//===- SjLjEHPrepare.cpp - Eliminate Invoke & Unwind instructions ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This transformation is designed for use by code generators which use SjLj // based exception handling. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SjLjEHPrepare.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; #define DEBUG_TYPE "sjlj-eh-prepare" STATISTIC(NumInvokes, "Number of invokes replaced"); STATISTIC(NumSpilled, "Number of registers live across unwind edges"); namespace { class SjLjEHPrepareImpl { IntegerType *DataTy = nullptr; Type *doubleUnderDataTy = nullptr; Type *doubleUnderJBufTy = nullptr; Type *FunctionContextTy = nullptr; FunctionCallee RegisterFn; FunctionCallee UnregisterFn; Function *BuiltinSetupDispatchFn = nullptr; Function *FrameAddrFn = nullptr; Function *StackAddrFn = nullptr; Function *StackRestoreFn = nullptr; Function *LSDAAddrFn = nullptr; Function *CallSiteFn = nullptr; Function *FuncCtxFn = nullptr; AllocaInst *FuncCtx = nullptr; const TargetMachine *TM = nullptr; public: explicit SjLjEHPrepareImpl(const TargetMachine *TM = nullptr) : TM(TM) {} bool doInitialization(Module &M); bool runOnFunction(Function &F); private: bool setupEntryBlockAndCallSites(Function &F); void substituteLPadValues(LandingPadInst *LPI, Value *ExnVal, Value *SelVal); Value *setupFunctionContext(Function &F, ArrayRef LPads); void lowerIncomingArguments(Function &F); void lowerAcrossUnwindEdges(Function &F, ArrayRef Invokes); void insertCallSiteStore(Instruction *I, int Number); }; class SjLjEHPrepare : public FunctionPass { SjLjEHPrepareImpl Impl; public: static char ID; // Pass identification, replacement for typeid explicit SjLjEHPrepare(const TargetMachine *TM = nullptr) : FunctionPass(ID), Impl(TM) {} bool doInitialization(Module &M) override { return Impl.doInitialization(M); } bool runOnFunction(Function &F) override { return Impl.runOnFunction(F); }; StringRef getPassName() const override { return "SJLJ Exception Handling preparation"; } }; } // end anonymous namespace PreservedAnalyses SjLjEHPreparePass::run(Function &F, FunctionAnalysisManager &FAM) { SjLjEHPrepareImpl Impl(TM); Impl.doInitialization(*F.getParent()); bool Changed = Impl.runOnFunction(F); return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); } char SjLjEHPrepare::ID = 0; INITIALIZE_PASS(SjLjEHPrepare, DEBUG_TYPE, "Prepare SjLj exceptions", false, false) // Public Interface To the SjLjEHPrepare pass. FunctionPass *llvm::createSjLjEHPreparePass(const TargetMachine *TM) { return new SjLjEHPrepare(TM); } // doInitialization - Set up decalarations and types needed to process // exceptions. bool SjLjEHPrepareImpl::doInitialization(Module &M) { // Build the function context structure. // builtin_setjmp uses a five word jbuf Type *VoidPtrTy = PointerType::getUnqual(M.getContext()); unsigned DataBits = TM ? TM->getSjLjDataSize() : TargetMachine::DefaultSjLjDataSize; DataTy = Type::getIntNTy(M.getContext(), DataBits); doubleUnderDataTy = ArrayType::get(DataTy, 4); doubleUnderJBufTy = ArrayType::get(VoidPtrTy, 5); FunctionContextTy = StructType::get(VoidPtrTy, // __prev DataTy, // call_site doubleUnderDataTy, // __data VoidPtrTy, // __personality VoidPtrTy, // __lsda doubleUnderJBufTy // __jbuf ); return false; } /// insertCallSiteStore - Insert a store of the call-site value to the /// function context void SjLjEHPrepareImpl::insertCallSiteStore(Instruction *I, int Number) { IRBuilder<> Builder(I); // Get a reference to the call_site field. Type *Int32Ty = Type::getInt32Ty(I->getContext()); Value *Zero = ConstantInt::get(Int32Ty, 0); Value *One = ConstantInt::get(Int32Ty, 1); Value *Idxs[2] = { Zero, One }; Value *CallSite = Builder.CreateGEP(FunctionContextTy, FuncCtx, Idxs, "call_site"); // Insert a store of the call-site number ConstantInt *CallSiteNoC = ConstantInt::get(DataTy, Number); Builder.CreateStore(CallSiteNoC, CallSite, true /*volatile*/); } /// MarkBlocksLiveIn - Insert BB and all of its predecessors into LiveBBs until /// we reach blocks we've already seen. static void MarkBlocksLiveIn(BasicBlock *BB, SmallPtrSetImpl &LiveBBs) { if (!LiveBBs.insert(BB).second) return; // already been here. for (BasicBlock *B : inverse_depth_first(BB)) LiveBBs.insert(B); } /// substituteLPadValues - Substitute the values returned by the landingpad /// instruction with those returned by the personality function. void SjLjEHPrepareImpl::substituteLPadValues(LandingPadInst *LPI, Value *ExnVal, Value *SelVal) { SmallVector UseWorkList(LPI->users()); while (!UseWorkList.empty()) { Value *Val = UseWorkList.pop_back_val(); auto *EVI = dyn_cast(Val); if (!EVI) continue; if (EVI->getNumIndices() != 1) continue; if (*EVI->idx_begin() == 0) EVI->replaceAllUsesWith(ExnVal); else if (*EVI->idx_begin() == 1) EVI->replaceAllUsesWith(SelVal); if (EVI->use_empty()) EVI->eraseFromParent(); } if (LPI->use_empty()) return; // There are still some uses of LPI. Construct an aggregate with the exception // values and replace the LPI with that aggregate. Type *LPadType = LPI->getType(); Value *LPadVal = PoisonValue::get(LPadType); auto *SelI = cast(SelVal); IRBuilder<> Builder(SelI->getParent(), std::next(SelI->getIterator())); LPadVal = Builder.CreateInsertValue(LPadVal, ExnVal, 0, "lpad.val"); LPadVal = Builder.CreateInsertValue(LPadVal, SelVal, 1, "lpad.val"); LPI->replaceAllUsesWith(LPadVal); } /// setupFunctionContext - Allocate the function context on the stack and fill /// it with all of the data that we know at this point. Value * SjLjEHPrepareImpl::setupFunctionContext(Function &F, ArrayRef LPads) { BasicBlock *EntryBB = &F.front(); // Create an alloca for the incoming jump buffer ptr and the new jump buffer // that needs to be restored on all exits from the function. This is an alloca // because the value needs to be added to the global context list. auto &DL = F.getDataLayout(); const Align Alignment = DL.getPrefTypeAlign(FunctionContextTy); FuncCtx = new AllocaInst(FunctionContextTy, DL.getAllocaAddrSpace(), nullptr, Alignment, "fn_context", EntryBB->begin()); // Fill in the function context structure. for (LandingPadInst *LPI : LPads) { IRBuilder<> Builder(LPI->getParent(), LPI->getParent()->getFirstInsertionPt()); // Reference the __data field. Value *FCData = Builder.CreateConstGEP2_32(FunctionContextTy, FuncCtx, 0, 2, "__data"); // The exception values come back in context->__data[0]. Value *ExceptionAddr = Builder.CreateConstGEP2_32(doubleUnderDataTy, FCData, 0, 0, "exception_gep"); Value *ExnVal = Builder.CreateLoad(DataTy, ExceptionAddr, true, "exn_val"); ExnVal = Builder.CreateIntToPtr(ExnVal, Builder.getPtrTy()); Value *SelectorAddr = Builder.CreateConstGEP2_32(doubleUnderDataTy, FCData, 0, 1, "exn_selector_gep"); Value *SelVal = Builder.CreateLoad(DataTy, SelectorAddr, true, "exn_selector_val"); // SelVal must be Int32Ty, so trunc it SelVal = Builder.CreateTrunc(SelVal, Type::getInt32Ty(F.getContext())); substituteLPadValues(LPI, ExnVal, SelVal); } // Personality function IRBuilder<> Builder(EntryBB->getTerminator()); Value *PersonalityFn = F.getPersonalityFn(); Value *PersonalityFieldPtr = Builder.CreateConstGEP2_32( FunctionContextTy, FuncCtx, 0, 3, "pers_fn_gep"); Builder.CreateStore(PersonalityFn, PersonalityFieldPtr, /*isVolatile=*/true); // LSDA address Value *LSDA = Builder.CreateCall(LSDAAddrFn, {}, "lsda_addr"); Value *LSDAFieldPtr = Builder.CreateConstGEP2_32(FunctionContextTy, FuncCtx, 0, 4, "lsda_gep"); Builder.CreateStore(LSDA, LSDAFieldPtr, /*isVolatile=*/true); return FuncCtx; } /// lowerIncomingArguments - To avoid having to handle incoming arguments /// specially, we lower each arg to a copy instruction in the entry block. This /// ensures that the argument value itself cannot be live out of the entry /// block. void SjLjEHPrepareImpl::lowerIncomingArguments(Function &F) { BasicBlock::iterator AfterAllocaInsPt = F.begin()->begin(); while (isa(AfterAllocaInsPt) && cast(AfterAllocaInsPt)->isStaticAlloca()) ++AfterAllocaInsPt; assert(AfterAllocaInsPt != F.front().end()); for (auto &AI : F.args()) { // Swift error really is a register that we model as memory -- instruction // selection will perform mem-to-reg for us and spill/reload appropriately // around calls that clobber it. There is no need to spill this // value to the stack