//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/ADT/StringExtras.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/CodeGen/MachineCombinerPattern.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/CodeGen/MachineTraceMetrics.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; static cl::opt DisableHazardRecognizer( "disable-sched-hazard", cl::Hidden, cl::init(false), cl::desc("Disable hazard detection during preRA scheduling")); TargetInstrInfo::~TargetInstrInfo() = default; const TargetRegisterClass* TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const { if (OpNum >= MCID.getNumOperands()) return nullptr; short RegClass = MCID.operands()[OpNum].RegClass; if (MCID.operands()[OpNum].isLookupPtrRegClass()) return TRI->getPointerRegClass(MF, RegClass); // Instructions like INSERT_SUBREG do not have fixed register classes. if (RegClass < 0) return nullptr; // Otherwise just look it up normally. return TRI->getRegClass(RegClass); } /// insertNoop - Insert a noop into the instruction stream at the specified /// point. void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { llvm_unreachable("Target didn't implement insertNoop!"); } /// insertNoops - Insert noops into the instruction stream at the specified /// point. void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Quantity) const { for (unsigned i = 0; i < Quantity; ++i) insertNoop(MBB, MI); } static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { return strncmp(Str, MAI.getCommentString().data(), MAI.getCommentString().size()) == 0; } /// Measure the specified inline asm to determine an approximation of its /// length. /// Comments (which run till the next SeparatorString or newline) do not /// count as an instruction. /// Any other non-whitespace text is considered an instruction, with /// multiple instructions separated by SeparatorString or newlines. /// Variable-length instructions are not handled here; this function /// may be overloaded in the target code to do that. /// We implement a special case of the .space directive which takes only a /// single integer argument in base 10 that is the size in bytes. This is a /// restricted form of the GAS directive in that we only interpret /// simple--i.e. not a logical or arithmetic expression--size values without /// the optional fill value. This is primarily used for creating arbitrary /// sized inline asm blocks for testing purposes. unsigned TargetInstrInfo::getInlineAsmLength( const char *Str, const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const { // Count the number of instructions in the asm. bool AtInsnStart = true; unsigned Length = 0; const unsigned MaxInstLength = MAI.getMaxInstLength(STI); for (; *Str; ++Str) { if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), strlen(MAI.getSeparatorString())) == 0) { AtInsnStart = true; } else if (isAsmComment(Str, MAI)) { // Stop counting as an instruction after a comment until the next // separator. AtInsnStart = false; } if (AtInsnStart && !isSpace(static_cast(*Str))) { unsigned AddLength = MaxInstLength; if (strncmp(Str, ".space", 6) == 0) { char *EStr; int SpaceSize; SpaceSize = strtol(Str + 6, &EStr, 10); SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; while (*EStr != '\n' && isSpace(static_cast(*EStr))) ++EStr; if (*EStr == '\0' || *EStr == '\n' || isAsmComment(EStr, MAI)) // Successfully parsed .space argument AddLength = SpaceSize; } Length += AddLength; AtInsnStart = false; } } return Length; } /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything /// after it, replacing it with an unconditional branch to NewDest. void TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const { MachineBasicBlock *MBB = Tail->getParent(); // Remove all the old successors of MBB from the CFG. while (!MBB->succ_empty()) MBB->removeSuccessor(MBB->succ_begin()); // Save off the debug loc before erasing the instruction. DebugLoc DL = Tail->getDebugLoc(); // Update call site info and remove all the dead instructions // from the end of MBB. while (Tail != MBB->end()) { auto MI = Tail++; if (MI->shouldUpdateCallSiteInfo()) MBB->getParent()->eraseCallSiteInfo(&*MI); MBB->erase(MI); } // If MBB isn't immediately before MBB, insert a branch to it. if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) insertBranch(*MBB, NewDest, nullptr, SmallVector(), DL); MBB->addSuccessor(NewDest); } MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned Idx1, unsigned Idx2) const { const MCInstrDesc &MCID = MI.getDesc(); bool HasDef = MCID.getNumDefs(); if (HasDef && !MI.getOperand(0).isReg()) // No idea how to commute this instruction. Target should implement its own. return nullptr; unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && "This only knows how to commute register operands so far"); Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); Register Reg1 = MI.getOperand(Idx1).getReg(); Register Reg2 = MI.getOperand(Idx2).getReg(); unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); bool Reg1IsKill = MI.getOperand(Idx1).isKill(); bool Reg2IsKill = MI.getOperand(Idx2).isKill(); bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); // Avoid calling isRenamable for virtual registers since we assert that // renamable property is only queried/set for physical registers. bool Reg1IsRenamable = Reg1.isPhysical() ? MI.getOperand(Idx1).isRenamable() : false; bool Reg2IsRenamable = Reg2.isPhysical() ? MI.getOperand(Idx2).isRenamable() : false; // If destination is tied to either of the commuted source register, then // it must be updated. if (HasDef && Reg0 == Reg1 && MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { Reg2IsKill = false; Reg0 = Reg2; SubReg0 = SubReg2; } else if (HasDef && Reg0 == Reg2 && MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { Reg1IsKill = false; Reg0 = Reg1; SubReg0 = SubReg1; } MachineInstr *CommutedMI = nullptr; if (NewMI) { // Create a new instruction. MachineFunction &MF = *MI.getMF(); CommutedMI = MF.CloneMachineInstr(&MI); } else { CommutedMI = &MI; } if (HasDef) { CommutedMI->getOperand(0).setReg(Reg0); CommutedMI->getOperand(0).setSubReg(SubReg0); } CommutedMI->getOperand(Idx2).setReg(Reg1); CommutedMI->getOperand(Idx1).setReg(Reg2); CommutedMI->getOperand(Idx2).setSubReg(SubReg1); CommutedMI->getOperand(Idx1).setSubReg(SubReg2); CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); // Avoid calling setIsRenamable for virtual registers since we assert that // renamable property is only queried/set for physical registers. if (Reg1.isPhysical()) CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); if (Reg2.isPhysical()) CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); return CommutedMI; } MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const { // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose // any commutable operand, which is done in findCommutedOpIndices() method // called below. if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { assert(MI.isCommutable() && "Precondition violation: