_stack_value) } return std::nullopt; } void DWARFContext::addLocalsForDie(DWARFCompileUnit *CU, DWARFDie Subprogram, DWARFDie Die, std::vector &Result) { if (Die.getTag() == DW_TAG_variable || Die.getTag() == DW_TAG_formal_parameter) { DILocal Local; if (const char *Name = Subprogram.getSubroutineName(DINameKind::ShortName)) Local.FunctionName = Name; std::optional FrameBaseReg; if (auto FrameBase = Subprogram.find(DW_AT_frame_base)) if (std::optional> Expr = FrameBase->getAsBlock()) if (!Expr->empty() && (*Expr)[0] >= DW_OP_reg0 && (*Expr)[0] <= DW_OP_reg31) { FrameBaseReg = (*Expr)[0] - DW_OP_reg0; } if (Expected> Loc = Die.getLocations(DW_AT_location)) { for (const auto &Entry : *Loc) { if (std::optional FrameOffset = getExpressionFrameOffset(Entry.Expr, FrameBaseReg)) { Local.FrameOffset = *FrameOffset; break; } } } else { // FIXME: missing DW_AT_location is OK here, but other errors should be // reported to the user. consumeError(Loc.takeError()); } if (auto TagOffsetAttr = Die.find(DW_AT_LLVM_tag_offset)) Local.TagOffset = TagOffsetAttr->getAsUnsignedConstant(); if (auto Origin = Die.getAttributeValueAsReferencedDie(DW_AT_abstract_origin)) Die = Origin; if (auto NameAttr = Die.find(DW_AT_name)) if (std::optional Name = dwarf::toString(*NameAttr)) Local.Name = *Name; if (auto Type = Die.getAttributeValueAsReferencedDie(DW_AT_type)) Local.Size = Type.getTypeSize(getCUAddrSize()); if (auto DeclFileAttr = Die.find(DW_AT_decl_file)) { if (const auto *LT = CU->getContext().getLineTableForUnit(CU)) LT->getFileNameByIndex( *DeclFileAttr->getAsUnsignedConstant(), CU->getCompilationDir(), DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Local.DeclFile); } if (auto DeclLineAttr = Die.find(DW_AT_decl_line)) Local.DeclLine = *DeclLineAttr->getAsUnsignedConstant(); Result.push_back(Local); return; } if (Die.getTag() == DW_TAG_inlined_subroutine) if (auto Origin = Die.getAttributeValueAsReferencedDie(DW_AT_abstract_origin)) Subprogram = Origin; for (auto Child : Die) addLocalsForDie(CU, Subprogram, Child, Result); } std::vector DWARFContext::getLocalsForAddress(object::SectionedAddress Address) { std::vector Result; DWARFCompileUnit *CU = getCompileUnitForCodeAddress(Address.Address); if (!CU) return Result; DWARFDie Subprogram = CU->getSubroutineForAddress(Address.Address); if (Subprogram.isValid()) addLocalsForDie(CU, Subprogram, Subprogram, Result); return Result; } DILineInfo DWARFContext::getLineInfoForAddress(object::SectionedAddress Address, DILineInfoSpecifier Spec) { DILineInfo Result; DWARFCompileUnit *CU = getCompileUnitForCodeAddress(Address.Address); if (!CU) return Result; getFunctionNameAndStartLineForAddress( CU, Address.Address, Spec.FNKind, Spec.FLIKind, Result.FunctionName, Result.StartFileName, Result.StartLine, Result.StartAddress); if (Spec.FLIKind != FileLineInfoKind::None) { if (const DWARFLineTable *LineTable = getLineTableForUnit(CU)) { LineTable->getFileLineInfoForAddress( {Address.Address, Address.SectionIndex}, CU->getCompilationDir(), Spec.FLIKind, Result); } } return Result; } DILineInfo DWARFContext::getLineInfoForDataAddress(object::SectionedAddress Address) { DILineInfo Result; DWARFCompileUnit *CU = getCompileUnitForDataAddress(Address.Address); if (!CU) return Result; if (DWARFDie Die = CU->getVariableForAddress(Address.Address)) { Result.FileName = Die.getDeclFile(FileLineInfoKind::AbsoluteFilePath); Result.Line = Die.getDeclLine(); } return Result; } DILineInfoTable DWARFContext::getLineInfoForAddressRange( object::SectionedAddress Address, uint64_t Size, DILineInfoSpecifier Spec) { DILineInfoTable Lines; DWARFCompileUnit *CU = getCompileUnitForCodeAddress(Address.Address); if (!CU) return Lines; uint32_t StartLine = 0; std::string StartFileName; std::string