//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This implements the SelectionDAG class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "SDNodeDbgValue.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/None.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/SelectionDAGTargetInfo.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Utils/SizeOpts.h" #include #include #include #include #include #include #include #include #include using namespace llvm; /// makeVTList - Return an instance of the SDVTList struct initialized with the /// specified members. static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { SDVTList Res = {VTs, NumVTs}; return Res; } // Default null implementations of the callbacks. void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} void SelectionDAG::DAGNodeDeletedListener::anchor() {} #define DEBUG_TYPE "selectiondag" static cl::opt EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy")); static cl::opt MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0)); static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); } //===----------------------------------------------------------------------===// // ConstantFPSDNode Class //===----------------------------------------------------------------------===// /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { return getValueAPF().bitwiseIsEqual(V); } bool ConstantFPSDNode::isValueValidForType(EVT VT, const APFloat& Val) { assert(VT.isFloatingPoint() && "Can only convert between FP types"); // convert modifies in place, so make a copy. APFloat Val2 = APFloat(Val); bool losesInfo; (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, &losesInfo); return !losesInfo; } //===----------------------------------------------------------------------===// // ISD Namespace //===----------------------------------------------------------------------===// bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { auto *BV = dyn_cast(N); if (!BV) return false; APInt SplatUndef; unsigned SplatBitSize; bool HasUndefs; unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, EltSize) && EltSize == SplatBitSize; } // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be // specializations of the more general isConstantSplatVector()? bool ISD::isBuildVectorAllOnes(const SDNode *N) { // Look through a bit convert. while (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0).getNode(); if (N->getOpcode() != ISD::BUILD_VECTOR) return false; unsigned i = 0, e = N->getNumOperands(); // Skip over all of the undef values. while (i != e && N->getOperand(i).isUndef()) ++i; // Do not accept an all-undef vector. if (i == e) return false; // Do not accept build_vectors that aren't all constants or which have non-~0 // elements. We have to be a bit careful here, as the type of the constant // may not be the same as the type of the vector elements due to type // legalization (the elements are promoted to a legal type for the target and // a vector of a type may be legal when the base element type is not). // We only want to check enough bits to cover the vector elements, because // we care if the resultant vector is all ones, not whether the individual // constants are. SDValue NotZero = N->getOperand(i); unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); if (ConstantSDNode *CN = dyn_cast(NotZero)) { if (CN->getAPIntValue().countTrailingOnes() < EltSize) return false; } else if (ConstantFPSDNode *CFPN = dyn_cast(NotZero)) { if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) return false; } else return false; // Okay, we have at least one ~0 value, check to see if the rest match or are // undefs. Even with the above element type twiddling, this should be OK, as // the same type legalization should have applied to all the elements. for (++i; i != e; ++i) if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) return false; return true; } bool ISD::isBuildVectorAllZeros(const SDNode *N) { // Look through a bit convert. while (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0).getNode(); if (N->getOpcode() != ISD::BUILD_VECTOR) return false; bool IsAllUndef = true; for (const SDValue &Op : N->op_values()) { if (Op.isUndef()) continue; IsAllUndef = false; // Do not accept build_vectors that aren't all constants or which have non-0 // elements. We have to be a bit careful here, as the type of the constant // may not be the same as the type of the vector elements due to type // legalization (the elements are promoted to a legal type for the target // and a vector of a type may be legal when the base element type is not). // We only want to check enough bits to cover the vector elements, because // we care if the resultant vector is all zeros, not whether the individual // constants are. unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); if (ConstantSDNode *CN = dyn_cast(Op)) { if (CN->getAPIntValue().countTrailingZeros() < EltSize) return false; } else if (ConstantFPSDNode *CFPN = dyn_cast(Op)) { if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) return false; } else return false; } // Do not accept an all-undef vector. if (IsAllUndef) return false; return true; } bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { if (N->getOpcode() != ISD::BUILD_VECTOR) return false; for (const SDValue &Op : N->op_values()) { if (Op.isUndef()) continue; if (!isa(Op)) return false; } return true; } bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { if (N->getOpcode() != ISD::BUILD_VECTOR) return false; for (const SDValue &Op : N->op_values()) { if (Op.isUndef()) continue; if (!isa(Op)) return false; } return true; } bool ISD::allOperandsUndef(const SDNode *N) { // Return false if the node has no operands. // This is "logically inconsistent" with the definition of "all" but // is probably the desired behavior. if (N->getNumOperands() == 0) return false; return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); } bool ISD::matchUnaryPredicate(SDValue Op, std::function Match, bool AllowUndefs) { // FIXME: Add support for scalar UNDEF cases? if (auto *Cst = dyn_cast(Op)) return Match(Cst); // FIXME: Add support for vector UNDEF cases? if (ISD::BUILD_VECTOR != Op.getOpcode()) return false; EVT SVT = Op.getValueType().getScalarType(); for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { if (AllowUndefs && Op.getOperand(i).isUndef()) { if (!Match(nullptr)) return false; continue; } auto *Cst = dyn_cast(Op.getOperand(i)); if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) return false; } return true; } bool ISD::matchBinaryPredicate( SDValue LHS, SDValue RHS, std::function Match, bool AllowUndefs, bool AllowTypeMismatch) { if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) return false; // TODO: Add support for scalar UNDEF cases? if (auto *LHSCst = dyn_cast(LHS)) if (auto *RHSCst = dyn_cast(RHS)) return Match(LHSCst, RHSCst); // TODO: Add support for vector UNDEF cases? if (ISD::BUILD_VECTOR != LHS.getOpcode() || ISD::BUILD_VECTOR != RHS.getOpcode()) return false; EVT SVT = LHS.getValueType().getScalarType(); for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { SDValue LHSOp = LHS.getOperand(i); SDValue RHSOp = RHS.getOperand(i); bool LHSUndef = AllowUndefs && LHSOp.isUndef(); bool RHSUndef = AllowUndefs && RHSOp.isUndef(); auto *LHSCst = dyn_cast(LHSOp); auto *RHSCst = dyn_cast(RHSOp); if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) return false; if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || LHSOp.getValueType() != RHSOp.getValueType())) return false; if (!Match(LHSCst, RHSCst)) return false; } return true; } ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { switch (ExtType) { case ISD::EXTLOAD: return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; case ISD::SEXTLOAD: return ISD::SIGN_EXTEND; case ISD::ZEXTLOAD: return ISD::ZERO_EXTEND; default: break; } llvm_unreachable("Invalid LoadExtType"); } ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { // To perform this operation, we just need to swap the L and G bits of the // operation. unsigned OldL = (Operation >> 2) & 1; unsigned OldG = (Operation >> 1) & 1; return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits (OldL << 1) | // New G bit (OldG << 2)); // New L bit. } static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { unsigned Operation = Op; if (isIntegerLike) Operation ^= 7; // Flip L, G, E bits, but not U. else Operation ^= 15; // Flip all of the condition bits. if (Operation > ISD::SETTRUE2) Operation &= ~8; // Don't let N and U bits get set. return ISD::CondCode(Operation); } ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { return getSetCCInverseImpl(Op, Type.isInteger()); } ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, bool isIntegerLike) { return getSetCCInverseImpl(Op, isIntegerLike); } /// For an integer comparison, return 1 if the comparison is a signed operation /// and 2 if the result is an unsigned comparison. Return zero if the operation /// does not depend on the sign of the input (setne and seteq). static int isSignedOp(ISD::CondCode Opcode) { switch (Opcode) { default: llvm_unreachable("Illegal integer setcc operation!"); case ISD::SETEQ: case ISD::SETNE: return 0; case ISD::SETLT: case ISD::SETLE: case ISD::SETGT: case ISD::SETGE: return 1; case ISD::SETULT: case ISD::SETULE: case ISD::SETUGT: case ISD::SETUGE: return 2; } } ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, EVT Type) { bool IsInteger = Type.isInteger(); if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) // Cannot fold a signed integer setcc with an unsigned integer setcc. return ISD::SETCC_INVALID; unsigned Op = Op1 | Op2; // Combine all of the condition bits. // If the N and U bits get set, then the resultant comparison DOES suddenly // care about orderedness, and it is true when ordered. if (Op > ISD::SETTRUE2) Op &= ~16; // Clear the U bit if the N bit is set. // Canonicalize illegal integer setcc's. if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT Op = ISD::SETNE; return ISD::CondCode(Op); } ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, EVT Type) { bool IsInteger = Type.isInteger(); if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) // Cannot fold a signed setcc with an unsigned setcc. return ISD::SETCC_INVALID; // Combine all of the condition bits. ISD::CondCode Result = ISD::CondCode(Op1 & Op2); // Canonicalize illegal integer setcc's. if (IsInteger) { switch (Result) { default: break; case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT case ISD::SETOEQ: // SETEQ & SETU[LG]E case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE } } return Result; } //===----------------------------------------------------------------------===// // SDNode Profile Support //===----------------------------------------------------------------------===// /// AddNodeIDOpcode - Add the node opcode to the NodeID data. static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { ID.AddInteger(OpC); } /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them /// solely with their pointer. static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { ID.AddPointer(VTList.VTs); } /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef Ops) { for (auto& Op : Ops) { ID.AddPointer(Op.getNode()); ID.AddInteger(Op.getResNo()); } } /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef Ops) { for (auto& Op : Ops) { ID.AddPointer(Op.getNode()); ID.AddInteger(Op.getResNo()); } } static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, SDVTList VTList, ArrayRef OpList) { AddNodeIDOpcode(ID, OpC); AddNodeIDValueTypes(ID, VTList); AddNodeIDOperands(ID, OpList); } /// If this is an SDNode with special info, add this info to the NodeID data. static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { switch (N->getOpcode()) { case ISD::TargetExternalSymbol: case ISD::ExternalSymbol: case ISD::MCSymbol: llvm_unreachable("Should only be used on nodes with operands"); default: break; // Normal nodes don't need extra info. case ISD::TargetConstant: case ISD::Constant: { const ConstantSDNode *C = cast(N); ID.AddPointer(C->getConstantIntValue()); ID.AddBoolean(C->isOpaque()); break; } case ISD::TargetConstantFP: case ISD::ConstantFP: ID.AddPointer(cast(N)->getConstantFPValue()); break; case ISD::TargetGlobalAddress: case ISD::GlobalAddress: case ISD::TargetGlobalTLSAddress: case ISD::GlobalTLSAddress: { const GlobalAddressSDNode *GA = cast(N); ID.AddPointer(GA->getGlobal()); ID.AddInteger(GA->getOffset()); ID.AddInteger(GA->getTargetFlags()); break; } case ISD::BasicBlock: ID.AddPointer(cast(N)->getBasicBlock()); break; case ISD::Register: ID.AddInteger(cast(N)->getReg()); break; case ISD::RegisterMask: ID.AddPointer(cast(N)->getRegMask()); break; case ISD::SRCVALUE: ID.AddPointer(cast(N)->getValue()); break; case ISD::FrameIndex: case ISD::TargetFrameIndex: ID.AddInteger(cast(N)->getIndex()); break; case ISD::LIFETIME_START: case ISD::LIFETIME_END: if (cast(N)->hasOffset()) { ID.AddInteger(cast(N)->getSize()); ID.AddInteger(cast(N)->getOffset()); } break; case ISD::JumpTable: case ISD::TargetJumpTable: ID.AddInteger(cast(N)->getIndex()); ID.AddInteger(cast(N)->getTargetFlags()); break; case ISD::ConstantPool: case ISD::TargetConstantPool: { const ConstantPoolSDNode *CP = cast(N); ID.AddInteger(CP->getAlign().value()); ID.AddInteger(CP->getOffset()); if (CP->isMachineConstantPoolEntry()) CP->getMachineCPVal()->addSelectionDAGCSEId(ID); else ID.AddPointer(CP->getConstVal()); ID.AddInteger(CP->getTargetFlags()); break; } case ISD::TargetIndex: { const TargetIndexSDNode *TI = cast(N); ID.AddInteger(TI->getIndex()); ID.AddInteger(TI->getOffset()); ID.AddInteger(TI->getTargetFlags()); break; } case ISD::LOAD: { const LoadSDNode *LD = cast(N); ID.AddInteger(LD->getMemoryVT().getRawBits()); ID.AddInteger(LD->getRawSubclassData()); ID.AddInteger(LD->getPointerInfo().getAddrSpace()); break; } case ISD::STORE: { const StoreSDNode *ST = cast(N); ID.AddInteger(ST->getMemoryVT().getRawBits()); ID.AddInteger(ST->getRawSubclassData()); ID.AddInteger(ST->getPointerInfo().getAddrSpace()); break; } case ISD::MLOAD: { const MaskedLoadSDNode *MLD = cast(N); ID.AddInteger(MLD->getMemoryVT().getRawBits()); ID.AddInteger(MLD->getRawSubclassData()); ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); break; } case ISD::MSTORE: { const MaskedStoreSDNode *MST = cast(N); ID.AddInteger(MST->getMemoryVT().getRawBits()); ID.AddInteger(MST->getRawSubclassData()); ID.AddInteger(MST->getPointerInfo().getAddrSpace()); break; } case ISD::MGATHER: { const MaskedGatherSDNode *MG = cast(N); ID.AddInteger(MG->getMemoryVT().getRawBits()); ID.AddInteger(MG->getRawSubclassData()); ID.AddInteger(MG->getPointerInfo().getAddrSpace()); break; } case ISD::MSCATTER: { const MaskedScatterSDNode *MS = cast(N); ID.AddInteger(MS->getMemoryVT().getRawBits()); ID.AddInteger(MS->getRawSubclassData()); ID.AddInteger(MS->getPointerInfo().getAddrSpace()); break; } case ISD::ATOMIC_CMP_SWAP: case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: case ISD::ATOMIC_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_CLR: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_LOAD: case ISD::ATOMIC_STORE: { const AtomicSDNode *AT = cast(N); ID.AddInteger(AT->getMemoryVT().getRawBits()); ID.AddInteger(AT->getRawSubclassData()); ID.AddInteger(AT->getPointerInfo().getAddrSpace()); break; } case ISD::PREFETCH: { const MemSDNode *PF = cast(N); ID.AddInteger(PF->getPointerInfo().getAddrSpace()); break; } case ISD::VECTOR_SHUFFLE: { const ShuffleVectorSDNode *SVN = cast(N); for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); i != e; ++i) ID.AddInteger(SVN->getMaskElt(i)); break; } case ISD::TargetBlockAddress: case ISD::BlockAddress: { const BlockAddressSDNode *BA = cast(N); ID.AddPointer(BA->getBlockAddress()); ID.AddInteger(BA->getOffset()); ID.AddInteger(BA->getTargetFlags()); break; } } // end switch (N->getOpcode()) // Target specific memory nodes could also have address spaces to check. if (N->isTargetMemoryOpcode()) ID.AddInteger(cast(N)->getPointerInfo().getAddrSpace()); } /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID /// data. static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { AddNodeIDOpcode(ID, N->getOpcode()); // Add the return value info. AddNodeIDValueTypes(ID, N->getVTList()); // Add the operand info. AddNodeIDOperands(ID, N->ops()); // Handle SDNode leafs with special info. AddNodeIDCustom(ID, N); } //===----------------------------------------------------------------------===// // SelectionDAG Class //===----------------------------------------------------------------------===// /// doNotCSE - Return true if CSE should not be performed for this node. static bool doNotCSE(SDNode *N) { if (N->getValueType(0) == MVT::Glue) return true; // Never CSE anything that produces a flag. switch (N->getOpcode()) { default: break; case ISD::HANDLENODE: case ISD::EH_LABEL: return true; // Never CSE these nodes. } // Check that remaining values produced are not flags. for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) if (N->getValueType(i) == MVT::Glue) return true; // Never CSE anything that produces a flag. return false; } /// RemoveDeadNodes - This method deletes all unreachable nodes in the /// SelectionDAG. void SelectionDAG::RemoveDeadNodes() { // Create a dummy node (which is not added to allnodes), that adds a reference // to the root node, preventing it from being deleted. HandleSDNode Dummy(getRoot()); SmallVector DeadNodes; // Add all obviously-dead nodes to the DeadNodes worklist. for (SDNode &Node : allnodes()) if (Node.use_empty()) DeadNodes.push_back(&Node); RemoveDeadNodes(DeadNodes); // If the root changed (e.g. it was a dead load, update the root). setRoot(Dummy.getValue()); } /// RemoveDeadNodes - This method deletes the unreachable nodes in the /// given list, and any nodes that become unreachable as a result. void SelectionDAG::RemoveDeadNodes(SmallVectorImpl &DeadNodes) { // Process the worklist, deleting the nodes and adding their uses to the // worklist. while (!DeadNodes.empty()) { SDNode *N = DeadNodes.pop_back_val(); // Skip to next node if we've already managed to delete the node. This could // happen if replacing a node causes a node previously added to the node to // be deleted. if (N->getOpcode() == ISD::DELETED_NODE) continue; for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) DUL->NodeDeleted(N, nullptr); // Take the node out of the appropriate CSE map. RemoveNodeFromCSEMaps(N); // Next, brutally remove the operand list. This is safe to do, as there are // no cycles in the graph. for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { SDUse &Use = *I++; SDNode *Operand = Use.getNode(); Use.set(SDValue()); // Now that we removed this operand, see if there are no uses of it left. if (Operand->use_empty()) DeadNodes.push_back(Operand); } DeallocateNode(N); } } void SelectionDAG::RemoveDeadNode(SDNode *N){ SmallVector DeadNodes(1, N); // Create a dummy node that adds a reference to the root node, preventing // it from being deleted. (This matters if the root is an operand of the // dead node.) HandleSDNode Dummy(getRoot()); RemoveDeadNodes(DeadNodes); } void SelectionDAG::DeleteNode(SDNode *N) { // First take this out of the appropriate CSE map. RemoveNodeFromCSEMaps(N); // Finally, remove uses due to operands of this node, remove from the // AllNodes list, and delete the node. DeleteNodeNotInCSEMaps(N); } void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { assert(N->getIterator() != AllNodes.begin() && "Cannot delete the entry node!"); assert(N->use_empty() && "Cannot delete a node that is not dead!"); // Drop all of the operands and decrement used node's use counts. N->DropOperands(); DeallocateNode(N); } void SDDbgInfo::erase(const SDNode *Node) { DbgValMapType::iterator I = DbgValMap.find(Node); if (I == DbgValMap.end()) return; for (auto &Val: I->second) Val->setIsInvalidated(); DbgValMap.erase(I); } void SelectionDAG::DeallocateNode(SDNode *N) { // If we have operands, deallocate them. removeOperands(N); NodeAllocator.Deallocate(AllNodes.remove(N)); // Set the opcode to DELETED_NODE to help catch bugs when node // memory is reallocated. // FIXME: There are places in SDag that have grown a dependency on the opcode // value in the released node. __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); N->NodeType = ISD::DELETED_NODE; // If any of the SDDbgValue nodes refer to this SDNode, invalidate // them and forget about that node. DbgInfo->erase(N); } #ifndef NDEBUG /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. static void VerifySDNode(SDNode *N) { switch (N->getOpcode()) { default: break; case ISD::BUILD_PAIR: { EVT VT = N->getValueType(0); assert(N->getNumValues() == 1 && "Too many results!"); assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && "Wrong return type!"); assert(N->getNumOperands() == 2 && "Wrong number of operands!"); assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && "Mismatched operand types!"); assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && "Wrong operand type!"); assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && "Wrong return type size"); break; } case ISD::BUILD_VECTOR: { assert(N->getNumValues() == 1 && "Too many results!"); assert(N->getValueType(0).isVector() && "Wrong return type!"); assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && "Wrong number of operands!"); EVT EltVT = N->getValueType(0).getVectorElementType(); for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { assert((I->getValueType() == EltVT || (EltVT.isInteger() && I->getValueType().isInteger() && EltVT.bitsLE(I->getValueType()))) && "Wrong operand type!"); assert(I->getValueType() == N->getOperand(0).getValueType() && "Operands must all have the same type"); } break; } } } #endif // NDEBUG /// Insert a newly allocated node into the DAG. /// /// Handles insertion into the all nodes list and CSE map, as well as /// verification and other common operations when a new node is allocated. void SelectionDAG::InsertNode(SDNode *N) { AllNodes.push_back(N); #ifndef NDEBUG N->PersistentId = NextPersistentId++; VerifySDNode(N); #endif for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) DUL->NodeInserted(N); } /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that /// correspond to it. This is useful when we're about to delete or repurpose /// the node. We don't want future request for structurally identical nodes /// to return N anymore. bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { bool Erased = false; switch (N->getOpcode()) { case ISD::HANDLENODE: return false; // noop. case ISD::CONDCODE: assert(CondCodeNodes[cast(N)->get()] && "Cond code doesn't exist!"); Erased = CondCodeNodes[cast(N)->get()] != nullptr; CondCodeNodes[cast(N)->get()] = nullptr; break; case ISD::ExternalSymbol: Erased = ExternalSymbols.erase(cast(N)->getSymbol()); break; case ISD::TargetExternalSymbol: { ExternalSymbolSDNode *ESN = cast(N); Erased = TargetExternalSymbols.erase(std::pair( ESN->getSymbol(), ESN->getTargetFlags())); break; } case ISD::MCSymbol: { auto *MCSN = cast(N); Erased = MCSymbols.erase(MCSN->getMCSymbol()); break; } case ISD::VALUETYPE: { EVT VT = cast(N)->getVT(); if (VT.isExtended()) { Erased = ExtendedValueTypeNodes.erase(VT); } else { Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; } break; } default: // Remove it from the CSE Map. assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); Erased = CSEMap.RemoveNode(N); break; } #ifndef NDEBUG // Verify that the node was actually in one of the CSE maps, unless it has a // flag result (which cannot be CSE'd) or is one of the special cases that are // not subject to CSE. if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && !N->isMachineOpcode() && !doNotCSE(N)) { N->dump(this); dbgs() << "\n"; llvm_unreachable("Node is not in map!"); } #endif return Erased; } /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE /// maps and modified in place. Add it back to the CSE maps, unless an identical /// node already exists, in which case transfer all its users to the existing /// node. This transfer can potentially trigger recursive merging. void SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { // For node types that aren't CSE'd, just act as if no identical node // already exists. if (!doNotCSE(N)) { SDNode *Existing = CSEMap.GetOrInsertNode(N); if (Existing != N) { // If there was already an existing matching node, use ReplaceAllUsesWith // to replace the dead one with the existing one. This can cause // recursive merging of other unrelated nodes down the line. ReplaceAllUsesWith(N, Existing); // N is now dead. Inform the listeners and delete it. for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) DUL->NodeDeleted(N, Existing); DeleteNodeNotInCSEMaps(N); return; } } // If the node doesn't already exist, we updated it. Inform listeners. for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) DUL->NodeUpdated(N); } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos) { if (doNotCSE(N)) return nullptr; SDValue Ops[] = { Op }; FoldingSetNodeID ID; AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); AddNodeIDCustom(ID, N); SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); if (Node) Node->intersectFlagsWith(N->getFlags()); return Node; } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2, void *&InsertPos) { if (doNotCSE(N)) return nullptr; SDValue Ops[] = { Op1, Op2 }; FoldingSetNodeID ID; AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); AddNodeIDCustom(ID, N); SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); if (Node) Node->intersectFlagsWith(N->getFlags()); return Node; } /// FindModifiedNodeSlot - Find a slot for the specified node if its operands /// were replaced with those specified. If this node is never memoized, /// return null, otherwise return a pointer to the slot it would take. If a /// node already exists with these operands, the slot will be non-null. SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef Ops, void *&InsertPos) { if (doNotCSE(N)) return nullptr; FoldingSetNodeID ID; AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); AddNodeIDCustom(ID, N); SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); if (Node) Node->intersectFlagsWith(N->getFlags()); return Node; } Align SelectionDAG::getEVTAlign(EVT VT) const { Type *Ty = VT == MVT::iPTR ? PointerType::get(Type::getInt8Ty(*getContext()), 0) : VT.getTypeForEVT(*getContext()); return getDataLayout().getABITypeAlign(Ty); } // EntryNode could meaningfully have debug info if we can find it... SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), Root(getEntryNode()) { InsertNode(&EntryNode); DbgInfo = new SDDbgInfo(); } void SelectionDAG::init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, LegacyDivergenceAnalysis * Divergence, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin) { MF = &NewMF; SDAGISelPass = PassPtr; ORE = &NewORE; TLI = getSubtarget().getTargetLowering(); TSI = getSubtarget().getSelectionDAGInfo(); LibInfo = LibraryInfo; Context = &MF->getFunction().getContext(); DA = Divergence; PSI = PSIin; BFI = BFIin; } SelectionDAG::~SelectionDAG() { assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); allnodes_clear(); OperandRecycler.clear(OperandAllocator); delete DbgInfo; } bool SelectionDAG::shouldOptForSize() const { return MF->getFunction().hasOptSize() || llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); } void SelectionDAG::allnodes_clear() { assert(&*AllNodes.begin() == &EntryNode); AllNodes.remove(AllNodes.begin()); while (!AllNodes.empty()) DeallocateNode(&AllNodes.front()); #ifndef NDEBUG NextPersistentId = 0; #endif } SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); if (N) { switch (N->getOpcode()) { default: break; case ISD::Constant: case ISD::ConstantFP: llvm_unreachable("Querying for Constant and ConstantFP nodes requires " "debug location. Use another overload."); } } return N; } SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL, void *&InsertPos) { SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); if (N) { switch (N->getOpcode()) { case ISD::Constant: case ISD::ConstantFP: // Erase debug location from the node if the node is used at several // different places. Do not propagate one location to all uses as it // will cause a worse single stepping debugging experience. if (N->getDebugLoc() != DL.getDebugLoc()) N->setDebugLoc(DebugLoc()); break; default: // When the node's point of use is located earlier in the instruction // sequence than its prior point of use, update its debug info to the // earlier location. if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) N->setDebugLoc(DL.getDebugLoc()); break; } } return N; } void SelectionDAG::clear() { allnodes_clear(); OperandRecycler.clear(OperandAllocator); OperandAllocator.Reset(); CSEMap.clear(); ExtendedValueTypeNodes.clear(); ExternalSymbols.clear(); TargetExternalSymbols.clear(); MCSymbols.clear(); SDCallSiteDbgInfo.clear(); std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), static_cast(nullptr)); std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), static_cast(nullptr)); EntryNode.UseList = nullptr; InsertNode(&EntryNode); Root = getEntryNode(); DbgInfo->clear(); } SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { return VT.bitsGT(Op.getValueType()) ? getNode(ISD::FP_EXTEND, DL, VT, Op) : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); } std::pair SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT) { assert(!VT.bitsEq(Op.getValueType()) && "Strict no-op FP extend/round not allowed."); SDValue Res = VT.bitsGT(Op.getValueType()) ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, {Chain, Op, getIntPtrConstant(0, DL)}); return std::pair(Res, SDValue(Res.getNode(), 1)); } SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { return VT.bitsGT(Op.getValueType()) ? getNode(ISD::ANY_EXTEND, DL, VT, Op) : getNode(ISD::TRUNCATE, DL, VT, Op); } SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { return VT.bitsGT(Op.getValueType()) ? getNode(ISD::SIGN_EXTEND, DL, VT, Op) : getNode(ISD::TRUNCATE, DL, VT, Op); } SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { return VT.bitsGT(Op.getValueType()) ? getNode(ISD::ZERO_EXTEND, DL, VT, Op) : getNode(ISD::TRUNCATE, DL, VT, Op); } SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT) { if (VT.bitsLE(Op.getValueType())) return getNode(ISD::TRUNCATE, SL, VT, Op); TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); return getNode(TLI->getExtendForContent(BType), SL, VT, Op); } SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { EVT OpVT = Op.getValueType(); assert(VT.isInteger() && OpVT.isInteger() && "Cannot getZeroExtendInReg FP types"); assert(VT.isVector() == OpVT.isVector() && "getZeroExtendInReg type should be vector iff the operand " "type is vector!"); assert((!VT.isVector() || VT.getVectorElementCount() == OpVT.getVectorElementCount()) && "Vector element counts must match in getZeroExtendInReg"); assert(VT.bitsLE(OpVT) && "Not extending!"); if (OpVT == VT) return Op; APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), VT.getScalarSizeInBits()); return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); } SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { // Only unsigned pointer semantics are supported right now. In the future this // might delegate to TLI to check pointer signedness. return getZExtOrTrunc(Op, DL, VT); } SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { // Only unsigned pointer semantics are supported right now. In the future this // might delegate to TLI to check pointer signedness. return getZeroExtendInReg(Op, DL, VT); } /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { EVT EltVT = VT.getScalarType(); SDValue NegOne = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); return