MI must be commutable."); return nullptr; } return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); } bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, unsigned CommutableOpIdx1, unsigned CommutableOpIdx2) { if (ResultIdx1 == CommuteAnyOperandIndex && ResultIdx2 == CommuteAnyOperandIndex) { ResultIdx1 = CommutableOpIdx1; ResultIdx2 = CommutableOpIdx2; } else if (ResultIdx1 == CommuteAnyOperandIndex) { if (ResultIdx2 == CommutableOpIdx1) ResultIdx1 = CommutableOpIdx2; else if (ResultIdx2 == CommutableOpIdx2) ResultIdx1 = CommutableOpIdx1; else return false; } else if (ResultIdx2 == CommuteAnyOperandIndex) { if (ResultIdx1 == CommutableOpIdx1) ResultIdx2 = CommutableOpIdx2; else if (ResultIdx1 == CommutableOpIdx2) ResultIdx2 = CommutableOpIdx1; else return false; } else // Check that the result operand indices match the given commutable // operand indices. return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); return true; } bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const { assert(!MI.isBundle() && "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); const MCInstrDesc &MCID = MI.getDesc(); if (!MCID.isCommutable()) return false; // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this // is not true, then the target must implement this. unsigned CommutableOpIdx1 = MCID.getNumDefs(); unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, CommutableOpIdx2)) return false; if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) // No idea. return false; return true; } bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { if (!MI.isTerminator()) return false; // Conditional branch is a special case. if (MI.isBranch() && !MI.isBarrier()) return true; if (!MI.isPredicable()) return true; return !isPredicated(MI); } bool TargetInstrInfo::PredicateInstruction( MachineInstr &MI, ArrayRef Pred) const { bool MadeChange = false; assert(!MI.isBundle() && "TargetInstrInfo::PredicateInstruction() can't handle bundles"); const MCInstrDesc &MCID = MI.getDesc(); if (!MI.isPredicable()) return false; for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { if (MCID.operands()[i].isPredicate()) { MachineOperand &MO = MI.getOperand(i); if (MO.isReg()) { MO.setReg(Pred[j].getReg()); MadeChange = true; } else if (MO.isImm()) { MO.setImm(Pred[j].getImm()); MadeChange = true; } else if (MO.isMBB()) { MO.setMBB(Pred[j].getMBB()); MadeChange = true; } ++j; } } return MadeChange; } bool TargetInstrInfo::hasLoadFromStackSlot( const MachineInstr &MI, SmallVectorImpl &Accesses) const { size_t StartSize = Accesses.size(); for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), oe = MI.memoperands_end(); o != oe; ++o) { if ((*o)->isLoad() && isa_and_nonnull((*o)->getPseudoValue())) Accesses.push_back(*o); } return Accesses.size() != StartSize; } bool TargetInstrInfo::hasStoreToStackSlot( const MachineInstr &MI, SmallVectorImpl &Accesses) const { size_t StartSize = Accesses.size(); for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), oe = MI.memoperands_end(); o != oe; ++o) { if ((*o)->isStore() && isa_and_nonnull((*o)->getPseudoValue())) Accesses.push_back(*o); } return Accesses.size() != StartSize; } bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, unsigned &Size, unsigned &Offset, const MachineFunction &MF) const { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!SubIdx) { Size = TRI->getSpillSize(*RC); Offset = 0; return true; } unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); // Convert bit size to byte size. if (BitSize % 8) return false; int BitOffset = TRI->getSubRegIdxOffset(SubIdx); if (BitOffset < 0 || BitOffset % 8) return false; Size = BitSize / 8; Offset = (unsigned)BitOffset / 8; assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); if (!MF.getDataLayout().isLittleEndian()) { Offset = TRI->getSpillSize(*RC) - (Offset + Size); } return true; } void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const { MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); MBB.insert(I, MI); } bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, const MachineInstr &MI1, const MachineRegisterInfo *MRI) const { return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); } MachineInstr & TargetInstrInfo::duplicate(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { MachineFunction &MF = *MBB.getParent(); // CFI instructions are marked as non-duplicable, because Darwin compact // unwind info emission can't handle multiple prologue setups. assert((!Orig.isNotDuplicable() || (!MF.getTarget().getTargetTriple().isOSDarwin() && Orig.isCFIInstruction())) && "Instruction cannot be duplicated"); return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig); } // If the COPY instruction in MI can be folded to a stack operation, return // the register class to use. static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, const TargetInstrInfo &TII, unsigned FoldIdx) { assert(TII.isCopyInstr(MI) && "MI must be a COPY instruction"); if (MI.getNumOperands() != 2) return nullptr; assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); const MachineOperand &FoldOp = MI.getOperand(FoldIdx); const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); if (FoldOp.getSubReg() || LiveOp.getSubReg()) return nullptr; Register FoldReg = FoldOp.getReg(); Register LiveReg = LiveOp.getReg(); assert(FoldReg.isVirtual() && "Cannot fold physregs"); const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); if (LiveOp.getReg().isPhysical()) return RC->contains(LiveOp.getReg()) ? RC : nullptr; if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) return RC; // FIXME: Allow folding when register classes are memory compatible. return nullptr; } MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); } std::pair TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const { switch (MI.getOpcode()) { case TargetOpcode::STACKMAP: // StackMapLiveValues are foldable return std::make_pair(0, StackMapOpers(&MI).getVarIdx()); case TargetOpcode::PATCHPOINT: // For PatchPoint, the call args are not foldable (even if reported in the // stackmap e.g. via anyregcc). return std::make_pair(0, PatchPointOpers(&MI).getVarIdx()); case TargetOpcode::STATEPOINT: // For statepoints, fold deopt and gc arguments, but not call arguments. return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx()); default: llvm_unreachable("unexpected stackmap opcode"); } } static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, int FrameIndex, const TargetInstrInfo &TII) { unsigned StartIdx = 0; unsigned NumDefs = 0; // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint. std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI); unsigned DefToFoldIdx = MI.getNumOperands(); // Return false if any operands requested for folding are not foldable (not // part of the stackmap's live values). for (unsigned Op : Ops) { if (Op < NumDefs) { assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs"); DefToFoldIdx = Op; } else if (Op < StartIdx) { return nullptr; } if (MI.getOperand(Op).isTied()) return nullptr; } MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, NewMI); // No need to fold return, the meta data, and function arguments for (unsigned i = 0; i < StartIdx; ++i) if (i != DefToFoldIdx) MIB.add(MI.getOperand(i)); for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) { MachineOperand &MO = MI.getOperand(i); unsigned TiedTo = e; (void)MI.isRegTiedToDefOperand(i, &TiedTo); if (is_contained(Ops, i)) { assert(TiedTo == e && "Cannot fold tied operands"); unsigned SpillSize; unsigned SpillOffset; // Compute the spill slot size and offset. const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(MO.getReg()); bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); if (!Valid) report_fatal_error("cannot spill patchpoint subregister operand"); MIB.addImm(StackMaps::IndirectMemRefOp); MIB.addImm(SpillSize); MIB.addFrameIndex(FrameIndex); MIB.addImm(SpillOffset); } else { MIB.add(MO); if (TiedTo < e) { assert(TiedTo < NumDefs && "Bad tied operand"); if (TiedTo > DefToFoldIdx) --TiedTo; NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1); } } } return NewMI; } static void foldInlineAsmMemOperand(MachineInstr *MI, unsigned OpNo, int FI, const TargetInstrInfo &TII) { // If the machine operand is tied, untie it first. if (MI->getOperand(OpNo).isTied()) { unsigned TiedTo = MI->findTiedOperandIdx(OpNo); MI->untieRegOperand(OpNo); // Intentional recursion! foldInlineAsmMemOperand(MI, TiedTo, FI, TII); } SmallVector NewOps; TII.getFrameIndexOperands(NewOps, FI); assert(!NewOps.empty() && "getFrameIndexOperands didn't create any operands"); MI->removeOperand(OpNo); MI->insert(MI->operands_begin() + OpNo, NewOps); // Change the previous operand to a MemKind InlineAsm::Flag. The second param // is the per-target number of operands that represent the memory operand // excluding this one (MD). This includes MO. InlineAsm::Flag F(InlineAsm::Kind::Mem, NewOps.size()); F.setMemConstraint(InlineAsm::ConstraintCode::m); MachineOperand &MD = MI->getOperand(OpNo - 1); MD.setImm(F); } // Returns nullptr if not possible to fold. static MachineInstr *foldInlineAsmMemOperand(MachineInstr &MI, ArrayRef Ops, int FI, const TargetInstrInfo &TII) { assert(MI.isInlineAsm() && "wrong opcode"); if (Ops.size() > 1) return nullptr; unsigned Op = Ops[0]; assert(Op && "should never be first operand"); assert(MI.getOperand(Op).isReg() && "shouldn't be folding non-reg operands"); if (!MI.mayFoldInlineAsmRegOp(Op)) return nullptr; MachineInstr &NewMI = TII.duplicate(*MI.getParent(), MI.getIterator(), MI); foldInlineAsmMemOperand(&NewMI, Op, FI, TII); // Update mayload/maystore metadata, and memoperands. const VirtRegInfo &RI = AnalyzeVirtRegInBundle(MI, MI.getOperand(Op).getReg()); MachineOperand &ExtraMO = NewMI.getOperand(InlineAsm::MIOp_ExtraInfo); MachineMemOperand::Flags Flags = MachineMemOperand::MONone; if (RI.Reads) { ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayLoad); Flags |= MachineMemOperand::MOLoad; } if (RI.Writes) { ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayStore); Flags |= MachineMemOperand::MOStore; } MachineFunction *MF = NewMI.getMF(); const MachineFrameInfo &MFI = MF->getFrameInfo(); MachineMemOperand *MMO = MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(*MF, FI), Flags, MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); NewMI.addMemOperand(*MF, MMO); return &NewMI; } MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, ArrayRef Ops, int FI, LiveIntervals *LIS, VirtRegMap *VRM) const { auto Flags = MachineMemOperand::MONone; for (unsigned OpIdx : Ops) Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad; MachineBasicBlock *MBB = MI.getParent(); assert(MBB && "foldMemoryOperand needs an inserted instruction"); MachineFunction &MF = *MBB->getParent(); // If we're not folding a load into a subreg, the size of the load is the // size of the spill slot. But if we are, we need to figure out what the // actual load size is. int64_t MemSize = 0; const MachineFrameInfo &MFI = MF.getFrameInfo(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (Flags & MachineMemOperand::MOStore) { MemSize = MFI.getObjectSize(FI); } else { for (unsigned OpIdx : Ops) { int64_t OpSize = MFI.getObjectSize(FI); if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); if (SubRegSize > 0 && !(SubRegSize % 8)) OpSize = SubRegSize / 8; } MemSize = std::max(MemSize, OpSize); } } assert(MemSize && "Did not expect a zero-sized stack slot"); MachineInstr *NewMI = nullptr; if (MI.getOpcode() == TargetOpcode::STACKMAP || MI.getOpcode() == TargetOpcode::PATCHPOINT || MI.getOpcode() == TargetOpcode::STATEPOINT) { // Fold stackmap/patchpoint. NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); if (NewMI) MBB->insert(MI, NewMI); } else if (MI.isInlineAsm()) { return foldInlineAsmMemOperand(MI, Ops, FI, *this); } else { // Ask the target to do the actual folding. NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM); } if (NewMI) { NewMI->setMemRefs(MF, MI.memoperands()); // Add a memory operand, foldMemoryOperandImpl doesn't do that. assert((!(Flags & MachineMemOperand::MOStore) || NewMI->mayStore()) && "Folded a def to a non-store!"); assert((!(Flags & MachineMemOperand::MOLoad) || NewMI->mayLoad()) && "Folded a use to a non-load!"); assert(MFI.getObjectOffset(FI) != -1); MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize, MFI.getObjectAlign(FI)); NewMI->addMemOperand(MF, MMO); // The pass "x86 speculative load hardening" always attaches symbols to // call instructions. We need copy it form old instruction. NewMI->cloneInstrSymbols(MF, MI); return NewMI; } // Straight COPY may fold as load/store. if (!isCopyInstr(MI) || Ops.size() != 1) return nullptr; const TargetRegisterClass *RC = canFoldCopy(MI, *this, Ops[0]); if (!RC) return nullptr; const MachineOperand &MO = MI.getOperand(1 - Ops[0]); MachineBasicBlock::iterator Pos = MI; if (Flags == MachineMemOperand::MOStore) storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI, Register()); else loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI, Register()); return &*--Pos; } MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, ArrayRef Ops, MachineInstr &LoadMI, LiveIntervals *LIS) const { assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); #ifndef NDEBUG for (unsigned OpIdx : Ops) assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); #endif MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); // Ask the target to do the actual folding. MachineInstr *NewMI = nullptr; int FrameIndex = 0; if ((MI.getOpcode() == TargetOpcode::STACKMAP || MI.getOpcode() == TargetOpcode::PATCHPOINT || MI.getOpcode() == TargetOpcode::STATEPOINT) && isLoadFromStackSlot(LoadMI, FrameIndex)) { // Fold stackmap/patchpoint. NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); if (NewMI) NewMI = &*MBB.insert(MI, NewMI); } else if (MI.isInlineAsm() && isLoadFromStackSlot(LoadMI, FrameIndex)) { return foldInlineAsmMemOperand(MI, Ops, FrameIndex, *this); } else { // Ask the target to do the actual folding. NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); } if (!NewMI) return nullptr; // Copy the memoperands from the load to the folded instruction. if (MI.memoperands_empty()) { NewMI->setMemRefs(MF, LoadMI.memoperands()); } else { // Handle the rare case of folding multiple loads. NewMI->setMemRefs(MF, MI.memoperands()); for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), E = LoadMI.memoperands_end(); I != E; ++I) { NewMI->addMemOperand(MF, *I); } } return NewMI; } /// transferImplicitOperands - MI is a pseudo-instruction, and the lowered /// replacement instructions immediately precede it. Copy any implicit /// operands from MI to the replacement instruction. static void transferImplicitOperands(MachineInstr *MI, const TargetRegisterInfo *TRI) { MachineBasicBlock::iterator CopyMI = MI; --CopyMI; Register DstReg = MI->getOperand(0).getReg(); for (const MachineOperand &MO : MI->implicit_operands()) { CopyMI->addOperand(MO); // Be conservative about preserving kills when subregister defs are // involved. If there was implicit kill of a super-register overlapping the // copy result, we would kill the subregisters previous copies defined. if (MO.isKill() && TRI->regsOverlap(DstReg, MO.getReg())) CopyMI->getOperand(CopyMI->getNumOperands() - 1).setIsKill(false); } } void TargetInstrInfo::lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const { if (MI->allDefsAreDead()) { MI->setDesc(get(TargetOpcode::KILL)); return; } MachineOperand &DstMO = MI->getOperand(0); MachineOperand &SrcMO = MI->getOperand(1); bool IdentityCopy = (SrcMO.getReg() == DstMO.getReg()); if (IdentityCopy || SrcMO.isUndef()) { // No need to insert an identity copy instruction, but replace with a KILL // if liveness is changed. if (SrcMO.isUndef() || MI->getNumOperands() > 2) { // We must make sure the super-register gets killed. Replace the // instruction with KILL. MI->setDesc(get(TargetOpcode::KILL)); return; } // Vanilla identity copy. MI->eraseFromParent(); return; } copyPhysReg(*MI->getParent(), MI, MI->getDebugLoc(), DstMO.getReg(), SrcMO.getReg(), SrcMO.isKill()); if (MI->getNumOperands() > 2) transferImplicitOperands(MI, TRI); MI->eraseFromParent(); } bool TargetInstrInfo::hasReassociableOperands( const MachineInstr &Inst, const MachineBasicBlock *MBB) const { const MachineOperand &Op1 = Inst.getOperand(1); const MachineOperand &Op2 = Inst.getOperand(2); const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); // We need virtual register definitions for the operands that we will // reassociate. MachineInstr *MI1 = nullptr; MachineInstr *MI2 = nullptr; if (Op1.isReg() && Op1.getReg().isVirtual()) MI1 = MRI.getUniqueVRegDef(Op1.getReg()); if (Op2.isReg() && Op2.getReg().isVirtual()) MI2 = MRI.getUniqueVRegDef(Op2.getReg()); // And at least one operand must be defined in MBB. return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB); } bool TargetInstrInfo::areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const { return Opcode1 == Opcode2 || getInverseOpcode(Opcode1) == Opcode2; } bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const { const MachineBasicBlock *MBB = Inst.getParent(); const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); unsigned Opcode = Inst.getOpcode(); // If only one operand has the same or inverse opcode and it's the second // source operand, the operands must be commuted. Commuted = !areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) && areOpcodesEqualOrInverse(Opcode, MI2->getOpcode()); if (Commuted) std::swap(MI1, MI2); // 1. The previous instruction must be the same type as Inst. // 2. The previous instruction must also be associative/commutative or be the // inverse of such an operation (this can be different even for // instructions with the same opcode if traits like fast-math-flags are // included). // 3. The previous instruction must have virtual register definitions for its // operands in the same basic block as Inst. // 4. The previous instruction's result must only be used by Inst. return areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) && (isAssociativeAndCommutative(*MI1) || isAssociativeAndCommutative(*MI1, /* Invert */ true)) && hasReassociableOperands(*MI1, MBB) && MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); } // 1. The operation must be associative and commutative or be the inverse of // such an operation. // 2. The instruction must have virtual register definitions for its // operands in the same basic block. // 3. The instruction must have a reassociable sibling. bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const { return (isAssociativeAndCommutative(Inst) || isAssociativeAndCommutative(Inst, /* Invert */ true)) && hasReassociableOperands(Inst, Inst.getParent()) && hasReassociableSibling(Inst, Commuted); } // The concept of the reassociation pass is that these operations can benefit // from this kind of transformation: // // A = ? op ? // B = A op X (Prev) // C = B op Y (Root) // --> // A = ? op ? // B = X op Y // C = A op B // // breaking the dependency between A and B, allowing them to be executed in // parallel (or back-to-back in a pipeline) instead of depending on each other. // FIXME: This has the potential to be expensive (compile time) while not // improving the code at all. Some ways to limit the overhead: // 1. Track successful transforms; bail out if hit rate gets too low. // 2. Only enable at -O3 or some other non-default optimization level. // 3. Pre-screen pattern candidates here: if an operand of the previous // instruction is known to not increase the critical path, then don't match // that pattern. bool TargetInstrInfo::getMachineCombinerPatterns( MachineInstr &Root, SmallVectorImpl &Patterns, bool DoRegPressureReduce) const { bool Commute; if (isReassociationCandidate(Root, Commute)) { // We found a sequence of instructions that may be suitable for a // reassociation of operands to increase ILP. Specify each commutation // possibility for the Prev instruction in the sequence and let the // machine combiner decide if changing the operands is worthwhile. if (Commute) { Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); } else { Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); } return true; } return false; } /// Return true when a code sequence can improve loop throughput. bool TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { return false; } std::pair TargetInstrInfo::getReassociationOpcodes(MachineCombinerPattern Pattern, const MachineInstr &Root, const MachineInstr &Prev) const { bool AssocCommutRoot = isAssociativeAndCommutative(Root); bool AssocCommutPrev = isAssociativeAndCommutative(Prev); // Early exit if both opcodes are associative and commutative. It's a trivial // reassociation when we only change operands order. In this case opcodes are // not required to have inverse versions. if (AssocCommutRoot && AssocCommutPrev) { assert(Root.getOpcode() == Prev.getOpcode() && "Expected to