FunctionName(DILineInfo::BadString); std::optional StartAddress; getFunctionNameAndStartLineForAddress(CU, Address.Address, Spec.FNKind, Spec.FLIKind, FunctionName, StartFileName, StartLine, StartAddress); // If the Specifier says we don't need FileLineInfo, just // return the top-most function at the starting address. if (Spec.FLIKind == FileLineInfoKind::None) { DILineInfo Result; Result.FunctionName = FunctionName; Result.StartFileName = StartFileName; Result.StartLine = StartLine; Result.StartAddress = StartAddress; Lines.push_back(std::make_pair(Address.Address, Result)); return Lines; } const DWARFLineTable *LineTable = getLineTableForUnit(CU); // Get the index of row we're looking for in the line table. std::vector RowVector; if (!LineTable->lookupAddressRange({Address.Address, Address.SectionIndex}, Size, RowVector)) { return Lines; } for (uint32_t RowIndex : RowVector) { // Take file number and line/column from the row. const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex]; DILineInfo Result; LineTable->getFileNameByIndex(Row.File, CU->getCompilationDir(), Spec.FLIKind, Result.FileName); Result.FunctionName = FunctionName; Result.Line = Row.Line; Result.Column = Row.Column; Result.StartFileName = StartFileName; Result.StartLine = StartLine; Result.StartAddress = StartAddress; Lines.push_back(std::make_pair(Row.Address.Address, Result)); } return Lines; } DIInliningInfo DWARFContext::getInliningInfoForAddress(object::SectionedAddress Address, DILineInfoSpecifier Spec) { DIInliningInfo InliningInfo; DWARFCompileUnit *CU = getCompileUnitForCodeAddress(Address.Address); if (!CU) return InliningInfo; const DWARFLineTable *LineTable = nullptr; SmallVector InlinedChain; CU->getInlinedChainForAddress(Address.Address, InlinedChain); if (InlinedChain.size() == 0) { // If there is no DIE for address (e.g. it is in unavailable .dwo file), // try to at least get file/line info from symbol table. if (Spec.FLIKind != FileLineInfoKind::None) { DILineInfo Frame; LineTable = getLineTableForUnit(CU); if (LineTable && LineTable->getFileLineInfoForAddress( {Address.Address, Address.SectionIndex}, CU->getCompilationDir(), Spec.FLIKind, Frame)) InliningInfo.addFrame(Frame); } return InliningInfo; } uint32_t CallFile = 0, CallLine = 0, CallColumn = 0, CallDiscriminator = 0; for (uint32_t i = 0, n = InlinedChain.size(); i != n; i++) { DWARFDie &FunctionDIE = InlinedChain[i]; DILineInfo Frame; // Get function name if necessary. if (const char *Name = FunctionDIE.getSubroutineName(Spec.FNKind)) Frame.FunctionName = Name; if (auto DeclLineResult = FunctionDIE.getDeclLine()) Frame.StartLine = DeclLineResult; Frame.StartFileName = FunctionDIE.getDeclFile(Spec.FLIKind); if (auto LowPcAddr = toSectionedAddress(FunctionDIE.find(DW_AT_low_pc))) Frame.StartAddress = LowPcAddr->Address; if (Spec.FLIKind != FileLineInfoKind::None) { if (i == 0) { // For the topmost frame, initialize the line table of this // compile unit and fetch file/line info from it. LineTable = getLineTableForUnit(CU); // For the topmost routine, get file/line info from line table. if (LineTable) LineTable->getFileLineInfoForAddress( {Address.Address, Address.SectionIndex}, CU->getCompilationDir(), Spec.FLIKind, Frame); } else { // Otherwise, use call file, call line and call column from // previous DIE in inlined chain. if (LineTable) LineTable->getFileNameByIndex(CallFile, CU->getCompilationDir(), Spec.FLIKind, Frame.FileName); Frame.Line = CallLine; Frame.Column = CallColumn; Frame.Discriminator = CallDiscriminator; } // Get call file/line/column of a current DIE. if (i + 1 < n) { FunctionDIE.getCallerFrame(CallFile, CallLine, CallColumn, CallDiscriminator); } } InliningInfo.addFrame(Frame); } return InliningInfo; } std::shared_ptr DWARFContext::getDWOContext(StringRef