//===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements classes used to handle lowerings specific to common // object file formats. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/CodeGen/BasicBlockSectionUtils.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/IR/Comdat.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalObject.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/PseudoProbe.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSectionCOFF.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCSectionWasm.h" #include "llvm/MC/MCSectionXCOFF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCSymbolELF.h" #include "llvm/MC/MCValue.h" #include "llvm/MC/SectionKind.h" #include "llvm/ProfileData/InstrProf.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include using namespace llvm; using namespace dwarf; static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags, StringRef &Section) { SmallVector ModuleFlags; M.getModuleFlagsMetadata(ModuleFlags); for (const auto &MFE: ModuleFlags) { // Ignore flags with 'Require' behaviour. if (MFE.Behavior == Module::Require) continue; StringRef Key = MFE.Key->getString(); if (Key == "Objective-C Image Info Version") { Version = mdconst::extract(MFE.Val)->getZExtValue(); } else if (Key == "Objective-C Garbage Collection" || Key == "Objective-C GC Only" || Key == "Objective-C Is Simulated" || Key == "Objective-C Class Properties" || Key == "Objective-C Image Swift Version") { Flags |= mdconst::extract(MFE.Val)->getZExtValue(); } else if (Key == "Objective-C Image Info Section") { Section = cast(MFE.Val)->getString(); } // Backend generates L_OBJC_IMAGE_INFO from Swift ABI version + major + minor + // "Objective-C Garbage Collection". else if (Key == "Swift ABI Version") { Flags |= (mdconst::extract(MFE.Val)->getZExtValue()) << 8; } else if (Key == "Swift Major Version") { Flags |= (mdconst::extract(MFE.Val)->getZExtValue()) << 24; } else if (Key == "Swift Minor Version") { Flags |= (mdconst::extract(MFE.Val)->getZExtValue()) << 16; } } } //===----------------------------------------------------------------------===// // ELF //===----------------------------------------------------------------------===// TargetLoweringObjectFileELF::TargetLoweringObjectFileELF() : TargetLoweringObjectFile() { SupportDSOLocalEquivalentLowering = true; } void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx, const TargetMachine &TgtM) { TargetLoweringObjectFile::Initialize(Ctx, TgtM); CodeModel::Model CM = TgtM.getCodeModel(); InitializeELF(TgtM.Options.UseInitArray); switch (TgtM.getTargetTriple().getArch()) { case Triple::arm: case Triple::armeb: case Triple::thumb: case Triple::thumbeb: if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM) break; // Fallthrough if not using EHABI LLVM_FALLTHROUGH; case Triple::ppc: case Triple::ppcle: case Triple::x86: PersonalityEncoding = isPositionIndependent() ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_absptr; LSDAEncoding = isPositionIndependent() ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_absptr; TTypeEncoding = isPositionIndependent() ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_absptr; break; case Triple::x86_64: if (isPositionIndependent()) { PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | ((CM == CodeModel::Small || CM == CodeModel::Medium) ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8); LSDAEncoding = dwarf::DW_EH_PE_pcrel | (CM == CodeModel::Small ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8); TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | ((CM == CodeModel::Small || CM == CodeModel::Medium) ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4); } else { PersonalityEncoding = (CM == CodeModel::Small || CM == CodeModel::Medium) ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr; LSDAEncoding = (CM == CodeModel::Small) ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr; TTypeEncoding = (CM == CodeModel::Small) ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr; } break; case Triple::hexagon: PersonalityEncoding = dwarf::DW_EH_PE_absptr; LSDAEncoding = dwarf::DW_EH_PE_absptr; TTypeEncoding = dwarf::DW_EH_PE_absptr; if (isPositionIndependent()) { PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel; LSDAEncoding |= dwarf::DW_EH_PE_pcrel; TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel; } break; case Triple::aarch64: case Triple::aarch64_be: case Triple::aarch64_32: // The small model guarantees static code/data size < 4GB, but not where it // will be in memory. Most of these could end up >2GB away so even a signed // pc-relative 32-bit address is insufficient, theoretically. if (isPositionIndependent()) { // ILP32 uses sdata4 instead of sdata8 if (TgtM.getTargetTriple().getEnvironment() == Triple::GNUILP32) { PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; } else { PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8; LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8; TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8; } } else { PersonalityEncoding = dwarf::DW_EH_PE_absptr; LSDAEncoding = dwarf::DW_EH_PE_absptr; TTypeEncoding = dwarf::DW_EH_PE_absptr; } break; case Triple::lanai: LSDAEncoding = dwarf::DW_EH_PE_absptr; PersonalityEncoding = dwarf::DW_EH_PE_absptr; TTypeEncoding = dwarf::DW_EH_PE_absptr; break; case Triple::mips: case Triple::mipsel: case Triple::mips64: case Triple::mips64el: // MIPS uses indirect pointer to refer personality functions and types, so // that the eh_frame section can be read-only. DW.ref.personality will be // generated for relocation. PersonalityEncoding = dwarf::DW_EH_PE_indirect; // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't // identify N64 from just a triple. TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; // We don't support PC-relative LSDA references in GAS so we use the default // DW_EH_PE_absptr for those. // FreeBSD must be explicit about the data size and using pcrel since it's // assembler/linker won't do the automatic conversion that the Linux tools // do. if (TgtM.getTargetTriple().isOSFreeBSD()) { PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; } break; case Triple::ppc64: case Triple::ppc64le: PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8; LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8; TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8; break; case Triple::sparcel: case Triple::sparc: if (isPositionIndependent()) { LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; } else { LSDAEncoding = dwarf::DW_EH_PE_absptr; PersonalityEncoding = dwarf::DW_EH_PE_absptr; TTypeEncoding = dwarf::DW_EH_PE_absptr; } CallSiteEncoding = dwarf::DW_EH_PE_udata4; break; case Triple::riscv32: case Triple::riscv64: LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; CallSiteEncoding = dwarf::DW_EH_PE_udata4; break; case Triple::sparcv9: LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; if (isPositionIndependent()) { PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; } else { PersonalityEncoding = dwarf::DW_EH_PE_absptr; TTypeEncoding = dwarf::DW_EH_PE_absptr; } break; case Triple::systemz: // All currently-defined code models guarantee that 4-byte PC-relative // values will be in range. if (isPositionIndependent()) { PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; } else { PersonalityEncoding = dwarf::DW_EH_PE_absptr; LSDAEncoding = dwarf::DW_EH_PE_absptr; TTypeEncoding = dwarf::DW_EH_PE_absptr; } break; default: break; } } void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer, Module &M) const { auto &C = getContext(); if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) { auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS, ELF::SHF_EXCLUDE); Streamer.SwitchSection(S); for (const auto *Operand : LinkerOptions->operands()) { if (cast(Operand)->getNumOperands() != 2) report_fatal_error("invalid llvm.linker.options"); for (const auto &Option : cast(Operand)->operands()) { Streamer.emitBytes(cast(Option)->getString()); Streamer.emitInt8(0); } } } if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) { auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES, ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, ""); Streamer.SwitchSection(S); for (const auto *Operand : DependentLibraries->operands()) { Streamer.emitBytes( cast(cast(Operand)->getOperand(0))->getString()); Streamer.emitInt8(0); } } if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) { // Emit a descriptor for every function including functions that have an // available external linkage. We may not want this for imported functions // that has code in another thinLTO module but we don't have a good way to // tell them apart from inline functions defined in header files. Therefore // we put each descriptor in a separate comdat section and rely on the // linker to deduplicate. for (const auto *Operand : FuncInfo->operands()) { const auto *MD = cast(Operand); auto *GUID = mdconst::dyn_extract(MD->getOperand(0)); auto *Hash = mdconst::dyn_extract(MD->getOperand(1)); auto *Name = cast(MD->getOperand(2)); auto *S = C.getObjectFileInfo()->getPseudoProbeDescSection( TM->getFunctionSections() ? Name->getString() : StringRef()); Streamer.SwitchSection(S); Streamer.emitInt64(GUID->getZExtValue()); Streamer.emitInt64(Hash->getZExtValue()); Streamer.emitULEB128IntValue(Name->getString().size()); Streamer.emitBytes(Name->getString()); } } unsigned Version = 0; unsigned Flags = 0; StringRef Section; GetObjCImageInfo(M, Version, Flags, Section); if (!Section.empty()) { auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); Streamer.SwitchSection(S); Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO"))); Streamer.emitInt32(Version); Streamer.emitInt32(Flags); Streamer.AddBlankLine(); } emitCGProfileMetadata(Streamer, M); } MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol( const GlobalValue *GV, const TargetMachine &TM, MachineModuleInfo *MMI) const { unsigned Encoding = getPersonalityEncoding(); if ((Encoding & 0x80) == DW_EH_PE_indirect) return getContext().getOrCreateSymbol(StringRef("DW.ref.") + TM.getSymbol(GV)->getName()); if ((Encoding & 0x70) == DW_EH_PE_absptr) return TM.getSymbol(GV); report_fatal_error("We do not support this DWARF encoding yet!"); } void TargetLoweringObjectFileELF::emitPersonalityValue( MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const { SmallString<64> NameData("DW.ref."); NameData += Sym->getName(); MCSymbolELF *Label = cast(getContext().getOrCreateSymbol(NameData)); Streamer.emitSymbolAttribute(Label, MCSA_Hidden); Streamer.emitSymbolAttribute(Label, MCSA_Weak); unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP; MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(), ELF::SHT_PROGBITS, Flags, 0); unsigned Size = DL.getPointerSize(); Streamer.SwitchSection(Sec); Streamer.emitValueToAlignment(DL.getPointerABIAlignment(0).value()); Streamer.emitSymbolAttribute(Label, MCSA_ELF_TypeObject); const MCExpr *E = MCConstantExpr::create(Size, getContext()); Streamer.emitELFSize(Label, E); Streamer.emitLabel(Label); Streamer.emitSymbolValue(Sym, Size); } const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference( const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM, MachineModuleInfo *MMI, MCStreamer &Streamer) const { if (Encoding & DW_EH_PE_indirect) { MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo(); MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM); // Add information about the stub reference to ELFMMI so that the stub // gets emitted by the asmprinter. MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym); if (!StubSym.getPointer()) { MCSymbol *Sym = TM.getSymbol(GV); StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage()); } return TargetLoweringObjectFile:: getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()), Encoding & ~DW_EH_PE_indirect, Streamer); } return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM, MMI, Streamer); } static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) { // N.B.: The defaults used in here are not the same ones used in MC. // We follow gcc, MC follows gas. For example, given ".section .eh_frame", // both gas and MC will produce a section with no flags. Given // section(".eh_frame") gcc will produce: // // .section .eh_frame,"a",@progbits if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF, /*AddSegmentInfo=*/false) || Name == getInstrProfSectionName(IPSK_covfun, Triple::ELF, /*AddSegmentInfo=*/false) || Name == ".llvmbc" || Name == ".llvmcmd") return SectionKind::getMetadata(); if (Name.empty() || Name[0] != '.') return K; // Default implementation based on some magic section names. if (Name == ".bss" || Name.startswith(".bss.") || Name.startswith(".gnu.linkonce.b.") || Name.startswith(".llvm.linkonce.b.") || Name == ".sbss" || Name.startswith(".sbss.") || Name.startswith(".gnu.linkonce.sb.") || Name.startswith(".llvm.linkonce.sb.")) return SectionKind::getBSS(); if (Name == ".tdata" || Name.startswith(".tdata.") || Name.startswith(".gnu.linkonce.td.") || Name.startswith(".llvm.linkonce.td.")) return SectionKind::getThreadData(); if (Name == ".tbss" || Name.startswith(".tbss.") || Name.startswith(".gnu.linkonce.tb.") || Name.startswith(".llvm.linkonce.tb.")) return SectionKind::getThreadBSS(); return K; } static unsigned getELFSectionType(StringRef Name, SectionKind K) { // Use SHT_NOTE for section whose name starts with ".note" to allow // emitting ELF notes from C variable declaration. // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609 if (Name.startswith(".note")) return ELF::SHT_NOTE; if (Name == ".init_array") return ELF::SHT_INIT_ARRAY; if (Name == ".fini_array") return ELF::SHT_FINI_ARRAY; if (Name == ".preinit_array") return ELF::SHT_PREINIT_ARRAY; if (K.isBSS() || K.isThreadBSS()) return ELF::SHT_NOBITS; return ELF::SHT_PROGBITS; } static unsigned getELFSectionFlags(SectionKind K) { unsigned Flags = 0; if (!K.isMetadata()) Flags |= ELF::SHF_ALLOC; if (K.isText()) Flags |= ELF::SHF_EXECINSTR; if (K.isExecuteOnly()) Flags |= ELF::SHF_ARM_PURECODE; if (K.isWriteable()) Flags |= ELF::SHF_WRITE; if (K.isThreadLocal()) Flags |= ELF::SHF_TLS; if (K.isMergeableCString() || K.isMergeableConst()) Flags |= ELF::SHF_MERGE; if (K.isMergeableCString()) Flags |= ELF::SHF_STRINGS; return Flags; } static const Comdat *getELFComdat(const GlobalValue *GV) { const Comdat *C = GV->getComdat(); if (!C) return nullptr; if (C->getSelectionKind() != Comdat::Any) report_fatal_error("ELF COMDATs only support SelectionKind::Any, '" + C->getName() + "' cannot be lowered."); return C; } static const MCSymbolELF *getLinkedToSymbol(const GlobalObject *GO, const TargetMachine &TM) { MDNode *MD = GO->getMetadata(LLVMContext::MD_associated); if (!MD) return nullptr; const MDOperand &Op = MD->getOperand(0); if (!Op.get()) return nullptr; auto *VM = dyn_cast(Op); if (!VM) report_fatal_error("MD_associated operand is not ValueAsMetadata"); auto *OtherGV = dyn_cast(VM->getValue()); return OtherGV ? dyn_cast(TM.getSymbol(OtherGV)) : nullptr; } static unsigned getEntrySizeForKind(SectionKind Kind) { if (Kind.isMergeable1ByteCString()) return 1; else if (Kind.isMergeable2ByteCString()) return 2; else if (Kind.isMergeable4ByteCString()) return 4; else if (Kind.isMergeableConst4()) return 4; else if (Kind.isMergeableConst8()) return 8; else if (Kind.isMergeableConst16()) return 16; else if (Kind.isMergeableConst32()) return 32; else { // We shouldn't have mergeable C strings or mergeable constants that we // didn't handle above. assert(!Kind.isMergeableCString() && "unknown string width"); assert(!Kind.isMergeableConst() && "unknown data width"); return 0; } } /// Return the section prefix name used by options FunctionsSections and /// DataSections. static StringRef getSectionPrefixForGlobal(SectionKind Kind) { if (Kind.isText()) return ".text"; if (Kind.isReadOnly()) return ".rodata"; if (Kind.isBSS()) return ".bss"; if (Kind.isThreadData()) return ".tdata"; if (Kind.isThreadBSS()) return ".tbss"; if (Kind.isData()) return ".data"; if (Kind.isReadOnlyWithRel()) return ".data.rel.ro"; llvm_unreachable("Unknown section kind"); } static SmallString<128> getELFSectionNameForGlobal(const GlobalObject *GO, SectionKind Kind, Mangler &Mang, const TargetMachine &TM, unsigned EntrySize, bool UniqueSectionName) { SmallString<128> Name; if (Kind.isMergeableCString()) { // We also need alignment here. // FIXME: this is getting the alignment of the character, not the // alignment of the global! Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign( cast(GO)); std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + "."; Name = SizeSpec + utostr(Alignment.value()); } else if (Kind.isMergeableConst()) { Name = ".rodata.cst"; Name += utostr(EntrySize); } else { Name = getSectionPrefixForGlobal(Kind); } bool HasPrefix = false; if (const auto *F = dyn_cast(GO)) { if (Optional Prefix = F->getSectionPrefix()) { raw_svector_ostream(Name) << '.' << *Prefix; HasPrefix = true; } } if (UniqueSectionName) { Name.push_back('.'); TM.getNameWithPrefix(Name, GO, Mang, /*MayAlwaysUsePrivate*/true); } else if (HasPrefix) Name.push_back('.'); return Name; } namespace { class LoweringDiagnosticInfo : public DiagnosticInfo { const Twine &Msg; public: LoweringDiagnosticInfo(const Twine &DiagMsg, DiagnosticSeverity Severity = DS_Error) : DiagnosticInfo(DK_Lowering, Severity), Msg(DiagMsg) {} void print(DiagnosticPrinter &DP) const override { DP << Msg; } }; } MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { StringRef SectionName = GO->getSection(); // Check if '#pragma clang section' name is applicable. // Note that pragma directive overrides -ffunction-section, -fdata-section // and so section name is exactly as user specified and not uniqued. const GlobalVariable *GV = dyn_cast(GO); if (GV && GV->hasImplicitSection()) { auto Attrs = GV->getAttributes(); if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) { SectionName = Attrs.getAttribute("bss-section").getValueAsString(); } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) { SectionName = Attrs.getAttribute("rodata-section").getValueAsString(); } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) { SectionName = Attrs.getAttribute("relro-section").getValueAsString(); } else if (Attrs.hasAttribute("data-section") && Kind.isData()) { SectionName = Attrs.getAttribute("data-section").getValueAsString(); } } const Function *F = dyn_cast(GO); if (F && F->hasFnAttribute("implicit-section-name")) { SectionName = F->getFnAttribute("implicit-section-name").getValueAsString(); } // Infer section flags from the section name if we can. Kind = getELFKindForNamedSection(SectionName, Kind); StringRef Group = ""; unsigned Flags = getELFSectionFlags(Kind); if (const Comdat *C = getELFComdat(GO)) { Group = C->getName(); Flags |= ELF::SHF_GROUP; } unsigned EntrySize = getEntrySizeForKind(Kind); // A section can have at most one associated section. Put each global with // MD_associated in a unique section. unsigned UniqueID = MCContext::GenericSectionID; const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM); if (GO->getMetadata(LLVMContext::MD_associated)) { UniqueID = NextUniqueID++; Flags |= ELF::SHF_LINK_ORDER; } else { if (getContext().getAsmInfo()->useIntegratedAssembler() || getContext().getAsmInfo()->binutilsIsAtLeast(2, 35)) { // Symbols must be placed into sections with compatible entry // sizes. Generate unique sections for symbols that have not // been assigned to compatible sections. if (Flags & ELF::SHF_MERGE) { auto maybeID = getContext().getELFUniqueIDForEntsize(SectionName, Flags, EntrySize); if (maybeID) UniqueID = *maybeID; else { // If the user has specified the same section name as would be created // implicitly for this symbol e.g. .rodata.str1.1, then we don't need // to unique the section as the entry size for this symbol will be // compatible with implicitly created sections. SmallString<128> ImplicitSectionNameStem = getELFSectionNameForGlobal( GO, Kind, getMangler(), TM, EntrySize, false); if (!(getContext().isELFImplicitMergeableSectionNamePrefix( SectionName) && SectionName.startswith(ImplicitSectionNameStem))) UniqueID = NextUniqueID++; } } else { // We need to unique the section if the user has explicity // assigned a non-mergeable symbol to a section name for // a generic mergeable section. if (getContext().isELFGenericMergeableSection(SectionName)) { auto maybeID = getContext().getELFUniqueIDForEntsize( SectionName, Flags, EntrySize); UniqueID = maybeID ? *maybeID : NextUniqueID++; } } } else { // If two symbols with differing sizes end up in the same mergeable // section that section can be assigned an incorrect entry size. To avoid // this we usually put symbols of the same size into distinct mergeable // sections with the same name. Doing so relies on the ",unique ," // assembly feature. This feature is not avalible until bintuils // version 2.35 (https://sourceware.org/bugzilla/show_bug.cgi?id=25380). Flags &= ~ELF::SHF_MERGE; EntrySize = 0; } } MCSectionELF *Section = getContext().getELFSection( SectionName, getELFSectionType(SectionName, Kind), Flags, EntrySize, Group, UniqueID, LinkedToSym); // Make sure that we did not get some other section with incompatible sh_link. // This should not be possible due to UniqueID code above. assert(Section->getLinkedToSymbol() == LinkedToSym && "Associated symbol mismatch between sections"); if (!(getContext().getAsmInfo()->useIntegratedAssembler() || getContext().getAsmInfo()->binutilsIsAtLeast(2, 35))) { // If we are using GNU as before 2.35, then this symbol might have // been placed in an incompatible mergeable section. Emit an error if this // is the case to avoid creating broken output. if ((Section->getFlags() & ELF::SHF_MERGE) && (Section->getEntrySize() != getEntrySizeForKind(Kind))) GO->getContext().diagnose(LoweringDiagnosticInfo( "Symbol '" + GO->getName() + "' from module '" + (GO->getParent() ? GO->getParent()->getSourceFileName() : "unknown") + "' required a section with entry-size=" + Twine(getEntrySizeForKind(Kind)) + " but was placed in section '" + SectionName + "' with entry-size=" + Twine(Section->getEntrySize()) + ": Explicit assignment by pragma or attribute of an incompatible " "symbol to this section?")); } return Section; } static MCSectionELF *selectELFSectionForGlobal( MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang, const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags, unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) { StringRef Group = ""; if (const Comdat *C = getELFComdat(GO)) { Flags |= ELF::SHF_GROUP; Group = C->getName(); } // Get the section entry size based on the kind. unsigned EntrySize = getEntrySizeForKind(Kind); bool UniqueSectionName = false; unsigned UniqueID = MCContext::GenericSectionID; if (EmitUniqueSection) { if (TM.getUniqueSectionNames()) { UniqueSectionName = true; } else { UniqueID = *NextUniqueID; (*NextUniqueID)++; } } SmallString<128> Name = getELFSectionNameForGlobal( GO, Kind, Mang, TM, EntrySize, UniqueSectionName); // Use 0 as the unique ID for execute-only text. if (Kind.isExecuteOnly()) UniqueID = 0; return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags, EntrySize, Group, UniqueID, AssociatedSymbol); } MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { unsigned Flags = getELFSectionFlags(Kind); // If we have -ffunction-section or -fdata-section then we should emit the // global value to a uniqued section specifically for it. bool EmitUniqueSection = false; if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) { if (Kind.isText()) EmitUniqueSection = TM.getFunctionSections(); else EmitUniqueSection = TM.getDataSections(); } EmitUniqueSection |= GO->hasComdat(); const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM); if (LinkedToSym) { EmitUniqueSection = true; Flags |= ELF::SHF_LINK_ORDER; } MCSectionELF *Section = selectELFSectionForGlobal( getContext(), GO, Kind, getMangler(), TM, EmitUniqueSection, Flags, &NextUniqueID, LinkedToSym); assert(Section->getLinkedToSymbol() == LinkedToSym); return Section; } MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable( const Function &F, const TargetMachine &TM) const { // If the function can be removed, produce a unique section so that // the table doesn't prevent the removal. const Comdat *C = F.getComdat(); bool EmitUniqueSection = TM.getFunctionSections() || C; if (!EmitUniqueSection) return ReadOnlySection; return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(), getMangler(), TM, EmitUniqueSection, ELF::SHF_ALLOC, &NextUniqueID, /* AssociatedSymbol */ nullptr); } MCSection * TargetLoweringObjectFileELF::getSectionForLSDA(const Function &F, const TargetMachine &TM) const { // If neither COMDAT nor function sections, use the monolithic LSDA section. // Re-use this path if LSDASection is null as in the Arm EHABI. if (!LSDASection || (!F.hasComdat() && !TM.getFunctionSections())) return LSDASection; const auto *LSDA = cast(LSDASection); unsigned Flags = LSDA->getFlags(); StringRef Group; if (F.hasComdat()) { Group = F.getComdat()->getName(); Flags |= ELF::SHF_GROUP; } // Append the function name as the suffix like GCC, assuming // -funique-section-names applies to .gcc_except_table sections. if (TM.getUniqueSectionNames()) return getContext().getELFSection(LSDA->getName() + "." + F.getName(), LSDA->getType(), Flags, 0, Group, MCSection::NonUniqueID, nullptr); // Allocate a unique ID if function sections && (integrated assembler or GNU // as>=2.35). Note we could use SHF_LINK_ORDER to facilitate --gc-sections but // that would require that we know the linker is a modern LLD (12.0 or later). // GNU ld as of 2.35 does not support mixed SHF_LINK_ORDER & // non-SHF_LINK_ORDER components in an output section // https://sourceware.org/bugzilla/show_bug.cgi?id=26256 unsigned ID = TM.getFunctionSections() && getContext().getAsmInfo()->useIntegratedAssembler() ? NextUniqueID++ : MCSection::NonUniqueID; return getContext().getELFSection(LSDA->getName(), LSDA->getType(), Flags, 0, Group, ID, nullptr); } bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection( bool UsesLabelDifference, const Function &F) const { // We can always create relative relocations, so use another section // that can be marked non-executable. return false; } /// Given a mergeable constant with the specified size and relocation /// information, return a section that it should be placed in. MCSection *TargetLoweringObjectFileELF::getSectionForConstant( const DataLayout &DL, SectionKind Kind, const Constant *C, Align &Alignment) const { if (Kind.isMergeableConst4() && MergeableConst4Section) return MergeableConst4Section; if (Kind.isMergeableConst8() && MergeableConst8Section) return MergeableConst8Section; if (Kind.isMergeableConst16() && MergeableConst16Section) return MergeableConst16Section; if (Kind.isMergeableConst32() && MergeableConst32Section) return MergeableConst32Section; if (Kind.isReadOnly()) return ReadOnlySection; assert(Kind.isReadOnlyWithRel() && "Unknown section kind"); return DataRelROSection; } /// Returns a unique section for the given machine