getNode(ISD::XOR, DL, VT, Val, NegOne); } SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { SDValue TrueValue = getBoolConstant(true, DL, VT, VT); return getNode(ISD::XOR, DL, VT, Val, TrueValue); } SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT) { if (!V) return getConstant(0, DL, VT); switch (TLI->getBooleanContents(OpVT)) { case TargetLowering::ZeroOrOneBooleanContent: case TargetLowering::UndefinedBooleanContent: return getConstant(1, DL, VT); case TargetLowering::ZeroOrNegativeOneBooleanContent: return getAllOnesConstant(DL, VT); } llvm_unreachable("Unexpected boolean content enum!"); } SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isT, bool isO) { EVT EltVT = VT.getScalarType(); assert((EltVT.getSizeInBits() >= 64 || (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && "getConstant with a uint64_t value that doesn't fit in the type!"); return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); } SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, bool isT, bool isO) { return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); } SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, bool isT, bool isO) { assert(VT.isInteger() && "Cannot create FP integer constant!"); EVT EltVT = VT.getScalarType(); const ConstantInt *Elt = &Val; // In some cases the vector type is legal but the element type is illegal and // needs to be promoted, for example v8i8 on ARM. In this case, promote the // inserted value (the type does not need to match the vector element type). // Any extra bits introduced will be truncated away. if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == TargetLowering::TypePromoteInteger) { EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); Elt = ConstantInt::get(*getContext(), NewVal); } // In other cases the element type is illegal and needs to be expanded, for // example v2i64 on MIPS32. In this case, find the nearest legal type, split // the value into n parts and use a vector type with n-times the elements. // Then bitcast to the type requested. // Legalizing constants too early makes the DAGCombiner's job harder so we // only legalize if the DAG tells us we must produce legal types. else if (NewNodesMustHaveLegalTypes && VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == TargetLowering::TypeExpandInteger) { const APInt &NewVal = Elt->getValue(); EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); // Check the temporary vector is the correct size. If this fails then // getTypeToTransformTo() probably returned a type whose size (in bits) // isn't a power-of-2 factor of the requested type size. assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); SmallVector EltParts; for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) .zextOrTrunc(ViaEltSizeInBits), DL, ViaEltVT, isT, isO)); } // EltParts is currently in little endian order. If we actually want // big-endian order then reverse it now. if (getDataLayout().isBigEndian()) std::reverse(EltParts.begin(), EltParts.end()); // The elements must be reversed when the element order is different // to the endianness of the elements (because the BITCAST is itself a // vector shuffle in this situation). However, we do not need any code to // perform this reversal because getConstant() is producing a vector // splat. // This situation occurs in MIPS MSA. SmallVector Ops; for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); return V; } assert(Elt->getBitWidth() == EltVT.getSizeInBits() && "APInt size does not match type size!"); unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(EltVT), None); ID.AddPointer(Elt); ID.AddBoolean(isO); void *IP = nullptr; SDNode *N = nullptr; if ((N = FindNodeOrInsertPos(ID, DL, IP))) if (!VT.isVector()) return SDValue(N, 0); if (!N) { N = newSDNode(isT, isO, Elt, EltVT); CSEMap.InsertNode(N, IP); InsertNode(N); NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); } SDValue Result(N, 0); if (VT.isScalableVector()) Result = getSplatVector(VT, DL, Result); else if (VT.isVector()) Result = getSplatBuildVector(VT, DL, Result); return Result; } SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget) { return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); } SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL, bool LegalTypes) { assert(VT.isInteger() && "Shift amount is not an integer type!"); EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); return getConstant(Val, DL, ShiftVT); } SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget) { return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); } SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, bool isTarget) { return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); } SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT, bool isTarget) { assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); EVT EltVT = VT.getScalarType(); // Do the map lookup using the actual bit pattern for the floating point // value, so that we don't have problems with 0.0 comparing equal to -0.0, and // we don't have issues with SNANs. unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(EltVT), None); ID.AddPointer(&V); void *IP = nullptr; SDNode *N = nullptr; if ((N = FindNodeOrInsertPos(ID, DL, IP))) if (!VT.isVector()) return SDValue(N, 0); if (!N) { N = newSDNode(isTarget, &V, EltVT); CSEMap.InsertNode(N, IP); InsertNode(N); } SDValue Result(N, 0); if (VT.isVector()) Result = getSplatBuildVector(VT, DL, Result); NewSDValueDbgMsg(Result, "Creating fp constant: ", this); return Result; } SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget) { EVT EltVT = VT.getScalarType(); if (EltVT == MVT::f32) return getConstantFP(APFloat((float)Val), DL, VT, isTarget); else if (EltVT == MVT::f64) return getConstantFP(APFloat(Val), DL, VT, isTarget); else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || EltVT == MVT::f16 || EltVT == MVT::bf16) { bool Ignored; APFloat APF = APFloat(Val); APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, &Ignored); return getConstantFP(APF, DL, VT, isTarget); } else llvm_unreachable("Unsupported type in getConstantFP"); } SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t Offset, bool isTargetGA, unsigned TargetFlags) { assert((TargetFlags == 0 || isTargetGA) && "Cannot set target flags on target-independent globals"); // Truncate (with sign-extension) the offset value to the pointer size. unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); if (BitWidth < 64) Offset = SignExtend64(Offset, BitWidth); unsigned Opc; if (GV->isThreadLocal()) Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; else Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), None); ID.AddPointer(GV); ID.AddInteger(Offset); ID.AddInteger(TargetFlags); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) return SDValue(E, 0); auto *N = newSDNode( Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), None); ID.AddInteger(FI); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(FI, VT, isTarget); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, unsigned TargetFlags) { assert((TargetFlags == 0 || isTarget) && "Cannot set target flags on target-independent jump tables"); unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), None); ID.AddInteger(JTI); ID.AddInteger(TargetFlags); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(JTI, VT, isTarget, TargetFlags); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, MaybeAlign Alignment, int Offset, bool isTarget, unsigned TargetFlags) { assert((TargetFlags == 0 || isTarget) && "Cannot set target flags on target-independent globals"); if (!Alignment) Alignment = shouldOptForSize() ? getDataLayout().getABITypeAlign(C->getType()) : getDataLayout().getPrefTypeAlign(C->getType()); unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), None); ID.AddInteger(Alignment->value()); ID.AddInteger(Offset); ID.AddPointer(C); ID.AddInteger(TargetFlags); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(isTarget, C, VT, Offset, *Alignment, TargetFlags); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V = SDValue(N, 0); NewSDValueDbgMsg(V, "Creating new constant pool: ", this); return V; } SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, MaybeAlign Alignment, int Offset, bool isTarget, unsigned TargetFlags) { assert((TargetFlags == 0 || isTarget) && "Cannot set target flags on target-independent globals"); if (!Alignment) Alignment = getDataLayout().getPrefTypeAlign(C->getType()); unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), None); ID.AddInteger(Alignment->value()); ID.AddInteger(Offset); C->addSelectionDAGCSEId(ID); ID.AddInteger(TargetFlags); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(isTarget, C, VT, Offset, *Alignment, TargetFlags); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, unsigned TargetFlags) { FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); ID.AddInteger(Index); ID.AddInteger(Offset); ID.AddInteger(TargetFlags); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(Index, VT, Offset, TargetFlags); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); ID.AddPointer(MBB); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(MBB); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getValueType(EVT VT) { if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= ValueTypeNodes.size()) ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); SDNode *&N = VT.isExtended() ? ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; if (N) return SDValue(N, 0); N = newSDNode(VT); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { SDNode *&N = ExternalSymbols[Sym]; if (N) return SDValue(N, 0); N = newSDNode(false, Sym, 0, VT); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { SDNode *&N = MCSymbols[Sym]; if (N) return SDValue(N, 0); N = newSDNode(Sym, VT); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags) { SDNode *&N = TargetExternalSymbols[std::pair(Sym, TargetFlags)]; if (N) return SDValue(N, 0); N = newSDNode(true, Sym, TargetFlags, VT); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { if ((unsigned)Cond >= CondCodeNodes.size()) CondCodeNodes.resize(Cond+1); if (!CondCodeNodes[Cond]) { auto *N = newSDNode(Cond); CondCodeNodes[Cond] = N; InsertNode(N); } return SDValue(CondCodeNodes[Cond], 0); } /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that /// point at N1 to point at N2 and indices that point at N2 to point at N1. static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef M) { std::swap(N1, N2); ShuffleVectorSDNode::commuteMask(M); } SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef Mask) { assert(VT.getVectorNumElements() == Mask.size() && "Must have the same number of vector elements as mask elements!"); assert(VT == N1.getValueType() && VT == N2.getValueType() && "Invalid VECTOR_SHUFFLE"); // Canonicalize shuffle undef, undef -> undef if (N1.isUndef() && N2.isUndef()) return getUNDEF(VT); // Validate that all indices in Mask are within the range of the elements // input to the shuffle. int NElts = Mask.size(); assert(llvm::all_of(Mask, [&](int M) { return M < (NElts * 2) && M >= -1; }) && "Index out of range"); // Copy the mask so we can do any needed cleanup. SmallVector MaskVec(Mask.begin(), Mask.end()); // Canonicalize shuffle v, v -> v, undef if (N1 == N2) { N2 = getUNDEF(VT); for (int i = 0; i != NElts; ++i) if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; } // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. if (N1.isUndef()) commuteShuffle(N1, N2, MaskVec); if (TLI->hasVectorBlend()) { // If shuffling a splat, try to blend the splat instead. We do this here so // that even when this arises during lowering we don't have to re-handle it. auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { BitVector UndefElements; SDValue Splat = BV->getSplatValue(&UndefElements); if (!Splat) return; for (int i = 0; i < NElts; ++i) { if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) continue; // If this input comes from undef, mark it as such. if (UndefElements[MaskVec[i] - Offset]) { MaskVec[i] = -1; continue; } // If we can blend a non-undef lane, use that instead. if (!UndefElements[i]) MaskVec[i] = i + Offset; } }; if (auto *N1BV = dyn_cast(N1)) BlendSplat(N1BV, 0); if (auto *N2BV = dyn_cast(N2)) BlendSplat(N2BV, NElts); } // Canonicalize all index into lhs, -> shuffle lhs, undef // Canonicalize all index into rhs, -> shuffle rhs, undef bool AllLHS = true, AllRHS = true; bool N2Undef = N2.isUndef(); for (int i = 0; i != NElts; ++i) { if (MaskVec[i] >= NElts) { if (N2Undef) MaskVec[i] = -1; else AllLHS = false; } else if (MaskVec[i] >= 0) { AllRHS = false; } } if (AllLHS && AllRHS) return getUNDEF(VT); if (AllLHS && !N2Undef) N2 = getUNDEF(VT); if (AllRHS) { N1 = getUNDEF(VT); commuteShuffle(N1, N2, MaskVec); } // Reset our undef status after accounting for the mask. N2Undef = N2.isUndef(); // Re-check whether both sides ended up undef. if (N1.isUndef() && N2Undef) return getUNDEF(VT); // If Identity shuffle return that node. bool Identity = true, AllSame = true; for (int i = 0; i != NElts; ++i) { if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; if (MaskVec[i] != MaskVec[0]) AllSame = false; } if (Identity && NElts) return N1; // Shuffling a constant splat doesn't change the result. if (N2Undef) { SDValue V = N1; // Look through any bitcasts. We check that these don't change the number // (and size) of elements and just changes their types. while (V.getOpcode() == ISD::BITCAST) V = V->getOperand(0); // A splat should always show up as a build vector node. if (auto *BV = dyn_cast(V)) { BitVector UndefElements; SDValue Splat = BV->getSplatValue(&UndefElements); // If this is a splat of an undef, shuffling it is also undef. if (Splat && Splat.isUndef()) return getUNDEF(VT); bool SameNumElts = V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); // We only have a splat which can skip shuffles if there is a splatted // value and no undef lanes rearranged by the shuffle. if (Splat && UndefElements.none()) { // Splat of , return , provided that the // number of elements match or the value splatted is a zero constant. if (SameNumElts) return N1; if (auto *C = dyn_cast(Splat)) if (C->isNullValue()) return N1; } // If the shuffle itself creates a splat, build the vector directly. if (AllSame && SameNumElts) { EVT BuildVT = BV->getValueType(0); const SDValue &Splatted = BV->getOperand(MaskVec[0]); SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); // We may have jumped through bitcasts, so the type of the // BUILD_VECTOR may not match the type of the shuffle. if (BuildVT != VT) NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); return NewBV; } } } FoldingSetNodeID ID; SDValue Ops[2] = { N1, N2 }; AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); for (int i = 0; i != NElts; ++i) ID.AddInteger(MaskVec[i]); void* IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) return SDValue(E, 0); // Allocate the mask array for the node out of the BumpPtrAllocator, since // SDNode doesn't have access to it. This memory will be "leaked" when // the node is deallocated, but recovered when the NodeAllocator is released. int *MaskAlloc = OperandAllocator.Allocate(NElts); llvm::copy(MaskVec, MaskAlloc); auto *N = newSDNode(VT, dl.getIROrder(), dl.getDebugLoc(), MaskAlloc); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V = SDValue(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { EVT VT = SV.getValueType(0); SmallVector MaskVec(SV.getMask().begin(), SV.getMask().end()); ShuffleVectorSDNode::commuteMask(MaskVec); SDValue Op0 = SV.getOperand(0); SDValue Op1 = SV.getOperand(1); return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); } SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); ID.AddInteger(RegNo); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(RegNo, VT); N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); ID.AddPointer(RegMask); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(RegMask); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label) { return getLabelNode(ISD::EH_LABEL, dl, Root, Label); } SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label) { FoldingSetNodeID ID; SDValue Ops[] = { Root }; AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); ID.AddPointer(Label); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset, bool isTarget, unsigned TargetFlags) { unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, getVTList(VT), None); ID.AddPointer(BA); ID.AddInteger(Offset); ID.AddInteger(TargetFlags); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(Opc, VT, BA, Offset, TargetFlags); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getSrcValue(const Value *V) { FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); ID.AddPointer(V); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(V); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getMDNode(const MDNode *MD) { FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); ID.AddPointer(MD); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, IP)) return SDValue(E, 0); auto *N = newSDNode(MD); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { if (VT == V.getValueType()) return V; return getNode(ISD::BITCAST, SDLoc(V), VT, V); } SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS) { SDValue Ops[] = {Ptr}; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); ID.AddInteger(SrcAS); ID.AddInteger(DestAS); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) return SDValue(E, 0); auto *N = newSDNode(dl.getIROrder(), dl.getDebugLoc(), VT, SrcAS, DestAS); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getFreeze(SDValue V) { return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); } /// getShiftAmountOperand - Return the specified value casted to /// the target's desired shift amount type. SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { EVT OpTy = Op.getValueType(); EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); if (OpTy == ShTy || OpTy.isVector()) return Op; return getZExtOrTrunc(Op, SDLoc(Op), ShTy); } SDValue SelectionDAG::expandVAArg(SDNode *Node) { SDLoc dl(Node); const TargetLowering &TLI = getTargetLoweringInfo(); const Value *V = cast(Node->getOperand(2))->getValue(); EVT VT = Node->getValueType(0); SDValue Tmp1 = Node->getOperand(0); SDValue Tmp2 = Node->getOperand(1); const MaybeAlign MA(Node->getConstantOperandVal(3)); SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, Tmp2, MachinePointerInfo(V)); SDValue VAList = VAListLoad; if (MA && *MA > TLI.getMinStackArgumentAlignment()) { VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, getConstant(MA->value() - 1, dl, VAList.getValueType())); VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); } // Increment the pointer, VAList, to the next vaarg Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, getConstant(getDataLayout().getTypeAllocSize( VT.getTypeForEVT(*getContext())), dl, VAList.getValueType())); // Store the incremented VAList to the legalized pointer Tmp1 = getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); // Load the actual argument out of the pointer VAList return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); } SDValue SelectionDAG::expandVACopy(SDNode *Node) { SDLoc dl(Node); const TargetLowering &TLI = getTargetLoweringInfo(); // This defaults to loading a pointer from the input and storing it to the // output, returning the chain. const Value *VD = cast(Node->getOperand(3))->getValue(); const Value *VS = cast(Node->getOperand(4))->getValue(); SDValue Tmp1 = getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), Node->getOperand(2), MachinePointerInfo(VS)); return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), MachinePointerInfo(VD)); } Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { const DataLayout &DL = getDataLayout(); Type *Ty = VT.getTypeForEVT(*getContext()); Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); if (TLI->isTypeLegal(VT) || !VT.isVector()) return RedAlign; const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); const Align StackAlign = TFI->getStackAlign(); // See if we can choose a smaller ABI alignment in cases where it's an // illegal vector type that will get broken down. if (RedAlign > StackAlign) { EVT IntermediateVT; MVT RegisterVT; unsigned NumIntermediates; TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, NumIntermediates, RegisterVT); Ty = IntermediateVT.getTypeForEVT(*getContext()); Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); if (RedAlign2 < RedAlign) RedAlign = RedAlign2; } return RedAlign; } SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { MachineFrameInfo &MFI = MF->getFrameInfo(); int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false); return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); } SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { Type *Ty = VT.getTypeForEVT(*getContext()); Align StackAlign = std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); return CreateStackTemporary(VT.getStoreSize(), StackAlign); } SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); Type *Ty1 = VT1.getTypeForEVT(*getContext()); Type *Ty2 = VT2.getTypeForEVT(*getContext()); const DataLayout &DL = getDataLayout(); Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); return CreateStackTemporary(Bytes, Align); } SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl) { EVT OpVT = N1.getValueType(); // These setcc operations always fold. switch (Cond) { default: break; case ISD::SETFALSE: case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); case ISD::SETTRUE: case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); case ISD::SETOEQ: case ISD::SETOGT: case ISD::SETOGE: case ISD::SETOLT: case ISD::SETOLE: case ISD::SETONE: case ISD::SETO: case ISD::SETUO: case ISD::SETUEQ: case ISD::SETUNE: assert(!OpVT.isInteger() && "Illegal setcc for integer!"); break; } if (OpVT.isInteger()) { // For EQ and NE, we can always pick a value for the undef to make the // predicate pass or fail, so we can return undef. // Matches behavior in llvm::ConstantFoldCompareInstruction. // icmp eq/ne X, undef -> undef. if ((N1.isUndef() || N2.isUndef()) && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) return getUNDEF(VT); // If both operands are undef, we can return undef for int comparison. // icmp undef, undef -> undef. if (N1.isUndef() && N2.isUndef()) return getUNDEF(VT); // icmp X, X -> true/false // icmp X, undef -> true/false because undef could be X. if (N1 == N2) return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); } if (ConstantSDNode *N2C = dyn_cast(N2)) { const APInt &C2 = N2C->getAPIntValue(); if (ConstantSDNode *N1C = dyn_cast(N1)) { const APInt &C1 = N1C->getAPIntValue(); switch (Cond) { default: llvm_unreachable("Unknown integer setcc!"); case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); } } } auto *N1CFP = dyn_cast(N1); auto *N2CFP = dyn_cast(N2); if (N1CFP && N2CFP) { APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); switch (Cond) { default: break; case ISD::SETEQ: if (R==APFloat::cmpUnordered) return getUNDEF(VT); LLVM_FALLTHROUGH; case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, OpVT); case ISD::SETNE: if (R==APFloat::cmpUnordered) return getUNDEF(VT); LLVM_FALLTHROUGH; case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || R==APFloat::cmpLessThan, dl, VT, OpVT); case ISD::SETLT: if (R==APFloat::cmpUnordered) return getUNDEF(VT); LLVM_FALLTHROUGH; case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, OpVT); case ISD::SETGT: if (R==APFloat::cmpUnordered) return getUNDEF(VT); LLVM_FALLTHROUGH; case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, VT, OpVT); case ISD::SETLE: if (R==APFloat::cmpUnordered) return getUNDEF(VT); LLVM_FALLTHROUGH; case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || R==APFloat::cmpEqual, dl, VT, OpVT); case ISD::SETGE: if (R==APFloat::cmpUnordered) return getUNDEF(VT); LLVM_FALLTHROUGH; case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || R==APFloat::cmpEqual, dl, VT, OpVT); case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, OpVT); case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, OpVT); case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || R==APFloat::cmpEqual, dl, VT, OpVT); case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, OpVT); case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || R==APFloat::cmpLessThan, dl, VT, OpVT); case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || R==APFloat::cmpUnordered, dl, VT, OpVT); case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, VT, OpVT); case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, OpVT); } } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { // Ensure that the constant occurs on the RHS. ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) return SDValue(); return getSetCC(dl, VT, N2, N1, SwappedCond); } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { // If an operand is known to be a nan (or undef that could be a nan), we can // fold it. // Choosing NaN for the undef will always make unordered comparison succeed // and ordered comparison fails. // Matches behavior in llvm::ConstantFoldCompareInstruction. switch (ISD::getUnorderedFlavor(Cond)) { default: llvm_unreachable("Unknown flavor!"); case 0: // Known false. return getBoolConstant(false, dl, VT, OpVT); case 1: // Known true. return getBoolConstant(true, dl, VT, OpVT); case 2: // Undefined. return getUNDEF(VT); } } // Could not fold it. return SDValue(); } /// See if the specified operand can be simplified with the knowledge that only /// the bits specified by DemandedBits are used. /// TODO: really we should be making this into the DAG equivalent of /// SimplifyMultipleUseDemandedBits and not generate any new nodes. SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { EVT VT = V.getValueType(); APInt DemandedElts = VT.isVector() ? APInt::getAllOnesValue(VT.getVectorNumElements()) : APInt(1, 1); return GetDemandedBits(V, DemandedBits, DemandedElts); } /// See if the specified operand can be simplified with the knowledge that only /// the bits specified by DemandedBits are used in the elements specified by /// DemandedElts. /// TODO: really we should be making this into the DAG equivalent of /// SimplifyMultipleUseDemandedBits and not generate any new nodes. SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, const APInt &DemandedElts) { switch (V.getOpcode()) { default: return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, *this, 0); break; case ISD::Constant: { const APInt &CVal = cast(V)->getAPIntValue(); APInt NewVal = CVal & DemandedBits; if (NewVal != CVal) return getConstant(NewVal, SDLoc(V), V.getValueType()); break; } case ISD::SRL: // Only look at single-use SRLs. if (!V.getNode()->hasOneUse()) break; if (auto *RHSC = dyn_cast(V.getOperand(1))) { // See if we can recursively simplify the LHS. unsigned Amt = RHSC->getZExtValue(); // Watch out for shift count overflow though. if (Amt >= DemandedBits.getBitWidth()) break; APInt SrcDemandedBits = DemandedBits << Amt; if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), SrcDemandedBits)) return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, V.getOperand(1)); } break; case ISD::AND: { // X & -1 -> X (ignoring bits which aren't demanded). // Also handle the case where masked out bits in X are known to be zero. if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { const APInt &AndVal = RHSC->getAPIntValue(); if (DemandedBits.isSubsetOf(AndVal) || DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | AndVal)) return V.getOperand(0); } break; } } return SDValue(); } /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We /// use this predicate to simplify operations downstream. bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { unsigned BitWidth = Op.getScalarValueSizeInBits(); return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); } /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use /// this predicate to simplify operations downstream. Mask is known to be zero /// for bits that V cannot have. bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, unsigned Depth) const { return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); } /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in /// DemandedElts. We use this predicate to simplify operations downstream. /// Mask is known to be zero for bits that V cannot have. bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, const APInt &DemandedElts, unsigned Depth) const { return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); } /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, unsigned Depth) const { return Mask.isSubsetOf(computeKnownBits(V, Depth).One); } /// isSplatValue - Return true if the vector V has the same value /// across all DemandedElts. For scalable vectors it does not make /// sense to specify which elements are demanded or undefined, therefore /// they are simply ignored. bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts) { EVT VT = V.getValueType(); assert(VT.isVector() && "Vector type expected"); if (!VT.isScalableVector() && !DemandedElts) return false; // No demanded elts, better to assume we don't know anything. // Deal with some common cases here that work for both fixed and scalable // vector types. switch (V.getOpcode()) { case ISD::SPLAT_VECTOR: return true; case ISD::ADD: case ISD::SUB: case ISD::AND: { APInt UndefLHS, UndefRHS; SDValue LHS = V.getOperand(0); SDValue RHS = V.getOperand(1); if (isSplatValue(LHS, DemandedElts, UndefLHS) && isSplatValue(RHS, DemandedElts, UndefRHS)) { UndefElts = UndefLHS | UndefRHS; return true; } break; } } // We don't support other cases than those above for scalable vectors at // the moment. if (VT.isScalableVector()) return false; unsigned NumElts = VT.getVectorNumElements(); assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); UndefElts = APInt::getNullValue(NumElts); switch (V.getOpcode()) { case ISD::BUILD_VECTOR: { SDValue Scl; for (unsigned i = 0; i != NumElts; ++i) { SDValue Op = V.getOperand(i); if (Op.isUndef()) { UndefElts.setBit(i); continue; } if (!DemandedElts[i]) continue; if (Scl && Scl != Op) return false; Scl = Op; } return true; } case ISD::VECTOR_SHUFFLE: { // Check if this is a shuffle node doing a splat. // TODO: Do we need to handle shuffle(splat, undef, mask)? int SplatIndex = -1; ArrayRef Mask = cast(V)->getMask(); for (int i = 0; i != (int)NumElts; ++i) { int M = Mask[i]; if (M < 0) { UndefElts.setBit(i); continue; } if (!DemandedElts[i]) continue; if (0 <= SplatIndex && SplatIndex != M) return false; SplatIndex = M; } return true; } case ISD::EXTRACT_SUBVECTOR: { // Offset the demanded elts by the subvector index. SDValue Src = V.getOperand(0); uint64_t Idx = V.getConstantOperandVal(1); unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); APInt UndefSrcElts; APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) { UndefElts = UndefSrcElts.extractBits(NumElts, Idx); return true; } break; } } return false; } /// Helper wrapper to main isSplatValue function. bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { EVT VT = V.getValueType(); assert(VT.isVector() && "Vector type expected"); APInt UndefElts; APInt DemandedElts; // For now we don't support this with scalable vectors. if (!VT.isScalableVector()) DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); return isSplatValue(V, DemandedElts, UndefElts) && (AllowUndefs || !UndefElts); } SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { V = peekThroughExtractSubvectors(V); EVT VT = V.getValueType(); unsigned Opcode = V.getOpcode(); switch (Opcode) { default: { APInt UndefElts; APInt DemandedElts; if (!VT.isScalableVector()) DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); if (isSplatValue(V, DemandedElts, UndefElts)) { if (VT.isScalableVector()) { // DemandedElts and UndefElts are ignored for scalable vectors, since // the only supported cases are SPLAT_VECTOR nodes. SplatIdx = 0; } else { // Handle case where all demanded elements are UNDEF. if (DemandedElts.isSubsetOf(UndefElts)) { SplatIdx = 0; return getUNDEF(VT); } SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); } return V; } break; } case ISD::SPLAT_VECTOR: SplatIdx = 0; return V; case ISD::VECTOR_SHUFFLE: { if (VT.isScalableVector()) return SDValue(); // Check if this is a shuffle node doing a splat. // TODO - remove this and rely purely on SelectionDAG::isSplatValue, // getTargetVShiftNode currently struggles without the splat source. auto *SVN = cast(V); if (!SVN->isSplat()) break; int Idx = SVN->getSplatIndex(); int NumElts = V.getValueType().getVectorNumElements(); SplatIdx = Idx % NumElts; return V.getOperand(Idx / NumElts); } } return SDValue(); } SDValue SelectionDAG::getSplatValue(SDValue V) { int SplatIdx; if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), SrcVector.getValueType().getScalarType(), SrcVector, getVectorIdxConstant(SplatIdx, SDLoc(V))); return SDValue(); } const APInt * SelectionDAG::getValidShiftAmountConstant(SDValue V, const APInt &DemandedElts) const { assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || V.getOpcode() == ISD::SRA) && "Unknown shift node"); unsigned BitWidth = V.getScalarValueSizeInBits(); if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { // Shifting more than the bitwidth is not valid. const APInt &ShAmt = SA->getAPIntValue(); if (ShAmt.ult(BitWidth)) return &ShAmt; } return nullptr; } const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( SDValue V, const APInt &DemandedElts) const { assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || V.getOpcode() == ISD::SRA) && "Unknown shift node"); if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) return ValidAmt; unsigned BitWidth = V.getScalarValueSizeInBits(); auto *BV = dyn_cast(V.getOperand(1)); if (!BV) return nullptr; const APInt *MinShAmt = nullptr; for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { if (!DemandedElts[i]) continue; auto *SA = dyn_cast(BV->getOperand(i)); if (!SA) return nullptr; // Shifting more than the bitwidth is not valid. const APInt &ShAmt = SA->getAPIntValue(); if (ShAmt.uge(BitWidth)) return nullptr; if (MinShAmt && MinShAmt->ule(ShAmt)) continue; MinShAmt = &ShAmt; } return MinShAmt; } const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( SDValue V, const APInt &DemandedElts) const { assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || V.getOpcode() == ISD::SRA) && "Unknown shift node"); if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) return ValidAmt; unsigned BitWidth = V.getScalarValueSizeInBits(); auto *BV = dyn_cast(V.getOperand(1)); if (!BV) return nullptr; const APInt *MaxShAmt = nullptr; for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { if (!DemandedElts[i]) continue; auto *SA = dyn_cast(BV->getOperand(i)); if (!SA) return nullptr; // Shifting more than the bitwidth is not valid. const APInt &ShAmt = SA->getAPIntValue(); if (ShAmt.uge(BitWidth)) return nullptr; if (MaxShAmt && MaxShAmt->uge(ShAmt)) continue; MaxShAmt = &ShAmt; } return MaxShAmt; } /// Determine which bits of Op are known to be either zero or one and return /// them in Known. For vectors, the known bits are those that are shared by /// every vector element. KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { EVT VT = Op.getValueType(); // TOOD: Until we have a plan for how to represent demanded elements for // scalable vectors, we can just bail out for now. if (Op.getValueType().isScalableVector()) { unsigned BitWidth = Op.getScalarValueSizeInBits(); return KnownBits(BitWidth); } APInt DemandedElts = VT.isVector() ? APInt::getAllOnesValue(VT.getVectorNumElements()) : APInt(1, 1); return computeKnownBits(Op, DemandedElts, Depth); } /// Determine which bits of Op are known to be either zero or one and return /// them in Known. The DemandedElts argument allows us to only collect the known /// bits that are shared by the requested vector elements. KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, unsigned Depth) const { unsigned BitWidth = Op.getScalarValueSizeInBits(); KnownBits Known(BitWidth); // Don't know anything. // TOOD: Until we have a plan for how to represent demanded elements for // scalable vectors, we can just bail out for now. if (Op.getValueType().isScalableVector()) return Known; if (auto *C = dyn_cast(Op)) { // We know all of the bits for a constant! Known.One = C->getAPIntValue(); Known.Zero = ~Known.One; return Known; } if (auto *C = dyn_cast(Op)) { // We know all of the bits for a constant fp! Known.One = C->getValueAPF().bitcastToAPInt(); Known.Zero = ~Known.One; return Known; } if (Depth >= MaxRecursionDepth) return Known; // Limit search depth. KnownBits Known2; unsigned NumElts = DemandedElts.getBitWidth(); assert((!Op.getValueType().isVector() || NumElts == Op.getValueType().getVectorNumElements()) && "Unexpected vector size"); if (!DemandedElts) return Known; // No demanded elts, better to assume we don't know anything. unsigned Opcode = Op.getOpcode(); switch (Opcode) { case ISD::BUILD_VECTOR: // Collect the known bits that are shared by every demanded vector element. Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { if (!DemandedElts[i]) continue; SDValue SrcOp = Op.getOperand(i); Known2 = computeKnownBits(SrcOp, Depth + 1); // BUILD_VECTOR can implicitly truncate sources, we must handle this. if (SrcOp.getValueSizeInBits() != BitWidth) { assert(SrcOp.getValueSizeInBits() > BitWidth && "Expected BUILD_VECTOR implicit truncation"); Known2 = Known2.trunc(BitWidth); } // Known bits are the values that are shared by every demanded element. Known.One &= Known2.One; Known.Zero &= Known2.Zero; // If we don't know any bits, early out. if (Known.isUnknown()) break; } break; case ISD::VECTOR_SHUFFLE: { // Collect the known bits that are shared by every vector element referenced // by the shuffle. APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); Known.Zero.setAllBits(); Known.One.setAllBits(); const ShuffleVectorSDNode *SVN = cast(Op); assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); for (unsigned i = 0; i != NumElts; ++i) { if (!DemandedElts[i]) continue; int M = SVN->getMaskElt(i); if (M < 0) { // For UNDEF elements, we don't know anything about the common state of // the shuffle result. Known.resetAll(); DemandedLHS.clearAllBits(); DemandedRHS.clearAllBits(); break; } if ((unsigned)M < NumElts) DemandedLHS.setBit((unsigned)M % NumElts); else DemandedRHS.setBit((unsigned)M % NumElts); } // Known bits are the values that are shared by every demanded element. if (!!DemandedLHS) { SDValue LHS = Op.getOperand(0); Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); Known.One &= Known2.One; Known.Zero &= Known2.Zero; } // If we don't know any bits, early out. if (Known.isUnknown()) break; if (!!DemandedRHS) { SDValue RHS = Op.getOperand(1); Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); Known.One &= Known2.One; Known.Zero &= Known2.Zero; } break; } case ISD::CONCAT_VECTORS: { // Split DemandedElts and test each of the demanded subvectors. Known.Zero.setAllBits(); Known.One.setAllBits(); EVT SubVectorVT = Op.getOperand(0).getValueType(); unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); unsigned NumSubVectors = Op.getNumOperands(); for (unsigned i = 0; i != NumSubVectors; ++i) { APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); DemandedSub = DemandedSub.trunc(NumSubVectorElts); if (!!DemandedSub) { SDValue Sub = Op.getOperand(i); Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); Known.One &= Known2.One; Known.Zero &= Known2.Zero; } // If we don't know any bits, early out. if (Known.isUnknown()) break; } break; } case ISD::INSERT_SUBVECTOR: { // Demand any elements from the subvector and the remainder from the src its // inserted into. SDValue Src = Op.getOperand(0); SDValue Sub = Op.getOperand(1); uint64_t Idx = Op.getConstantOperandVal(2); unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); APInt DemandedSrcElts = DemandedElts; DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); Known.One.setAllBits(); Known.Zero.setAllBits(); if (!!DemandedSubElts) { Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); if (Known.isUnknown()) break; // early-out. } if (!!DemandedSrcElts) { Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); Known.One &= Known2.One; Known.Zero &= Known2.Zero; } break; } case ISD::EXTRACT_SUBVECTOR: { // Offset the demanded elts by the subvector index. SDValue Src = Op.getOperand(0); // Bail until we can represent demanded elements for scalable vectors. if (Src.getValueType().isScalableVector()) break; uint64_t Idx = Op.getConstantOperandVal(1); unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); break; } case ISD::SCALAR_TO_VECTOR: { // We know about scalar_to_vector as much as we know about it source, // which becomes the first element of otherwise unknown vector. if (DemandedElts != 1) break; SDValue N0 = Op.getOperand(0); Known = computeKnownBits(N0, Depth + 1); if (N0.getValueSizeInBits() != BitWidth) Known = Known.trunc(BitWidth); break; } case ISD::BITCAST: { SDValue N0 = Op.getOperand(0); EVT SubVT = N0.getValueType(); unsigned SubBitWidth = SubVT.getScalarSizeInBits(); // Ignore bitcasts from unsupported types. if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) break; // Fast handling of 'identity' bitcasts. if (BitWidth == SubBitWidth) { Known = computeKnownBits(N0, DemandedElts, Depth + 1); break; } bool IsLE = getDataLayout().isLittleEndian(); // Bitcast 'small element' vector to 'large element' scalar/vector. if ((BitWidth % SubBitWidth) == 0) { assert(N0.getValueType().isVector() && "Expected bitcast from vector"); // Collect known bits for the (larger) output by collecting the known // bits from each set of sub elements and shift these into place. // We need to separately call computeKnownBits for each set of // sub elements as the knownbits for each is likely to be different. unsigned SubScale = BitWidth / SubBitWidth; APInt SubDemandedElts(NumElts * SubScale, 0); for (unsigned i = 0; i != NumElts; ++i) if (DemandedElts[i]) SubDemandedElts.setBit(i * SubScale); for (unsigned i = 0; i != SubScale; ++i) { Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), Depth + 1); unsigned Shifts = IsLE ? i : SubScale - 1 - i; Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); } } // Bitcast 'large element' scalar/vector to 'small element' vector. if ((SubBitWidth % BitWidth) == 0) { assert(Op.getValueType().isVector() && "Expected bitcast to vector"); // Collect known bits for the (smaller) output by collecting the known // bits from the overlapping larger input elements and extracting the // sub sections we actually care about. unsigned SubScale = SubBitWidth / BitWidth; APInt SubDemandedElts(NumElts / SubScale, 0); for (unsigned i = 0; i != NumElts; ++i) if (DemandedElts[i]) SubDemandedElts.setBit(i / SubScale); Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned i = 0; i != NumElts; ++i) if (DemandedElts[i]) { unsigned Shifts = IsLE ? i : NumElts - 1 - i; unsigned Offset = (Shifts % SubScale) * BitWidth; Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); // If we don't know any bits, early out. if (Known.isUnknown()) break; } } break; } case ISD::AND: Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known &= Known2; break; case ISD::OR: Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known |= Known2; break; case ISD::XOR: Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known ^= Known2; break; case ISD::MUL: { Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); // If low bits are zero in either operand, output low known-0 bits. // Also compute a conservative estimate for high known-0 bits. // More trickiness is possible, but this is sufficient for the // interesting case of alignment computation. unsigned TrailZ = Known.countMinTrailingZeros() + Known2.countMinTrailingZeros(); unsigned LeadZ = std::max(Known.countMinLeadingZeros() + Known2.countMinLeadingZeros(), BitWidth) - BitWidth; Known.resetAll(); Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); break; } case ISD::UDIV: { // For the purposes of computing leading zeros we can conservatively // treat a udiv as a logical right shift by the power of 2 known to // be less than the denominator. Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); unsigned LeadZ = Known2.countMinLeadingZeros(); Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); if (RHSMaxLeadingZeros != BitWidth) LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); Known.Zero.setHighBits(LeadZ); break; } case ISD::SELECT: case ISD::VSELECT: Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); // If we don't know any bits, early out. if (Known.isUnknown()) break; Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); // Only known if known in both the LHS and RHS. Known.One &= Known2.One; Known.Zero &= Known2.Zero; break; case ISD::SELECT_CC: Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); // If we don't know any bits, early out. if (Known.isUnknown()) break; Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); // Only known if known in both the LHS and RHS. Known.One &= Known2.One; Known.Zero &= Known2.Zero; break; case ISD::SMULO: case ISD::UMULO: case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: if (Op.getResNo() != 1) break; // The boolean result conforms to getBooleanContents. // If we know the result of a setcc has the top bits zero, use this info. // We know that we have an integer-based boolean since these operations // are only available for integer. if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1) Known.Zero.setBitsFrom(1); break; case ISD::SETCC: case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: { unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; // If we know the result of a setcc has the top bits zero, use this info. if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1) Known.Zero.setBitsFrom(1); break; } case ISD::SHL: Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { unsigned Shift = ShAmt->getZExtValue(); Known.Zero <<= Shift; Known.One <<= Shift; // Low bits are known zero. Known.Zero.setLowBits(Shift); break; } // No matter the shift amount, the trailing zeros will stay zero. Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); Known.One.clearAllBits(); // Minimum shift low bits are known zero. if (const APInt *ShMinAmt = getValidMinimumShiftAmountConstant(Op, DemandedElts)) Known.Zero.setLowBits(ShMinAmt->getZExtValue()); break; case ISD::SRL: Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { unsigned Shift = ShAmt->getZExtValue(); Known.Zero.lshrInPlace(Shift); Known.One.lshrInPlace(Shift); // High bits are known zero. Known.Zero.setHighBits(Shift); break; } // No matter the shift amount, the leading zeros will stay zero. Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); Known.One.clearAllBits(); // Minimum shift high bits are known zero. if (const APInt *ShMinAmt = getValidMinimumShiftAmountConstant(Op, DemandedElts)) Known.Zero.setHighBits(ShMinAmt->getZExtValue()); break; case ISD::SRA: if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); unsigned Shift = ShAmt->getZExtValue(); // Sign extend known zero/one bit (else is unknown). Known.Zero.ashrInPlace(Shift); Known.One.ashrInPlace(Shift); } break; case ISD::FSHL: case ISD::FSHR: if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { unsigned Amt = C->getAPIntValue().urem(BitWidth); // For fshl, 0-shift returns the 1st arg. // For fshr, 0-shift returns the 2nd arg. if (Amt == 0) { Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), DemandedElts, Depth + 1); break; } // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); if (Opcode == ISD::FSHL) { Known.One <<= Amt; Known.Zero <<= Amt; Known2.One.lshrInPlace(BitWidth - Amt); Known2.Zero.lshrInPlace(BitWidth - Amt); } else { Known.One <<= BitWidth - Amt; Known.Zero <<= BitWidth - Amt; Known2.One.lshrInPlace(Amt); Known2.Zero.lshrInPlace(Amt); } Known.One |= Known2.One; Known.Zero |= Known2.Zero; } break; case ISD::SIGN_EXTEND_INREG: { EVT EVT = cast(Op.getOperand(1))->getVT(); unsigned EBits = EVT.getScalarSizeInBits(); // Sign extension. Compute the demanded bits in the result that are not // present in the input. APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); APInt InSignMask = APInt::getSignMask(EBits); APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); // If the sign extended bits are demanded, we know that the sign // bit is demanded. InSignMask = InSignMask.zext(BitWidth); if (NewBits.getBoolValue()) InputDemandedBits |= InSignMask; Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known.One &= InputDemandedBits; Known.Zero &= InputDemandedBits; // If the sign bit of the input is known set or clear, then we know the // top bits of the result. if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear Known.Zero |= NewBits; Known.One &= ~NewBits; } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set Known.One |= NewBits; Known.Zero &= ~NewBits; } else { // Input sign bit unknown Known.Zero &= ~NewBits; Known.One &= ~NewBits; } break; } case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: { Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); // If we have a known 1, its position is our upper bound. unsigned PossibleTZ = Known2.countMaxTrailingZeros(); unsigned LowBits = Log2_32(PossibleTZ) + 1; Known.Zero.setBitsFrom(LowBits); break; } case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: { Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); // If we have a known 1, its position is our upper bound. unsigned PossibleLZ = Known2.countMaxLeadingZeros(); unsigned LowBits = Log2_32(PossibleLZ) + 1; Known.Zero.setBitsFrom(LowBits); break; } case ISD::CTPOP: { Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); // If we know some of the bits are zero, they can't be one. unsigned PossibleOnes = Known2.countMaxPopulation(); Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); break; } case ISD::LOAD: { LoadSDNode *LD = cast(Op); const Constant *Cst = TLI->getTargetConstantFromLoad(LD); if (ISD::isNON_EXTLoad(LD) && Cst) { // Determine any common known bits from the loaded constant pool value. Type *CstTy = Cst->getType(); if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { // If its a vector splat, then we can (quickly) reuse the scalar path. // NOTE: We assume all elements match and none are UNDEF. if (CstTy->isVectorTy()) { if (const Constant *Splat = Cst->getSplatValue()) { Cst = Splat; CstTy = Cst->getType(); } } // TODO - do we need to handle different bitwidths? if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { // Iterate across all vector elements finding common known bits. Known.One.setAllBits(); Known.Zero.setAllBits(); for (unsigned i = 0; i != NumElts; ++i) { if (!DemandedElts[i]) continue; if (Constant *Elt = Cst->getAggregateElement(i)) { if (auto *CInt = dyn_cast(Elt)) { const APInt &Value = CInt->getValue(); Known.One &= Value; Known.Zero &= ~Value; continue; } if (auto *CFP = dyn_cast(Elt)) { APInt Value = CFP->getValueAPF().bitcastToAPInt(); Known.One &= Value; Known.Zero &= ~Value; continue; } } Known.One.clearAllBits(); Known.Zero.clearAllBits(); break; } } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { if (auto *CInt = dyn_cast(Cst)) { const APInt &Value = CInt->getValue(); Known.One = Value; Known.Zero = ~Value; } else if (auto *CFP = dyn_cast(Cst)) { APInt Value = CFP->getValueAPF().bitcastToAPInt(); Known.One = Value; Known.Zero = ~Value; } } } } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { // If this is a ZEXTLoad and we are looking at the loaded value. EVT VT = LD->getMemoryVT(); unsigned MemBits = VT.getScalarSizeInBits(); Known.Zero.setBitsFrom(MemBits); } else if (const MDNode *Ranges = LD->getRanges()) { if (LD->getExtensionType() == ISD::NON_EXTLOAD) computeKnownBitsFromRangeMetadata(*Ranges, Known); } break; } case ISD::ZERO_EXTEND_VECTOR_INREG: { EVT InVT = Op.getOperand(0).getValueType(); APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); Known = Known.zext(BitWidth); break; } case ISD::ZERO_EXTEND: { Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known = Known.zext(BitWidth); break; } case ISD::SIGN_EXTEND_VECTOR_INREG: { EVT InVT = Op.getOperand(0).getValueType(); APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); // If the sign bit is known to be zero or one, then sext will extend // it to the top bits, else it will just zext. Known = Known.sext(BitWidth); break; } case ISD::SIGN_EXTEND: { Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); // If the sign bit is known to be zero or one, then sext will extend // it to the top bits, else it will just zext. Known = Known.sext(BitWidth); break; } case ISD::ANY_EXTEND_VECTOR_INREG: { EVT InVT = Op.getOperand(0).getValueType(); APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); Known = Known.anyext(BitWidth); break; } case ISD::ANY_EXTEND: { Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known = Known.anyext(BitWidth); break; } case ISD::TRUNCATE: { Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known = Known.trunc(BitWidth); break; } case ISD::AssertZext: { EVT VT = cast(Op.getOperand(1))->getVT(); APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); Known = computeKnownBits(Op.getOperand(0), Depth+1); Known.Zero |= (~InMask); Known.One &= (~Known.Zero); break; } case ISD::AssertAlign: { unsigned LogOfAlign = Log2(cast(Op)->getAlign()); assert(LogOfAlign != 0); // If a node is guaranteed to be aligned, set low zero bits accordingly as // well as clearing one bits. Known.Zero.setLowBits(LogOfAlign); Known.One.clearLowBits(LogOfAlign); break; } case ISD::FGETSIGN: // All bits are zero except the low bit. Known.Zero.setBitsFrom(1); break; case ISD::USUBO: case ISD::SSUBO: if (Op.getResNo() == 1) { // If we know the result of a setcc has the top bits zero, use this info. if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1) Known.Zero.setBitsFrom(1); break; } LLVM_FALLTHROUGH; case ISD::SUB: case ISD::SUBC: { assert(Op.getResNo() == 0 && "We only compute knownbits for the difference here."); Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, Known, Known2); break; } case ISD::UADDO: case ISD::SADDO: case ISD::ADDCARRY: if (Op.getResNo() == 1) { // If we know the result of a setcc has the top bits zero, use this info. if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1) Known.Zero.setBitsFrom(1); break; } LLVM_FALLTHROUGH; case ISD::ADD: case ISD::ADDC: case ISD::ADDE: { assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); // With ADDE and ADDCARRY, a carry bit may be added in. KnownBits Carry(1); if (Opcode == ISD::ADDE) // Can't track carry from glue, set carry to unknown. Carry.resetAll(); else if (Opcode == ISD::ADDCARRY) // TODO: Compute known bits for the carry operand. Not sure if it is worth // the trouble (how often will we find a known carry bit). And I haven't // tested this very much yet, but something like this might work: // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); // Carry = Carry.zextOrTrunc(1, false); Carry.resetAll(); else Carry.setAllZero(); Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); Known = KnownBits::computeForAddCarry(Known, Known2, Carry); break; } case ISD::SREM: if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { const APInt &RA = Rem->getAPIntValue().abs(); if (RA.isPowerOf2()) { APInt LowBits = RA - 1; Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); // The low bits of the first operand are unchanged by the srem. Known.Zero = Known2.Zero & LowBits; Known.One = Known2.One & LowBits; // If the first operand is non-negative or has all low bits zero, then // the upper bits are all zero. if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) Known.Zero |= ~LowBits; // If the first operand is negative and not all low bits are zero, then // the upper bits are all one. if (Known2.isNegative() && LowBits.intersects(Known2.One)) Known.One |= ~LowBits; assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); } } break; case ISD::UREM: { if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { const APInt &RA = Rem->getAPIntValue(); if (RA.isPowerOf2()) { APInt LowBits = (RA - 1); Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); // The upper bits are all zero, the lower ones are unchanged. Known.Zero = Known2.Zero | ~LowBits; Known.One = Known2.One & LowBits; break; } } // Since the result is less than or equal to either operand, any leading // zero bits in either operand must also exist in the result. Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); uint32_t Leaders = std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); Known.resetAll(); Known.Zero.setHighBits(Leaders); break; } case ISD::EXTRACT_ELEMENT: { Known = computeKnownBits(Op.getOperand(0), Depth+1); const unsigned Index = Op.getConstantOperandVal(1); const unsigned EltBitWidth = Op.getValueSizeInBits(); // Remove low part of known bits mask Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); // Remove high part of known bit mask Known = Known.trunc(EltBitWidth); break; } case ISD::EXTRACT_VECTOR_ELT: { SDValue InVec = Op.getOperand(0); SDValue EltNo = Op.getOperand(1); EVT VecVT = InVec.getValueType(); const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); const unsigned NumSrcElts = VecVT.getVectorNumElements(); // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know // anything about the extended bits. if (BitWidth > EltBitWidth) Known = Known.trunc(EltBitWidth); // If we know the element index, just demand that vector element, else for // an unknown element index, ignore DemandedElts and demand them all. APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); auto *ConstEltNo = dyn_cast(EltNo); if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); if (BitWidth > EltBitWidth) Known = Known.anyext(BitWidth); break; } case ISD::INSERT_VECTOR_ELT: { // If we know the element index, split the demand between the // source vector and the inserted element, otherwise assume we need // the original demanded vector elements and the value. SDValue InVec = Op.getOperand(0); SDValue InVal = Op.getOperand(1); SDValue EltNo = Op.getOperand(2); bool DemandedVal = true; APInt DemandedVecElts = DemandedElts; auto *CEltNo = dyn_cast(EltNo); if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { unsigned EltIdx = CEltNo->getZExtValue(); DemandedVal = !!DemandedElts[EltIdx]; DemandedVecElts.clearBit(EltIdx); } Known.One.setAllBits(); Known.Zero.setAllBits(); if (DemandedVal) { Known2 = computeKnownBits(InVal, Depth + 1); Known.One &= Known2.One.zextOrTrunc(BitWidth); Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth); } if (!!DemandedVecElts) { Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); Known.One &= Known2.One; Known.Zero &= Known2.Zero; } break; } case ISD::BITREVERSE: { Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known.Zero = Known2.Zero.reverseBits(); Known.One = Known2.One.reverseBits(); break; } case ISD::BSWAP: { Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known.Zero = Known2.Zero.byteSwap(); Known.One = Known2.One.byteSwap(); break; } case ISD::ABS: { Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); // If the source's MSB is zero then we know the rest of the bits already. if (Known2.isNonNegative()) { Known.Zero = Known2.Zero; Known.One = Known2.One; break; } // We only know that the absolute values's MSB will be zero iff there is // a set bit that isn't the sign bit (otherwise it could be INT_MIN). Known2.One.clearSignBit(); if (Known2.One.getBoolValue()) { Known.Zero = APInt::getSignMask(BitWidth); break; } break; } case ISD::UMIN: { Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); // UMIN - we know that the result will have the maximum of the // known zero leading bits of the inputs. unsigned LeadZero = Known.countMinLeadingZeros(); LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); Known.Zero &= Known2.Zero; Known.One &= Known2.One; Known.Zero.setHighBits(LeadZero); break; } case ISD::UMAX: { Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); // UMAX - we know that the result will have the maximum of the // known one leading bits of the inputs. unsigned LeadOne = Known.countMinLeadingOnes(); LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); Known.Zero &= Known2.Zero; Known.One &= Known2.One; Known.One.setHighBits(LeadOne); break; } case ISD::SMIN: case ISD::SMAX: { // If we have a clamp pattern, we know that the number of sign bits will be // the minimum of the clamp min/max range. bool IsMax = (Opcode == ISD::SMAX); ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) CstHigh = isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); if (CstLow && CstHigh) { if (!IsMax) std::swap(CstLow, CstHigh); const APInt &ValueLow = CstLow->getAPIntValue(); const APInt &ValueHigh = CstHigh->getAPIntValue(); if (ValueLow.sle(ValueHigh)) { unsigned LowSignBits = ValueLow.getNumSignBits(); unsigned HighSignBits = ValueHigh.getNumSignBits(); unsigned MinSignBits = std::min(LowSignBits, HighSignBits); if (ValueLow.isNegative() && ValueHigh.isNegative()) { Known.One.setHighBits(MinSignBits); break; } if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { Known.Zero.setHighBits(MinSignBits); break; } } } // Fallback - just get the shared known bits of the operands. Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); if (Known.isUnknown()) break; // Early-out Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); Known.Zero &= Known2.Zero; Known.One &= Known2.One; break; } case ISD::FrameIndex: case ISD::TargetFrameIndex: TLI->computeKnownBitsForFrameIndex(cast(Op)->getIndex(), Known, getMachineFunction()); break; default: if (Opcode < ISD::BUILTIN_OP_END) break; LLVM_FALLTHROUGH; case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_VOID: // Allow the target to implement this method for its nodes. TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); break; } assert(!Known.hasConflict() && "Bits known to be one AND zero?"); return Known; } SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, SDValue N1) const { // X + 0 never overflow if (isNullConstant(N1)) return OFK_Never; KnownBits N1Known = computeKnownBits(N1); if (N1Known.Zero.getBoolValue()) { KnownBits N0Known = computeKnownBits(N0); bool overflow; (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); if (!overflow) return OFK_Never; } // mulhi + 1 never overflow if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) return OFK_Never; if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { KnownBits N0Known = computeKnownBits(N0); if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) return OFK_Never; } return OFK_Sometime; } bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { EVT OpVT = Val.getValueType(); unsigned BitWidth = OpVT.getScalarSizeInBits(); // Is the constant a known power of 2? if (ConstantSDNode *Const = dyn_cast(Val)) return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); // A left-shift of a constant one will have exactly one bit set because // shifting the bit off the end is undefined. if (Val.getOpcode() == ISD::SHL) { auto *C = isConstOrConstSplat(Val.getOperand(0)); if (C && C->getAPIntValue() == 1) return true; } // Similarly, a logical right-shift of a constant sign-bit will have exactly // one bit set. if (Val.getOpcode() == ISD::SRL) { auto *C = isConstOrConstSplat(Val.getOperand(0)); if (C && C->getAPIntValue().isSignMask()) return true; } // Are all operands of a build vector constant powers of two? if (Val.getOpcode() == ISD::BUILD_VECTOR) if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { if (ConstantSDNode *C = dyn_cast(E)) return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); return false; })) return true; // More could be done here, though the above checks are enough // to handle some common cases. // Fall back to computeKnownBits to catch other known cases. KnownBits Known = computeKnownBits(Val); return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); } unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { EVT VT = Op.getValueType(); // TODO: Assume we don't know anything for now. if (VT.isScalableVector()) return 1; APInt DemandedElts = VT.isVector() ? APInt::getAllOnesValue(VT.getVectorNumElements()) : APInt(1, 1); return ComputeNumSignBits(Op, DemandedElts, Depth); } unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, unsigned Depth) const { EVT VT = Op.getValueType(); assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); unsigned VTBits = VT.getScalarSizeInBits(); unsigned NumElts = DemandedElts.getBitWidth(); unsigned Tmp, Tmp2; unsigned FirstAnswer = 1; if (auto *C = dyn_cast(Op)) { const APInt &Val = C->getAPIntValue(); return Val.getNumSignBits(); } if (Depth >= MaxRecursionDepth) return 1; // Limit search depth. if (!DemandedElts || VT.isScalableVector()) return 1; // No demanded elts, better to assume we don't know anything. unsigned Opcode = Op.getOpcode(); switch (Opcode) { default: break; case ISD::AssertSext: Tmp = cast(Op.getOperand(1))->getVT().getSizeInBits(); return VTBits-Tmp+1; case ISD::AssertZext: Tmp = cast(Op.getOperand(1))->getVT().getSizeInBits(); return VTBits-Tmp; case ISD::BUILD_VECTOR: Tmp = VTBits; for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { if (!DemandedElts[i]) continue; SDValue SrcOp = Op.getOperand(i); Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); // BUILD_VECTOR can implicitly truncate sources, we must handle this. if (SrcOp.getValueSizeInBits() != VTBits) { assert(SrcOp.getValueSizeInBits() > VTBits && "Expected BUILD_VECTOR implicit truncation"); unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); } Tmp = std::min(Tmp, Tmp2); } return Tmp; case ISD::VECTOR_SHUFFLE: { // Collect the minimum number of sign bits that are shared by every vector // element referenced by the shuffle. APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); const ShuffleVectorSDNode *SVN = cast(Op); assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); for (unsigned i = 0; i != NumElts; ++i) { int M = SVN->getMaskElt(i); if (!DemandedElts[i]) continue; // For UNDEF elements, we don't know anything about the common state of // the shuffle result. if (M < 0) return 1; if ((unsigned)M < NumElts) DemandedLHS.setBit((unsigned)M % NumElts); else DemandedRHS.setBit((unsigned)M % NumElts); } Tmp = std::numeric_limits::max(); if (!!DemandedLHS) Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); if (!!DemandedRHS) { Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); Tmp = std::min(Tmp, Tmp2); } // If we don't know anything, early out and try computeKnownBits fall-back. if (Tmp == 1) break; assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); return Tmp; } case ISD::BITCAST: { SDValue N0 = Op.getOperand(0); EVT SrcVT = N0.getValueType(); unsigned SrcBits = SrcVT.getScalarSizeInBits(); // Ignore bitcasts from unsupported types.. if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) break; // Fast handling of 'identity' bitcasts. if (VTBits == SrcBits) return ComputeNumSignBits(N0, DemandedElts, Depth + 1); bool IsLE = getDataLayout().isLittleEndian(); // Bitcast 'large element' scalar/vector to 'small element' vector. if ((SrcBits % VTBits) == 0) { assert(VT.isVector() && "Expected bitcast to vector"); unsigned Scale = SrcBits / VTBits; APInt SrcDemandedElts(NumElts / Scale, 0); for (unsigned i = 0; i != NumElts; ++i) if (DemandedElts[i]) SrcDemandedElts.setBit(i / Scale); // Fast case - sign splat can be simply split across the small elements. Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); if (Tmp == SrcBits) return VTBits; // Slow case - determine how far the sign extends into each sub-element. Tmp2 = VTBits; for (unsigned i = 0; i != NumElts; ++i) if (DemandedElts[i]) { unsigned SubOffset = i % Scale; SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); SubOffset = SubOffset * VTBits; if (Tmp <= SubOffset) return 1; Tmp2 = std::min(Tmp2, Tmp - SubOffset); } return Tmp2; } break; } case ISD::SIGN_EXTEND: Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; case ISD::SIGN_EXTEND_INREG: // Max of the input and what this extends. Tmp = cast(Op.getOperand(1))->getVT().getScalarSizeInBits(); Tmp = VTBits-Tmp+1; Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); return std::max(Tmp, Tmp2); case ISD::SIGN_EXTEND_VECTOR_INREG: { SDValue Src = Op.getOperand(0); EVT SrcVT = Src.getValueType(); APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); Tmp = VTBits - SrcVT.getScalarSizeInBits(); return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; } case ISD::SRA: Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); // SRA X, C -> adds C sign bits. if (const APInt *ShAmt = getValidMinimumShiftAmountConstant(Op, DemandedElts)) Tmp = std::min(Tmp + ShAmt->getZExtValue(), VTBits); return Tmp; case ISD::SHL: if (const APInt *ShAmt = getValidMaximumShiftAmountConstant(Op, DemandedElts)) { // shl destroys sign bits, ensure it doesn't shift out all sign bits. Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); if (ShAmt->ult(Tmp)) return Tmp - ShAmt->getZExtValue(); } break; case ISD::AND: case ISD::OR: case ISD::XOR: // NOT is handled here. // Logical binary ops preserve the number of sign bits at the worst. Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); if (Tmp != 1) { Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); FirstAnswer = std::min(Tmp, Tmp2); // We computed what we know about the sign bits as our first // answer. Now proceed to the generic code that uses // computeKnownBits, and pick whichever answer is better. } break; case ISD::SELECT: case ISD::VSELECT: Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); if (Tmp == 1) return 1; // Early out. Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); return std::min(Tmp, Tmp2); case ISD::SELECT_CC: Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); if (Tmp == 1) return 1; // Early out. Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); return std::min(Tmp, Tmp2); case ISD::SMIN: case ISD::SMAX: { // If we have a clamp pattern, we know that the number of sign bits will be // the minimum of the clamp min/max range. bool IsMax = (Opcode == ISD::SMAX); ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) CstHigh = isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); if (CstLow && CstHigh) { if (!IsMax) std::swap(CstLow, CstHigh); if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { Tmp = CstLow->getAPIntValue().getNumSignBits(); Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); return std::min(Tmp, Tmp2); } } // Fallback - just get the minimum number of sign bits of the operands. Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); if (Tmp == 1) return 1; // Early out. Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); return std::min(Tmp, Tmp2); } case ISD::UMIN: case ISD::UMAX: Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); if (Tmp == 1) return 1; // Early out. Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); return std::min(Tmp, Tmp2); case ISD::SADDO: case ISD::UADDO: case ISD::SSUBO: case ISD::USUBO: case ISD::SMULO: case ISD::UMULO: if (Op.getResNo() != 1) break; // The boolean result conforms to getBooleanContents. Fall through. // If setcc returns 0/-1, all bits are sign bits. // We know that we have an integer-based boolean since these operations // are only available for integer. if (TLI->getBooleanContents(VT.isVector(), false) == TargetLowering::ZeroOrNegativeOneBooleanContent) return VTBits; break; case ISD::SETCC: case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: { unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; // If setcc returns 0/-1, all bits are sign bits. if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == TargetLowering::ZeroOrNegativeOneBooleanContent) return VTBits; break; } case ISD::ROTL: case ISD::ROTR: Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); // If we're rotating an 0/-1 value, then it stays an 0/-1 value. if (Tmp == VTBits) return VTBits; if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { unsigned RotAmt = C->getAPIntValue().urem(VTBits); // Handle rotate right by N like a rotate left by 32-N. if (Opcode == ISD::ROTR) RotAmt = (VTBits - RotAmt) % VTBits; // If we aren't rotating out all of the known-in sign bits, return the // number that are left. This handles rotl(sext(x), 1) for example. if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); } break; case ISD::ADD: case ISD::ADDC: // Add can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); if (Tmp == 1) return 1; // Early out. // Special case decrementing a value (ADD X, -1): if (ConstantSDNode *CRHS = isConstOrConstSplat(Op.getOperand(1), DemandedElts)) if (CRHS->isAllOnesValue()) { KnownBits Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. if ((Known.Zero | 1).isAllOnesValue()) return VTBits; // If we are subtracting one from a positive number, there is no carry // out of the result. if (Known.isNonNegative()) return Tmp; } Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); if (Tmp2 == 1) return 1; // Early out. return std::min(Tmp, Tmp2) - 1; case ISD::SUB: Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); if (Tmp2 == 1) return 1; // Early out. // Handle NEG. if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0), DemandedElts)) if (CLHS->isNullValue()) { KnownBits Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. if ((Known.Zero | 1).isAllOnesValue()) return VTBits; // If the input is known to be positive (the sign bit is known clear), // the output of the NEG has the same number of sign bits as the input. if (Known.isNonNegative()) return Tmp2; // Otherwise, we treat this like a SUB. } // Sub can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); if (Tmp == 1) return 1; // Early out. return std::min(Tmp, Tmp2) - 1; case ISD::MUL: { // The output of the Mul can be at most twice the valid bits in the inputs. unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); if (SignBitsOp0 == 1) break; unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); if (SignBitsOp1 == 1) break; unsigned OutValidBits = (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; } case ISD::TRUNCATE: { // Check if the sign bits of source go down as far as the truncated value. unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); if (NumSrcSignBits > (NumSrcBits - VTBits)) return NumSrcSignBits - (NumSrcBits - VTBits); break; } case ISD::EXTRACT_ELEMENT: { const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); const int BitWidth = Op.getValueSizeInBits(); const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; // Get reverse index (starting from 1), Op1 value indexes elements from // little end. Sign starts at big end. const int rIndex = Items - 1 - Op.getConstantOperandVal(1); // If the sign portion ends in our element the subtraction gives correct // result. Otherwise it gives either negative or > bitwidth result return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); } case ISD::INSERT_VECTOR_ELT: { // If we know the element index, split the demand between the // source vector and the inserted element, otherwise assume we need // the original demanded vector elements and the value. SDValue InVec = Op.getOperand(0); SDValue InVal = Op.getOperand(1); SDValue EltNo = Op.getOperand(2); bool DemandedVal = true; APInt DemandedVecElts = DemandedElts; auto *CEltNo = dyn_cast(EltNo); if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { unsigned EltIdx = CEltNo->getZExtValue(); DemandedVal = !!DemandedElts[EltIdx]; DemandedVecElts.clearBit(EltIdx); } Tmp = std::numeric_limits::max(); if (DemandedVal) { // TODO - handle implicit truncation of inserted elements. if (InVal.getScalarValueSizeInBits() != VTBits) break; Tmp2 = ComputeNumSignBits(InVal, Depth + 1); Tmp = std::min(Tmp, Tmp2); } if (!!DemandedVecElts) { Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); Tmp = std::min(Tmp, Tmp2); } assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); return Tmp; } case ISD::EXTRACT_VECTOR_ELT: { SDValue InVec = Op.getOperand(0); SDValue EltNo = Op.getOperand(1); EVT VecVT = InVec.getValueType(); const unsigned BitWidth = Op.getValueSizeInBits(); const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); const unsigned NumSrcElts = VecVT.getVectorNumElements(); // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know // anything about sign bits. But if the sizes match we can derive knowledge // about sign bits from the vector operand. if (BitWidth != EltBitWidth) break; // If we know the element index, just demand that vector element, else for // an unknown element index, ignore DemandedElts and demand them all. APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); auto *ConstEltNo = dyn_cast(EltNo); if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); } case ISD::EXTRACT_SUBVECTOR: { // Offset the demanded elts by the subvector index. SDValue Src = Op.getOperand(0); // Bail until we can represent demanded elements for scalable vectors. if (Src.getValueType().isScalableVector()) break; uint64_t Idx = Op.getConstantOperandVal(1); unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); } case ISD::CONCAT_VECTORS: { // Determine the minimum number of sign bits across all demanded // elts of the input vectors. Early out if the result is already 1. Tmp = std::numeric_limits::max(); EVT SubVectorVT = Op.getOperand(0).getValueType(); unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); unsigned NumSubVectors = Op.getNumOperands(); for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); DemandedSub = DemandedSub.trunc(NumSubVectorElts); if (!DemandedSub) continue; Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); Tmp = std::min(Tmp, Tmp2); } assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); return Tmp; } case ISD::INSERT_SUBVECTOR: { // Demand any elements from the subvector and the remainder from the src its // inserted into. SDValue Src = Op.getOperand(0); SDValue Sub = Op.getOperand(1); uint64_t Idx = Op.getConstantOperandVal(2); unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); APInt DemandedSrcElts = DemandedElts; DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); Tmp = std::numeric_limits::max(); if (!!DemandedSubElts) { Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); if (Tmp == 1) return 1; // early-out } if (!!DemandedSrcElts) { Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); Tmp = std::min(Tmp, Tmp2); } assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); return Tmp; } } // If we are looking at the loaded value of the SDNode. if (Op.getResNo() == 0) { // Handle LOADX separately here. EXTLOAD case will fallthrough. if (LoadSDNode *LD = dyn_cast(Op)) { unsigned ExtType = LD->getExtensionType(); switch (ExtType) { default: break; case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. Tmp = LD->getMemoryVT().getScalarSizeInBits(); return VTBits - Tmp + 1; case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. Tmp = LD->getMemoryVT().getScalarSizeInBits(); return VTBits - Tmp; case ISD::NON_EXTLOAD: if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { // We only need to handle vectors - computeKnownBits should handle // scalar cases. Type *CstTy = Cst->getType(); if (CstTy->isVectorTy() && (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { Tmp = VTBits; for (unsigned i = 0; i != NumElts; ++i) { if (!DemandedElts[i]) continue; if (Constant *Elt = Cst->getAggregateElement(i)) { if (auto *CInt = dyn_cast(Elt)) { const APInt &Value = CInt->getValue(); Tmp = std::min(Tmp, Value.getNumSignBits()); continue; } if (auto *CFP = dyn_cast(Elt)) { APInt Value = CFP->getValueAPF().bitcastToAPInt(); Tmp = std::min(Tmp, Value.getNumSignBits()); continue; } } // Unknown type. Conservatively assume no bits match sign bit. return 1; } return Tmp; } } break; } } } // Allow the target to implement this method for its nodes. if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) { unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); } // Finally, if we can prove that the top bits of the result are 0's or 1's, // use this information. KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); APInt Mask; if (Known.isNonNegative()) { // sign bit is 0 Mask = Known.Zero; } else if (Known.isNegative()) { // sign bit is 1; Mask = Known.One; } else { // Nothing known. return FirstAnswer; } // Okay, we know that the sign bit in Mask is set. Use CLO to determine // the number of identical bits in the top of the input value. Mask <<= Mask.getBitWidth()-VTBits; return std::max(FirstAnswer, Mask.countLeadingOnes()); } bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || !isa(Op.getOperand(1))) return false; if (Op.getOpcode() == ISD::OR && !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) return false; return true; } bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { // If we're told that NaNs won't happen, assume they won't. if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) return true; if (Depth >= MaxRecursionDepth) return false; // Limit search depth. // TODO: Handle vectors. // If the value is a constant, we can obviously see if it is a NaN or not. if (const ConstantFPSDNode *C = dyn_cast(Op)) { return !C->getValueAPF().isNaN() || (SNaN && !C->getValueAPF().isSignaling()); } unsigned Opcode = Op.getOpcode(); switch (Opcode) { case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: case ISD::FSIN: case ISD::FCOS: { if (SNaN) return true; // TODO: Need isKnownNeverInfinity return false; } case ISD::FCANONICALIZE: case ISD::FEXP: case ISD::FEXP2: case ISD::FTRUNC: case ISD::FFLOOR: case ISD::FCEIL: case ISD::FROUND: case ISD::FROUNDEVEN: case ISD::FRINT: case ISD::FNEARBYINT: { if (SNaN) return true; return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); } case ISD::FABS: case ISD::FNEG: case ISD::FCOPYSIGN: { return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); } case ISD::SELECT: return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); case ISD::FP_EXTEND: case ISD::FP_ROUND: { if (SNaN) return true; return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); } case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return true; case ISD::FMA: case ISD::FMAD: { if (SNaN) return true; return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); } case ISD::FSQRT: // Need is known positive case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FPOWI: case ISD::FPOW: { if (SNaN) return true; // TODO: Refine on operand return false; } case ISD::FMINNUM: case ISD::FMAXNUM: { // Only one needs to be known not-nan, since it will be returned if the // other ends up being one. return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); } case ISD::FMINNUM_IEEE: case ISD::FMAXNUM_IEEE: { if (SNaN) return true; // This can return a NaN if either operand is an sNaN, or if both operands // are NaN. return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); } case ISD::FMINIMUM: case ISD::FMAXIMUM: { // TODO: Does this quiet or return the origina NaN as-is? return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); } case ISD::EXTRACT_VECTOR_ELT: { return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); } default: if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) { return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); } return false; } } bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { assert(Op.getValueType().isFloatingPoint() && "Floating point type expected"); // If the value is a constant, we can obviously see if it is a zero or not. // TODO: Add BuildVector support. if (const ConstantFPSDNode *C = dyn_cast(Op)) return !C->isZero(); return false; } bool SelectionDAG::isKnownNeverZero(SDValue Op) const { assert(!Op.getValueType().isFloatingPoint() && "Floating point types unsupported - use isKnownNeverZeroFloat"); // If the value is a constant, we can obviously see if it is a zero or not. if (ISD::matchUnaryPredicate( Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) return true; // TODO: Recognize more cases here. switch (Op.getOpcode()) { default: break; case ISD::OR: if (isKnownNeverZero(Op.getOperand(1)) || isKnownNeverZero(Op.getOperand(0))) return true; break; } return false; } bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { // Check the obvious case. if (A == B) return true; // For for negative and positive zero. if (const ConstantFPSDNode *CA = dyn_cast(A)) if (const ConstantFPSDNode *CB = dyn_cast(B)) if (CA->isZero() && CB->isZero()) return true; // Otherwise they may not be equal. return false; } // FIXME: unify with llvm::haveNoCommonBitsSet. // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { assert(A.getValueType() == B.getValueType() && "Values must have the same type"); return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); } static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef Ops, SelectionDAG &DAG) { int NumOps = Ops.size(); assert(NumOps != 0 && "Can't build an empty vector!"); assert(!VT.isScalableVector() && "BUILD_VECTOR cannot be used with scalable types"); assert(VT.getVectorNumElements() == (unsigned)NumOps && "Incorrect element count in BUILD_VECTOR!"); // BUILD_VECTOR of UNDEFs is UNDEF. if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) return DAG.getUNDEF(VT); // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. SDValue IdentitySrc; bool IsIdentity = true; for (int i = 0; i != NumOps; ++i) { if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || Ops[i].getOperand(0).getValueType() != VT || (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || !isa(Ops[i].getOperand(1)) || cast(Ops[i].getOperand(1))->getAPIntValue() != i) { IsIdentity = false; break; } IdentitySrc = Ops[i].getOperand(0); } if (IsIdentity) return IdentitySrc; return SDValue(); } /// Try to simplify vector concatenation to an input value, undef, or build /// vector. static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef Ops, SelectionDAG &DAG) { assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); assert(llvm::all_of(Ops, [Ops](SDValue Op) { return Ops[0].getValueType() == Op.getValueType(); }) && "Concatenation of vectors with inconsistent value types!"); assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == VT.getVectorElementCount() && "Incorrect element count in vector concatenation!"); if (Ops.size() == 1) return Ops[0]; // Concat of UNDEFs is UNDEF. if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) return DAG.getUNDEF(VT); // Scan the operands and look for extract operations from a single source // that correspond to insertion at the same location via this concatenation: // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... SDValue IdentitySrc; bool IsIdentity = true; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { SDValue Op = Ops[i]; unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || Op.getOperand(0).getValueType() != VT || (IdentitySrc && Op.getOperand(0) != IdentitySrc) || Op.getConstantOperandVal(1) != IdentityIndex) { IsIdentity = false; break; } assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && "Unexpected identity source vector for concat of extracts"); IdentitySrc = Op.getOperand(0); } if (IsIdentity) { assert(IdentitySrc && "Failed to set source vector of extracts"); return IdentitySrc; } // The code below this point is only designed to work for fixed width // vectors, so we bail out for now. if (VT.isScalableVector()) return SDValue(); // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be // simplified to one big BUILD_VECTOR. // FIXME: Add support for SCALAR_TO_VECTOR as well. EVT SVT = VT.getScalarType(); SmallVector Elts; for (SDValue Op : Ops) { EVT OpVT = Op.getValueType(); if (Op.isUndef()) Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); else if (Op.getOpcode() == ISD::BUILD_VECTOR) Elts.append(Op->op_begin(), Op->op_end()); else return SDValue(); } // BUILD_VECTOR requires all inputs to be of the same type, find the // maximum type and extend them all. for (SDValue Op : Elts) SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); if (SVT.bitsGT(VT.getScalarType())) for (SDValue &Op : Elts) Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) ? DAG.getZExtOrTrunc(Op, DL, SVT) : DAG.getSExtOrTrunc(Op, DL, SVT); SDValue V = DAG.getBuildVector(VT, DL, Elts); NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); return V; } /// Gets or creates the specified node. SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, getVTList(VT), None); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) return SDValue(E, 0); auto *N = newSDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), getVTList(VT)); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V = SDValue(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand, const SDNodeFlags Flags) { // Constant fold unary operations with an integer constant operand. Even // opaque constant will be folded, because the folding of unary operations // doesn't create new constants with different values. Nevertheless, the // opaque flag is preserved during folding to prevent future folding with // other constants. if (ConstantSDNode *C = dyn_cast(Operand)) { const APInt &Val = C->getAPIntValue(); switch (Opcode) { default: break; case ISD::SIGN_EXTEND: return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, C->isTargetOpcode(), C->isOpaque()); case ISD::TRUNCATE: if (C->isOpaque()) break; LLVM_FALLTHROUGH; case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, C->isTargetOpcode(), C->isOpaque()); case ISD::UINT_TO_FP: case ISD::SINT_TO_FP: { APFloat apf(EVTToAPFloatSemantics(VT), APInt::getNullValue(VT.getSizeInBits())); (void)apf.convertFromAPInt(Val, Opcode==ISD::SINT_TO_FP, APFloat::rmNearestTiesToEven); return getConstantFP(apf, DL, VT); } case ISD::BITCAST: if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); break; case ISD::ABS: return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), C->isOpaque()); case ISD::BITREVERSE: return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), C->isOpaque()); case ISD::BSWAP: return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), C->isOpaque()); case ISD::CTPOP: return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), C->isOpaque()); case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), C->isOpaque()); case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), C->isOpaque()); case ISD::FP16_TO_FP: { bool Ignored; APFloat FPV(APFloat::IEEEhalf(), (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); // This can return overflow, underflow, or inexact; we don't care. // FIXME need to be more flexible about rounding mode. (void)FPV.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, &Ignored); return getConstantFP(FPV, DL, VT); } } } // Constant fold unary operations with a floating point constant operand. if (ConstantFPSDNode *C = dyn_cast(Operand)) { APFloat V = C->getValueAPF(); // make copy switch (Opcode) { case ISD::FNEG: V.changeSign(); return getConstantFP(V, DL, VT); case ISD::FABS: V.clearSign(); return getConstantFP(V, DL, VT); case ISD::FCEIL: { APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); if (fs == APFloat::opOK || fs == APFloat::opInexact) return getConstantFP(V, DL, VT); break; } case ISD::FTRUNC: { APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); if (fs == APFloat::opOK || fs == APFloat::opInexact) return getConstantFP(V, DL, VT); break; } case ISD::FFLOOR: { APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); if (fs == APFloat::opOK || fs == APFloat::opInexact) return getConstantFP(V, DL, VT); break; } case ISD::FP_EXTEND: { bool ignored; // This can return overflow, underflow, or inexact; we don't care. // FIXME need to be more flexible about rounding mode. (void)V.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, &ignored); return getConstantFP(V, DL, VT); } case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: { bool ignored; APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); // FIXME need to be more flexible about rounding mode. APFloat::opStatus s = V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual break; return getConstant(IntVal, DL, VT); } case ISD::BITCAST: if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); break; case ISD::FP_TO_FP16: { bool Ignored; // This can return overflow, underflow, or inexact; we don't care. // FIXME need to be more flexible about rounding mode. (void)V.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); } } } // Constant fold unary operations with a vector integer or float operand. if (BuildVectorSDNode *BV = dyn_cast(Operand)) { if (BV->isConstant()) { switch (Opcode) { default: // FIXME: Entirely reasonable to perform folding of other unary // operations here as the need arises. break; case ISD::FNEG: case ISD::FABS: case ISD::FCEIL: case ISD::FTRUNC: case ISD::FFLOOR: case ISD::FP_EXTEND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::TRUNCATE: case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case ISD::UINT_TO_FP: case ISD::SINT_TO_FP: case ISD::ABS: case ISD::BITREVERSE: case ISD::BSWAP: case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: case ISD::CTPOP: { SDValue Ops = { Operand }; if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) return Fold; } } } } unsigned OpOpcode = Operand.getNode()->getOpcode(); switch (Opcode) { case ISD::FREEZE: assert(VT == Operand.getValueType() && "Unexpected VT!"); break; case ISD::TokenFactor: case ISD::MERGE_VALUES: case ISD::CONCAT_VECTORS: return Operand; // Factor, merge or concat of one node? No need. case ISD::BUILD_VECTOR: { // Attempt to simplify BUILD_VECTOR. SDValue Ops[] = {Operand}; if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) return V; break; } case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); case ISD::FP_EXTEND: assert(VT.isFloatingPoint() && Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); if (Operand.getValueType() == VT) return Operand; // noop conversion. assert((!VT.isVector() || VT.getVectorNumElements() == Operand.getValueType().getVectorNumElements()) && "Vector element count mismatch!"); assert(Operand.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!"); if (Operand.isUndef()) return getUNDEF(VT); break; case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: if (Operand.isUndef()) return getUNDEF(VT); break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: // [us]itofp(undef) = 0, because the result value is bounded. if (Operand.isUndef()) return getConstantFP(0.0, DL, VT); break; case ISD::SIGN_EXTEND: assert(VT.isInteger() && Operand.getValueType().isInteger() && "Invalid SIGN_EXTEND!"); assert(VT.isVector() == Operand.getValueType().isVector() && "SIGN_EXTEND result type type should be vector iff the operand " "type is vector!"); if (Operand.getValueType() == VT) return Operand; // noop extension assert((!VT.isVector() || VT.getVectorElementCount() == Operand.getValueType().getVectorElementCount()) && "Vector element count mismatch!"); assert(Operand.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!"); if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); else if (OpOpcode == ISD::UNDEF) // sext(undef) = 0, because the top bits will all be the same. return getConstant(0, DL, VT); break; case ISD::ZERO_EXTEND: assert(VT.isInteger() && Operand.getValueType().isInteger() && "Invalid ZERO_EXTEND!"); assert(VT.isVector() == Operand.getValueType().isVector() && "ZERO_EXTEND result type type should be vector iff the operand " "type is vector!"); if (Operand.getValueType() == VT) return Operand; // noop extension assert((!VT.isVector() || VT.getVectorElementCount() == Operand.getValueType().getVectorElementCount()) && "Vector element count mismatch!"); assert(Operand.