and doing so would not be allowed. if (AI.isSwiftError()) continue; Type *Ty = AI.getType(); // Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction. Value *TrueValue = ConstantInt::getTrue(F.getContext()); Value *UndefValue = UndefValue::get(Ty); Instruction *SI = SelectInst::Create( TrueValue, &AI, UndefValue, AI.getName() + ".tmp", AfterAllocaInsPt); AI.replaceAllUsesWith(SI); // Reset the operand, because it was clobbered by the RAUW above. SI->setOperand(1, &AI); } } /// lowerAcrossUnwindEdges - Find all variables which are alive across an unwind /// edge and spill them. void SjLjEHPrepareImpl::lowerAcrossUnwindEdges(Function &F, ArrayRef Invokes) { // Finally, scan the code looking for instructions with bad live ranges. for (BasicBlock &BB : F) { for (Instruction &Inst : BB) { // Ignore obvious cases we don't have to handle. In particular, most // instructions either have no uses or only have a single use inside the // current block. Ignore them quickly. if (Inst.use_empty()) continue; if (Inst.hasOneUse() && cast(Inst.user_back())->getParent() == &BB && !isa(Inst.user_back())) continue; // If this is an alloca in the entry block, it's not a real register // value. if (auto *AI = dyn_cast(&Inst)) if (AI->isStaticAlloca()) continue; // Avoid iterator invalidation by copying users to a temporary vector. SmallVector Users; for (User *U : Inst.users()) { Instruction *UI = cast(U); if (UI->getParent() != &BB || isa(UI)) Users.push_back(UI); } // Find all of the blocks that this value is live in. SmallPtrSet LiveBBs; LiveBBs.insert(&BB); while (!Users.empty()) { Instruction *U = Users.pop_back_val(); if (!isa(U)) { MarkBlocksLiveIn(U->getParent(), LiveBBs); } else { // Uses for a PHI node occur in their predecessor block. PHINode *PN = cast(U); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == &Inst) MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); } } // Now that we know all of the blocks that this thing is live in, see if // it includes any of the unwind locations. bool NeedsSpill = false; for (InvokeInst *Invoke : Invokes) { BasicBlock *UnwindBlock = Invoke->getUnwindDest(); if (UnwindBlock != &BB && LiveBBs.count(UnwindBlock)) { LLVM_DEBUG(dbgs() << "SJLJ Spill: " << Inst << " around " << UnwindBlock->getName() << "\n"); NeedsSpill = true; break; } } // If we decided we need a spill, do it. // FIXME: Spilling this way is overkill, as it forces all uses of // the value to be reloaded from the stack slot, even those that aren't // in the unwind blocks. We should be more selective. if (NeedsSpill) { DemoteRegToStack(Inst, true); ++NumSpilled; } } } // Go through the landing pads and remove any PHIs there. for (InvokeInst *Invoke : Invokes) { BasicBlock *UnwindBlock = Invoke->getUnwindDest(); LandingPadInst *LPI = UnwindBlock->getLandingPadInst(); // Place PHIs into a set to avoid invalidating the iterator. SmallPtrSet PHIsToDemote; for (BasicBlock::iterator PN = UnwindBlock->begin(); isa(PN); ++PN) PHIsToDemote.insert(cast(PN)); if (PHIsToDemote.empty()) continue; // Demote the PHIs to the stack. for (PHINode *PN : PHIsToDemote) DemotePHIToStack(PN); // Move the landingpad instruction back to the top of the landing pad block. LPI->moveBefore(&UnwindBlock->front()); } } /// setupEntryBlockAndCallSites - Setup the entry block by creating and filling /// the function context and marking the call sites with the appropriate /// values. These values are used by the DWARF EH emitter. bool SjLjEHPrepareImpl::setupEntryBlockAndCallSites(Function &F) { SmallVector Returns; SmallVector Invokes; SmallSetVector LPads; // Look through the terminators of the basic blocks to find invokes. for (BasicBlock &BB : F) if (auto *II = dyn_cast(BB.getTerminator())) { if (Function *Callee = II->getCalledFunction()) if (Callee->getIntrinsicID() == Intrinsic::donothing) { // Remove the NOP invoke. BranchInst::Create(II->getNormalDest(), II->getIterator()); II->eraseFromParent(); continue; } Invokes.push_back(II); LPads.insert(II->getUnwindDest()->getLandingPadInst()); } else if (auto *RI = dyn_cast(BB.getTerminator())) { Returns.push_back(RI); } if (Invokes.empty()) return false; NumInvokes += Invokes.size(); lowerIncomingArguments(F); lowerAcrossUnwindEdges(F, Invokes); Value *FuncCtx = setupFunctionContext(F, ArrayRef(LPads.begin(), LPads.end())); BasicBlock *EntryBB = &F.front(); IRBuilder<> Builder(EntryBB->getTerminator()); // Get a reference to the jump buffer. Value *JBufPtr = Builder.CreateConstGEP2_32(FunctionContextTy, FuncCtx, 0, 5, "jbuf_gep"); // Save the frame pointer. Value *FramePtr = Builder.CreateConstGEP2_32(doubleUnderJBufTy, JBufPtr, 0, 0, "jbuf_fp_gep"); Value *Val = Builder.CreateCall(FrameAddrFn, Builder.getInt32(0), "fp"); Builder.CreateStore(Val, FramePtr, /*isVolatile=*/true); // Save the stack pointer. Value *StackPtr = Builder.CreateConstGEP2_32(doubleUnderJBufTy, JBufPtr, 0, 2, "jbuf_sp_gep"); Val = Builder.CreateCall(StackAddrFn, {}, "sp"); Builder.CreateStore(Val, StackPtr, /*isVolatile=*/true); // Call the setup_dispatch intrinsic. It fills in the rest of the jmpbuf. Builder.CreateCall(BuiltinSetupDispatchFn, {}); // Store a pointer to the function context so that the back-end will know // where to look for it. Builder.CreateCall(FuncCtxFn, FuncCtx); // At this point, we are all set up, update the invoke instructions to mark // their call_site values. for (unsigned I = 0, E = Invokes.size(); I != E; ++I) { insertCallSiteStore(Invokes[I], I + 1); ConstantInt *CallSiteNum = ConstantInt::get(Type::getInt32Ty(F.getContext()), I + 1); // Record the call site value for the back end so it stays associated with // the invoke. CallInst::Create(CallSiteFn, CallSiteNum, "", Invokes[I]->getIterator()); } // Mark call instructions that aren't nounwind as no-action (call_site == // -1). Skip the entry block, as prior to then, no function context has been // created for this function and any unexpected exceptions thrown will go // directly to the caller's context, which is what we want anyway, so no need // to do anything here. for (BasicBlock &BB : F) { if (&BB == &F.front()) continue; for (Instruction &I : BB) if (I.mayThrow()) insertCallSiteStore(&I, -1); } // Register the function context and make sure it's known to not throw CallInst *Register = CallInst::Create( RegisterFn, FuncCtx, "", EntryBB->getTerminator()->getIterator()); Register->setDoesNotThrow(); // Following any allocas not in the entry block, update the saved SP in the // jmpbuf to the new value. for (BasicBlock &BB : F) { if (&BB == &F.front()) continue; for (Instruction &I : BB) { if (auto *CI = dyn_cast(&I)) { if (CI->getCalledFunction() != StackRestoreFn) continue; } else if (!isa(&I)) { continue; } Instruction *StackAddr = CallInst::Create(StackAddrFn, "sp"); StackAddr->insertAfter(&I); new StoreInst(StackAddr, StackPtr, true, std::next(StackAddr->getIterator())); } } // Finally, for any returns from this function, if this function contains an // invoke, add a call to unregister the function context. for (ReturnInst *Return : Returns) { Instruction *InsertPoint = Return; if (CallInst *CI = Return->getParent()->getTerminatingMustTailCall()) InsertPoint = CI; CallInst::Create(UnregisterFn, FuncCtx, "", InsertPoint->getIterator()); } return true; } bool SjLjEHPrepareImpl::runOnFunction(Function &F) { Module &M = *F.getParent(); RegisterFn = M.getOrInsertFunction( "_Unwind_SjLj_Register", Type::getVoidTy(M.getContext()), PointerType::getUnqual(FunctionContextTy)); UnregisterFn = M.getOrInsertFunction( "_Unwind_SjLj_Unregister", Type::getVoidTy(M.getContext()), PointerType::getUnqual(FunctionContextTy)); PointerType *AllocaPtrTy = M.getDataLayout().getAllocaPtrType(M.getContext()); FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress, {AllocaPtrTy}); StackAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave, {AllocaPtrTy}); StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore, {AllocaPtrTy}); BuiltinSetupDispatchFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_setup_dispatch); LSDAAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_lsda); CallSiteFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_callsite); FuncCtxFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_functioncontext); bool Res = setupEntryBlockAndCallSites(F); return Res; }