basic block. MCSection *TargetLoweringObjectFileELF::getSectionForMachineBasicBlock( const Function &F, const MachineBasicBlock &MBB, const TargetMachine &TM) const { assert(MBB.isBeginSection() && "Basic block does not start a section!"); unsigned UniqueID = MCContext::GenericSectionID; // For cold sections use the .text.split. prefix along with the parent // function name. All cold blocks for the same function go to the same // section. Similarly all exception blocks are grouped by symbol name // under the .text.eh prefix. For regular sections, we either use a unique // name, or a unique ID for the section. SmallString<128> Name; if (MBB.getSectionID() == MBBSectionID::ColdSectionID) { Name += BBSectionsColdTextPrefix; Name += MBB.getParent()->getName(); } else if (MBB.getSectionID() == MBBSectionID::ExceptionSectionID) { Name += ".text.eh."; Name += MBB.getParent()->getName(); } else { Name += MBB.getParent()->getSection()->getName(); if (TM.getUniqueBasicBlockSectionNames()) { Name += "."; Name += MBB.getSymbol()->getName(); } else { UniqueID = NextUniqueID++; } } unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR; std::string GroupName; if (F.hasComdat()) { Flags |= ELF::SHF_GROUP; GroupName = F.getComdat()->getName().str(); } return getContext().getELFSection(Name, ELF::SHT_PROGBITS, Flags, 0 /* Entry Size */, GroupName, UniqueID, nullptr); } static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray, bool IsCtor, unsigned Priority, const MCSymbol *KeySym) { std::string Name; unsigned Type; unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE; StringRef COMDAT = KeySym ? KeySym->getName() : ""; if (KeySym) Flags |= ELF::SHF_GROUP; if (UseInitArray) { if (IsCtor) { Type = ELF::SHT_INIT_ARRAY; Name = ".init_array"; } else { Type = ELF::SHT_FINI_ARRAY; Name = ".fini_array"; } if (Priority != 65535) { Name += '.'; Name += utostr(Priority); } } else { // The default scheme is .ctor / .dtor, so we have to invert the priority // numbering. if (IsCtor) Name = ".ctors"; else Name = ".dtors"; if (Priority != 65535) raw_string_ostream(Name) << format(".%05u", 65535 - Priority); Type = ELF::SHT_PROGBITS; } return Ctx.getELFSection(Name, Type, Flags, 0, COMDAT); } MCSection *TargetLoweringObjectFileELF::getStaticCtorSection( unsigned Priority, const MCSymbol *KeySym) const { return getStaticStructorSection(getContext(), UseInitArray, true, Priority, KeySym); } MCSection *TargetLoweringObjectFileELF::getStaticDtorSection( unsigned Priority, const MCSymbol *KeySym) const { return getStaticStructorSection(getContext(), UseInitArray, false, Priority, KeySym); } const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference( const GlobalValue *LHS, const GlobalValue *RHS, const TargetMachine &TM) const { // We may only use a PLT-relative relocation to refer to unnamed_addr // functions. if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy()) return nullptr; // Basic sanity checks. if (LHS->getType()->getPointerAddressSpace() != 0 || RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() || RHS->isThreadLocal()) return nullptr; return MCBinaryExpr::createSub( MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind, getContext()), MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext()); } const MCExpr *TargetLoweringObjectFileELF::lowerDSOLocalEquivalent( const DSOLocalEquivalent *Equiv, const TargetMachine &TM) const { assert(supportDSOLocalEquivalentLowering()); const auto *GV = Equiv->getGlobalValue(); // A PLT entry is not needed for dso_local globals. if (GV->isDSOLocal() || GV->isImplicitDSOLocal()) return MCSymbolRefExpr::create(TM.getSymbol(GV), getContext()); return MCSymbolRefExpr::create(TM.getSymbol(GV), PLTRelativeVariantKind, getContext()); } MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const { // Use ".GCC.command.line" since this feature is to support clang's // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the // same name. return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS, ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, ""); } void TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) { UseInitArray = UseInitArray_; MCContext &Ctx = getContext(); if (!UseInitArray) { StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS, ELF::SHF_ALLOC | ELF::SHF_WRITE); StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS, ELF::SHF_ALLOC | ELF::SHF_WRITE); return; } StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY, ELF::SHF_WRITE | ELF::SHF_ALLOC); StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY, ELF::SHF_WRITE | ELF::SHF_ALLOC); } //===----------------------------------------------------------------------===// // MachO //===----------------------------------------------------------------------===// TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO() : TargetLoweringObjectFile() { SupportIndirectSymViaGOTPCRel = true; } void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx, const TargetMachine &TM) { TargetLoweringObjectFile::Initialize(Ctx, TM); if (TM.getRelocationModel() == Reloc::Static) { StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0, SectionKind::getData()); StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0, SectionKind::getData()); } else { StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func", MachO::S_MOD_INIT_FUNC_POINTERS, SectionKind::getData()); StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func", MachO::S_MOD_TERM_FUNC_POINTERS, SectionKind::getData()); } PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; LSDAEncoding = dwarf::DW_EH_PE_pcrel; TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; } void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer, Module &M) const { // Emit the linker options if present. if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) { for (const auto *Option : LinkerOptions->operands()) { SmallVector StrOptions; for (const auto &Piece : cast(Option)->operands()) StrOptions.push_back(std::string(cast(Piece)->getString())); Streamer.emitLinkerOptions(StrOptions); } } unsigned VersionVal = 0; unsigned ImageInfoFlags = 0; StringRef SectionVal; GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal); // The section is mandatory. If we don't have it, then we don't have GC info. if (SectionVal.empty()) return; StringRef Segment, Section; unsigned TAA = 0, StubSize = 0; bool TAAParsed; std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(SectionVal, Segment, Section, TAA, TAAParsed, StubSize); if (!ErrorCode.empty()) // If invalid, report the error with report_fatal_error. report_fatal_error("Invalid section specifier '" + Section + "': " + ErrorCode + "."); // Get the section. MCSectionMachO *S = getContext().getMachOSection( Segment, Section, TAA, StubSize, SectionKind::getData()); Streamer.SwitchSection(S); Streamer.emitLabel(getContext(). getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO"))); Streamer.emitInt32(VersionVal); Streamer.emitInt32(ImageInfoFlags); Streamer.AddBlankLine(); } static void checkMachOComdat(const GlobalValue *GV) { const Comdat *C = GV->getComdat(); if (!C) return; report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() + "' cannot be lowered."); } MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { // Parse the section specifier and create it if valid. StringRef Segment, Section; unsigned TAA = 0, StubSize = 0; bool TAAParsed; checkMachOComdat(GO); std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(GO->getSection(), Segment, Section, TAA, TAAParsed, StubSize); if (!ErrorCode.empty()) { // If invalid, report the error with report_fatal_error. report_fatal_error("Global variable '" + GO->getName() + "' has an invalid section specifier '" + GO->getSection() + "': " + ErrorCode + "."); } // Get the section. MCSectionMachO *S = getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind); // If TAA wasn't set by ParseSectionSpecifier() above, // use the value returned by getMachOSection() as a default. if (!TAAParsed) TAA = S->getTypeAndAttributes(); // Okay, now that we got the section, verify that the TAA & StubSize agree. // If the user declared multiple globals with different section flags, we need // to reject it here. if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) { // If invalid, report the error with report_fatal_error. report_fatal_error("Global variable '" + GO->getName() + "' section type or attributes does not match previous" " section specifier"); } return S; } MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { checkMachOComdat(GO); // Handle thread local data. if (Kind.isThreadBSS()) return TLSBSSSection; if (Kind.isThreadData()) return TLSDataSection; if (Kind.isText()) return GO->isWeakForLinker() ? TextCoalSection : TextSection; // If this is weak/linkonce, put this in a coalescable section, either in text // or data depending on if it is writable. if (GO->isWeakForLinker()) { if (Kind.isReadOnly()) return ConstTextCoalSection; if (Kind.isReadOnlyWithRel()) return ConstDataCoalSection; return DataCoalSection; } // FIXME: Alignment check should be handled by section classifier. if (Kind.isMergeable1ByteCString() && GO->getParent()->getDataLayout().getPreferredAlign( cast(GO)) < Align(32)) return CStringSection; // Do not put 16-bit arrays in the UString section if they have an // externally visible label, this runs into issues with certain linker // versions. if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() && GO->getParent()->getDataLayout().getPreferredAlign( cast(GO)) < Align(32)) return UStringSection; // With MachO only variables whose corresponding symbol starts with 'l' or // 'L' can be merged, so we only try merging GVs with private linkage. if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) { if (Kind.isMergeableConst4()) return FourByteConstantSection; if (Kind.isMergeableConst8()) return EightByteConstantSection; if (Kind.isMergeableConst16()) return SixteenByteConstantSection; } // Otherwise, if it is readonly, but not something we can specially optimize, // just drop it in .const. if (Kind.isReadOnly()) return ReadOnlySection; // If this is marked const, put it into a const section. But if the dynamic // linker needs to write to it, put it in the data segment. if (Kind.isReadOnlyWithRel()) return ConstDataSection; // Put zero initialized globals with strong external linkage in the // DATA, __common section with the .zerofill directive. if (Kind.isBSSExtern()) return DataCommonSection; // Put zero initialized globals with local linkage in __DATA,__bss directive // with the .zerofill directive (aka .lcomm). if (Kind.isBSSLocal()) return DataBSSSection; // Otherwise, just drop the variable in the normal data section. return DataSection; } MCSection *TargetLoweringObjectFileMachO::getSectionForConstant( const DataLayout &DL, SectionKind Kind, const Constant *C, Align &Alignment) const { // If this constant requires a relocation, we have to put it in the data // segment, not in the text segment. if (Kind.isData() || Kind.isReadOnlyWithRel()) return ConstDataSection; if (Kind.isMergeableConst4()) return FourByteConstantSection; if (Kind.isMergeableConst8()) return EightByteConstantSection; if (Kind.isMergeableConst16()) return SixteenByteConstantSection; return ReadOnlySection; // .const } const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference( const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM, MachineModuleInfo *MMI, MCStreamer &Streamer) const { // The mach-o version of this method defaults to returning a stub reference. if (Encoding & DW_EH_PE_indirect) { MachineModuleInfoMachO &MachOMMI = MMI->getObjFileInfo(); MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM); // Add information about the stub reference to MachOMMI so that the stub // gets emitted by the asmprinter. MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym); if (!StubSym.getPointer()) { MCSymbol *Sym = TM.getSymbol(GV); StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage()); } return TargetLoweringObjectFile:: getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()), Encoding & ~DW_EH_PE_indirect, Streamer); } return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM, MMI, Streamer); } MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol( const GlobalValue *GV, const TargetMachine &TM, MachineModuleInfo *MMI) const { // The mach-o version of this method defaults to returning a stub reference. MachineModuleInfoMachO &MachOMMI = MMI->getObjFileInfo(); MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM); // Add information about the stub reference to MachOMMI so that the stub // gets emitted by the asmprinter. MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym); if (!StubSym.getPointer()) { MCSymbol *Sym = TM.getSymbol(GV); StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage()); } return SSym; } const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel( const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV, int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const { // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation // as 64-bit do, we replace the GOT equivalent by accessing the final symbol // through a non_lazy_ptr stub instead. One advantage is that it allows the // computation of deltas to final external symbols. Example: // // _extgotequiv: // .long _extfoo // // _delta: // .long _extgotequiv-_delta // // is transformed to: // // _delta: // .long L_extfoo$non_lazy_ptr-(_delta+0) // // .section __IMPORT,__pointers,non_lazy_symbol_pointers // L_extfoo$non_lazy_ptr: // .indirect_symbol _extfoo // .long 0 // // The indirect symbol table (and sections of non_lazy_symbol_pointers type) // may point to both local (same translation unit) and global (other // translation units) symbols. Example: // // .section __DATA,__pointers,non_lazy_symbol_pointers // L1: // .indirect_symbol _myGlobal // .long 0 // L2: // .indirect_symbol _myLocal // .long _myLocal // // If the symbol is local, instead of the symbol's index, the assembler // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table. // Then the linker will notice the constant in the table and will look at the // content of the symbol. MachineModuleInfoMachO &MachOMMI = MMI->getObjFileInfo(); MCContext &Ctx = getContext(); // The offset must consider the original displacement from the base symbol // since 32-bit targets don't have a GOTPCREL to fold the PC displacement. Offset = -MV.getConstant(); const MCSymbol *BaseSym = &MV.getSymB()->getSymbol(); // Access the final symbol via sym$non_lazy_ptr and generate the appropriated // non_lazy_ptr stubs. SmallString<128> Name; StringRef Suffix = "$non_lazy_ptr"; Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix(); Name += Sym->getName(); Name += Suffix; MCSymbol *Stub = Ctx.getOrCreateSymbol(Name); MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub); if (!StubSym.getPointer()) StubSym = MachineModuleInfoImpl::StubValueTy(const_cast(Sym), !GV->hasLocalLinkage()); const MCExpr *BSymExpr = MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx); const MCExpr *LHS = MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx); if (!Offset) return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx); const MCExpr *RHS = MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx); return MCBinaryExpr::createSub(LHS, RHS, Ctx); } static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo, const MCSection &Section) { if (!AsmInfo.isSectionAtomizableBySymbols(Section)) return true; // If it is not dead stripped, it is safe to use private labels. const MCSectionMachO &SMO = cast(Section); if (SMO.hasAttribute(MachO::S_ATTR_NO_DEAD_STRIP)) return true; return false; } void TargetLoweringObjectFileMachO::getNameWithPrefix( SmallVectorImpl &OutName, const GlobalValue *GV, const TargetMachine &TM) const { bool CannotUsePrivateLabel = true; if (auto *GO = GV->getBaseObject()) { SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM); const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM); CannotUsePrivateLabel = !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection); } getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel); } //===----------------------------------------------------------------------===// // COFF //===----------------------------------------------------------------------===// static unsigned getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) { unsigned Flags = 0; bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb; if (K.isMetadata()) Flags |= COFF::IMAGE_SCN_MEM_DISCARDABLE; else if (K.isText()) Flags |= COFF::IMAGE_SCN_MEM_EXECUTE | COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_CNT_CODE | (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0); else if (K.isBSS()) Flags |= COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE; else if (K.isThreadLocal()) Flags |= COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE; else if (K.isReadOnly() || K.isReadOnlyWithRel()) Flags |= COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ; else if (K.isWriteable()) Flags |= COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE; return Flags; } static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) { const Comdat *C = GV->getComdat(); assert(C && "expected GV to have a Comdat!"); StringRef ComdatGVName = C->getName(); const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName); if (!ComdatGV) report_fatal_error("Associative COMDAT symbol '" + ComdatGVName + "' does not exist."); if (ComdatGV->getComdat() != C) report_fatal_error("Associative COMDAT symbol '" + ComdatGVName + "' is not a key for its COMDAT."); return ComdatGV; } static int getSelectionForCOFF(const GlobalValue *GV) { if (const Comdat *C = GV->getComdat()) { const GlobalValue *ComdatKey = getComdatGVForCOFF(GV); if (const auto *GA = dyn_cast(ComdatKey)) ComdatKey = GA->getBaseObject(); if (ComdatKey == GV) { switch (C->getSelectionKind()) { case Comdat::Any: return COFF::IMAGE_COMDAT_SELECT_ANY; case Comdat::ExactMatch: return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH; case