AbsolutePath) { return State->getDWOContext(AbsolutePath); } static Error createError(const Twine &Reason, llvm::Error E) { return make_error(Reason + toString(std::move(E)), inconvertibleErrorCode()); } /// SymInfo contains information about symbol: it's address /// and section index which is -1LL for absolute symbols. struct SymInfo { uint64_t Address; uint64_t SectionIndex; }; /// Returns the address of symbol relocation used against and a section index. /// Used for futher relocations computation. Symbol's section load address is static Expected getSymbolInfo(const object::ObjectFile &Obj, const RelocationRef &Reloc, const LoadedObjectInfo *L, std::map &Cache) { SymInfo Ret = {0, (uint64_t)-1LL}; object::section_iterator RSec = Obj.section_end(); object::symbol_iterator Sym = Reloc.getSymbol(); std::map::iterator CacheIt = Cache.end(); // First calculate the address of the symbol or section as it appears // in the object file if (Sym != Obj.symbol_end()) { bool New; std::tie(CacheIt, New) = Cache.insert({*Sym, {0, 0}}); if (!New) return CacheIt->second; Expected SymAddrOrErr = Sym->getAddress(); if (!SymAddrOrErr) return createError("failed to compute symbol address: ", SymAddrOrErr.takeError()); // Also remember what section this symbol is in for later auto SectOrErr = Sym->getSection(); if (!SectOrErr) return createError("failed to get symbol section: ", SectOrErr.takeError()); RSec = *SectOrErr; Ret.Address = *SymAddrOrErr; } else if (auto *MObj = dyn_cast(&Obj)) { RSec = MObj->getRelocationSection(Reloc.getRawDataRefImpl()); Ret.Address = RSec->getAddress(); } if (RSec != Obj.section_end()) Ret.SectionIndex = RSec->getIndex(); // If we are given load addresses for the sections, we need to adjust: // SymAddr = (Address of Symbol Or Section in File) - // (Address of Section in File) + // (Load Address of Section) // RSec is now either the section being targeted or the section // containing the symbol being targeted. In either case, // we need to perform the same computation. if (L && RSec != Obj.section_end()) if (uint64_t SectionLoadAddress = L->getSectionLoadAddress(*RSec)) Ret.Address += SectionLoadAddress - RSec->getAddress(); if (CacheIt != Cache.end()) CacheIt->second = Ret; return Ret; } static bool isRelocScattered(const object::ObjectFile &Obj, const RelocationRef &Reloc) { const MachOObjectFile *MachObj = dyn_cast(&Obj); if (!MachObj) return false; // MachO also has relocations that point to sections and // scattered relocations. auto RelocInfo = MachObj->getRelocation(Reloc.getRawDataRefImpl()); return MachObj->isRelocationScattered(RelocInfo); } namespace { struct DWARFSectionMap final : public DWARFSection { RelocAddrMap Relocs; }; class DWARFObjInMemory final : public DWARFObject { bool IsLittleEndian; uint8_t AddressSize; StringRef FileName; const object::ObjectFile *Obj = nullptr; std::vector SectionNames; using InfoSectionMap = MapVector>; InfoSectionMap InfoSections; InfoSectionMap TypesSections; InfoSectionMap InfoDWOSections; InfoSectionMap TypesDWOSections; DWARFSectionMap LocSection; DWARFSectionMap LoclistsSection; DWARFSectionMap LoclistsDWOSection; DWARFSectionMap LineSection; DWARFSectionMap RangesSection; DWARFSectionMap RnglistsSection; DWARFSectionMap StrOffsetsSection; DWARFSectionMap LineDWOSection; DWARFSectionMap FrameSection; DWARFSectionMap EHFrameSection; DWARFSectionMap LocDWOSection; DWARFSectionMap StrOffsetsDWOSection; DWARFSectionMap RangesDWOSection; DWARFSectionMap RnglistsDWOSection; DWARFSectionMap AddrSection; DWARFSectionMap AppleNamesSection; DWARFSectionMap AppleTypesSection; DWARFSectionMap AppleNamespacesSection; DWARFSectionMap AppleObjCSection; DWARFSectionMap NamesSection; DWARFSectionMap PubnamesSection; DWARFSectionMap