be equal"); return std::make_pair(Root.getOpcode(), Root.getOpcode()); } // At least one instruction is not associative or commutative. // Since we have matched one of the reassociation patterns, we expect that the // instructions' opcodes are equal or one of them is the inversion of the // other. assert(areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()) && "Incorrectly matched pattern"); unsigned AssocCommutOpcode = Root.getOpcode(); unsigned InverseOpcode = *getInverseOpcode(Root.getOpcode()); if (!AssocCommutRoot) std::swap(AssocCommutOpcode, InverseOpcode); // The transformation rule (`+` is any associative and commutative binary // operation, `-` is the inverse): // REASSOC_AX_BY: // (A + X) + Y => A + (X + Y) // (A + X) - Y => A + (X - Y) // (A - X) + Y => A - (X - Y) // (A - X) - Y => A - (X + Y) // REASSOC_XA_BY: // (X + A) + Y => (X + Y) + A // (X + A) - Y => (X - Y) + A // (X - A) + Y => (X + Y) - A // (X - A) - Y => (X - Y) - A // REASSOC_AX_YB: // Y + (A + X) => (Y + X) + A // Y - (A + X) => (Y - X) - A // Y + (A - X) => (Y - X) + A // Y - (A - X) => (Y + X) - A // REASSOC_XA_YB: // Y + (X + A) => (Y + X) + A // Y - (X + A) => (Y - X) - A // Y + (X - A) => (Y + X) - A // Y - (X - A) => (Y - X) + A switch (Pattern) { default: llvm_unreachable("Unexpected pattern"); case MachineCombinerPattern::REASSOC_AX_BY: if (!AssocCommutRoot && AssocCommutPrev) return {AssocCommutOpcode, InverseOpcode}; if (AssocCommutRoot && !AssocCommutPrev) return {InverseOpcode, InverseOpcode}; if (!AssocCommutRoot && !AssocCommutPrev) return {InverseOpcode, AssocCommutOpcode}; break; case MachineCombinerPattern::REASSOC_XA_BY: if (!AssocCommutRoot && AssocCommutPrev) return {AssocCommutOpcode, InverseOpcode}; if (AssocCommutRoot && !AssocCommutPrev) return {InverseOpcode, AssocCommutOpcode}; if (!AssocCommutRoot && !AssocCommutPrev) return {InverseOpcode, InverseOpcode}; break; case MachineCombinerPattern::REASSOC_AX_YB: if (!AssocCommutRoot && AssocCommutPrev) return {InverseOpcode, InverseOpcode}; if (AssocCommutRoot && !AssocCommutPrev) return {AssocCommutOpcode, InverseOpcode}; if (!AssocCommutRoot && !AssocCommutPrev) return {InverseOpcode, AssocCommutOpcode}; break; case MachineCombinerPattern::REASSOC_XA_YB: if (!AssocCommutRoot && AssocCommutPrev) return {InverseOpcode, InverseOpcode}; if (AssocCommutRoot && !AssocCommutPrev) return {InverseOpcode, AssocCommutOpcode}; if (!AssocCommutRoot && !AssocCommutPrev) return {AssocCommutOpcode, InverseOpcode}; break; } llvm_unreachable("Unhandled combination"); } // Return a pair of boolean flags showing if the new root and new prev operands // must be swapped. See visual example of the rule in // TargetInstrInfo::getReassociationOpcodes. static std::pair mustSwapOperands(MachineCombinerPattern Pattern) { switch (Pattern) { default: llvm_unreachable("Unexpected pattern"); case MachineCombinerPattern::REASSOC_AX_BY: return {false, false}; case MachineCombinerPattern::REASSOC_XA_BY: return {true, false}; case MachineCombinerPattern::REASSOC_AX_YB: return {true, true}; case MachineCombinerPattern::REASSOC_XA_YB: return {true, true}; } } /// Attempt the reassociation transformation to reduce critical path length. /// See the above comments before getMachineCombinerPatterns(). void TargetInstrInfo::reassociateOps( MachineInstr &Root, MachineInstr &Prev, MachineCombinerPattern Pattern, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs, DenseMap &InstrIdxForVirtReg) const { MachineFunction *MF = Root.getMF(); MachineRegisterInfo &MRI = MF->getRegInfo(); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); // This array encodes the operand index for each parameter because the // operands may be commuted. Each row corresponds to a pattern value, // and each column specifies the index of A, B, X, Y. unsigned OpIdx[4][4] = { { 1, 1, 2, 2 }, { 1, 2, 2, 1 }, { 2, 1, 1, 2 }, { 2, 2, 1, 1 } }; int Row; switch (Pattern) { case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; default: llvm_unreachable("unexpected MachineCombinerPattern"); } MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); MachineOperand &OpC = Root.getOperand(0); Register RegA = OpA.getReg(); Register RegB = OpB.getReg(); Register RegX = OpX.getReg(); Register RegY = OpY.getReg(); Register RegC = OpC.getReg(); if (RegA.isVirtual()) MRI.constrainRegClass(RegA, RC); if (RegB.isVirtual()) MRI.constrainRegClass(RegB, RC); if (RegX.isVirtual()) MRI.constrainRegClass(RegX, RC); if (RegY.isVirtual()) MRI.constrainRegClass(RegY, RC); if (RegC.isVirtual()) MRI.constrainRegClass(RegC, RC); // Create a new virtual register for the result of (X op Y) instead of // recycling RegB because the MachineCombiner's computation of the critical // path requires a new register definition rather than an existing one. Register NewVR = MRI.createVirtualRegister(RC); InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); auto [NewRootOpc, NewPrevOpc] = getReassociationOpcodes(Pattern, Root, Prev); bool KillA = OpA.isKill(); bool KillX = OpX.isKill(); bool KillY = OpY.isKill(); bool KillNewVR = true; auto [SwapRootOperands, SwapPrevOperands] = mustSwapOperands(Pattern); if (SwapPrevOperands) { std::swap(RegX, RegY); std::swap(KillX, KillY); } // Create new instructions for insertion. MachineInstrBuilder MIB1 = BuildMI(*MF, MIMetadata(Prev), TII->get(NewPrevOpc), NewVR) .addReg(RegX, getKillRegState(KillX)) .addReg(RegY, getKillRegState(KillY)); if (SwapRootOperands) { std::swap(RegA, NewVR); std::swap(KillA, KillNewVR); } MachineInstrBuilder MIB2 = BuildMI(*MF, MIMetadata(Root), TII->get(NewRootOpc), RegC) .addReg(RegA, getKillRegState(KillA)) .addReg(NewVR, getKillRegState(KillNewVR)); // Propagate FP flags from the original instructions. // But clear poison-generating flags because those may not be valid now. // TODO: There should be a helper function for copying only fast-math-flags. uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags(); MIB1->setFlags(IntersectedFlags); MIB1->clearFlag(MachineInstr::MIFlag::NoSWrap); MIB1->clearFlag(MachineInstr::MIFlag::NoUWrap); MIB1->clearFlag(MachineInstr::MIFlag::IsExact); MIB2->setFlags(IntersectedFlags); MIB2->clearFlag(MachineInstr::MIFlag::NoSWrap); MIB2->clearFlag(MachineInstr::MIFlag::NoUWrap); MIB2->clearFlag(MachineInstr::MIFlag::IsExact); setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); // Record new instructions for insertion and old instructions for deletion. InsInstrs.push_back(MIB1); InsInstrs.push_back(MIB2); DelInstrs.push_back(&Prev); DelInstrs.push_back(&Root); // We transformed: // B = A op X (Prev) // C = B op Y (Root) // Into: // B = X op Y (MIB1) // C = A op B (MIB2) // C has the same value as before, B doesn't; as such, keep the debug number // of C but not of B. if (unsigned OldRootNum = Root.peekDebugInstrNum()) MIB2.getInstr()->setDebugInstrNum(OldRootNum); } void TargetInstrInfo::genAlternativeCodeSequence( MachineInstr &Root, MachineCombinerPattern Pattern, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs, DenseMap &InstIdxForVirtReg) const { MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); // Select the previous instruction in the sequence based on the input pattern. MachineInstr *Prev = nullptr; switch (Pattern) { case MachineCombinerPattern::REASSOC_AX_BY: case MachineCombinerPattern::REASSOC_XA_BY: Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); break; case MachineCombinerPattern::REASSOC_AX_YB: case MachineCombinerPattern::REASSOC_XA_YB: Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); break; default: llvm_unreachable("Unknown pattern for machine combiner"); } // Don't reassociate if Prev and Root are in different blocks. if (Prev->getParent() != Root.getParent()) return; reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); } MachineTraceStrategy TargetInstrInfo::getMachineCombinerTraceStrategy() const { return MachineTraceStrategy::TS_MinInstrCount; } bool TargetInstrInfo::isReallyTriviallyReMaterializable( const MachineInstr &MI) const { const MachineFunction &MF = *MI.getMF(); const MachineRegisterInfo &MRI = MF.getRegInfo(); // Remat clients assume operand 0 is the defined register. if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) return false; Register DefReg = MI.getOperand(0).getReg(); // A sub-register definition can only be rematerialized if the instruction // doesn't read the other parts of the register. Otherwise it is really a // read-modify-write operation on the full virtual register which cannot be // moved safely. if (DefReg.isVirtual() && MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg)) return false; // A load from a fixed stack slot can be rematerialized. This may be // redundant with subsequent checks, but it's target-independent, // simple, and a common case. int FrameIdx = 0; if (isLoadFromStackSlot(MI, FrameIdx) && MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) return true; // Avoid instructions obviously unsafe for remat. if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() || MI.hasUnmodeledSideEffects()) return false; // Don't remat inline asm. We have no idea how expensive it is // even if it's side effect free. if (MI.isInlineAsm()) return false; // Avoid instructions which load from potentially varying memory. if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad()) return false; // If any of the registers accessed are non-constant, conservatively assume // the instruction is not rematerializable. for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (Reg == 0) continue; // Check for a well-behaved physical register. if (Reg.isPhysical()) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. if (!MRI.isConstantPhysReg(Reg)) return false; } else { // A physreg def. We can't remat it. return false; } continue; } // Only allow one virtual-register def. There may be multiple defs of the // same virtual register, though. if (MO.isDef() && Reg != DefReg) return false; // Don't allow any virtual-register uses. Rematting an instruction with // virtual register uses would length the live ranges of the uses, which // is not necessarily a good idea, certainly not "trivial". if (MO.isUse()) return false; } // Everything checked out. return true; } int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { const MachineFunction *MF = MI.getMF(); const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); bool StackGrowsDown = TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); if (!isFrameInstr(MI)) return 0; int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) SPAdj = -SPAdj; return SPAdj; } /// isSchedulingBoundary - Test if the given instruction should be /// considered a scheduling boundary. This primarily includes labels /// and terminators. bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const { // Terminators and labels can't be scheduled around. if (MI.isTerminator() || MI.isPosition()) return true; // INLINEASM_BR can jump to another block if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) return true; // Don't attempt to schedule around any instruction that defines // a stack-oriented pointer, as it's unlikely to be profitable. This // saves compile time, because it doesn't require every single // stack slot reference to depend on the instruction that does the // modification. const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); } // Provide a global flag for disabling the PreRA hazard recognizer that targets // may choose to honor. bool TargetInstrInfo::usePreRAHazardRecognizer() const { return !DisableHazardRecognizer; } // Default implementation of CreateTargetRAHazardRecognizer. ScheduleHazardRecognizer *TargetInstrInfo:: CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, const ScheduleDAG *DAG) const { // Dummy hazard recognizer allows all instructions to issue. return new ScheduleHazardRecognizer(); } // Default implementation of CreateTargetMIHazardRecognizer. ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer( const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler"); } // Default implementation of CreateTargetPostRAHazardRecognizer. ScheduleHazardRecognizer *TargetInstrInfo:: CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const { return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); } // Default implementation of getMemOperandWithOffset. bool TargetInstrInfo::getMemOperandWithOffset( const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const { SmallVector BaseOps; unsigned Width; if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable, Width, TRI) || BaseOps.size() != 1) return false; BaseOp = BaseOps.front(); return true; } //===----------------------------------------------------------------------===// // SelectionDAG latency interface. //===----------------------------------------------------------------------===// std::optional TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const { if (!ItinData || ItinData->isEmpty()) return std::nullopt; if (!DefNode->isMachineOpcode()) return std::nullopt; unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); if (!UseNode->isMachineOpcode()) return ItinData->getOperandCycle(DefClass, DefIdx); unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); } unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, SDNode *N) const { if (!ItinData || ItinData->isEmpty()) return 1; if (!N->isMachineOpcode()) return 1; return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); } //===----------------------------------------------------------------------===// // MachineInstr latency interface. //===----------------------------------------------------------------------===// unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr &MI) const { if (!ItinData || ItinData->isEmpty()) return 1; unsigned Class = MI.getDesc().getSchedClass(); int UOps = ItinData->Itineraries[Class].NumMicroOps; if (UOps >= 0) return UOps; // The # of u-ops is dynamically determined. The specific target should // override this function to return the right number. return 1; } /// Return the default expected latency for a def based on it's opcode. unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, const MachineInstr &DefMI) const { if (DefMI.isTransient()) return 0; if (DefMI.mayLoad()) return SchedModel.LoadLatency; if (isHighLatencyDef(DefMI.getOpcode())) return SchedModel.HighLatency; return 1; } unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { return 0; } unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost) const { // Default to one cycle for no itinerary. However, an "empty" itinerary may // still have a MinLatency property, which getStageLatency checks. if (!ItinData) return MI.mayLoad() ? 