Comdat::Largest: return COFF::IMAGE_COMDAT_SELECT_LARGEST; case Comdat::NoDuplicates: return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES; case Comdat::SameSize: return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE; } } else { return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE; } } return 0; } MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { int Selection = 0; unsigned Characteristics = getCOFFSectionFlags(Kind, TM); StringRef Name = GO->getSection(); StringRef COMDATSymName = ""; if (GO->hasComdat()) { Selection = getSelectionForCOFF(GO); const GlobalValue *ComdatGV; if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) ComdatGV = getComdatGVForCOFF(GO); else ComdatGV = GO; if (!ComdatGV->hasPrivateLinkage()) { MCSymbol *Sym = TM.getSymbol(ComdatGV); COMDATSymName = Sym->getName(); Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT; } else { Selection = 0; } } return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName, Selection); } static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) { if (Kind.isText()) return ".text"; if (Kind.isBSS()) return ".bss"; if (Kind.isThreadLocal()) return ".tls$"; if (Kind.isReadOnly() || Kind.isReadOnlyWithRel()) return ".rdata"; return ".data"; } MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { // If we have -ffunction-sections then we should emit the global value to a // uniqued section specifically for it. bool EmitUniquedSection; if (Kind.isText()) EmitUniquedSection = TM.getFunctionSections(); else EmitUniquedSection = TM.getDataSections(); if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) { SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind); unsigned Characteristics = getCOFFSectionFlags(Kind, TM); Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT; int Selection = getSelectionForCOFF(GO); if (!Selection) Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES; const GlobalValue *ComdatGV; if (GO->hasComdat()) ComdatGV = getComdatGVForCOFF(GO); else ComdatGV = GO; unsigned UniqueID = MCContext::GenericSectionID; if (EmitUniquedSection) UniqueID = NextUniqueID++; if (!ComdatGV->hasPrivateLinkage()) { MCSymbol *Sym = TM.getSymbol(ComdatGV); StringRef COMDATSymName = Sym->getName(); if (const auto *F = dyn_cast(GO)) if (Optional Prefix = F->getSectionPrefix()) raw_svector_ostream(Name) << '$' << *Prefix; // Append "$symbol" to the section name *before* IR-level mangling is // applied when targetting mingw. This is what GCC does, and the ld.bfd // COFF linker will not properly handle comdats otherwise. if (getTargetTriple().isWindowsGNUEnvironment()) raw_svector_ostream(Name) << '$' << ComdatGV->getName(); return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName, Selection, UniqueID); } else { SmallString<256> TmpData; getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true); return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData, Selection, UniqueID); } } if (Kind.isText()) return TextSection; if (Kind.isThreadLocal()) return TLSDataSection; if (Kind.isReadOnly() || Kind.isReadOnlyWithRel()) return ReadOnlySection; // Note: we claim that common symbols are put in BSSSection, but they are // really emitted with the magic .comm directive, which creates a symbol table // entry but not a section. if (Kind.isBSS() || Kind.isCommon()) return BSSSection; return DataSection; } void TargetLoweringObjectFileCOFF::getNameWithPrefix( SmallVectorImpl &OutName, const GlobalValue *GV, const TargetMachine &TM) const { bool CannotUsePrivateLabel = false; if (GV->hasPrivateLinkage() && ((isa(GV) && TM.getFunctionSections()) || (isa(GV) && TM.getDataSections()))) CannotUsePrivateLabel = true; getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel); } MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable( const Function &F, const TargetMachine &TM) const { // If the function can be removed, produce a unique section so that // the table doesn't prevent the removal. const Comdat *C = F.getComdat(); bool EmitUniqueSection = TM.getFunctionSections() || C; if (!EmitUniqueSection) return ReadOnlySection; // FIXME: we should produce a symbol for F instead. if (F.hasPrivateLinkage()) return ReadOnlySection; MCSymbol *Sym = TM.getSymbol(&F); StringRef COMDATSymName = Sym->getName(); SectionKind Kind = SectionKind::getReadOnly(); StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind); unsigned Characteristics = getCOFFSectionFlags(Kind, TM); Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT; unsigned UniqueID = NextUniqueID++; return getContext().getCOFFSection( SecName, Characteristics, Kind, COMDATSymName, COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID); } void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer, Module &M) const { emitLinkerDirectives(Streamer, M); unsigned Version = 0; unsigned Flags = 0; StringRef Section; GetObjCImageInfo(M, Version, Flags, Section); if (!Section.empty()) { auto &C = getContext(); auto *S = C.getCOFFSection(Section, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ, SectionKind::getReadOnly()); Streamer.SwitchSection(S); Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO"))); Streamer.emitInt32(Version); Streamer.emitInt32(Flags); Streamer.AddBlankLine(); } emitCGProfileMetadata(Streamer, M); } void TargetLoweringObjectFileCOFF::emitLinkerDirectives( MCStreamer &Streamer, Module &M) const { if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) { // Emit the linker options to the linker .drectve section. According to the // spec, this section is a space-separated string containing flags for // linker. MCSection *Sec = getDrectveSection(); Streamer.SwitchSection(Sec); for (const auto *Option : LinkerOptions->operands()) { for (const auto &Piece : cast(Option)->operands()) { // Lead with a space for consistency with our dllexport implementation. std::string Directive(" "); Directive.append(std::string(cast(Piece)->getString())); Streamer.emitBytes(Directive); } } } // Emit /EXPORT: flags for each exported global as necessary. std::string Flags; for (const GlobalValue &GV : M.global_values()) { raw_string_ostream OS(Flags); emitLinkerFlagsForGlobalCOFF(OS, &GV, getTargetTriple(), getMangler()); OS.flush(); if (!Flags.empty()) { Streamer.SwitchSection(getDrectveSection()); Streamer.emitBytes(Flags); } Flags.clear(); } // Emit /INCLUDE: flags for each used global as necessary. if (const auto *LU = M.getNamedGlobal("llvm.used")) { assert(LU->hasInitializer() && "expected llvm.used to have an initializer"); assert(isa(LU->getValueType()) && "expected llvm.used to be an array type"); if (const auto *A = cast(LU->getInitializer())) { for (const Value *Op : A->operands()) { const auto *GV = cast(Op->stripPointerCasts()); // Global symbols with internal or private linkage are not visible to // the linker, and thus would cause an error when the linker tried to // preserve the symbol due to the `/include:` directive. if (GV->hasLocalLinkage()) continue; raw_string_ostream OS(Flags); emitLinkerFlagsForUsedCOFF(OS, GV, getTargetTriple(), getMangler()); OS.flush(); if (!Flags.empty()) { Streamer.SwitchSection(getDrectveSection()); Streamer.emitBytes(Flags); } Flags.clear(); } } } } void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx, const TargetMachine &TM) { TargetLoweringObjectFile::Initialize(Ctx, TM); this->TM = &TM; const Triple &T = TM.getTargetTriple(); if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) { StaticCtorSection = Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ, SectionKind::getReadOnly()); StaticDtorSection = Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ, SectionKind::getReadOnly()); } else { StaticCtorSection = Ctx.getCOFFSection( ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE, SectionKind::getData()); StaticDtorSection = Ctx.getCOFFSection( ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE, SectionKind::getData()); } } static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx, const Triple &T, bool IsCtor, unsigned Priority, const MCSymbol *KeySym, MCSectionCOFF *Default) { if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) { // If the priority is the default, use .CRT$XCU, possibly associative. if (Priority == 65535) return Ctx.getAssociativeCOFFSection(Default, KeySym, 0); // Otherwise, we need to compute a new section name. Low priorities should // run earlier. The linker will sort sections ASCII-betically, and we need a // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really // low priorities need to sort before 'L', since the CRT uses that // internally, so we use ".CRT$XCA00001" for them. SmallString<24> Name; raw_svector_ostream OS(Name); OS << ".CRT$X" << (IsCtor ? "C" : "T") << (Priority < 200 ? 'A' : 'T') << format("%05u", Priority); MCSectionCOFF *Sec = Ctx.getCOFFSection( Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ, SectionKind::getReadOnly()); return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0); } std::string Name = IsCtor ? ".ctors" : ".dtors"; if (Priority != 65535) raw_string_ostream(Name) << format(".