PubtypesSection; DWARFSectionMap GnuPubnamesSection; DWARFSectionMap GnuPubtypesSection; DWARFSectionMap MacroSection; DWARFSectionMap *mapNameToDWARFSection(StringRef Name) { return StringSwitch(Name) .Case("debug_loc", &LocSection) .Case("debug_loclists", &LoclistsSection) .Case("debug_loclists.dwo", &LoclistsDWOSection) .Case("debug_line", &LineSection) .Case("debug_frame", &FrameSection) .Case("eh_frame", &EHFrameSection) .Case("debug_str_offsets", &StrOffsetsSection) .Case("debug_ranges", &RangesSection) .Case("debug_rnglists", &RnglistsSection) .Case("debug_loc.dwo", &LocDWOSection) .Case("debug_line.dwo", &LineDWOSection) .Case("debug_names", &NamesSection) .Case("debug_rnglists.dwo", &RnglistsDWOSection) .Case("debug_str_offsets.dwo", &StrOffsetsDWOSection) .Case("debug_addr", &AddrSection) .Case("apple_names", &AppleNamesSection) .Case("debug_pubnames", &PubnamesSection) .Case("debug_pubtypes", &PubtypesSection) .Case("debug_gnu_pubnames", &GnuPubnamesSection) .Case("debug_gnu_pubtypes", &GnuPubtypesSection) .Case("apple_types", &AppleTypesSection) .Case("apple_namespaces", &AppleNamespacesSection) .Case("apple_namespac", &AppleNamespacesSection) .Case("apple_objc", &AppleObjCSection) .Case("debug_macro", &MacroSection) .Default(nullptr); } StringRef AbbrevSection; StringRef ArangesSection; StringRef StrSection; StringRef MacinfoSection; StringRef MacinfoDWOSection; StringRef MacroDWOSection; StringRef AbbrevDWOSection; StringRef StrDWOSection; StringRef CUIndexSection; StringRef GdbIndexSection; StringRef TUIndexSection; StringRef LineStrSection; // A deque holding section data whose iterators are not invalidated when // new decompressed sections are inserted at the end. std::deque> UncompressedSections; StringRef *mapSectionToMember(StringRef Name) { if (DWARFSection *Sec = mapNameToDWARFSection(Name)) return &Sec->Data; return StringSwitch(Name) .Case("debug_abbrev", &AbbrevSection) .Case("debug_aranges", &ArangesSection) .Case("debug_str", &StrSection) .Case("debug_macinfo", &MacinfoSection) .Case("debug_macinfo.dwo", &MacinfoDWOSection) .Case("debug_macro.dwo", &MacroDWOSection) .Case("debug_abbrev.dwo", &AbbrevDWOSection) .Case("debug_str.dwo", &StrDWOSection) .Case("debug_cu_index", &CUIndexSection) .Case("debug_tu_index", &TUIndexSection) .Case("gdb_index", &GdbIndexSection) .Case("debug_line_str", &LineStrSection) // Any more debug info sections go here. .Default(nullptr); } /// If Sec is compressed section, decompresses and updates its contents /// provided by Data. Otherwise leaves it unchanged. Error maybeDecompress(const object::SectionRef &Sec, StringRef Name, StringRef &Data) { if (!Sec.isCompressed()) return Error::success(); Expected Decompressor = Decompressor::create(Name, Data, IsLittleEndian, AddressSize == 8); if (!Decompressor) return Decompressor.takeError(); SmallString<0> Out; if (auto Err = Decompressor->resizeAndDecompress(Out)) return Err; UncompressedSections.push_back(std::move(Out)); Data = UncompressedSections.back(); return Error::success(); } public: DWARFObjInMemory(const StringMap> &Sections, uint8_t AddrSize, bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) { for (const auto &SecIt : Sections) { if (StringRef *SectionData = mapSectionToMember(SecIt.first())) *SectionData = SecIt.second->getBuffer(); else if (SecIt.first() == "debug_info") // Find debug_info and debug_types data by section rather than name as // there are multiple, comdat grouped, of these sections. InfoSections[SectionRef()].Data = SecIt.second->getBuffer(); else if (SecIt.first() == "debug_info.dwo") InfoDWOSections[SectionRef()].Data = SecIt.second->getBuffer(); else if (SecIt.first() == "debug_types") TypesSections[SectionRef()].Data = SecIt.second->getBuffer(); else if (SecIt.first() == "debug_types.dwo") TypesDWOSections[SectionRef()].Data = SecIt.second->getBuffer(); } } DWARFObjInMemory(const object::ObjectFile &Obj, const LoadedObjectInfo *L, function_ref HandleError, function_ref HandleWarning, DWARFContext::ProcessDebugRelocations RelocAction) : IsLittleEndian(Obj.isLittleEndian()), AddressSize(Obj.getBytesInAddress()), FileName(Obj.getFileName()), Obj(&Obj) { StringMap SectionAmountMap; for (const SectionRef &Section : Obj.sections()) { StringRef Name; if (auto NameOrErr = Section.getName()) Name = *NameOrErr; else consumeError(NameOrErr.takeError()); ++SectionAmountMap[Name]; SectionNames.push_back({ Name, true }); // Skip BSS and Virtual sections, they aren't interesting. if (Section.isBSS() || Section.isVirtual()) continue; // Skip sections stripped by dsymutil. if (Section.isStripped()) continue; StringRef Data; Expected SecOrErr = Section.getRelocatedSection(); if (!SecOrErr) { HandleError(createError("failed to get relocated section: ", SecOrErr.takeError())); continue; } // Try to obtain an already relocated version of this section. // Else use the unrelocated section from the object file. We'll have to // apply relocations ourselves later. section_iterator RelocatedSection = Obj.isRelocatableObject() ? *SecOrErr : Obj.section_end(); if (!L || !L->getLoadedSectionContents(*RelocatedSection, Data)) { Expected E = Section.getContents(); if (E) Data = *E; else // maybeDecompress below will error. consumeError(E.takeError()); } if (auto Err = maybeDecompress(Section, Name, Data)) { HandleError(createError("failed to decompress '" + Name + "', ", std::move(Err))); continue; } // Map platform specific debug section names to DWARF standard section // names. Name = Name.substr(Name.find_first_not_of("._")); Name = Obj.mapDebugSectionName(Name); if (StringRef *SectionData = mapSectionToMember(Name)) { *SectionData = Data; if (Name == "debug_ranges") { // FIXME: Use the other dwo range section when we emit it. RangesDWOSection.Data = Data; } else if (Name == "debug_frame" || Name == "eh_frame") { if (DWARFSection *S = mapNameToDWARFSection(Name)) S->Address = Section.getAddress(); } } else if (InfoSectionMap *Sections = StringSwitch(Name) .Case("debug_info", &InfoSections) .Case("debug_info.dwo", &InfoDWOSections) .Case("debug_types", &TypesSections) .Case("debug_types.dwo", &TypesDWOSections) .Default(nullptr)) { // Find debug_info and debug_types data by section rather than name as // there are multiple, comdat grouped, of these sections. DWARFSectionMap &S = (*Sections)[Section]; S.Data = Data; } if (RelocatedSection == Obj.section_end() || (RelocAction == DWARFContext::ProcessDebugRelocations::Ignore)) continue; StringRef RelSecName; if (auto NameOrErr = RelocatedSection->getName()) RelSecName = *NameOrErr; else consumeError(NameOrErr.takeError()); // If the section we're relocating was relocated already by the JIT, // then we used the relocated version above, so we do not need to process // relocations for it now. StringRef RelSecData; if (L && L->getLoadedSectionContents(*RelocatedSection, RelSecData)) continue; // In Mach-o files, the relocations do not need to be applied if // there is no load offset to apply. The value read at the // relocation point already factors in the section address // (actually applying the relocations will produce wrong results // as the section address will be added twice). if (!L && isa(&Obj)) continue; if (!Section.relocations().empty() && Name.ends_with(".dwo") && RelSecName.starts_with(".debug")) { HandleWarning(createError("unexpected relocations for dwo section '" + RelSecName + "'")); } // TODO: Add support for relocations in other sections as needed. // Record relocations for the debug_info and debug_line sections. RelSecName = RelSecName.substr(RelSecName.find_first_not_of("._")); DWARFSectionMap *Sec = mapNameToDWARFSection(RelSecName); RelocAddrMap *Map = Sec ? &Sec->Relocs : nullptr; if (!Map) { // Find debug_info and debug_types relocs by section rather than name // as there are multiple, comdat grouped, of these sections. if (RelSecName == "debug_info") Map = &static_cast(InfoSections[*RelocatedSection]) .Relocs; else if (RelSecName == "debug_types") Map = &static_cast(TypesSections[*RelocatedSection]) .Relocs; else continue; } if (Section.relocation_begin() == Section.relocation_end()) continue; // Symbol to [address, section index] cache mapping. std::map AddrCache; SupportsRelocation Supports; RelocationResolver Resolver; std::tie(Supports, Resolver) = getRelocationResolver(Obj); for (const RelocationRef &Reloc : Section.relocations()) { // FIXME: it's not clear how to correctly handle scattered // relocations. if (isRelocScattered(Obj, Reloc)) continue; Expected SymInfoOrErr = getSymbolInfo(Obj, Reloc, L, AddrCache); if (!SymInfoOrErr) { HandleError(SymInfoOrErr.takeError()); continue; } // Check if Resolver can handle this relocation type early so as not to // handle invalid cases in DWARFDataExtractor. // // TODO Don't store Resolver in every RelocAddrEntry. if (Supports && Supports(Reloc.getType())) { auto I = Map->try_emplace( Reloc.getOffset(), RelocAddrEntry{ SymInfoOrErr->SectionIndex, Reloc, SymInfoOrErr->Address, std::optional(), 0, Resolver}); // If we didn't successfully insert that's because we already had a // relocation for that offset. Store it as a second relocation in the // same RelocAddrEntry instead. if (!I.second) { RelocAddrEntry &entry = I.first->getSecond(); if (entry.Reloc2) { HandleError(createError( "At most two relocations per offset are supported")); } entry.Reloc2 = Reloc; entry.SymbolValue2 = SymInfoOrErr->Address; } } else { SmallString<32> Type; Reloc.getTypeName(Type); // FIXME: Support more relocations & change this to an error HandleWarning( createError("failed to compute relocation: " + Type + ", ", errorCodeToError(object_error::parse_failed))); } } } for (SectionName &S : SectionNames) if (SectionAmountMap[S.Name] > 1) S.IsNameUnique = false; } std::optional find(const DWARFSection &S, uint64_t Pos) const override { auto &Sec = static_cast(S); RelocAddrMap::const_iterator AI = Sec.Relocs.find(Pos); if (AI == Sec.Relocs.end()) return std::nullopt; return AI->second; } const object::ObjectFile *getFile() const override { return Obj; } ArrayRef getSectionNames() const override { return SectionNames; } bool isLittleEndian() const override { return IsLittleEndian; } StringRef getAbbrevDWOSection() const override { return AbbrevDWOSection; } const DWARFSection &getLineDWOSection() const override { return LineDWOSection; } const DWARFSection &getLocDWOSection() const override { return LocDWOSection; } StringRef getStrDWOSection() const override { return StrDWOSection; } const DWARFSection &getStrOffsetsDWOSection() const override { return StrOffsetsDWOSection; } const DWARFSection &getRangesDWOSection() const override { return RangesDWOSection; } const DWARFSection &getRnglistsDWOSection() const override { return RnglistsDWOSection; } const DWARFSection &getLoclistsDWOSection() const override { return LoclistsDWOSection; } const DWARFSection &getAddrSection() const override { return AddrSection; } StringRef getCUIndexSection() const override { return CUIndexSection; } StringRef getGdbIndexSection() const override { return GdbIndexSection; } StringRef getTUIndexSection() const override { return TUIndexSection; } // DWARF v5 const DWARFSection &getStrOffsetsSection() const override { return StrOffsetsSection; } StringRef getLineStrSection() const override { return