2 : 1; return ItinData->getStageLatency(MI.getDesc().getSchedClass()); } bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, const MachineInstr &DefMI, unsigned DefIdx) const { const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); if (!ItinData || ItinData->isEmpty()) return false; unsigned DefClass = DefMI.getDesc().getSchedClass(); std::optional DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); return DefCycle && DefCycle <= 1U; } bool TargetInstrInfo::isFunctionSafeToSplit(const MachineFunction &MF) const { // TODO: We don't split functions where a section attribute has been set // since the split part may not be placed in a contiguous region. It may also // be more beneficial to augment the linker to ensure contiguous layout of // split functions within the same section as specified by the attribute. if (MF.getFunction().hasSection() || MF.getFunction().hasFnAttribute("implicit-section-name")) return false; // We don't want to proceed further for cold functions // or functions of unknown hotness. Lukewarm functions have no prefix. std::optional SectionPrefix = MF.getFunction().getSectionPrefix(); if (SectionPrefix && (*SectionPrefix == "unlikely" || *SectionPrefix == "unknown")) { return false; } return true; } std::optional TargetInstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { const MachineFunction *MF = MI.getMF(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {}); int64_t Offset; bool OffsetIsScalable; // To simplify the sub-register handling, verify that we only need to // consider physical registers. assert(MF->getProperties().hasProperty( MachineFunctionProperties::Property::NoVRegs)); if (auto DestSrc = isCopyInstr(MI)) { Register DestReg = DestSrc->Destination->getReg(); // If the copy destination is the forwarding reg, describe the forwarding // reg using the copy source as the backup location. Example: // // x0 = MOV x7 // call callee(x0) ; x0 described as x7 if (Reg == DestReg) return ParamLoadedValue(*DestSrc->Source, Expr); // If the target's hook couldn't describe this copy, give up. return std::nullopt; } else if (auto RegImm = isAddImmediate(MI, Reg)) { Register SrcReg = RegImm->Reg; Offset = RegImm->Imm; Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset); return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); } else if (MI.hasOneMemOperand()) { // Only describe memory which provably does not escape the function. As // described in llvm.org/PR43343, escaped memory may be clobbered by the // callee (or by another thread). const auto &TII = MF->getSubtarget().getInstrInfo(); const MachineFrameInfo &MFI = MF->getFrameInfo(); const MachineMemOperand *MMO = MI.memoperands()[0]; const PseudoSourceValue *PSV = MMO->getPseudoValue(); // If the address points to "special" memory (e.g. a spill slot), it's // sufficient to check that it isn't aliased by any high-level IR value. if (!PSV || PSV->mayAlias(&MFI)) return std::nullopt; const MachineOperand *BaseOp; if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) return std::nullopt; // FIXME: Scalable offsets are not yet handled in the offset code below. if (OffsetIsScalable) return std::nullopt; // TODO: Can currently only handle mem instructions with a single define. // An example from the x86 target: // ... // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx // ... // if (MI.getNumExplicitDefs() != 1) return std::nullopt; // TODO: In what way do we need to take Reg into consideration here? SmallVector Ops; DIExpression::appendOffset(Ops, Offset); Ops.push_back(dwarf::DW_OP_deref_size); Ops.push_back(MMO->getSize()); Expr = DIExpression::prependOpcodes(Expr, Ops); return ParamLoadedValue(*BaseOp, Expr); } return std::nullopt; } // Get the call frame size just before MI. unsigned TargetInstrInfo::getCallFrameSizeAt(MachineInstr &MI) const { // Search backwards from MI for the most recent call frame instruction. MachineBasicBlock *MBB = MI.getParent(); for (auto &AdjI : reverse(make_range(MBB->instr_begin(), MI.getIterator()))) { if (AdjI.getOpcode() == getCallFrameSetupOpcode()) return getFrameTotalSize(AdjI); if (AdjI.getOpcode() == getCallFrameDestroyOpcode()) return 0; } // If none was found, use the call frame size from the start of the basic // block. return MBB->getCallFrameSize(); } /// Both DefMI and UseMI must be valid. By default, call directly to the /// itinerary. This may be overriden by the target. std::optional TargetInstrInfo::getOperandLatency( const InstrItineraryData *ItinData, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { unsigned DefClass = DefMI.getDesc().getSchedClass(); unsigned UseClass = UseMI.getDesc().getSchedClass(); return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); } bool TargetInstrInfo::getRegSequenceInputs( const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl &InputRegs) const { assert((MI.isRegSequence() || MI.isRegSequenceLike()) && "Instruction do not have the proper type"); if (!MI.isRegSequence()) return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); // We are looking at: // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; OpIdx += 2) { const MachineOperand &MOReg = MI.getOperand(OpIdx); if (MOReg.isUndef()) continue; const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); assert(MOSubIdx.isImm() && "One of the subindex of the reg_sequence is not an immediate"); // Record Reg:SubReg, SubIdx. InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), (unsigned)MOSubIdx.getImm())); } return true; } bool TargetInstrInfo::getExtractSubregInputs( const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const { assert((MI.isExtractSubreg() || MI.isExtractSubregLike()) && "Instruction do not have the proper type"); if (!MI.isExtractSubreg()) return getExtractSubregLikeInputs(MI, DefIdx, InputReg); // We are looking at: // Def = EXTRACT_SUBREG v0.sub1, sub0. assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); const MachineOperand &MOReg = MI.getOperand(1); if (MOReg.isUndef()) return false; const MachineOperand &MOSubIdx = MI.getOperand(2); assert(MOSubIdx.isImm() && "The subindex of the extract_subreg is not an immediate"); InputReg.Reg = MOReg.getReg(); InputReg.SubReg = MOReg.getSubReg(); InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); return true; } bool