%05u", 65535 - Priority); return Ctx.getAssociativeCOFFSection( Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE, SectionKind::getData()), KeySym, 0); } MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection( unsigned Priority, const MCSymbol *KeySym) const { return getCOFFStaticStructorSection(getContext(), getTargetTriple(), true, Priority, KeySym, cast(StaticCtorSection)); } MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection( unsigned Priority, const MCSymbol *KeySym) const { return getCOFFStaticStructorSection(getContext(), getTargetTriple(), false, Priority, KeySym, cast(StaticDtorSection)); } const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference( const GlobalValue *LHS, const GlobalValue *RHS, const TargetMachine &TM) const { const Triple &T = TM.getTargetTriple(); if (T.isOSCygMing()) return nullptr; // Our symbols should exist in address space zero, cowardly no-op if // otherwise. if (LHS->getType()->getPointerAddressSpace() != 0 || RHS->getType()->getPointerAddressSpace() != 0) return nullptr; // Both ptrtoint instructions must wrap global objects: // - Only global variables are eligible for image relative relocations. // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable. // We expect __ImageBase to be a global variable without a section, externally // defined. // // It should look something like this: @__ImageBase = external constant i8 if (!isa(LHS) || !isa(RHS) || LHS->isThreadLocal() || RHS->isThreadLocal() || RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() || cast(RHS)->hasInitializer() || RHS->hasSection()) return nullptr; return MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_COFF_IMGREL32, getContext()); } static std::string APIntToHexString(const APInt &AI) { unsigned Width = (AI.getBitWidth() / 8) * 2; std::string HexString = AI.toString(16, /*Signed=*/false); llvm::transform(HexString, HexString.begin(), tolower); unsigned Size = HexString.size(); assert(Width >= Size && "hex string is too large!"); HexString.insert(HexString.begin(), Width - Size, '0'); return HexString; } static std::string scalarConstantToHexString(const Constant *C) { Type *Ty = C->getType(); if (isa(C)) { return APIntToHexString(APInt::getNullValue(Ty->getPrimitiveSizeInBits())); } else if (const auto *CFP = dyn_cast(C)) { return APIntToHexString(CFP->getValueAPF().bitcastToAPInt()); } else if (const auto *CI = dyn_cast(C)) { return APIntToHexString(CI->getValue()); } else { unsigned NumElements; if (auto *VTy = dyn_cast(Ty)) NumElements = cast(VTy)->getNumElements(); else NumElements = Ty->getArrayNumElements(); std::string HexString; for (int I = NumElements - 1, E = -1; I != E; --I) HexString += scalarConstantToHexString(C->getAggregateElement(I)); return HexString; } } MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant( const DataLayout &DL, SectionKind Kind, const Constant *C, Align &Alignment) const { if (Kind.isMergeableConst() && C && getContext().getAsmInfo()->hasCOFFComdatConstants()) { // This creates comdat sections with the given symbol name, but unless // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol // will be created with a null storage class, which makes GNU binutils // error out. const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_LNK_COMDAT; std::string COMDATSymName; if (Kind.isMergeableConst4()) { if (Alignment <= 4) { COMDATSymName = "__real@" + scalarConstantToHexString(C); Alignment = Align(4); } } else if (Kind.isMergeableConst8()) { if (Alignment <= 8) { COMDATSymName = "__real@" + scalarConstantToHexString(C); Alignment = Align(8); } } else if (Kind.isMergeableConst16()) { // FIXME: These may not be appropriate for non-x86 architectures. if (Alignment <= 16) { COMDATSymName = "__xmm@" + scalarConstantToHexString(C); Alignment = Align(16); } } else if (Kind.isMergeableConst32()) { if (Alignment <= 32) { COMDATSymName = "__ymm@" + scalarConstantToHexString(C); Alignment = Align(32); } } if (!COMDATSymName.empty()) return getContext().getCOFFSection(".rdata", Characteristics, Kind, COMDATSymName, COFF::IMAGE_COMDAT_SELECT_ANY); } return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C, Alignment); } //===----------------------------------------------------------------------===// // Wasm //===----------------------------------------------------------------------===// static const Comdat *getWasmComdat(const GlobalValue *GV) { const Comdat *C = GV->getComdat(); if (!C) return nullptr; if (C->getSelectionKind() != Comdat::Any) report_fatal_error("WebAssembly COMDATs only support " "SelectionKind::Any, '" + C->getName() + "' cannot be " "lowered."); return C; } MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { // We don't support explict section names for functions in the wasm object // format. Each function has to be in its own unique section. if (isa(GO)) { return SelectSectionForGlobal(GO, Kind, TM); } StringRef Name = GO->getSection(); // Certain data sections we treat as named custom sections rather than // segments within the data section. // This could be avoided if all data segements (the wasm sense) were // represented as their own sections (in the llvm sense). // TODO(sbc): https://github.com/WebAssembly/tool-conventions/issues/138 if (Name == ".llvmcmd" || Name == ".llvmbc") Kind = SectionKind::getMetadata(); StringRef Group = ""; if (const Comdat *C = getWasmComdat(GO)) { Group = C->getName(); } MCSectionWasm* Section = getContext().getWasmSection(Name, Kind, Group, MCContext::GenericSectionID); return Section; } static MCSectionWasm *selectWasmSectionForGlobal( MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang, const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) { StringRef Group = ""; if (const Comdat *C = getWasmComdat(GO)) { Group = C->getName(); } bool UniqueSectionNames = TM.getUniqueSectionNames(); SmallString<128> Name = getSectionPrefixForGlobal(Kind); if (const auto *F = dyn_cast(GO)) { const auto &OptionalPrefix = F->getSectionPrefix(); if (OptionalPrefix) raw_svector_ostream(Name) << '.' << *OptionalPrefix; } if (EmitUniqueSection && UniqueSectionNames) { Name.push_back('.'); TM.getNameWithPrefix(Name, GO, Mang, true); } unsigned UniqueID = MCContext::GenericSectionID; if (EmitUniqueSection && !UniqueSectionNames) { UniqueID = *NextUniqueID; (*NextUniqueID)++; } return Ctx.getWasmSection(Name, Kind, Group, UniqueID); } MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { if (Kind.isCommon()) report_fatal_error("mergable sections not supported yet on wasm"); // If we have -ffunction-section or -fdata-section then we should emit the // global value to a uniqued section specifically for it. bool EmitUniqueSection = false; if (Kind.isText()) EmitUniqueSection = TM.getFunctionSections(); else EmitUniqueSection = TM.getDataSections(); EmitUniqueSection |= GO->hasComdat(); return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM, EmitUniqueSection, &NextUniqueID); } bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection( bool UsesLabelDifference, const Function &F) const { // We can always create relative relocations, so use another section // that can be marked non-executable. return false; } const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference( const GlobalValue *LHS, const GlobalValue *RHS, const TargetMachine &TM) const { // We may only use a PLT-relative relocation to refer to unnamed_addr // functions. if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy()) return nullptr; // Basic sanity checks. if (LHS->getType()->getPointerAddressSpace() != 0 || RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() || RHS->isThreadLocal()) return nullptr; return MCBinaryExpr::createSub( MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None, getContext()), MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext()); } void TargetLoweringObjectFileWasm::InitializeWasm() { StaticCtorSection = getContext().getWasmSection(".init_array", SectionKind::getData()); // We don't use PersonalityEncoding and LSDAEncoding because we don't emit // .cfi directives. We use TTypeEncoding to encode typeinfo global variables. TTypeEncoding = dwarf::DW_EH_PE_absptr; } MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection( unsigned Priority, const MCSymbol *KeySym) const { return Priority == UINT16_MAX ? StaticCtorSection : getContext().getWasmSection(".init_array." + utostr(Priority), SectionKind::getData()); } MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection( unsigned Priority, const MCSymbol *KeySym) const { llvm_unreachable("@llvm.global_dtors should have been lowered already"); return nullptr; } //===----------------------------------------------------------------------===// // XCOFF //===----------------------------------------------------------------------===// bool TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock( const MachineFunction *MF) { if (!MF->getLandingPads().empty()) return true; const Function &F = MF->getFunction(); if (!F.hasPersonalityFn() || !F.needsUnwindTableEntry()) return