LineStrSection; } // Sections for DWARF5 split dwarf proposal. void forEachInfoDWOSections( function_ref F) const override { for (auto &P : InfoDWOSections) F(P.second); } void forEachTypesDWOSections( function_ref F) const override { for (auto &P : TypesDWOSections) F(P.second); } StringRef getAbbrevSection() const override { return AbbrevSection; } const DWARFSection &getLocSection() const override { return LocSection; } const DWARFSection &getLoclistsSection() const override { return LoclistsSection; } StringRef getArangesSection() const override { return ArangesSection; } const DWARFSection &getFrameSection() const override { return FrameSection; } const DWARFSection &getEHFrameSection() const override { return EHFrameSection; } const DWARFSection &getLineSection() const override { return LineSection; } StringRef getStrSection() const override { return StrSection; } const DWARFSection &getRangesSection() const override { return RangesSection; } const DWARFSection &getRnglistsSection() const override { return RnglistsSection; } const DWARFSection &getMacroSection() const override { return MacroSection; } StringRef getMacroDWOSection() const override { return MacroDWOSection; } StringRef getMacinfoSection() const override { return MacinfoSection; } StringRef getMacinfoDWOSection() const override { return MacinfoDWOSection; } const DWARFSection &getPubnamesSection() const override { return PubnamesSection; } const DWARFSection &getPubtypesSection() const override { return PubtypesSection; } const DWARFSection &getGnuPubnamesSection() const override { return GnuPubnamesSection; } const DWARFSection &getGnuPubtypesSection() const override { return GnuPubtypesSection; } const DWARFSection &getAppleNamesSection() const override { return AppleNamesSection; } const DWARFSection &getAppleTypesSection() const override { return AppleTypesSection; } const DWARFSection &getAppleNamespacesSection() const override { return AppleNamespacesSection; } const DWARFSection &getAppleObjCSection() const override { return AppleObjCSection; } const DWARFSection &getNamesSection() const override { return NamesSection; } StringRef getFileName() const override { return FileName; } uint8_t getAddressSize() const override { return AddressSize; } void forEachInfoSections( function_ref F) const override { for (auto &P : InfoSections) F(P.second); } void forEachTypesSections( function_ref F) const override { for (auto &P : TypesSections) F(P.second); } }; } // namespace std::unique_ptr DWARFContext::create(const object::ObjectFile &Obj, ProcessDebugRelocations RelocAction, const LoadedObjectInfo *L, std::string DWPName, std::function RecoverableErrorHandler, std::function WarningHandler, bool ThreadSafe) { auto DObj = std::make_unique( Obj, L, RecoverableErrorHandler, WarningHandler, RelocAction); return std::make_unique(std::move(DObj), std::move(DWPName), RecoverableErrorHandler, WarningHandler, ThreadSafe); } std::unique_ptr DWARFContext::create(const StringMap> &Sections, uint8_t AddrSize, bool isLittleEndian, std::function RecoverableErrorHandler, std::function WarningHandler, bool ThreadSafe) { auto DObj = std::make_unique(Sections, AddrSize, isLittleEndian); return std::make_unique( std::move(DObj), "", RecoverableErrorHandler, WarningHandler, ThreadSafe); } uint8_t DWARFContext::getCUAddrSize() { // In theory, different compile units may have different address byte // sizes, but for simplicity we just use the address byte size of the // first compile unit. In practice the address size field is repeated across // various DWARF headers (at least in version 5) to make it easier to dump // them independently, not to enable varying the address size. auto CUs = compile_units(); return CUs.empty() ? 0 : (*CUs.begin())->getAddressByteSize(); }