TargetInstrInfo::getInsertSubregInputs( const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { assert((MI.isInsertSubreg() || MI.isInsertSubregLike()) && "Instruction do not have the proper type"); if (!MI.isInsertSubreg()) return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); // We are looking at: // Def = INSERT_SEQUENCE v0, v1, sub0. assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); const MachineOperand &MOBaseReg = MI.getOperand(1); const MachineOperand &MOInsertedReg = MI.getOperand(2); if (MOInsertedReg.isUndef()) return false; const MachineOperand &MOSubIdx = MI.getOperand(3); assert(MOSubIdx.isImm() && "One of the subindex of the reg_sequence is not an immediate"); BaseReg.Reg = MOBaseReg.getReg(); BaseReg.SubReg = MOBaseReg.getSubReg(); InsertedReg.Reg = MOInsertedReg.getReg(); InsertedReg.SubReg = MOInsertedReg.getSubReg(); InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); return true; } // Returns a MIRPrinter comment for this machine operand. std::string TargetInstrInfo::createMIROperandComment( const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, const TargetRegisterInfo *TRI) const { if (!MI.isInlineAsm()) return ""; std::string Flags; raw_string_ostream OS(Flags); if (OpIdx == InlineAsm::MIOp_ExtraInfo) { // Print HasSideEffects, MayLoad, MayStore, IsAlignStack unsigned ExtraInfo = Op.getImm(); bool First = true; for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) { if (!First) OS << " "; First = false; OS << Info; } return OS.str(); } int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx); if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx) return ""; assert(Op.isImm() && "Expected flag operand to be an immediate"); // Pretty print the inline asm operand descriptor. unsigned Flag = Op.getImm(); const InlineAsm::Flag F(Flag); OS << F.getKindName(); unsigned RCID; if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { if (TRI) { OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); } else OS << ":RC" << RCID; } if (F.isMemKind()) { InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); OS << ":" << InlineAsm::getMemConstraintName(MCID); } unsigned TiedTo; if (F.isUseOperandTiedToDef(TiedTo)) OS << " tiedto:$" << TiedTo; if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isRegUseKind()) && F.getRegMayBeFolded()) OS << " foldable"; return OS.str(); } TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default; void TargetInstrInfo::mergeOutliningCandidateAttributes( Function &F, std::vector &Candidates) const { // Include target features from an arbitrary candidate for the outlined // function. This makes sure the outlined function knows what kinds of // instructions are going into it. This is fine, since all parent functions // must necessarily support the instructions that are in the outlined region. outliner::Candidate &FirstCand = Candidates.front(); const Function &ParentFn = FirstCand.getMF()->getFunction(); if (ParentFn.hasFnAttribute("target-features")) F.addFnAttr(ParentFn.getFnAttribute("target-features")); if (ParentFn.hasFnAttribute("target-cpu")) F.addFnAttr(ParentFn.getFnAttribute("target-cpu")); // Set nounwind, so we don't generate eh_frame. if (llvm::all_of(Candidates, [](const outliner::Candidate &C) { return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind); })) F.addFnAttr(Attribute::NoUnwind); } outliner::InstrType TargetInstrInfo::getOutliningType( MachineBasicBlock::iterator &MIT, unsigned Flags) const { MachineInstr &MI = *MIT; // NOTE: MI.isMetaInstruction() will match CFI_INSTRUCTION, but some targets // have support for outlining those. Special-case that here. if (MI.isCFIInstruction()) // Just go right to the target implementation. return getOutliningTypeImpl(MIT, Flags); // Be conservative about inline assembly. if (MI.isInlineAsm()) return outliner::InstrType::Illegal; // Labels generally can't safely be outlined. if (MI.isLabel()) return outliner::InstrType::Illegal; // Don't let debug instructions impact analysis. if (MI.isDebugInstr()) return outliner::InstrType::Invisible; // Some other special cases. switch (MI.getOpcode()) { case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: case TargetOpcode::LIFETIME_START: case TargetOpcode::LIFETIME_END: return outliner::InstrType::Invisible; default: break; } // Is this a terminator for a basic block? if (MI.isTerminator()) { // If this is a branch to another block, we can't outline it. if (!MI.getParent()->succ_empty()) return outliner::InstrType::Illegal; // Don't outline if the branch is not unconditional. if (isPredicated(MI)) return outliner::InstrType::Illegal; } // Make sure none of the operands of this instruction do anything that // might break if they're moved outside their current function. // This includes MachineBasicBlock references, BlockAddressses, // Constant pool indices and jump table indices. // // A quick note on MO_TargetIndex: // This doesn't seem to be used in any of the architectures that the // MachineOutliner supports, but it was still filtered out in all of them. // There was one exception (RISC-V), but MO_TargetIndex also isn't used there. // As such, this check is removed both here and in the target-specific // implementations. Instead, we assert to make sure this doesn't // catch anyone off-guard somewhere down the line. for (const MachineOperand &MOP : MI.operands()) { // If you hit this assertion, please remove it and adjust // `getOutliningTypeImpl` for your target appropriately if necessary. // Adding the assertion back to other supported architectures // would be nice too :) assert(!MOP.isTargetIndex() && "This isn't used quite yet!"); // CFI instructions should already have been filtered out at this point. assert(!MOP.isCFIIndex() && "CFI instructions handled elsewhere!"); // PrologEpilogInserter should've already run at this point. assert(!MOP.isFI() && "FrameIndex instructions should be gone by now!"); if (MOP.isMBB() || MOP.isBlockAddress() || MOP.isCPI() || MOP.isJTI()) return outliner::InstrType::Illegal; } // If we don't know, delegate to the target-specific hook. return getOutliningTypeImpl(MIT, Flags); } bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, unsigned &Flags) const { // Some instrumentations create special TargetOpcode at the start which // expands to special code sequences which must be present. auto First = MBB.getFirstNonDebugInstr(); if (First == MBB.end()) return true; if (First->getOpcode() == TargetOpcode::FENTRY_CALL || First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER) return false; // Some instrumentations create special pseudo-instructions at or just before // the end that must be present. auto Last = MBB.getLastNonDebugInstr(); if (Last->getOpcode() == TargetOpcode::PATCHABLE_RET || Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL) return false; if (Last != First && Last->isReturn()) { --Last; if (Last->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT || Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL) return false; } return true; }