false; const Function *Per = dyn_cast(F.getPersonalityFn()->stripPointerCasts()); if (isNoOpWithoutInvoke(classifyEHPersonality(Per))) return false; return true; } MCSymbol * TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(const MachineFunction *MF) { return MF->getMMI().getContext().getOrCreateSymbol( "__ehinfo." + Twine(MF->getFunctionNumber())); } MCSymbol * TargetLoweringObjectFileXCOFF::getTargetSymbol(const GlobalValue *GV, const TargetMachine &TM) const { // We always use a qualname symbol for a GV that represents // a declaration, a function descriptor, or a common symbol. // If a GV represents a GlobalVariable and -fdata-sections is enabled, we // also return a qualname so that a label symbol could be avoided. // It is inherently ambiguous when the GO represents the address of a // function, as the GO could either represent a function descriptor or a // function entry point. We choose to always return a function descriptor // here. if (const GlobalObject *GO = dyn_cast(GV)) { if (GO->isDeclarationForLinker()) return cast(getSectionForExternalReference(GO, TM)) ->getQualNameSymbol(); SectionKind GOKind = getKindForGlobal(GO, TM); if (GOKind.isText()) return cast( getSectionForFunctionDescriptor(cast(GO), TM)) ->getQualNameSymbol(); if ((TM.getDataSections() && !GO->hasSection()) || GOKind.isCommon() || GOKind.isBSSLocal()) return cast(SectionForGlobal(GO, GOKind, TM)) ->getQualNameSymbol(); } // For all other cases, fall back to getSymbol to return the unqualified name. return nullptr; } MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { if (!GO->hasSection()) report_fatal_error("#pragma clang section is not yet supported"); StringRef SectionName = GO->getSection(); XCOFF::StorageMappingClass MappingClass; if (Kind.isText()) MappingClass = XCOFF::XMC_PR; else if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) MappingClass = XCOFF::XMC_RW; else if (Kind.isReadOnly()) MappingClass = XCOFF::XMC_RO; else report_fatal_error("XCOFF other section types not yet implemented."); return getContext().getXCOFFSection(SectionName, MappingClass, XCOFF::XTY_SD, Kind, /* MultiSymbolsAllowed*/ true); } MCSection *TargetLoweringObjectFileXCOFF::getSectionForExternalReference( const GlobalObject *GO, const TargetMachine &TM) const { assert(GO->isDeclarationForLinker() && "Tried to get ER section for a defined global."); SmallString<128> Name; getNameWithPrefix(Name, GO, TM); // Externals go into a csect of type ER. return getContext().getXCOFFSection( Name, isa(GO) ? XCOFF::XMC_DS : XCOFF::XMC_UA, XCOFF::XTY_ER, SectionKind::getMetadata()); } MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { // Common symbols go into a csect with matching name which will get mapped // into the .bss section. if (Kind.isBSSLocal() || Kind.isCommon()) { SmallString<128> Name; getNameWithPrefix(Name, GO, TM); return getContext().getXCOFFSection( Name, Kind.isBSSLocal() ? XCOFF::XMC_BS : XCOFF::XMC_RW, XCOFF::XTY_CM, Kind); } if (Kind.isMergeableCString()) { Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign( cast(GO)); unsigned EntrySize = getEntrySizeForKind(Kind); std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + "."; SmallString<128> Name; Name = SizeSpec + utostr(Alignment.value()); if (TM.getDataSections()) getNameWithPrefix(Name, GO, TM); return getContext().getXCOFFSection( Name, XCOFF::XMC_RO, XCOFF::XTY_SD, Kind, /* MultiSymbolsAllowed*/ !TM.getDataSections()); } if (Kind.isText()) { if (TM.getFunctionSections()) { return cast(getFunctionEntryPointSymbol(GO, TM)) ->getRepresentedCsect(); } return TextSection; } // TODO: We may put Kind.isReadOnlyWithRel() under option control, because // user may want to have read-only data with relocations placed into a // read-only section by the compiler. // For BSS kind, zero initialized data must be emitted to the .data section // because external linkage control sections that get mapped to the .bss // section will be linked as tentative defintions, which is only appropriate // for SectionKind::Common. if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) { if (TM.getDataSections()) { SmallString<128> Name; getNameWithPrefix(Name, GO, TM); return getContext().getXCOFFSection(Name, XCOFF::XMC_RW, XCOFF::XTY_SD, SectionKind::getData()); } return DataSection; } if (Kind.isReadOnly()) { if (TM.getDataSections()) { SmallString<128> Name; getNameWithPrefix(Name, GO, TM); return getContext().getXCOFFSection(Name, XCOFF::XMC_RO, XCOFF::XTY_SD, SectionKind::getReadOnly()); } return ReadOnlySection; } report_fatal_error("XCOFF other section types not yet implemented."); } MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable( const Function &F, const TargetMachine &TM) const { assert (!F.getComdat() && "Comdat not supported on XCOFF."); if (!TM.getFunctionSections()) return ReadOnlySection; // If the function can be removed, produce a unique section so that // the table doesn't prevent the removal. SmallString<128> NameStr(".rodata.jmp.."); getNameWithPrefix(NameStr, &F, TM); return getContext().getXCOFFSection(NameStr, XCOFF::XMC_RO, XCOFF::XTY_SD, SectionKind::getReadOnly()); } bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection( bool UsesLabelDifference, const Function &F) const { return false; } /// Given a mergeable constant with the specified size and relocation /// information, return a section that it should be placed in. MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant( const DataLayout &DL, SectionKind Kind, const Constant *C, Align &Alignment) const { //TODO: Enable emiting constant pool to unique sections when we support it. return ReadOnlySection; } void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx, const TargetMachine &TgtM) { TargetLoweringObjectFile::Initialize(Ctx, TgtM); TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_datarel | (TgtM.getTargetTriple().isArch32Bit() ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8); PersonalityEncoding = 0; LSDAEncoding = 0; CallSiteEncoding = dwarf::DW_EH_PE_udata4; } MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection( unsigned Priority, const MCSymbol *KeySym) const { report_fatal_error("no static constructor section on AIX"); } MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection( unsigned Priority, const MCSymbol *KeySym) const { report_fatal_error("no static destructor section on AIX"); } const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference( const GlobalValue *LHS, const GlobalValue *RHS, const TargetMachine &TM) const { report_fatal_error("XCOFF not yet implemented."); } XCOFF::StorageClass TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(const GlobalValue *GV) { assert(!isa(GV) && "GlobalIFunc is not supported on AIX."); switch (GV->getLinkage()) { case GlobalValue::InternalLinkage: case GlobalValue::PrivateLinkage: return XCOFF::C_HIDEXT; case GlobalValue::ExternalLinkage: case GlobalValue::CommonLinkage: case GlobalValue::AvailableExternallyLinkage: return XCOFF::C_EXT; case GlobalValue::ExternalWeakLinkage: case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: case GlobalValue::WeakAnyLinkage: case GlobalValue::WeakODRLinkage: return XCOFF::C_WEAKEXT; case GlobalValue::AppendingLinkage: report_fatal_error( "There is no mapping that implements AppendingLinkage for XCOFF."); } llvm_unreachable("Unknown linkage type!"); } MCSymbol *TargetLoweringObjectFileXCOFF::getFunctionEntryPointSymbol( const GlobalValue *Func, const TargetMachine &TM) const { assert( (isa(Func) || (isa(Func) && isa_and_nonnull(cast(Func)->getBaseObject()))) && "Func must be a function or an alias which has a function as base " "object."); SmallString<128> NameStr; NameStr.push_back('.'); getNameWithPrefix(NameStr, Func, TM); // When -function-sections is enabled and explicit section is not specified, // it's not necessary to emit function entry point label any more. We will use // function entry point csect instead. And for function delcarations, the // undefined symbols gets treated as csect with XTY_ER property. if (((TM.getFunctionSections() && !Func->hasSection()) || Func->isDeclaration()) && isa(Func)) { return getContext() .getXCOFFSection(NameStr, XCOFF::XMC_PR, Func->isDeclaration() ? XCOFF::XTY_ER : XCOFF::XTY_SD, SectionKind::getText()) ->getQualNameSymbol(); } return getContext().getOrCreateSymbol(NameStr); } MCSection *TargetLoweringObjectFileXCOFF::getSectionForFunctionDescriptor( const Function *F, const TargetMachine &TM) const { SmallString<128> NameStr; getNameWithPrefix(NameStr, F, TM); return getContext().getXCOFFSection(NameStr, XCOFF::XMC_DS, XCOFF::XTY_SD, SectionKind::getData()); } MCSection *TargetLoweringObjectFileXCOFF::getSectionForTOCEntry( const MCSymbol *Sym, const TargetMachine &TM) const { // Use TE storage-mapping class when large code model is enabled so that // the chance of needing -bbigtoc is decreased. return getContext().getXCOFFSection( cast(Sym)->getSymbolTableName(), TM.getCodeModel() == CodeModel::Large ? XCOFF::XMC_TE : XCOFF::XMC_TC, XCOFF::XTY_SD, SectionKind::getData()); }