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!"); if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); else if (OpOpcode == ISD::UNDEF) // zext(undef) = 0, because the top bits will be zero. return getConstant(0, DL, VT); break; case ISD::ANY_EXTEND: assert(VT.isInteger() && Operand.getValueType().isInteger() && "Invalid ANY_EXTEND!"); assert(VT.isVector() == Operand.getValueType().isVector() && "ANY_EXTEND result type type should be vector iff the operand " "type is vector!"); if (Operand.getValueType() == VT) return Operand; // noop extension assert((!VT.isVector() || VT.getVectorElementCount() == Operand.getValueType().getVectorElementCount()) && "Vector element count mismatch!"); assert(Operand.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!"); if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ANY_EXTEND) // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); else if (OpOpcode == ISD::UNDEF) return getUNDEF(VT); // (ext (trunc x)) -> x if (OpOpcode == ISD::TRUNCATE) { SDValue OpOp = Operand.getOperand(0); if (OpOp.getValueType() == VT) { transferDbgValues(Operand, OpOp); return OpOp; } } break; case ISD::TRUNCATE: assert(VT.isInteger() && Operand.getValueType().isInteger() && "Invalid TRUNCATE!"); assert(VT.isVector() == Operand.getValueType().isVector() && "TRUNCATE result type type should be vector iff the operand " "type is vector!"); if (Operand.getValueType() == VT) return Operand; // noop truncate assert((!VT.isVector() || VT.getVectorElementCount() == Operand.getValueType().getVectorElementCount()) && "Vector element count mismatch!"); assert(Operand.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!"); if (OpOpcode == ISD::TRUNCATE) return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ANY_EXTEND) { // If the source is smaller than the dest, we still need an extend. if (Operand.getOperand(0).getValueType().getScalarType() .bitsLT(VT.getScalarType())) return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); if (Operand.getOperand(0).getValueType().bitsGT(VT)) return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); return Operand.getOperand(0); } if (OpOpcode == ISD::UNDEF) return getUNDEF(VT); break; case ISD::ANY_EXTEND_VECTOR_INREG: case ISD::ZERO_EXTEND_VECTOR_INREG: case ISD::SIGN_EXTEND_VECTOR_INREG: assert(VT.isVector() && "This DAG node is restricted to vector types."); assert(Operand.getValueType().bitsLE(VT) && "The input must be the same size or smaller than the result."); assert(VT.getVectorNumElements() < Operand.getValueType().getVectorNumElements() && "The destination vector type must have fewer lanes than the input."); break; case ISD::ABS: assert(VT.isInteger() && VT == Operand.getValueType() && "Invalid ABS!"); if (OpOpcode == ISD::UNDEF) return getUNDEF(VT); break; case ISD::BSWAP: assert(VT.isInteger() && VT == Operand.getValueType() && "Invalid BSWAP!"); assert((VT.getScalarSizeInBits() % 16 == 0) && "BSWAP types must be a multiple of 16 bits!"); if (OpOpcode == ISD::UNDEF) return getUNDEF(VT); break; case ISD::BITREVERSE: assert(VT.isInteger() && VT == Operand.getValueType() && "Invalid BITREVERSE!"); if (OpOpcode == ISD::UNDEF) return getUNDEF(VT); break; case ISD::BITCAST: // Basic sanity checking. assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && "Cannot BITCAST between types of different sizes!"); if (VT == Operand.getValueType()) return Operand; // noop conversion. if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); if (OpOpcode == ISD::UNDEF) return getUNDEF(VT); break; case ISD::SCALAR_TO_VECTOR: assert(VT.isVector() && !Operand.getValueType().isVector() && (VT.getVectorElementType() == Operand.getValueType() || (VT.getVectorElementType().isInteger() && Operand.getValueType().isInteger() && VT.getVectorElementType().bitsLE(Operand.getValueType()))) && "Illegal SCALAR_TO_VECTOR node!"); if (OpOpcode == ISD::UNDEF) return getUNDEF(VT); // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && isa(Operand.getOperand(1)) && Operand.getConstantOperandVal(1) == 0 && Operand.getOperand(0).getValueType() == VT) return Operand.getOperand(0); break; case ISD::FNEG: // Negation of an unknown bag of bits is still completely undefined. if (OpOpcode == ISD::UNDEF) return getUNDEF(VT); if (OpOpcode == ISD::FNEG) // --X -> X return Operand.getOperand(0); break; case ISD::FABS: if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); break; case ISD::VSCALE: assert(VT == Operand.getValueType() && "Unexpected VT!"); break; } SDNode *N; SDVTList VTs = getVTList(VT); SDValue Ops[] = {Operand}; if (VT != MVT::Glue) { // Don't CSE flag producing nodes FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTs, Ops); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { E->intersectFlagsWith(Flags); return SDValue(E, 0); } N = newSDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); N->setFlags(Flags); createOperands(N, Ops); CSEMap.InsertNode(N, IP); } else { N = newSDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); createOperands(N, Ops); } InsertNode(N); SDValue V = SDValue(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } static llvm::Optional FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2) { switch (Opcode) { case ISD::ADD: return C1 + C2; case ISD::SUB: return C1 - C2; case ISD::MUL: return C1 * C2; case ISD::AND: return C1 & C2; case ISD::OR: return C1 | C2; case ISD::XOR: return C1 ^ C2; case ISD::SHL: return C1 << C2; case ISD::SRL: return C1.lshr(C2); case ISD::SRA: return C1.ashr(C2); case ISD::ROTL: return C1.rotl(C2); case ISD::ROTR: return C1.rotr(C2); case ISD::SMIN: return C1.sle(C2) ? C1 : C2; case ISD::SMAX: return C1.sge(C2) ? C1 : C2; case ISD::UMIN: return C1.ule(C2) ? C1 : C2; case ISD::UMAX: return C1.uge(C2) ? C1 : C2; case ISD::SADDSAT: return C1.sadd_sat(C2); case ISD::UADDSAT: return C1.uadd_sat(C2); case ISD::SSUBSAT: return C1.ssub_sat(C2); case ISD::USUBSAT: return C1.usub_sat(C2); case ISD::UDIV: if (!C2.getBoolValue()) break; return C1.udiv(C2); case ISD::UREM: if (!C2.getBoolValue()) break; return C1.urem(C2); case ISD::SDIV: if (!C2.getBoolValue()) break; return C1.sdiv(C2); case ISD::SREM: if (!C2.getBoolValue()) break; return C1.srem(C2); } return llvm::None; } SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2) { if (GA->getOpcode() != ISD::GlobalAddress) return SDValue(); if (!TLI->isOffsetFoldingLegal(GA)) return SDValue(); auto *C2 = dyn_cast(N2); if (!C2) return SDValue(); int64_t Offset = C2->getSExtValue(); switch (Opcode) { case ISD::ADD: break; case ISD::SUB: Offset = -uint64_t(Offset); break; default: return SDValue(); } return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, GA->getOffset() + uint64_t(Offset)); } bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef Ops) { switch (Opcode) { case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: { // If a divisor is zero/undef or any element of a divisor vector is // zero/undef, the whole op is undef. assert(Ops.size() == 2 && "Div/rem should have 2 operands"); SDValue Divisor = Ops[1]; if (Divisor.isUndef() || isNullConstant(Divisor)) return true; return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && llvm::any_of(Divisor->op_values(), [](SDValue V) { return V.isUndef() || isNullConstant(V); }); // TODO: Handle signed overflow. } // TODO: Handle oversized shifts. default: return false; } } SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef Ops) { // If the opcode is a target-specific ISD node, there's nothing we can // do here and the operand rules may not line up with the below, so // bail early. if (Opcode >= ISD::BUILTIN_OP_END) return SDValue(); // For now, the array Ops should only contain two values. // This enforcement will be removed once this function is merged with // FoldConstantVectorArithmetic if (Ops.size() != 2) return SDValue(); if (isUndef(Opcode, Ops)) return getUNDEF(VT); SDNode *N1 = Ops[0].getNode(); SDNode *N2 = Ops[1].getNode(); // Handle the case of two scalars. if (auto *C1 = dyn_cast(N1)) { if (auto *C2 = dyn_cast(N2)) { if (C1->isOpaque() || C2->isOpaque()) return SDValue(); Optional FoldAttempt = FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); if (!FoldAttempt) return SDValue(); SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); assert((!Folded || !VT.isVector()) && "Can't fold vectors ops with scalar operands"); return Folded; } } // fold (add Sym, c) -> Sym+c if (GlobalAddressSDNode *GA = dyn_cast(N1)) return FoldSymbolOffset(Opcode, VT, GA, N2); if (TLI->isCommutativeBinOp(Opcode)) if (GlobalAddressSDNode *GA = dyn_cast(N2)) return FoldSymbolOffset(Opcode, VT, GA, N1); // TODO: All the folds below are performed lane-by-lane and assume a fixed // vector width, however we should be able to do constant folds involving // splat vector nodes too. if (VT.isScalableVector()) return SDValue(); // For fixed width vectors, extract each constant element and fold them // individually. Either input may be an undef value. auto *BV1 = dyn_cast(N1); if (!BV1 && !N1->isUndef()) return SDValue(); auto *BV2 = dyn_cast(N2); if (!BV2 && !N2->isUndef()) return SDValue(); // If both operands are undef, that's handled the same way as scalars. if (!BV1 && !BV2) return SDValue(); assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && "Vector binop with different number of elements in operands?"); EVT SVT = VT.getScalarType(); EVT LegalSVT = SVT; if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); if (LegalSVT.bitsLT(SVT)) return SDValue(); } SmallVector Outputs; unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); for (unsigned I = 0; I != NumOps; ++I) { SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); if (SVT.isInteger()) { if (V1->getValueType(0).bitsGT(SVT)) V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); if (V2->getValueType(0).bitsGT(SVT)) V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); } if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) return SDValue(); // Fold one vector element. SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); if (LegalSVT != SVT) ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); // Scalar folding only succeeded if the result is a constant or UNDEF. if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && ScalarResult.getOpcode() != ISD::ConstantFP) return SDValue(); Outputs.push_back(ScalarResult); } assert(VT.getVectorNumElements() == Outputs.size() && "Vector size mismatch!"); // We may have a vector type but a scalar result. Create a splat. Outputs.resize(VT.getVectorNumElements(), Outputs.back()); // Build a big vector out of the scalar elements we generated. return getBuildVector(VT, SDLoc(), Outputs); } // TODO: Merge with FoldConstantArithmetic SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef Ops, const SDNodeFlags Flags) { // If the opcode is a target-specific ISD node, there's nothing we can // do here and the operand rules may not line up with the below, so // bail early. if (Opcode >= ISD::BUILTIN_OP_END) return SDValue(); if (isUndef(Opcode, Ops)) return getUNDEF(VT); // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? if (!VT.isVector()) return SDValue(); // TODO: All the folds below are performed lane-by-lane and assume a fixed // vector width, however we should be able to do constant folds involving // splat vector nodes too. if (VT.isScalableVector()) return SDValue(); // From this point onwards all vectors are assumed to be fixed width. unsigned NumElts = VT.getVectorNumElements(); auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { return !Op.getValueType().isVector() || Op.getValueType().getVectorNumElements() == NumElts; }; auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { BuildVectorSDNode *BV = dyn_cast(Op); return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || (BV && BV->isConstant()); }; // All operands must be vector types with the same number of elements as // the result type and must be either UNDEF or a build vector of constant // or UNDEF scalars. if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || !llvm::all_of(Ops, IsScalarOrSameVectorSize)) return SDValue(); // If we are comparing vectors, then the result needs to be a i1 boolean // that is then sign-extended back to the legal result type. EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); // Find legal integer scalar type for constant promotion and // ensure that its scalar size is at least as large as source. EVT LegalSVT = VT.getScalarType(); if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); if (LegalSVT.bitsLT(VT.getScalarType())) return SDValue(); } // Constant fold each scalar lane separately. SmallVector ScalarResults; for (unsigned i = 0; i != NumElts; i++) { SmallVector ScalarOps; for (SDValue Op : Ops) { EVT InSVT = Op.getValueType().getScalarType(); BuildVectorSDNode *InBV = dyn_cast(Op); if (!InBV) { // We've checked that this is UNDEF or a constant of some kind. if (Op.isUndef()) ScalarOps.push_back(getUNDEF(InSVT)); else ScalarOps.push_back(Op); continue; } SDValue ScalarOp = InBV->getOperand(i); EVT ScalarVT = ScalarOp.getValueType(); // Build vector (integer) scalar operands may need implicit // truncation - do this before constant folding. if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); ScalarOps.push_back(ScalarOp); } // Constant fold the scalar operands. SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); // Legalize the (integer) scalar constant if necessary. if (LegalSVT != SVT) ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); // Scalar folding only succeeded if the result is a constant or UNDEF. if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && ScalarResult.getOpcode() != ISD::ConstantFP) return SDValue(); ScalarResults.push_back(ScalarResult); } SDValue V = getBuildVector(VT, DL, ScalarResults); NewSDValueDbgMsg(V, "New node fold constant vector: ", this); return V; } SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, SDValue N2) { // TODO: We don't do any constant folding for strict FP opcodes here, but we // should. That will require dealing with a potentially non-default // rounding mode, checking the "opStatus" return value from the APFloat // math calculations, and possibly other variations. auto *N1CFP = dyn_cast(N1.getNode()); auto *N2CFP = dyn_cast(N2.getNode()); if (N1CFP && N2CFP) { APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); switch (Opcode) { case ISD::FADD: C1.add(C2, APFloat::rmNearestTiesToEven); return getConstantFP(C1, DL, VT); case ISD::FSUB: C1.subtract(C2, APFloat::rmNearestTiesToEven); return getConstantFP(C1, DL, VT); case ISD::FMUL: C1.multiply(C2, APFloat::rmNearestTiesToEven); return getConstantFP(C1, DL, VT); case ISD::FDIV: C1.divide(C2, APFloat::rmNearestTiesToEven); return getConstantFP(C1, DL, VT); case ISD::FREM: C1.mod(C2); return getConstantFP(C1, DL, VT); case ISD::FCOPYSIGN: C1.copySign(C2); return getConstantFP(C1, DL, VT); default: break; } } if (N1CFP && Opcode == ISD::FP_ROUND) { APFloat C1 = N1CFP->getValueAPF(); // make copy bool Unused; // This can return overflow, underflow, or inexact; we don't care. // FIXME need to be more flexible about rounding mode. (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, &Unused); return getConstantFP(C1, DL, VT); } switch (Opcode) { case ISD::FSUB: // -0.0 - undef --> undef (consistent with "fneg undef") if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) return getUNDEF(VT); LLVM_FALLTHROUGH; case ISD::FADD: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: // If both operands are undef, the result is undef. If 1 operand is undef, // the result is NaN. This should match the behavior of the IR optimizer. if (N1.isUndef() && N2.isUndef()) return getUNDEF(VT); if (N1.isUndef() || N2.isUndef()) return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); } return SDValue(); } SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); // There's no need to assert on a byte-aligned pointer. All pointers are at // least byte aligned. if (A == Align(1)) return Val; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); ID.AddInteger(A.value()); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) return SDValue(E, 0); auto *N = newSDNode(DL.getIROrder(), DL.getDebugLoc(), Val.getValueType(), A); createOperands(N, {Val}); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, SDValue N2, const SDNodeFlags Flags) { ConstantSDNode *N1C = dyn_cast(N1); ConstantSDNode *N2C = dyn_cast(N2); ConstantFPSDNode *N1CFP = dyn_cast(N1); ConstantFPSDNode *N2CFP = dyn_cast(N2); // Canonicalize constant to RHS if commutative. if (TLI->isCommutativeBinOp(Opcode)) { if (N1C && !N2C) { std::swap(N1C, N2C); std::swap(N1, N2); } else if (N1CFP && !N2CFP) { std::swap(N1CFP, N2CFP); std::swap(N1, N2); } } switch (Opcode) { default: break; case ISD::TokenFactor: assert(VT == MVT::Other && N1.getValueType() == MVT::Other && N2.getValueType() == MVT::Other && "Invalid token factor!"); // Fold trivial token factors. if (N1.getOpcode() == ISD::EntryToken) return N2; if (N2.getOpcode() == ISD::EntryToken) return N1; if (N1 == N2) return N1; break; case ISD::BUILD_VECTOR: { // Attempt to simplify BUILD_VECTOR. SDValue Ops[] = {N1, N2}; if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) return V; break; } case ISD::CONCAT_VECTORS: { SDValue Ops[] = {N1, N2}; if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) return V; break; } case ISD::AND: assert(VT.isInteger() && "This operator does not apply to FP types!"); assert(N1.getValueType() == N2.getValueType() && N1.getValueType() == VT && "Binary operator types must match!"); // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's // worth handling here. if (N2C && N2C->isNullValue()) return N2; if (N2C && N2C->isAllOnesValue()) // X & -1 -> X return N1; break; case ISD::OR: case ISD::XOR: case ISD::ADD: case ISD::SUB: assert(VT.isInteger() && "This operator does not apply to FP types!"); assert(N1.getValueType() == N2.getValueType() && N1.getValueType() == VT && "Binary operator types must match!"); // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so // it's worth handling here. if (N2C && N2C->isNullValue()) return N1; break; case ISD::MUL: assert(VT.isInteger() && "This operator does not apply to FP types!"); assert(N1.getValueType() == N2.getValueType() && N1.getValueType() == VT && "Binary operator types must match!"); if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { APInt MulImm = cast(N1->getOperand(0))->getAPIntValue(); APInt N2CImm = N2C->getAPIntValue(); return getVScale(DL, VT, MulImm * N2CImm); } break; case ISD::UDIV: case ISD::UREM: case ISD::MULHU: case ISD::MULHS: case ISD::SDIV: case ISD::SREM: case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: case ISD::SADDSAT: case ISD::SSUBSAT: case ISD::UADDSAT: case ISD::USUBSAT: assert(VT.isInteger() && "This operator does not apply to FP types!"); assert(N1.getValueType() == N2.getValueType() && N1.getValueType() == VT && "Binary operator types must match!"); break; case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); assert(N1.getValueType() == N2.getValueType() && N1.getValueType() == VT && "Binary operator types must match!"); if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) return V; break; case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. assert(N1.getValueType() == VT && N1.getValueType().isFloatingPoint() && N2.getValueType().isFloatingPoint() && "Invalid FCOPYSIGN!"); break; case ISD::SHL: if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { APInt MulImm = cast(N1->getOperand(0))->getAPIntValue(); APInt ShiftImm = N2C->getAPIntValue(); return getVScale(DL, VT, MulImm << ShiftImm); } LLVM_FALLTHROUGH; case ISD::SRA: case ISD::SRL: if (SDValue V = simplifyShift(N1, N2)) return V; LLVM_FALLTHROUGH; case ISD::ROTL: case ISD::ROTR: assert(VT == N1.getValueType() && "Shift operators return type must be the same as their first arg"); assert(VT.isInteger() && N2.getValueType().isInteger() && "Shifts only work on integers"); assert((!VT.isVector() || VT == N2.getValueType()) && "Vector shift amounts must be in the same as their first arg"); // Verify that the shift amount VT is big enough to hold valid shift // amounts. This catches things like trying to shift an i1024 value by an // i8, which is easy to fall into in generic code that uses // TLI.getShiftAmount(). assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >= Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) && "Invalid use of small shift amount with oversized value!"); // Always fold shifts of i1 values so the code generator doesn't need to // handle them. Since we know the size of the shift has to be less than the // size of the value, the shift/rotate count is guaranteed to be zero. if (VT == MVT::i1) return N1; if (N2C && N2C->isNullValue()) return N1; break; case ISD::FP_ROUND: assert(VT.isFloatingPoint() && N1.getValueType().isFloatingPoint() && VT.bitsLE(N1.getValueType()) && N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && "Invalid FP_ROUND!"); if (N1.getValueType() == VT) return N1; // noop conversion. break; case ISD::AssertSext: case ISD::AssertZext: { EVT EVT = cast(N2)->getVT(); assert(VT == N1.getValueType() && "Not an inreg extend!"); assert(VT.isInteger() && EVT.isInteger() && "Cannot *_EXTEND_INREG FP types"); assert(!EVT.isVector() && "AssertSExt/AssertZExt type should be the vector element type " "rather than the vector type!"); assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); if (VT.getScalarType() == EVT) return N1; // noop assertion. break; } case ISD::SIGN_EXTEND_INREG: { EVT EVT = cast(N2)->getVT(); assert(VT == N1.getValueType() && "Not an inreg extend!"); assert(VT.isInteger() && EVT.isInteger() && "Cannot *_EXTEND_INREG FP types"); assert(EVT.isVector() == VT.isVector() && "SIGN_EXTEND_INREG type should be vector iff the operand " "type is vector!"); assert((!EVT.isVector() || EVT.getVectorElementCount() == VT.getVectorElementCount()) && "Vector element counts must match in SIGN_EXTEND_INREG"); assert(EVT.bitsLE(VT) && "Not extending!"); if (EVT == VT) return N1; // Not actually extending auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { unsigned FromBits = EVT.getScalarSizeInBits(); Val <<= Val.getBitWidth() - FromBits; Val.ashrInPlace(Val.getBitWidth() - FromBits); return getConstant(Val, DL, ConstantVT); }; if (N1C) { const APInt &Val = N1C->getAPIntValue(); return SignExtendInReg(Val, VT); } if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { SmallVector Ops; llvm::EVT OpVT = N1.getOperand(0).getValueType(); for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { SDValue Op = N1.getOperand(i); if (Op.isUndef()) { Ops.push_back(getUNDEF(OpVT)); continue; } ConstantSDNode *C = cast(Op); APInt Val = C->getAPIntValue(); Ops.push_back(SignExtendInReg(Val, OpVT)); } return getBuildVector(VT, DL, Ops); } break; } case ISD::EXTRACT_VECTOR_ELT: assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ element type of the vector."); // Extract from an undefined value or using an undefined index is undefined. if (N1.isUndef() || N2.isUndef()) return getUNDEF(VT); // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length // vectors. For scalable vectors we will provide appropriate support for // dealing with arbitrary indices. if (N2C && N1.getValueType().isFixedLengthVector() && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) return getUNDEF(VT); // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is // expanding copies of large vectors from registers. This only works for // fixed length vectors, since we need to know the exact number of // elements. if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { unsigned Factor = N1.getOperand(0).getValueType().getVectorNumElements(); return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(N2C->getZExtValue() / Factor), getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); } // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while // lowering is expanding large vector constants. if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || N1.getOpcode() == ISD::SPLAT_VECTOR)) { assert((N1.getOpcode() != ISD::BUILD_VECTOR || N1.getValueType().isFixedLengthVector()) && "BUILD_VECTOR used for scalable vectors"); unsigned Index = N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; SDValue Elt = N1.getOperand(Index); if (VT != Elt.getValueType()) // If the vector element type is not legal, the BUILD_VECTOR operands // are promoted and implicitly truncated, and the result implicitly // extended. Make that explicit here. Elt = getAnyExtOrTrunc(Elt, DL, VT); return Elt; } // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector // operations are lowered to scalars. if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { // If the indices are the same, return the inserted element else // if the indices are known different, extract the element from // the original vector. SDValue N1Op2 = N1.getOperand(2); ConstantSDNode *N1Op2C = dyn_cast(N1Op2); if (N1Op2C && N2C) { if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { if (VT == N1.getOperand(1).getValueType()) return N1.getOperand(1); else return getSExtOrTrunc(N1.getOperand(1), DL, VT); } return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); } } // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed // when vector types are scalarized and v1iX is legal. // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). // Here we are completely ignoring the extract element index (N2), // which is fine for fixed width vectors, since any index other than 0 // is undefined anyway. However, this cannot be ignored for scalable // vectors - in theory we could support this, but we don't want to do this // without a profitability check. if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && N1.getValueType().isFixedLengthVector() && N1.getValueType().getVectorNumElements() == 1) { return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N1.getOperand(1)); } break; case ISD::EXTRACT_ELEMENT: assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); assert(!N1.getValueType().isVector() && !VT.isVector() && (N1.getValueType().isInteger() == VT.isInteger()) && N1.getValueType() != VT && "Wrong types for EXTRACT_ELEMENT!"); // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding // 64-bit integers into 32-bit parts. Instead of building the extract of // the BUILD_PAIR, only to have legalize rip it apart, just do it now. if (N1.getOpcode() == ISD::BUILD_PAIR) return N1.getOperand(N2C->getZExtValue()); // EXTRACT_ELEMENT of a constant int is also very common. if (N1C) { unsigned ElementSize = VT.getSizeInBits(); unsigned Shift = ElementSize * N2C->getZExtValue(); APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); } break; case ISD::EXTRACT_SUBVECTOR: EVT N1VT = N1.getValueType(); assert(VT.isVector() && N1VT.isVector() && "Extract subvector VTs must be vectors!"); assert(VT.getVectorElementType() == N1VT.getVectorElementType() && "Extract subvector VTs must have the same element type!"); assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && "Cannot extract a scalable vector from a fixed length vector!"); assert((VT.isScalableVector() != N1VT.isScalableVector() || VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && "Extract subvector must be from larger vector to smaller vector!"); assert(N2C && "Extract subvector index must be a constant"); assert((VT.isScalableVector() != N1VT.isScalableVector() || (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= N1VT.getVectorMinNumElements()) && "Extract subvector overflow!"); // Trivial extraction. if (VT == N1VT) return N1; // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. if (N1.isUndef()) return getUNDEF(VT); // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of // the concat have the same type as the extract. if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) { unsigned Factor = VT.getVectorMinNumElements(); return N1.getOperand(N2C->getZExtValue() / Factor); } // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created // during shuffle legalization. if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && VT == N1.getOperand(1).getValueType()) return N1.getOperand(1); break; } // Perform trivial constant folding. if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) return SV; if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) return V; // Canonicalize an UNDEF to the RHS, even over a constant. if (N1.isUndef()) { if (TLI->isCommutativeBinOp(Opcode)) { std::swap(N1, N2); } else { switch (Opcode) { case ISD::SIGN_EXTEND_INREG: case ISD::SUB: return getUNDEF(VT); // fold op(undef, arg2) -> undef case ISD::UDIV: case ISD::SDIV: case ISD::UREM: case ISD::SREM: case ISD::SSUBSAT: case ISD::USUBSAT: return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 } } } // Fold a bunch of operators when the RHS is undef. if (N2.isUndef()) { switch (Opcode) { case ISD::XOR: if (N1.isUndef()) // Handle undef ^ undef -> 0 special case. This is a common // idiom (misuse). return getConstant(0, DL, VT); LLVM_FALLTHROUGH; case ISD::ADD: case ISD::SUB: case ISD::UDIV: case ISD::SDIV: case ISD::UREM: case ISD::SREM: return getUNDEF(VT); // fold op(arg1, undef) -> undef case ISD::MUL: case ISD::AND: case ISD::SSUBSAT: case ISD::USUBSAT: return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 case ISD::OR: case ISD::SADDSAT: case ISD::UADDSAT: return getAllOnesConstant(DL, VT); } } // Memoize this node if possible. SDNode *N; SDVTList VTs = getVTList(VT); SDValue Ops[] = {N1, N2}; if (VT != MVT::Glue) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTs, Ops); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { E->intersectFlagsWith(Flags); return SDValue(E, 0); } N = newSDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); N->setFlags(Flags); createOperands(N, Ops); CSEMap.InsertNode(N, IP); } else { N = newSDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); createOperands(N, Ops); } InsertNode(N); SDValue V = SDValue(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, SDValue N2, SDValue N3, const SDNodeFlags Flags) { // Perform various simplifications. switch (Opcode) { case ISD::FMA: { assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); assert(N1.getValueType() == VT && N2.getValueType() == VT && N3.getValueType() == VT && "FMA types must match!"); ConstantFPSDNode *N1CFP = dyn_cast(N1); ConstantFPSDNode *N2CFP = dyn_cast(N2); ConstantFPSDNode *N3CFP = dyn_cast(N3); if (N1CFP && N2CFP && N3CFP) { APFloat V1 = N1CFP->getValueAPF(); const APFloat &V2 = N2CFP->getValueAPF(); const APFloat &V3 = N3CFP->getValueAPF(); V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); return getConstantFP(V1, DL, VT); } break; } case ISD::BUILD_VECTOR: { // Attempt to simplify BUILD_VECTOR. SDValue Ops[] = {N1, N2, N3}; if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) return V; break; } case ISD::CONCAT_VECTORS: { SDValue Ops[] = {N1, N2, N3}; if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) return V; break; } case ISD::SETCC: { assert(VT.isInteger() && "SETCC result type must be an integer!"); assert(N1.getValueType() == N2.getValueType() && "SETCC operands must have the same type!"); assert(VT.isVector() == N1.getValueType().isVector() && "SETCC type should be vector iff the operand type is vector!"); assert((!VT.isVector() || VT.getVectorElementCount() == N1.getValueType().getVectorElementCount()) && "SETCC vector element counts must match!"); // Use FoldSetCC to simplify SETCC's. if (SDValue V = FoldSetCC(VT, N1, N2, cast(N3)->get(), DL)) return V; // Vector constant folding. SDValue Ops[] = {N1, N2, N3}; if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { NewSDValueDbgMsg(V, "New node vector constant folding: ", this); return V; } break; } case ISD::SELECT: case ISD::VSELECT: if (SDValue V = simplifySelect(N1, N2, N3)) return V; break; case ISD::VECTOR_SHUFFLE: llvm_unreachable("should use getVectorShuffle constructor!"); case ISD::INSERT_VECTOR_ELT: { ConstantSDNode *N3C = dyn_cast(N3); // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except // for scalable vectors where we will generate appropriate code to // deal with out-of-bounds cases correctly. if (N3C && N1.getValueType().isFixedLengthVector() && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) return getUNDEF(VT); // Undefined index can be assumed out-of-bounds, so that's UNDEF too. if (N3.isUndef()) return getUNDEF(VT); // If the inserted element is an UNDEF, just use the input vector. if (N2.isUndef()) return N1; break; } case ISD::INSERT_SUBVECTOR: { // Inserting undef into undef is still undef. if (N1.isUndef() && N2.isUndef()) return getUNDEF(VT); EVT N2VT = N2.getValueType(); assert(VT == N1.getValueType() && "Dest and insert subvector source types must match!"); assert(VT.isVector() && N2VT.isVector() && "Insert subvector VTs must be vectors!"); assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && "Cannot insert a scalable vector into a fixed length vector!"); assert((VT.isScalableVector() != N2VT.isScalableVector() || VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && "Insert subvector must be from smaller vector to larger vector!"); assert(isa(N3) && "Insert subvector index must be constant"); assert((VT.isScalableVector() != N2VT.isScalableVector() || (N2VT.getVectorMinNumElements() + cast(N3)->getZExtValue()) <= VT.getVectorMinNumElements()) && "Insert subvector overflow!"); // Trivial insertion. if (VT == N2VT) return N2; // If this is an insert of an extracted vector into an undef vector, we // can just use the input to the extract. if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) return N2.getOperand(0); break; } case ISD::BITCAST: // Fold bit_convert nodes from a type to themselves. if (N1.getValueType() == VT) return N1; break; } // Memoize node if it doesn't produce a flag. SDNode *N; SDVTList VTs = getVTList(VT); SDValue Ops[] = {N1, N2, N3}; if (VT != MVT::Glue) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTs, Ops); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { E->intersectFlagsWith(Flags); return SDValue(E, 0); } N = newSDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); N->setFlags(Flags); createOperands(N, Ops); CSEMap.InsertNode(N, IP); } else { N = newSDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); createOperands(N, Ops); } InsertNode(N); SDValue V = SDValue(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, SDValue N2, SDValue N3, SDValue N4) { SDValue Ops[] = { N1, N2, N3, N4 }; return getNode(Opcode, DL, VT, Ops); } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, SDValue N2, SDValue N3, SDValue N4, SDValue N5) { SDValue Ops[] = { N1, N2, N3, N4, N5 }; return getNode(Opcode, DL, VT, Ops); } /// getStackArgumentTokenFactor - Compute a TokenFactor to force all /// the incoming stack arguments to be loaded from the stack. SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { SmallVector ArgChains; // Include the original chain at the beginning of the list. When this is // used by target LowerCall hooks, this helps legalize find the // CALLSEQ_BEGIN node. ArgChains.push_back(Chain); // Add a chain value for each stack argument. for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), UE = getEntryNode().getNode()->use_end(); U != UE; ++U) if (LoadSDNode *L = dyn_cast(*U)) if (FrameIndexSDNode *FI = dyn_cast(L->getBasePtr())) if (FI->getIndex() < 0) ArgChains.push_back(SDValue(L, 1)); // Build a tokenfactor for all the chains. return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); } /// getMemsetValue - Vectorized representation of the memset value /// operand. static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, const SDLoc &dl) { assert(!Value.isUndef()); unsigned NumBits = VT.getScalarSizeInBits(); if (ConstantSDNode *C = dyn_cast(Value)) { assert(C->getAPIntValue().getBitWidth() == 8); APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); if (VT.isInteger()) { bool IsOpaque = VT.getSizeInBits() > 64 || !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); return DAG.getConstant(Val, dl, VT, false, IsOpaque); } return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, VT); } assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); EVT IntVT = VT.getScalarType(); if (!IntVT.isInteger()) IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); if (NumBits > 8) { // Use a multiplication with 0x010101... to extend the input to the // required length. APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, DAG.getConstant(Magic, dl, IntVT)); } if (VT != Value.getValueType() && !VT.isInteger()) Value = DAG.getBitcast(VT.getScalarType(), Value); if (VT != Value.getValueType()) Value = DAG.getSplatBuildVector(VT, dl, Value); return Value; } /// getMemsetStringVal - Similar to getMemsetValue. Except this is only /// used when a memcpy is turned into a memset when the source is a constant /// string ptr. static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice) { // Handle vector with all elements zero. if (Slice.Array == nullptr) { if (VT.isInteger()) return DAG.getConstant(0, dl, VT); else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) return DAG.getConstantFP(0.0, dl, VT); else if (VT.isVector()) { unsigned NumElts = VT.getVectorNumElements(); MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getConstant(0, dl, EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts))); } else llvm_unreachable("Expected type!"); } assert(!VT.isVector() && "Can't handle vector type here!"); unsigned NumVTBits = VT.getSizeInBits(); unsigned NumVTBytes = NumVTBits / 8; unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); APInt Val(NumVTBits, 0); if (DAG.getDataLayout().isLittleEndian()) { for (unsigned i = 0; i != NumBytes; ++i) Val |= (uint64_t)(unsigned char)Slice[i] << i*8; } else { for (unsigned i = 0; i != NumBytes; ++i) Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; } // If the "cost" of materializing the integer immediate is less than the cost // of a load, then it is cost effective to turn the load into the immediate. Type *Ty = VT.getTypeForEVT(*DAG.getContext()); if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) return DAG.getConstant(Val, dl, VT); return SDValue(nullptr, 0); } SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, const SDLoc &DL, const SDNodeFlags Flags) { EVT VT = Base.getValueType(); return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); } SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, const SDLoc &DL, const SDNodeFlags Flags) { assert(Offset.getValueType().isInteger()); EVT BasePtrVT = Ptr.getValueType(); return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); } /// Returns true if memcpy source is constant data. static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { uint64_t SrcDelta = 0; GlobalAddressSDNode *G = nullptr; if (Src.getOpcode() == ISD::GlobalAddress) G = cast(Src); else if (Src.getOpcode() == ISD::ADD && Src.getOperand(0).getOpcode() == ISD::GlobalAddress && Src.getOperand(1).getOpcode() == ISD::Constant) { G = cast(Src.getOperand(0)); SrcDelta = cast(Src.getOperand(1))->getZExtValue(); } if (!G) return false; return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, SrcDelta + G->getOffset()); } static bool shouldLowerMemFuncForSize(const MachineFunction &MF, SelectionDAG &DAG) { // On Darwin, -Os means optimize for size without hurting performance, so // only really optimize for size when -Oz (MinSize) is used. if (MF.getTarget().getTargetTriple().isOSDarwin()) return MF.getFunction().hasMinSize(); return DAG.shouldOptForSize(); } static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector &OutChains, unsigned From, unsigned To, SmallVector &OutLoadChains, SmallVector &OutStoreChains) { assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); SmallVector GluedLoadChains; for (unsigned i = From; i < To; ++i) { OutChains.push_back(OutLoadChains[i]); GluedLoadChains.push_back(OutLoadChains[i]); } // Chain for all loads. SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, GluedLoadChains); for (unsigned i = From; i < To; ++i) { StoreSDNode *ST = dyn_cast(OutStoreChains[i]); SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), ST->getBasePtr(), ST->getMemoryVT(), ST->getMemOperand()); OutChains.push_back(NewStore); } } static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { // Turn a memcpy of undef to nop. // FIXME: We need to honor volatile even is Src is undef. if (Src.isUndef()) return Chain; // Expand memcpy to a series of load and store ops if the size operand falls // below a certain threshold. // TODO: In the AlwaysInline case, if the size is big then generate a loop // rather than maybe a humongous number of loads and stores. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const DataLayout &DL = DAG.getDataLayout(); LLVMContext &C = *DAG.getContext(); std::vector MemOps; bool DstAlignCanChange = false; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); bool OptSize = shouldLowerMemFuncForSize(MF, DAG); FrameIndexSDNode *FI = dyn_cast(Dst); if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) DstAlignCanChange = true; MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); if (!SrcAlign || Alignment > *SrcAlign) SrcAlign = Alignment; assert(SrcAlign && "SrcAlign must be set"); ConstantDataArraySlice Slice; bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); const MemOp Op = isZeroConstant ? MemOp::Set(Size, DstAlignCanChange, Alignment, /*IsZeroMemset*/ true, isVol) : MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, isVol, CopyFromConstant); if (!TLI.findOptimalMemOpLowering( MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) return SDValue(); if (DstAlignCanChange) { Type *Ty = MemOps[0].getTypeForEVT(C); Align NewAlign = DL.getABITypeAlign(Ty); // Don't promote to an alignment that would require dynamic stack // realignment. const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!TRI->needsStackRealignment(MF)) while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) NewAlign = NewAlign / 2; if (NewAlign > Alignment) { // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) MFI.setObjectAlignment(FI->getIndex(), NewAlign); Alignment = NewAlign; } } MachineMemOperand::Flags MMOFlags = isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; SmallVector OutLoadChains; SmallVector OutStoreChains; SmallVector OutChains; unsigned NumMemOps = MemOps.size(); uint64_t SrcOff = 0, DstOff = 0; for (unsigned i = 0; i != NumMemOps; ++i) { EVT VT = MemOps[i]; unsigned VTSize = VT.getSizeInBits() / 8; SDValue Value, Store; if (VTSize > Size) { // Issuing an unaligned load / store pair that overlaps with the previous // pair. Adjust the offset accordingly. assert(i == NumMemOps-1 && i != 0); SrcOff -= VTSize - Size; DstOff -= VTSize - Size; } if (CopyFromConstant && (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { // It's unlikely a store of a vector immediate can be done in a single // instruction. It would require a load from a constantpool first. // We only handle zero vectors here. // FIXME: Handle other cases where store of vector immediate is done in // a single instruction. ConstantDataArraySlice SubSlice; if (SrcOff < Slice.Length) { SubSlice = Slice; SubSlice.move(SrcOff); } else { // This is an out-of-bounds access and hence UB. Pretend we read zero. SubSlice.Array = nullptr; SubSlice.Offset = 0; SubSlice.Length = VTSize; } Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); if (Value.getNode()) { Store = DAG.getStore( Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); OutChains.push_back(Store); } } if (!Store.getNode()) { // The type might not be legal for the target. This should only happen // if the type is smaller than a legal type, as on PPC, so the right // thing to do is generate a LoadExt/StoreTrunc pair. These simplify // to Load/Store if NVT==VT. // FIXME does the case above also need this? EVT NVT = TLI.getTypeToTransformTo(C, VT); assert(NVT.bitsGE(VT)); bool isDereferenceable = SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); MachineMemOperand::Flags SrcMMOFlags = MMOFlags; if (isDereferenceable) SrcMMOFlags |= MachineMemOperand::MODereferenceable; Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), SrcPtrInfo.getWithOffset(SrcOff), VT, commonAlignment(*SrcAlign, SrcOff).value(), SrcMMOFlags); OutLoadChains.push_back(Value.getValue(1)); Store = DAG.getTruncStore( Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags); OutStoreChains.push_back(Store); } SrcOff += VTSize; DstOff += VTSize; Size -= VTSize; } unsigned GluedLdStLimit = MaxLdStGlue == 0 ? TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; unsigned NumLdStInMemcpy = OutStoreChains.size(); if (NumLdStInMemcpy) { // It may be that memcpy might be converted to memset if it's memcpy // of constants. In such a case, we won't have loads and stores, but // just stores. In the absence of loads, there is nothing to gang up. if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { // If target does not care, just leave as it. for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { OutChains.push_back(OutLoadChains[i]); OutChains.push_back(OutStoreChains[i]); } } else { // Ld/St less than/equal limit set by target. if (NumLdStInMemcpy <= GluedLdStLimit) { chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, NumLdStInMemcpy, OutLoadChains, OutStoreChains); } else { unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; unsigned GlueIter = 0; for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; unsigned IndexTo = NumLdStInMemcpy - GlueIter; chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, OutLoadChains, OutStoreChains); GlueIter += GluedLdStLimit; } // Residual ld/st. if (RemainingLdStInMemcpy) { chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, RemainingLdStInMemcpy, OutLoadChains, OutStoreChains); } } } } return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); } static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { // Turn a memmove of undef to nop. // FIXME: We need to honor volatile even is Src is undef. if (Src.isUndef()) return Chain; // Expand memmove to a series of load and store ops if the size operand falls // below a certain threshold. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const DataLayout &DL = DAG.getDataLayout(); LLVMContext &C = *DAG.getContext(); std::vector MemOps; bool DstAlignCanChange = false; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); bool OptSize = shouldLowerMemFuncForSize(MF, DAG); FrameIndexSDNode *FI = dyn_cast(Dst); if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) DstAlignCanChange = true; MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); if (!SrcAlign || Alignment > *SrcAlign) SrcAlign = Alignment; assert(SrcAlign && "SrcAlign must be set"); unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); if (!TLI.findOptimalMemOpLowering( MemOps, Limit, MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, /*IsVolatile*/ true), DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) return SDValue(); if (DstAlignCanChange) { Type *Ty = MemOps[0].getTypeForEVT(C); Align NewAlign = DL.getABITypeAlign(Ty); if (NewAlign > Alignment) { // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) MFI.setObjectAlignment(FI->getIndex(), NewAlign); Alignment = NewAlign; } } MachineMemOperand::Flags MMOFlags = isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; uint64_t SrcOff = 0, DstOff = 0; SmallVector LoadValues; SmallVector LoadChains; SmallVector OutChains; unsigned NumMemOps = MemOps.size(); for (unsigned i = 0; i < NumMemOps; i++) { EVT VT = MemOps[i]; unsigned VTSize = VT.getSizeInBits() / 8; SDValue Value; bool isDereferenceable = SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); MachineMemOperand::Flags SrcMMOFlags = MMOFlags; if (isDereferenceable) SrcMMOFlags |= MachineMemOperand::MODereferenceable; Value = DAG.getLoad( VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags); LoadValues.push_back(Value); LoadChains.push_back(Value.getValue(1)); SrcOff += VTSize; } Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); OutChains.clear(); for (unsigned i = 0; i < NumMemOps; i++) { EVT VT = MemOps[i]; unsigned VTSize = VT.getSizeInBits() / 8; SDValue Store; Store = DAG.getStore( Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl), DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags); OutChains.push_back(Store); DstOff += VTSize; } return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); } /// Lower the call to 'memset' intrinsic function into a series of store /// operations. /// /// \param DAG Selection DAG where lowered code is placed. /// \param dl Link to corresponding IR location. /// \param Chain Control flow dependency. /// \param Dst Pointer to destination memory location. /// \param Src Value of byte to write into the memory. /// \param Size Number of bytes to write. /// \param Alignment Alignment of the destination in bytes. /// \param isVol True if destination is volatile. /// \param DstPtrInfo IR information on the memory pointer. /// \returns New head in the control flow, if lowering was successful, empty /// SDValue otherwise. /// /// The function tries to replace 'llvm.memset' intrinsic with several store /// operations and value calculation code. This is usually profitable for small /// memory size. static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, MachinePointerInfo DstPtrInfo) { // Turn a memset of undef to nop. // FIXME: We need to honor volatile even is Src is undef. if (Src.isUndef()) return Chain; // Expand memset to a series of load/store ops if the size operand // falls below a certain threshold. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); std::vector MemOps; bool DstAlignCanChange = false; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); bool OptSize = shouldLowerMemFuncForSize(MF, DAG); FrameIndexSDNode *FI = dyn_cast(Dst); if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) DstAlignCanChange = true; bool IsZeroVal = isa(Src) && cast(Src)->isNullValue(); if (!TLI.findOptimalMemOpLowering( MemOps, TLI.getMaxStoresPerMemset(OptSize), MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) return SDValue(); if (DstAlignCanChange) { Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); if (NewAlign > Alignment) { // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) MFI.setObjectAlignment(FI->getIndex(), NewAlign); Alignment = NewAlign; } } SmallVector OutChains; uint64_t DstOff = 0; unsigned NumMemOps = MemOps.size(); // Find the largest store and generate the bit pattern for it. EVT LargestVT = MemOps[0]; for (unsigned i = 1; i < NumMemOps; i++) if (MemOps[i].bitsGT(LargestVT)) LargestVT = MemOps[i]; SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); for (unsigned i = 0; i < NumMemOps; i++) { EVT VT = MemOps[i]; unsigned VTSize = VT.getSizeInBits() / 8; if (VTSize > Size) { // Issuing an unaligned load / store pair that overlaps with the previous // pair. Adjust the offset accordingly. assert(i == NumMemOps-1 && i != 0); DstOff -= VTSize - Size; } // If this store is smaller than the largest store see whether we can get // the smaller value for free with a truncate. SDValue Value = MemSetValue; if (VT.bitsLT(LargestVT)) { if (!LargestVT.isVector() && !VT.isVector() && TLI.isTruncateFree(LargestVT, VT)) Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); else Value = getMemsetValue(Src, VT, DAG, dl); } assert(Value.getValueType() == VT && "Value with wrong type."); SDValue Store = DAG.getStore( Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), DstPtrInfo.getWithOffset(DstOff), Alignment.value(), isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); OutChains.push_back(Store); DstOff += VT.getSizeInBits() / 8; Size -= VTSize; } return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); } static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS) { // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all // pointer operands can be losslessly bitcasted to pointers of address space 0 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { report_fatal_error("cannot lower memory intrinsic in address space " + Twine(AS)); } } SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { // Check to see if we should lower the memcpy to loads and stores first. // For cases within the target-specified limits, this is the best choice. ConstantSDNode *ConstantSize = dyn_cast(Size); if (ConstantSize) { // Memcpy with size zero? Just return the original chain. if (ConstantSize->isNullValue()) return Chain; SDValue Result = getMemcpyLoadsAndStores( *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, isVol, false, DstPtrInfo, SrcPtrInfo); if (Result.getNode()) return Result; } // Then check to see if we should lower the memcpy with target-specific // code. If the target chooses to do this, this is the next best. if (TSI) { SDValue Result = TSI->EmitTargetCodeForMemcpy( *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo, SrcPtrInfo); if (Result.getNode()) return Result; } // If we really need inline code and the target declined to provide it, // use a (potentially long) sequence of loads and stores. if (AlwaysInline) { assert(ConstantSize && "AlwaysInline requires a constant size!"); return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, isVol, true, DstPtrInfo, SrcPtrInfo); } checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc // memcpy is not guaranteed to be safe. libc memcpys aren't required to // respect volatile, so they may do things like read or write memory // beyond the given memory regions. But fixing this isn't easy, and most // people don't care. // Emit a library call. TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = Type::getInt8PtrTy(*getContext()); Entry.Node = Dst; Args.push_back(Entry); Entry.Node = Src; Args.push_back(Entry); Entry.Ty = getDataLayout().getIntPtrType(*getContext()); Entry.Node = Size; Args.push_back(Entry); // FIXME: pass in SDLoc TargetLowering::CallLoweringInfo CLI(*this); CLI.setDebugLoc(dl) .setChain(Chain) .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), Dst.getValueType().getTypeForEVT(*getContext()), getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), TLI->getPointerTy(getDataLayout())), std::move(Args)) .setDiscardResult() .setTailCall(isTailCall); std::pair CallResult = TLI->LowerCallTo(CLI); return CallResult.second; } SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, unsigned DstAlign, SDValue Src, unsigned SrcAlign, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { // Emit a library call. TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = getDataLayout().getIntPtrType(*getContext()); Entry.Node = Dst; Args.push_back(Entry); Entry.Node = Src; Args.push_back(Entry); Entry.Ty = SizeTy; Entry.Node = Size; Args.push_back(Entry); RTLIB::Libcall LibraryCall = RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) report_fatal_error("Unsupported element size"); TargetLowering::CallLoweringInfo CLI(*this); CLI.setDebugLoc(dl) .setChain(Chain) .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), Type::getVoidTy(*getContext()), getExternalSymbol(TLI->getLibcallName(LibraryCall), TLI->getPointerTy(getDataLayout())), std::move(Args)) .setDiscardResult() .setTailCall(isTailCall); std::pair CallResult = TLI->LowerCallTo(CLI); return CallResult.second; } SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { // Check to see if we should lower the memmove to loads and stores first. // For cases within the target-specified limits, this is the best choice. ConstantSDNode *ConstantSize = dyn_cast(Size); if (ConstantSize) { // Memmove with size zero? Just return the original chain. if (ConstantSize->isNullValue()) return Chain; SDValue Result = getMemmoveLoadsAndStores( *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, isVol, false, DstPtrInfo, SrcPtrInfo); if (Result.getNode()) return Result; } // Then check to see if we should lower the memmove with target-specific // code. If the target chooses to do this, this is the next best. if (TSI) { SDValue Result = TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo, SrcPtrInfo); if (Result.getNode()) return Result; } checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); // FIXME: If the memmove is volatile, lowering it to plain libc memmove may // not be safe. See memcpy above for more details. // Emit a library call. TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = Type::getInt8PtrTy(*getContext()); Entry.Node = Dst; Args.push_back(Entry); Entry.Node = Src; Args.push_back(Entry); Entry.Ty = getDataLayout().getIntPtrType(*getContext()); Entry.Node = Size; Args.push_back(Entry); // FIXME: pass in SDLoc TargetLowering::CallLoweringInfo CLI(*this); CLI.setDebugLoc(dl) .setChain(Chain) .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), Dst.getValueType().getTypeForEVT(*getContext()), getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), TLI->getPointerTy(getDataLayout())), std::move(Args)) .setDiscardResult() .setTailCall(isTailCall); std::pair CallResult = TLI->LowerCallTo(CLI); return CallResult.second; } SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, unsigned DstAlign, SDValue Src, unsigned SrcAlign, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { // Emit a library call. TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = getDataLayout().getIntPtrType(*getContext()); Entry.Node = Dst; Args.push_back(Entry); Entry.Node = Src; Args.push_back(Entry); Entry.Ty = SizeTy; Entry.Node = Size; Args.push_back(Entry); RTLIB::Libcall LibraryCall = RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) report_fatal_error("Unsupported element size"); TargetLowering::CallLoweringInfo CLI(*this); CLI.setDebugLoc(dl) .setChain(Chain) .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), Type::getVoidTy(*getContext()), getExternalSymbol(TLI->getLibcallName(LibraryCall), TLI->getPointerTy(getDataLayout())), std::move(Args)) .setDiscardResult() .setTailCall(isTailCall); std::pair CallResult = TLI->LowerCallTo(CLI); return CallResult.second; } SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool isTailCall, MachinePointerInfo DstPtrInfo) { // Check to see if we should lower the memset to stores first. // For cases within the target-specified limits, this is the best choice. ConstantSDNode *ConstantSize = dyn_cast(Size); if (ConstantSize) { // Memset with size zero? Just return the original chain. if (ConstantSize->isNullValue()) return Chain; SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, isVol, DstPtrInfo); if (Result.getNode()) return Result; } // Then check to see if we should lower the memset with target-specific // code. If the target chooses to do this, this is the next best. if (TSI) { SDValue Result = TSI->EmitTargetCodeForMemset( *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); if (Result.getNode()) return Result; } checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); // Emit a library call. TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); Args.push_back(Entry); Entry.Node = Src; Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); Args.push_back(Entry); Entry.Node = Size; Entry.Ty = getDataLayout().getIntPtrType(*getContext()); Args.push_back(Entry); // FIXME: pass in SDLoc TargetLowering::CallLoweringInfo CLI(*this); CLI.setDebugLoc(dl) .setChain(Chain) .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), Dst.getValueType().getTypeForEVT(*getContext()), getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), TLI->getPointerTy(getDataLayout())), std::move(Args)) .setDiscardResult() .setTailCall(isTailCall); std::pair CallResult = TLI->LowerCallTo(CLI); return CallResult.second; } SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, unsigned DstAlign, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo) { // Emit a library call. TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = getDataLayout().getIntPtrType(*getContext()); Entry.Node = Dst; Args.push_back(Entry); Entry.Ty = Type::getInt8Ty(*getContext()); Entry.Node = Value; Args.push_back(Entry); Entry.Ty = SizeTy; Entry.Node = Size; Args.push_back(Entry); RTLIB::Libcall LibraryCall = RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) report_fatal_error("Unsupported element size"); TargetLowering::CallLoweringInfo CLI(*this); CLI.setDebugLoc(dl) .setChain(Chain) .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), Type::getVoidTy(*getContext()), getExternalSymbol(TLI->getLibcallName(LibraryCall), TLI->getPointerTy(getDataLayout())), std::move(Args)) .setDiscardResult() .setTailCall(isTailCall); std::pair CallResult = TLI->LowerCallTo(CLI); return CallResult.second; } SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTList, ArrayRef Ops, MachineMemOperand *MMO) { FoldingSetNodeID ID; ID.AddInteger(MemVT.getRawBits()); AddNodeIDNode(ID, Opcode, VTList, Ops); ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); void* IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { cast(E)->refineAlignment(MMO); return SDValue(E, 0); } auto *N = newSDNode(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTList, MemVT, MMO); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO) { assert(Opcode == ISD::ATOMIC_CMP_SWAP || Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); } SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO) { assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB || Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR || Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD || Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_STORE) && "Invalid Atomic Op"); EVT VT = Val.getValueType(); SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : getVTList(VT, MVT::Other); SDValue Ops[] = {Chain, Ptr, Val}; return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); } SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO) { assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); SDVTList VTs = getVTList(VT, MVT::Other); SDValue Ops[] = {Chain, Ptr}; return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); } /// getMergeValues - Create a MERGE_VALUES node from the given operands. SDValue SelectionDAG::getMergeValues(ArrayRef Ops, const SDLoc &dl) { if (Ops.size() == 1) return Ops[0]; SmallVector VTs; VTs.reserve(Ops.size()); for (unsigned i = 0; i < Ops.size(); ++i) VTs.push_back(Ops[i].getValueType()); return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); } SDValue SelectionDAG::getMemIntrinsicNode( unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { if (!Size && MemVT.isScalableVector()) Size = MemoryLocation::UnknownSize; else if (!Size) Size = MemVT.getStoreSize(); MachineFunction &MF = getMachineFunction(); MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); } SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef Ops, EVT MemVT, MachineMemOperand *MMO) { assert((Opcode == ISD::INTRINSIC_VOID || Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::PREFETCH || ((int)Opcode <= std::numeric_limits::max() && (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && "Opcode is not a memory-accessing opcode!"); // Memoize the node unless it returns a flag. MemIntrinsicSDNode *N; if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTList, Ops); ID.AddInteger(getSyntheticNodeSubclassData( Opcode, dl.getIROrder(), VTList, MemVT, MMO)); ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { cast(E)->refineAlignment(MMO); return SDValue(E, 0); } N = newSDNode(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTList, MemVT, MMO); createOperands(N, Ops); CSEMap.InsertNode(N, IP); } else { N = newSDNode(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTList, MemVT, MMO); createOperands(N, Ops); } InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex, int64_t Size, int64_t Offset) { const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; const auto VTs = getVTList(MVT::Other); SDValue Ops[2] = { Chain, getFrameIndex(FrameIndex, getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), true)}; FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTs, Ops); ID.AddInteger(FrameIndex); ID.AddInteger(Size); ID.AddInteger(Offset); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) return SDValue(E, 0); LifetimeSDNode *N = newSDNode( Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a /// MachinePointerInfo record from it. This is particularly useful because the /// code generator has many cases where it doesn't bother passing in a /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset = 0) { // If this is FI+Offset, we can model it. if (const FrameIndexSDNode *FI = dyn_cast(Ptr)) return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI->getIndex(), Offset); // If this is (FI+Offset1)+Offset2, we can model it. if (Ptr.getOpcode() != ISD::ADD || !isa(Ptr.getOperand(1)) || !isa(Ptr.getOperand(0))) return Info; int FI = cast(Ptr.getOperand(0))->getIndex(); return MachinePointerInfo::getFixedStack( DAG.getMachineFunction(), FI, Offset + cast(Ptr.getOperand(1))->getSExtValue()); } /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a /// MachinePointerInfo record from it. This is particularly useful because the /// code generator has many cases where it doesn't bother passing in a /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, SDValue OffsetOp) { // If the 'Offset' value isn't a constant, we can't handle this. if (ConstantSDNode *OffsetNode = dyn_cast(OffsetOp)) return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); if (OffsetOp.isUndef()) return InferPointerInfo(Info, DAG, Ptr); return Info; } SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges) { assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); MMOFlags |= MachineMemOperand::MOLoad; assert((MMOFlags & MachineMemOperand::MOStore) == 0); // If we don't have a PtrInfo, infer the trivial frame index case to simplify // clients. if (PtrInfo.V.isNull()) PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); MachineFunction &MF = getMachineFunction(); MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo, Ranges); return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); } SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, EVT MemVT, MachineMemOperand *MMO) { if (VT == MemVT) { ExtType = ISD::NON_EXTLOAD; } else if (ExtType == ISD::NON_EXTLOAD) { assert(VT == MemVT && "Non-extending load from different memory type!"); } else { // Extending load. assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && "Should only be an extending load, not truncating!"); assert(VT.isInteger() == MemVT.isInteger() && "Cannot convert from FP to Int or Int -> FP!"); assert(VT.isVector() == MemVT.isVector() && "Cannot use an ext load to convert to or from a vector!"); assert((!VT.isVector() || VT.getVectorNumElements() == MemVT.getVectorNumElements()) && "Cannot use an ext load to change the number of vector elements!"); } bool Indexed = AM != ISD::UNINDEXED; assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); SDValue Ops[] = { Chain, Ptr, Offset }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); ID.AddInteger(MemVT.getRawBits()); ID.AddInteger(getSyntheticNodeSubclassData( dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { cast(E)->refineAlignment(MMO); return SDValue(E, 0); } auto *N = newSDNode(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ExtType, MemVT, MMO); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges) { SDValue Undef = getUNDEF(Ptr.getValueType()); return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); } SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO) { SDValue Undef = getUNDEF(Ptr.getValueType()); return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, VT, MMO); } SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo) { SDValue Undef = getUNDEF(Ptr.getValueType()); return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo); } SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO) { SDValue Undef = getUNDEF(Ptr.getValueType()); return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, MemVT, MMO); } SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM) { LoadSDNode *LD = cast(OrigLoad); assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); // Don't propagate the invariant or dereferenceable flags. auto MMOFlags = LD->getMemOperand()->getFlags() & ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, LD->getChain(), Base, Offset, LD->getPointerInfo(), LD->getMemoryVT(), LD->getAlignment(), MMOFlags, LD->getAAInfo()); } SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo) { assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); MMOFlags |= MachineMemOperand::MOStore; assert((MMOFlags & MachineMemOperand::MOLoad) == 0); if (PtrInfo.V.isNull()) PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); MachineFunction &MF = getMachineFunction(); uint64_t Size = MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); return getStore(Chain, dl, Val, Ptr, MMO); } SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachineMemOperand *MMO) { assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); EVT VT = Val.getValueType(); SDVTList VTs = getVTList(MVT::Other); SDValue Undef = getUNDEF(Ptr.getValueType()); SDValue Ops[] = { Chain, Val, Ptr, Undef }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::STORE, VTs, Ops); ID.AddInteger(VT.getRawBits()); ID.AddInteger(getSyntheticNodeSubclassData( dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { cast(E)->refineAlignment(MMO); return SDValue(E, 0); } auto *N = newSDNode(dl.getIROrder(), dl.getDebugLoc(), VTs, ISD::UNINDEXED, false, VT, MMO); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo) { assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); MMOFlags |= MachineMemOperand::MOStore; assert((MMOFlags & MachineMemOperand::MOLoad) == 0); if (PtrInfo.V.isNull()) PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); MachineFunction &MF = getMachineFunction(); MachineMemOperand *MMO = MF.getMachineMemOperand( PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); } SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, EVT SVT, MachineMemOperand *MMO) { EVT VT = Val.getValueType(); assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); if (VT == SVT) return getStore(Chain, dl, Val, Ptr, MMO); assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && "Should only be a truncating store, not extending!"); assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); assert(VT.isVector() == SVT.isVector() && "Cannot use trunc store to convert to or from a vector!"); assert((!VT.isVector() || VT.getVectorNumElements() == SVT.getVectorNumElements()) && "Cannot use trunc store to change the number of vector elements!"); SDVTList VTs = getVTList(MVT::Other); SDValue Undef = getUNDEF(Ptr.getValueType()); SDValue Ops[] = { Chain, Val, Ptr, Undef }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::STORE, VTs, Ops); ID.AddInteger(SVT.getRawBits()); ID.AddInteger(getSyntheticNodeSubclassData( dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { cast(E)->refineAlignment(MMO); return SDValue(E, 0); } auto *N = newSDNode(dl.getIROrder(), dl.getDebugLoc(), VTs, ISD::UNINDEXED, true, SVT, MMO); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM) { StoreSDNode *ST = cast(OrigStore); assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::STORE, VTs, Ops); ID.AddInteger(ST->getMemoryVT().getRawBits()); ID.AddInteger(ST->getRawSubclassData()); ID.AddInteger(ST->getPointerInfo().getAddrSpace()); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) return SDValue(E, 0); auto *N = newSDNode(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), ST->getMemoryVT(), ST->getMemOperand()); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue PassThru, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType ExtTy, bool isExpanding) { bool Indexed = AM != ISD::UNINDEXED; assert((Indexed || Offset.isUndef()) && "Unindexed masked load with an offset!"); SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); ID.AddInteger(MemVT.getRawBits()); ID.AddInteger(getSyntheticNodeSubclassData( dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { cast(E)->refineAlignment(MMO); return SDValue(E, 0); } auto *N = newSDNode(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ExtTy, isExpanding, MemVT, MMO); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM) { MaskedLoadSDNode *LD = cast(OrigLoad); assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, Offset, LD->getMask(), LD->getPassThru(), LD->getMemoryVT(), LD->getMemOperand(), AM, LD->getExtensionType(), LD->isExpandingLoad()); } SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating, bool IsCompressing) { assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); bool Indexed = AM != ISD::UNINDEXED; assert((Indexed || Offset.isUndef()) && "Unindexed masked store with an offset!"); SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) : getVTList(MVT::Other); SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); ID.AddInteger(MemVT.getRawBits()); ID.AddInteger(getSyntheticNodeSubclassData( dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { cast(E)->refineAlignment(MMO); return SDValue(E, 0); } auto *N = newSDNode(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM) { MaskedStoreSDNode *ST = cast(OrigStore); assert(ST->getOffset().isUndef() && "Masked store is already a indexed store!"); return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), AM, ST->isTruncatingStore(), ST->isCompressingStore()); } SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType) { assert(Ops.size() == 6 && "Incompatible number of operands"); FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); ID.AddInteger(VT.getRawBits()); ID.AddInteger(getSyntheticNodeSubclassData( dl.getIROrder(), VTs, VT, MMO, IndexType)); ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { cast(E)->refineAlignment(MMO); return SDValue(E, 0); } auto *N = newSDNode(dl.getIROrder(), dl.getDebugLoc(), VTs, VT, MMO, IndexType); createOperands(N, Ops); assert(N->getPassThru().getValueType() == N->getValueType(0) && "Incompatible type of the PassThru value in MaskedGatherSDNode"); assert(N->getMask().getValueType().getVectorNumElements() == N->getValueType(0).getVectorNumElements() && "Vector width mismatch between mask and data"); assert(N->getIndex().getValueType().getVectorNumElements() >= N->getValueType(0).getVectorNumElements() && "Vector width mismatch between index and data"); assert(isa(N->getScale()) && cast(N->getScale())->getAPIntValue().isPowerOf2() && "Scale should be a constant power of 2"); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType) { assert(Ops.size() == 6 && "Incompatible number of operands"); FoldingSetNodeID ID; AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); ID.AddInteger(VT.getRawBits()); ID.AddInteger(getSyntheticNodeSubclassData( dl.getIROrder(), VTs, VT, MMO, IndexType)); ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { cast(E)->refineAlignment(MMO); return SDValue(E, 0); } auto *N = newSDNode(dl.getIROrder(), dl.getDebugLoc(), VTs, VT, MMO, IndexType); createOperands(N, Ops); assert(N->getMask().getValueType().getVectorNumElements() == N->getValue().getValueType().getVectorNumElements() && "Vector width mismatch between mask and data"); assert(N->getIndex().getValueType().getVectorNumElements() >= N->getValue().getValueType().getVectorNumElements() && "Vector width mismatch between index and data"); assert(isa(N->getScale()) && cast(N->getScale())->getAPIntValue().isPowerOf2() && "Scale should be a constant power of 2"); CSEMap.InsertNode(N, IP); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { // select undef, T, F --> T (if T is a constant), otherwise F // select, ?, undef, F --> F // select, ?, T, undef --> T if (Cond.isUndef()) return isConstantValueOfAnyType(T) ? T : F; if (T.isUndef()) return F; if (F.isUndef()) return T; // select true, T, F --> T // select false, T, F --> F if (auto *CondC = dyn_cast(Cond)) return CondC->isNullValue() ? F : T; // TODO: This should simplify VSELECT with constant condition using something // like this (but check boolean contents to be complete?): // if (ISD::isBuildVectorAllOnes(Cond.getNode())) // return T; // if (ISD::isBuildVectorAllZeros(Cond.getNode())) // return F; // select ?, T, T --> T if (T == F) return T; return SDValue(); } SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { // shift undef, Y --> 0 (can always assume that the undef value is 0) if (X.isUndef()) return getConstant(0, SDLoc(X.getNode()), X.getValueType()); // shift X, undef --> undef (because it may shift by the bitwidth) if (Y.isUndef()) return getUNDEF(X.getValueType()); // shift 0, Y --> 0 // shift X, 0 --> X if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) return X; // shift X, C >= bitwidth(X) --> undef // All vector elements must be too big (or undef) to avoid partial undefs. auto isShiftTooBig = [X](ConstantSDNode *Val) { return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); }; if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) return getUNDEF(X.getValueType()); return SDValue(); } SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags) { // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand // (an undef operand can be chosen to be Nan/Inf), then the result of this // operation is poison. That result can be relaxed to undef. ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); bool HasNan = (XC && XC->getValueAPF().isNaN()) || (YC && YC->getValueAPF().isNaN()); bool HasInf = (XC && XC->getValueAPF().isInfinity()) || (YC && YC->getValueAPF().isInfinity()); if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) return getUNDEF(X.getValueType()); if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) return getUNDEF(X.getValueType()); if (!YC) return SDValue(); // X + -0.0 --> X if (Opcode == ISD::FADD) if (YC->getValueAPF().isNegZero()) return X; // X - +0.0 --> X if (Opcode == ISD::FSUB) if (YC->getValueAPF().isPosZero()) return X; // X * 1.0 --> X // X / 1.0 --> X if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) if (YC->getValueAPF().isExactlyValue(1.0)) return X; return SDValue(); } SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align) { SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef Ops) { switch (Ops.size()) { case 0: return getNode(Opcode, DL, VT); case 1: return getNode(Opcode, DL, VT, static_cast(Ops[0])); case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); default: break; } // Copy from an SDUse array into an SDValue array for use with // the regular getNode logic. SmallVector NewOps(Ops.begin(), Ops.end()); return getNode(Opcode, DL, VT, NewOps); } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef Ops, const SDNodeFlags Flags) { unsigned NumOps = Ops.size(); switch (NumOps) { case 0: return getNode(Opcode, DL, VT); case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); default: break; } switch (Opcode) { default: break; case ISD::BUILD_VECTOR: // Attempt to simplify BUILD_VECTOR. if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) return V; break; case ISD::CONCAT_VECTORS: if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) return V; break; case ISD::SELECT_CC: assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); assert(Ops[0].getValueType() == Ops[1].getValueType() && "LHS and RHS of condition must have same type!"); assert(Ops[2].getValueType() == Ops[3].getValueType() && "True and False arms of SelectCC must have same type!"); assert(Ops[2].getValueType() == VT && "select_cc node must be of same type as true and false value!"); break; case ISD::BR_CC: assert(NumOps == 5 && "BR_CC takes 5 operands!"); assert(Ops[2].getValueType() == Ops[3].getValueType() && "LHS/RHS of comparison should match types!"); break; } // Memoize nodes. SDNode *N; SDVTList VTs = getVTList(VT); if (VT != MVT::Glue) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTs, Ops); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) return SDValue(E, 0); N = newSDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); createOperands(N, Ops); CSEMap.InsertNode(N, IP); } else { N = newSDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); createOperands(N, Ops); } N->setFlags(Flags); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, ArrayRef ResultTys, ArrayRef Ops) { return getNode(Opcode, DL, getVTList(ResultTys), Ops); } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, ArrayRef Ops, const SDNodeFlags Flags) { if (VTList.NumVTs == 1) return getNode(Opcode, DL, VTList.VTs[0], Ops); switch (Opcode) { case ISD::STRICT_FP_EXTEND: assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid STRICT_FP_EXTEND!"); assert(VTList.VTs[0].isFloatingPoint() && Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && "STRICT_FP_EXTEND result type should be vector iff the operand " "type is vector!"); assert((!VTList.VTs[0].isVector() || VTList.VTs[0].getVectorNumElements() == Ops[1].getValueType().getVectorNumElements()) && "Vector element count mismatch!"); assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && "Invalid fpext node, dst <= src!"); break; case ISD::STRICT_FP_ROUND: assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && "STRICT_FP_ROUND result type should be vector iff the operand " "type is vector!"); assert((!VTList.VTs[0].isVector() || VTList.VTs[0].getVectorNumElements() == Ops[1].getValueType().getVectorNumElements()) && "Vector element count mismatch!"); assert(VTList.VTs[0].isFloatingPoint() && Ops[1].getValueType().isFloatingPoint() && VTList.VTs[0].bitsLT(Ops[1].getValueType()) && isa(Ops[2]) && (cast(Ops[2])->getZExtValue() == 0 || cast(Ops[2])->getZExtValue() == 1) && "Invalid STRICT_FP_ROUND!"); break; #if 0 // FIXME: figure out how to safely handle things like // int foo(int x) { return 1 << (x & 255); } // int bar() { return foo(256); } case ISD::SRA_PARTS: case ISD::SRL_PARTS: case ISD::SHL_PARTS: if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && cast(N3.getOperand(1))->getVT() != MVT::i1) return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); else if (N3.getOpcode() == ISD::AND) if (ConstantSDNode *AndRHS = dyn_cast(N3.getOperand(1))) { // If the and is only masking out bits that cannot effect the shift, // eliminate the and. unsigned NumBits = VT.getScalarSizeInBits()*2; if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); } break; #endif } // Memoize the node unless it returns a flag. SDNode *N; if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTList, Ops); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) return SDValue(E, 0); N = newSDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); createOperands(N, Ops); CSEMap.InsertNode(N, IP); } else { N = newSDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); createOperands(N, Ops); } N->setFlags(Flags); InsertNode(N); SDValue V(N, 0); NewSDValueDbgMsg(V, "Creating new node: ", this); return V; } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList) { return getNode(Opcode, DL, VTList, None); } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1) { SDValue Ops[] = { N1 }; return getNode(Opcode, DL, VTList, Ops); } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, SDValue N2) { SDValue Ops[] = { N1, N2 }; return getNode(Opcode, DL, VTList, Ops); } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, SDValue N2, SDValue N3) { SDValue Ops[] = { N1, N2, N3 }; return getNode(Opcode, DL, VTList, Ops); } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, SDValue N2, SDValue N3, SDValue N4) { SDValue Ops[] = { N1, N2, N3, N4 }; return getNode(Opcode, DL, VTList, Ops); } SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, SDValue N2, SDValue N3, SDValue N4, SDValue N5) { SDValue Ops[] = { N1, N2, N3, N4, N5 }; return getNode(Opcode, DL, VTList, Ops); } SDVTList SelectionDAG::getVTList(EVT VT) { return makeVTList(SDNode::getValueTypeList(VT), 1); } SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { FoldingSetNodeID ID; ID.AddInteger(2U); ID.AddInteger(VT1.getRawBits()); ID.AddInteger(VT2.getRawBits()); void *IP = nullptr; SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); if (!Result) { EVT *Array = Allocator.Allocate(2); Array[0] = VT1; Array[1] = VT2; Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); VTListMap.InsertNode(Result, IP); } return Result->getSDVTList(); } SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { FoldingSetNodeID ID; ID.AddInteger(3U); ID.AddInteger(VT1.getRawBits()); ID.AddInteger(VT2.getRawBits()); ID.AddInteger(VT3.getRawBits()); void *IP = nullptr; SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); if (!Result) { EVT *Array = Allocator.Allocate(3); Array[0] = VT1; Array[1] = VT2; Array[2] = VT3; Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); VTListMap.InsertNode(Result, IP); } return Result->getSDVTList(); } SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { FoldingSetNodeID ID; ID.AddInteger(4U); ID.AddInteger(VT1.getRawBits()); ID.AddInteger(VT2.getRawBits()); ID.AddInteger(VT3.getRawBits()); ID.AddInteger(VT4.getRawBits()); void *IP = nullptr; SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); if (!Result) { EVT *Array = Allocator.Allocate(4); Array[0] = VT1; Array[1] = VT2; Array[2] = VT3; Array[3] = VT4; Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); VTListMap.InsertNode(Result, IP); } return Result->getSDVTList(); } SDVTList SelectionDAG::getVTList(ArrayRef VTs) { unsigned NumVTs = VTs.size(); FoldingSetNodeID ID; ID.AddInteger(NumVTs); for (unsigned index = 0; index < NumVTs; index++) { ID.AddInteger(VTs[index].getRawBits()); } void *IP = nullptr; SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); if (!Result) { EVT *Array = Allocator.Allocate(NumVTs); llvm::copy(VTs, Array); Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); VTListMap.InsertNode(Result, IP); } return Result->getSDVTList(); } /// UpdateNodeOperands - *Mutate* the specified node in-place to have the /// specified operands. If the resultant node already exists in the DAG, /// this does not modify the specified node, instead it returns the node that /// already exists. If the resultant node does not exist in the DAG, the /// input node is returned. As a degenerate case, if you specify the same /// input operands as the node already has, the input node is returned. SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); // Check to see if there is no change. if (Op == N->getOperand(0)) return N; // See if the modified node already exists. void *InsertPos = nullptr; if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) return Existing; // Nope it doesn't. Remove the node from its current place in the maps. if (InsertPos) if (!RemoveNodeFromCSEMaps(N)) InsertPos = nullptr; // Now we update the operands. N->OperandList[0].set(Op); updateDivergence(N); // If this gets put into a CSE map, add it. if (InsertPos) CSEMap.InsertNode(N, InsertPos); return N; } SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); // Check to see if there is no change. if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) return N; // No operands changed, just return the input node. // See if the modified node already exists. void *InsertPos = nullptr; if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) return Existing; // Nope it doesn't. Remove the node from its current place in the maps. if (InsertPos) if (!RemoveNodeFromCSEMaps(N)) InsertPos = nullptr; // Now we update the operands. if (N->OperandList[0] != Op1) N->OperandList[0].set(Op1); if (N->OperandList[1] != Op2) N->OperandList[1].set(Op2); updateDivergence(N); // If this gets put into a CSE map, add it. if (InsertPos) CSEMap.InsertNode(N, InsertPos); return N; } SDNode *SelectionDAG:: UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { SDValue Ops[] = { Op1, Op2, Op3 }; return UpdateNodeOperands(N, Ops); } SDNode *SelectionDAG:: UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3, SDValue Op4) { SDValue Ops[] = { Op1, Op2, Op3, Op4 }; return UpdateNodeOperands(N, Ops); } SDNode *SelectionDAG:: UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3, SDValue Op4, SDValue Op5) { SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; return UpdateNodeOperands(N, Ops); } SDNode *SelectionDAG:: UpdateNodeOperands(SDNode *N, ArrayRef Ops) { unsigned NumOps = Ops.size(); assert(N->getNumOperands() == NumOps && "Update with wrong number of operands"); // If no operands changed just return the input node. if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) return N; // See if the modified node already exists. void *InsertPos = nullptr; if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) return Existing; // Nope it doesn't. Remove the node from its current place in the maps. if (InsertPos) if (!RemoveNodeFromCSEMaps(N)) InsertPos = nullptr; // Now we update the operands. for (unsigned i = 0; i != NumOps; ++i) if (N->OperandList[i] != Ops[i]) N->OperandList[i].set(Ops[i]); updateDivergence(N); // If this gets put into a CSE map, add it. if (InsertPos) CSEMap.InsertNode(N, InsertPos); return N; } /// DropOperands - Release the operands and set this node to have /// zero operands. void SDNode::DropOperands() { // Unlike the code in MorphNodeTo that does this, we don't need to // watch for dead nodes here. for (op_iterator I = op_begin(), E = op_end(); I != E; ) { SDUse &Use = *I++; Use.set(SDValue()); } } void SelectionDAG::setNodeMemRefs(MachineSDNode *N, ArrayRef NewMemRefs) { if (NewMemRefs.empty()) { N->clearMemRefs(); return; } // Check if we can avoid allocating by storing a single reference directly. if (NewMemRefs.size() == 1) { N->MemRefs = NewMemRefs[0]; N->NumMemRefs = 1; return; } MachineMemOperand **MemRefsBuffer = Allocator.template Allocate(NewMemRefs.size()); llvm::copy(NewMemRefs, MemRefsBuffer); N->MemRefs = MemRefsBuffer; N->NumMemRefs = static_cast(NewMemRefs.size()); } /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a /// machine opcode. /// SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT) { SDVTList VTs = getVTList(VT); return SelectNodeTo(N, MachineOpc, VTs, None); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1 }; return SelectNodeTo(N, MachineOpc, VTs, Ops); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1, SDValue Op2) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1, Op2 }; return SelectNodeTo(N, MachineOpc, VTs, Ops); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1, SDValue Op2, SDValue Op3) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1, Op2, Op3 }; return SelectNodeTo(N, MachineOpc, VTs, Ops); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, ArrayRef Ops) { SDVTList VTs = getVTList(VT); return SelectNodeTo(N, MachineOpc, VTs, Ops); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2, ArrayRef Ops) { SDVTList VTs = getVTList(VT1, VT2); return SelectNodeTo(N, MachineOpc, VTs, Ops); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2) { SDVTList VTs = getVTList(VT1, VT2); return SelectNodeTo(N, MachineOpc, VTs, None); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2, EVT VT3, ArrayRef Ops) { SDVTList VTs = getVTList(VT1, VT2, VT3); return SelectNodeTo(N, MachineOpc, VTs, Ops); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) { SDVTList VTs = getVTList(VT1, VT2); SDValue Ops[] = { Op1, Op2 }; return SelectNodeTo(N, MachineOpc, VTs, Ops); } SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,ArrayRef Ops) { SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); // Reset the NodeID to -1. New->setNodeId(-1); if (New != N) { ReplaceAllUsesWith(N, New); RemoveDeadNode(N); } return New; } /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away /// the line number information on the merged node since it is not possible to /// preserve the information that operation is associated with multiple lines. /// This will make the debugger working better at -O0, were there is a higher /// probability having other instructions associated with that line. /// /// For IROrder, we keep the smaller of the two SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { DebugLoc NLoc = N->getDebugLoc(); if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { N->setDebugLoc(DebugLoc()); } unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); N->setIROrder(Order); return N; } /// MorphNodeTo - This *mutates* the specified node to have the specified /// return type, opcode, and operands. /// /// Note that MorphNodeTo returns the resultant node. If there is already a /// node of the specified opcode and operands, it returns that node instead of /// the current one. Note that the SDLoc need not be the same. /// /// Using MorphNodeTo is faster than creating a new node and swapping it in /// with ReplaceAllUsesWith both because it often avoids allocating a new /// node, and because it doesn't require CSE recalculation for any of /// the node's users. /// /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. /// As a consequence it isn't appropriate to use from within the DAG combiner or /// the legalizer which maintain worklists that would need to be updated when /// deleting things. SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef Ops) { // If an identical node already exists, use it. void *IP = nullptr; if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opc, VTs, Ops); if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); } if (!RemoveNodeFromCSEMaps(N)) IP = nullptr; // Start the morphing. N->NodeType = Opc; N->ValueList = VTs.VTs; N->NumValues = VTs.NumVTs; // Clear the operands list, updating used nodes to remove this from their // use list. Keep track of any operands that become dead as a result. SmallPtrSet DeadNodeSet; for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { SDUse &Use = *I++; SDNode *Used = Use.getNode(); Use.set(SDValue()); if (Used->use_empty()) DeadNodeSet.insert(Used); } // For MachineNode, initialize the memory references information. if (MachineSDNode *MN = dyn_cast(N)) MN->clearMemRefs(); // Swap for an appropriately sized array from the recycler. removeOperands(N); createOperands(N, Ops); // Delete any nodes that are still dead after adding the uses for the // new operands. if (!DeadNodeSet.empty()) { SmallVector DeadNodes; for (SDNode *N : DeadNodeSet) if (N->use_empty()) DeadNodes.push_back(N); RemoveDeadNodes(DeadNodes); } if (IP) CSEMap.InsertNode(N, IP); // Memoize the new node. return N; } SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { unsigned OrigOpc = Node->getOpcode(); unsigned NewOpc; switch (OrigOpc) { default: llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; #include "llvm/IR/ConstrainedOps.def" } assert(Node->getNumValues() == 2 && "Unexpected number of results!"); // We're taking this node out of the chain, so we need to re-link things. SDValue InputChain = Node->getOperand(0); SDValue OutputChain = SDValue(Node, 1); ReplaceAllUsesOfValueWith(OutputChain, InputChain); SmallVector Ops; for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) Ops.push_back(Node->getOperand(i)); SDVTList VTs = getVTList(Node->getValueType(0)); SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); // MorphNodeTo can operate in two ways: if an existing node with the // specified operands exists, it can just return it. Otherwise, it // updates the node in place to have the requested operands. if (Res == Node) { // If we updated the node in place, reset the node ID. To the isel, // this should be just like a newly allocated machine node. Res->setNodeId(-1); } else { ReplaceAllUsesWith(Node, Res); RemoveDeadNode(Node); } return Res; } /// getMachineNode - These are used for target selectors to create a new node /// with specified return type(s), MachineInstr opcode, and operands. /// /// Note that getMachineNode returns the resultant node. If there is already a /// node of the specified opcode and operands, it returns that node instead of /// the current one. MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT) { SDVTList VTs = getVTList(VT); return getMachineNode(Opcode, dl, VTs, None); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, SDValue Op1) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1 }; return getMachineNode(Opcode, dl, VTs, Ops); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, SDValue Op1, SDValue Op2) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1, Op2 }; return getMachineNode(Opcode, dl, VTs, Ops); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, SDValue Op1, SDValue Op2, SDValue Op3) { SDVTList VTs = getVTList(VT); SDValue Ops[] = { Op1, Op2, Op3 }; return getMachineNode(Opcode, dl, VTs, Ops); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, ArrayRef Ops) { SDVTList VTs = getVTList(VT); return getMachineNode(Opcode, dl, VTs, Ops); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) { SDVTList VTs = getVTList(VT1, VT2); SDValue Ops[] = { Op1, Op2 }; return getMachineNode(Opcode, dl, VTs, Ops); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3) { SDVTList VTs = getVTList(VT1, VT2); SDValue Ops[] = { Op1, Op2, Op3 }; return getMachineNode(Opcode, dl, VTs, Ops); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, ArrayRef Ops) { SDVTList VTs = getVTList(VT1, VT2); return getMachineNode(Opcode, dl, VTs, Ops); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, EVT VT3, SDValue Op1, SDValue Op2) { SDVTList VTs = getVTList(VT1, VT2, VT3); SDValue Ops[] = { Op1, Op2 }; return getMachineNode(Opcode, dl, VTs, Ops); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, EVT VT3, SDValue Op1, SDValue Op2, SDValue Op3) { SDVTList VTs = getVTList(VT1, VT2, VT3); SDValue Ops[] = { Op1, Op2, Op3 }; return getMachineNode(Opcode, dl, VTs, Ops); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, EVT VT3, ArrayRef Ops) { SDVTList VTs = getVTList(VT1, VT2, VT3); return getMachineNode(Opcode, dl, VTs, Ops); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, ArrayRef ResultTys, ArrayRef Ops) { SDVTList VTs = getVTList(ResultTys); return getMachineNode(Opcode, dl, VTs, Ops); } MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, ArrayRef Ops) { bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; MachineSDNode *N; void *IP = nullptr; if (DoCSE) { FoldingSetNodeID ID; AddNodeIDNode(ID, ~Opcode, VTs, Ops); IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { return cast(UpdateSDLocOnMergeSDNode(E, DL)); } } // Allocate a new MachineSDNode. N = newSDNode(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); createOperands(N, Ops); if (DoCSE) CSEMap.InsertNode(N, IP); InsertNode(N); NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); return N; } /// getTargetExtractSubreg - A convenience function for creating /// TargetOpcode::EXTRACT_SUBREG nodes. SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand) { SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, Operand, SRIdxVal); return SDValue(Subreg, 0); } /// getTargetInsertSubreg - A convenience function for creating /// TargetOpcode::INSERT_SUBREG nodes. SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg) { SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, VT, Operand, Subreg, SRIdxVal); return SDValue(Result, 0); } /// getNodeIfExists - Get the specified node if it's already available, or /// else return NULL. SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef Ops, const SDNodeFlags Flags) { if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { FoldingSetNodeID ID; AddNodeIDNode(ID, Opcode, VTList, Ops); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { E->intersectFlagsWith(Flags); return E; } } return nullptr; } /// getDbgValue - Creates a SDDbgValue node. /// /// SDNode SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O) { assert(cast(Var)->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"); return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); } /// Constant SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O) { assert(cast(Var)->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"); return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); } /// FrameIndex SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O) { assert(cast(Var)->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"); return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); } /// VReg SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, unsigned VReg, bool IsIndirect, const DebugLoc &DL, unsigned O) { assert(cast(Var)->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"); return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); } void SelectionDAG::transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits, unsigned SizeInBits, bool InvalidateDbg) { SDNode *FromNode = From.getNode(); SDNode *ToNode = To.getNode(); assert(FromNode && ToNode && "Can't modify dbg values"); // PR35338 // TODO: assert(From != To && "Redundant dbg value transfer"); // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); if (From == To || FromNode == ToNode) return; if (!FromNode->getHasDebugValue()) return; SmallVector ClonedDVs; for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) continue; // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); // Just transfer the dbg value attached to From. if (Dbg->getResNo() != From.getResNo()) continue; DIVariable *Var = Dbg->getVariable(); auto *Expr = Dbg->getExpression(); // If a fragment is requested, update the expression. if (SizeInBits) { // When splitting a larger (e.g., sign-extended) value whose // lower bits are described with an SDDbgValue, do not attempt // to transfer the SDDbgValue to the upper bits. if (auto FI = Expr->getFragmentInfo()) if (OffsetInBits + SizeInBits > FI->SizeInBits) continue; auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, SizeInBits); if (!Fragment) continue; Expr = *Fragment; } // Clone the SDDbgValue and move it to To. SDDbgValue *Clone = getDbgValue( Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder())); ClonedDVs.push_back(Clone); if (InvalidateDbg) { // Invalidate value and indicate the SDDbgValue should not be emitted. Dbg->setIsInvalidated(); Dbg->setIsEmitted(); } } for (SDDbgValue *Dbg : ClonedDVs) AddDbgValue(Dbg, ToNode, false); } void SelectionDAG::salvageDebugInfo(SDNode &N) { if (!N.getHasDebugValue()) return; SmallVector ClonedDVs; for (auto DV : GetDbgValues(&N)) { if (DV->isInvalidated()) continue; switch (N.getOpcode()) { default: break; case ISD::ADD: SDValue N0 = N.getOperand(0); SDValue N1 = N.getOperand(1); if (!isConstantIntBuildVectorOrConstantInt(N0) && isConstantIntBuildVectorOrConstantInt(N1)) { uint64_t Offset = N.getConstantOperandVal(1); // Rewrite an ADD constant node into a DIExpression. Since we are // performing arithmetic to compute the variable's *value* in the // DIExpression, we need to mark the expression with a // DW_OP_stack_value. auto *DIExpr = DV->getExpression(); DIExpr = DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); SDDbgValue *Clone = getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); ClonedDVs.push_back(Clone); DV->setIsInvalidated(); DV->setIsEmitted(); LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this); dbgs() << " into " << *DIExpr << '\n'); } } } for (SDDbgValue *Dbg : ClonedDVs) AddDbgValue(Dbg, Dbg->getSDNode(), false); } /// Creates a SDDbgLabel node. SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O) { assert(cast(Label)->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"); return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); } namespace { /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node /// pointed to by a use iterator is deleted, increment the use iterator /// so that it doesn't dangle. /// class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { SDNode::use_iterator &UI; SDNode::use_iterator &UE; void NodeDeleted(SDNode *N, SDNode *E) override { // Increment the iterator as needed. while (UI != UE && N == *UI) ++UI; } public: RAUWUpdateListener(SelectionDAG &d, SDNode::use_iterator &ui, SDNode::use_iterator &ue) : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} }; } // end anonymous namespace /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version assumes From has a single result value. /// void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { SDNode *From = FromN.getNode(); assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && "Cannot replace with this method!"); assert(From != To.getNode() && "Cannot replace uses of with self"); // Preserve Debug Values transferDbgValues(FromN, To); // Iterate over all the existing uses of From. New uses will be added // to the beginning of the use list, which we avoid visiting. // This specifically avoids visiting uses of From that arise while the // replacement is happening, because any such uses would be the result // of CSE: If an existing node looks like From after one of its operands // is replaced by To, we don't want to replace of all its users with To // too. See PR3018 for more info. SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); RAUWUpdateListener Listener(*this, UI, UE); while (UI != UE) { SDNode *User = *UI; // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(User); // A user can appear in a use list multiple times, and when this // happens the uses are usually next to each other in the list. // To help reduce the number of CSE recomputations, process all // the uses of this user that we can find this way. do { SDUse &Use = UI.getUse(); ++UI; Use.set(To); if (To->isDivergent() != From->isDivergent()) updateDivergence(User); } while (UI != UE && *UI == User); // Now that we have modified User, add it back to the CSE maps. If it // already exists there, recursively merge the results together. AddModifiedNodeToCSEMaps(User); } // If we just RAUW'd the root, take note. if (FromN == getRoot()) setRoot(To); } /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version assumes that for each value of From, there is a /// corresponding value in To in the same position with the same type. /// void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { #ifndef NDEBUG for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) assert((!From->hasAnyUseOfValue(i) || From->getValueType(i) == To->getValueType(i)) && "Cannot use this version of ReplaceAllUsesWith!"); #endif // Handle the trivial case. if (From == To) return; // Preserve Debug Info. Only do this if there's a use. for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) if (From->hasAnyUseOfValue(i)) { assert((i < To->getNumValues()) && "Invalid To location"); transferDbgValues(SDValue(From, i), SDValue(To, i)); } // Iterate over just the existing users of From. See the comments in // the ReplaceAllUsesWith above. SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); RAUWUpdateListener Listener(*this, UI, UE); while (UI != UE) { SDNode *User = *UI; // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(User); // A user can appear in a use list multiple times, and when this // happens the uses are usually next to each other in the list. // To help reduce the number of CSE recomputations, process all // the uses of this user that we can find this way. do { SDUse &Use = UI.getUse(); ++UI; Use.setNode(To); if (To->isDivergent() != From->isDivergent()) updateDivergence(User); } while (UI != UE && *UI == User); // Now that we have modified User, add it back to the CSE maps. If it // already exists there, recursively merge the results together. AddModifiedNodeToCSEMaps(User); } // If we just RAUW'd the root, take note. if (From == getRoot().getNode()) setRoot(SDValue(To, getRoot().getResNo())); } /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. /// /// This version can replace From with any result values. To must match the /// number and types of values returned by From. void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { if (From->getNumValues() == 1) // Handle the simple case efficiently. return ReplaceAllUsesWith(SDValue(From, 0), To[0]); // Preserve Debug Info. for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) transferDbgValues(SDValue(From, i), To[i]); // Iterate over just the existing users of From. See the comments in // the ReplaceAllUsesWith above. SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); RAUWUpdateListener Listener(*this, UI, UE); while (UI != UE) { SDNode *User = *UI; // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(User); // A user can appear in a use list multiple times, and when this happens the // uses are usually next to each other in the list. To help reduce the // number of CSE and divergence recomputations, process all the uses of this // user that we can find this way. bool To_IsDivergent = false; do { SDUse &Use = UI.getUse(); const SDValue &ToOp = To[Use.getResNo()]; ++UI; Use.set(ToOp); To_IsDivergent |= ToOp->isDivergent(); } while (UI != UE && *UI == User); if (To_IsDivergent != From->isDivergent()) updateDivergence(User); // Now that we have modified User, add it back to the CSE maps. If it // already exists there, recursively merge the results together. AddModifiedNodeToCSEMaps(User); } // If we just RAUW'd the root, take note. if (From == getRoot().getNode()) setRoot(SDValue(To[getRoot().getResNo()])); } /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving /// uses of other values produced by From.getNode() alone. The Deleted /// vector is handled the same way as for ReplaceAllUsesWith. void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ // Handle the really simple, really trivial case efficiently. if (From == To) return; // Handle the simple, trivial, case efficiently. if (From.getNode()->getNumValues() == 1) { ReplaceAllUsesWith(From, To); return; } // Preserve Debug Info. transferDbgValues(From, To); // Iterate over just the existing users of From. See the comments in // the ReplaceAllUsesWith above. SDNode::use_iterator UI = From.getNode()->use_begin(), UE = From.getNode()->use_end(); RAUWUpdateListener Listener(*this, UI, UE); while (UI != UE) { SDNode *User = *UI; bool UserRemovedFromCSEMaps = false; // A user can appear in a use list multiple times, and when this // happens the uses are usually next to each other in the list. // To help reduce the number of CSE recomputations, process all // the uses of this user that we can find this way. do { SDUse &Use = UI.getUse(); // Skip uses of different values from the same node. if (Use.getResNo() != From.getResNo()) { ++UI; continue; } // If this node hasn't been modified yet, it's still in the CSE maps, // so remove its old self from the CSE maps. if (!UserRemovedFromCSEMaps) { RemoveNodeFromCSEMaps(User); UserRemovedFromCSEMaps = true; } ++UI; Use.set(To); if (To->isDivergent() != From->isDivergent()) updateDivergence(User); } while (UI != UE && *UI == User); // We are iterating over all uses of the From node, so if a use // doesn't use the specific value, no changes are made. if (!UserRemovedFromCSEMaps) continue; // Now that we have modified User, add it back to the CSE maps. If it // already exists there, recursively merge the results together. AddModifiedNodeToCSEMaps(User); } // If we just RAUW'd the root, take note. if (From == getRoot()) setRoot(To); } namespace { /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith /// to record information about a use. struct UseMemo { SDNode *User; unsigned Index; SDUse *Use; }; /// operator< - Sort Memos by User. bool operator<(const UseMemo &L, const UseMemo &R) { return (intptr_t)L.User < (intptr_t)R.User; } } // end anonymous namespace void SelectionDAG::updateDivergence(SDNode * N) { if (TLI->isSDNodeAlwaysUniform(N)) return; bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); for (auto &Op : N->ops()) { if (Op.Val.getValueType() != MVT::Other) IsDivergent |= Op.getNode()->isDivergent(); } if (N->SDNodeBits.IsDivergent != IsDivergent) { N->SDNodeBits.IsDivergent = IsDivergent; for (auto U : N->uses()) { updateDivergence(U); } } } void SelectionDAG::CreateTopologicalOrder(std::vector &Order) { DenseMap Degree; Order.reserve(AllNodes.size()); for (auto &N : allnodes()) { unsigned NOps = N.getNumOperands(); Degree[&N] = NOps; if (0 == NOps) Order.push_back(&N); } for (size_t I = 0; I != Order.size(); ++I) { SDNode *N = Order[I]; for (auto U : N->uses()) { unsigned &UnsortedOps = Degree[U]; if (0 == --UnsortedOps) Order.push_back(U); } } } #ifndef NDEBUG void SelectionDAG::VerifyDAGDiverence() { std::vector TopoOrder; CreateTopologicalOrder(TopoOrder); const TargetLowering &TLI = getTargetLoweringInfo(); DenseMap DivergenceMap; for (auto &N : allnodes()) { DivergenceMap[&N] = false; } for (auto N : TopoOrder) { bool IsDivergent = DivergenceMap[N]; bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); for (auto &Op : N->ops()) { if (Op.Val.getValueType() != MVT::Other) IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; } if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { DivergenceMap[N] = true; } } for (auto &N : allnodes()) { (void)N; assert(DivergenceMap[&N] == N.isDivergent() && "Divergence bit inconsistency detected\n"); } } #endif /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving /// uses of other values produced by From.getNode() alone. The same value /// may appear in both the From and To list. The Deleted vector is /// handled the same way as for ReplaceAllUsesWith. void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num){ // Handle the simple, trivial case efficiently. if (Num == 1) return ReplaceAllUsesOfValueWith(*From, *To); transferDbgValues(*From, *To); // Read up all the uses and make records of them. This helps // processing new uses that are introduced during the // replacement process. SmallVector Uses; for (unsigned i = 0; i != Num; ++i) { unsigned FromResNo = From[i].getResNo(); SDNode *FromNode = From[i].getNode(); for (SDNode::use_iterator UI = FromNode->use_begin(), E = FromNode->use_end(); UI != E; ++UI) { SDUse &Use = UI.getUse(); if (Use.getResNo() == FromResNo) { UseMemo Memo = { *UI, i, &Use }; Uses.push_back(Memo); } } } // Sort the uses, so that all the uses from a given User are together. llvm::sort(Uses); for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); UseIndex != UseIndexEnd; ) { // We know that this user uses some value of From. If it is the right // value, update it. SDNode *User = Uses[UseIndex].User; // This node is about to morph, remove its old self from the CSE maps. RemoveNodeFromCSEMaps(User); // The Uses array is sorted, so all the uses for a given User // are next to each other in the list. // To help reduce the number of CSE recomputations, process all // the uses of this user that we can find this way. do { unsigned i = Uses[UseIndex].Index; SDUse &Use = *Uses[UseIndex].Use; ++UseIndex; Use.set(To[i]); } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); // Now that we have modified User, add it back to the CSE maps. If it // already exists there, recursively merge the results together. AddModifiedNodeToCSEMaps(User); } } /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG /// based on their topological order. It returns the maximum id and a vector /// of the SDNodes* in assigned order by reference. unsigned SelectionDAG::AssignTopologicalOrder() { unsigned DAGSize = 0; // SortedPos tracks the progress of the algorithm. Nodes before it are // sorted, nodes after it are unsorted. When the algorithm completes // it is at the end of the list. allnodes_iterator SortedPos = allnodes_begin(); // Visit all the nodes. Move nodes with no operands to the front of // the list immediately. Annotate nodes that do have operands with their // operand count. Before we do this, the Node Id fields of the nodes // may contain arbitrary values. After, the Node Id fields for nodes // before SortedPos will contain the topological sort index, and the // Node Id fields for nodes At SortedPos and after will contain the // count of outstanding operands. for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { SDNode *N = &*I++; checkForCycles(N, this); unsigned Degree = N->getNumOperands(); if (Degree == 0) { // A node with no uses, add it to the result array immediately. N->setNodeId(DAGSize++); allnodes_iterator Q(N); if (Q != SortedPos) SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); assert(SortedPos != AllNodes.end() && "Overran node list"); ++SortedPos; } else { // Temporarily use the Node Id as scratch space for the degree count. N->setNodeId(Degree); } } // Visit all the nodes. As we iterate, move nodes into sorted order, // such that by the time the end is reached all nodes will be sorted. for (SDNode &Node : allnodes()) { SDNode *N = &Node; checkForCycles(N, this); // N is in sorted position, so all its uses have one less operand // that needs to be sorted. for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { SDNode *P = *UI; unsigned Degree = P->getNodeId(); assert(Degree != 0 && "Invalid node degree"); --Degree; if (Degree == 0) { // All of P's operands are sorted, so P may sorted now. P->setNodeId(DAGSize++); if (P->getIterator() != SortedPos) SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); assert(SortedPos != AllNodes.end() && "Overran node list"); ++SortedPos; } else { // Update P's outstanding operand count. P->setNodeId(Degree); } } if (Node.getIterator() == SortedPos) { #ifndef NDEBUG allnodes_iterator I(N); SDNode *S = &*++I; dbgs() << "Overran sorted position:\n"; S->dumprFull(this); dbgs() << "\n"; dbgs() << "Checking if this is due to cycles\n"; checkForCycles(this, true); #endif llvm_unreachable(nullptr); } } assert(SortedPos == AllNodes.end() && "Topological sort incomplete!"); assert(AllNodes.front().getOpcode() == ISD::EntryToken && "First node in topological sort is not the entry token!"); assert(AllNodes.front().getNodeId() == 0 && "First node in topological sort has non-zero id!"); assert(AllNodes.front().getNumOperands() == 0 && "First node in topological sort has operands!"); assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && "Last node in topologic sort has unexpected id!"); assert(AllNodes.back().use_empty() && "Last node in topologic sort has users!"); assert(DAGSize == allnodes_size() && "Node count mismatch!"); return DAGSize; } /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the /// value is produced by SD. void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { if (SD) { assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); SD->setHasDebugValue(true); } DbgInfo->add(DB, SD, isParameter); } void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, SDValue NewMemOp) { assert(isa(NewMemOp.getNode()) && "Expected a memop node"); // The new memory operation must have the same position as the old load in // terms of memory dependency. Create a TokenFactor for the old load and new // memory operation and update uses of the old load's output chain to use that // TokenFactor. SDValue OldChain = SDValue(OldLoad, 1); SDValue NewChain = SDValue(NewMemOp.getNode(), 1); if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) return NewChain; SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); ReplaceAllUsesOfValueWith(OldChain, TokenFactor); UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); return TokenFactor; } SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, Function **OutFunction) { assert(isa(Op) && "Node should be an ExternalSymbol"); auto *Symbol = cast(Op)->getSymbol(); auto *Module = MF->getFunction().getParent(); auto *Function = Module->getFunction(Symbol); if (OutFunction != nullptr) *OutFunction = Function; if (Function != nullptr) { auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); return getGlobalAddress(Function, SDLoc(Op), PtrTy); } std::string ErrorStr; raw_string_ostream ErrorFormatter(ErrorStr); ErrorFormatter << "Undefined external symbol "; ErrorFormatter << '"' << Symbol << '"'; ErrorFormatter.flush(); report_fatal_error(ErrorStr); } //===----------------------------------------------------------------------===// // SDNode Class //===----------------------------------------------------------------------===// bool llvm::isNullConstant(SDValue V) { ConstantSDNode *Const = dyn_cast(V); return Const != nullptr && Const->isNullValue(); } bool llvm::isNullFPConstant(SDValue V) { ConstantFPSDNode *Const = dyn_cast(V); return Const != nullptr && Const->isZero() && !Const->isNegative(); } bool llvm::isAllOnesConstant(SDValue V) { ConstantSDNode *Const = dyn_cast(V); return Const != nullptr && Const->isAllOnesValue(); } bool llvm::isOneConstant(SDValue V) { ConstantSDNode *Const = dyn_cast(V); return Const != nullptr && Const->isOne(); } SDValue llvm::peekThroughBitcasts(SDValue V) { while (V.getOpcode() == ISD::BITCAST) V = V.getOperand(0); return V; } SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) V = V.getOperand(0); return V; } SDValue llvm::peekThroughExtractSubvectors(SDValue V) { while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) V = V.getOperand(0); return V; } bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { if (V.getOpcode() != ISD::XOR) return false; V = peekThroughBitcasts(V.getOperand(1)); unsigned NumBits = V.getScalarValueSizeInBits(); ConstantSDNode *C = isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); } ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, bool AllowTruncation) { if (ConstantSDNode *CN = dyn_cast(N)) return CN; if (BuildVectorSDNode *BV = dyn_cast(N)) { BitVector UndefElements; ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); // BuildVectors can truncate their operands. Ignore that case here unless // AllowTruncation is set. if (CN && (UndefElements.none() || AllowUndefs)) { EVT CVT = CN->getValueType(0); EVT NSVT = N.getValueType().getScalarType(); assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); if (AllowTruncation || (CVT == NSVT)) return CN; } } return nullptr; } ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, bool AllowUndefs, bool AllowTruncation) { if (ConstantSDNode *CN = dyn_cast(N)) return CN; if (BuildVectorSDNode *BV = dyn_cast(N)) { BitVector UndefElements; ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); // BuildVectors can truncate their operands. Ignore that case here unless // AllowTruncation is set. if (CN && (UndefElements.none() || AllowUndefs)) { EVT CVT = CN->getValueType(0); EVT NSVT = N.getValueType().getScalarType(); assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); if (AllowTruncation || (CVT == NSVT)) return CN; } } return nullptr; } ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { if (ConstantFPSDNode *CN = dyn_cast(N)) return CN; if (BuildVectorSDNode *BV = dyn_cast(N)) { BitVector UndefElements; ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); if (CN && (UndefElements.none() || AllowUndefs)) return CN; } return nullptr; } ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts, bool AllowUndefs) { if (ConstantFPSDNode *CN = dyn_cast(N)) return CN; if (BuildVectorSDNode *BV = dyn_cast(N)) { BitVector UndefElements; ConstantFPSDNode *CN = BV->getConstantFPSplatNode(DemandedElts, &UndefElements); if (CN && (UndefElements.none() || AllowUndefs)) return CN; } return nullptr; } bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { // TODO: may want to use peekThroughBitcast() here. ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); return C && C->isNullValue(); } bool llvm::isOneOrOneSplat(SDValue N) { // TODO: may want to use peekThroughBitcast() here. unsigned BitWidth = N.getScalarValueSizeInBits(); ConstantSDNode *C = isConstOrConstSplat(N); return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; } bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { N = peekThroughBitcasts(N); unsigned BitWidth = N.getScalarValueSizeInBits(); ConstantSDNode *C = isConstOrConstSplat(N); return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; } HandleSDNode::~HandleSDNode() { DropOperands(); } GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, const GlobalValue *GA, EVT VT, int64_t o, unsigned TF) : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { TheGlobal = GA; } AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT, unsigned SrcAS, unsigned DestAS) : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *mmo) : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { MemSDNodeBits.IsVolatile = MMO->isVolatile(); MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); MemSDNodeBits.IsInvariant = MMO->isInvariant(); // We check here that the size of the memory operand fits within the size of // the MMO. This is because the MMO might indicate only a possible address // range instead of specifying the affected memory addresses precisely. // TODO: Make MachineMemOperands aware of scalable vectors. assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && "Size mismatch!"); } /// Profile - Gather unique data for the node. /// void SDNode::Profile(FoldingSetNodeID &ID) const { AddNodeIDNode(ID, this); } namespace { struct EVTArray { std::vector VTs; EVTArray() { VTs.reserve(MVT::LAST_VALUETYPE); for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) VTs.push_back(MVT((MVT::SimpleValueType)i)); } }; } // end anonymous namespace static ManagedStatic> EVTs; static ManagedStatic SimpleVTArray; static ManagedStatic> VTMutex; /// getValueTypeList - Return a pointer to the specified value type. /// const EVT *SDNode::getValueTypeList(EVT VT) { if (VT.isExtended()) { sys::SmartScopedLock Lock(*VTMutex); return &(*EVTs->insert(VT).first); } else { assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && "Value type out of range!"); return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; } } /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the /// indicated value. This method ignores uses of other values defined by this /// operation. bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { assert(Value < getNumValues() && "Bad value!"); // TODO: Only iterate over uses of a given value of the node for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { if (UI.getUse().getResNo() == Value) { if (NUses == 0) return false; --NUses; } } // Found exactly the right number of uses? return NUses == 0; } /// hasAnyUseOfValue - Return true if there are any use of the indicated /// value. This method ignores uses of other values defined by this operation. bool SDNode::hasAnyUseOfValue(unsigned Value) const { assert(Value < getNumValues() && "Bad value!"); for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) if (UI.getUse().getResNo() == Value) return true; return false; } /// isOnlyUserOf - Return true if this node is the only use of N. bool SDNode::isOnlyUserOf(const SDNode *N) const { bool Seen = false; for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { SDNode *User = *I; if (User == this) Seen = true; else return false; } return Seen; } /// Return true if the only users of N are contained in Nodes. bool SDNode::areOnlyUsersOf(ArrayRef Nodes, const SDNode *N) { bool Seen = false; for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { SDNode *User = *I; if (llvm::any_of(Nodes, [&User](const SDNode *Node) { return User == Node; })) Seen = true; else return false; } return Seen; } /// isOperand - Return true if this node is an operand of N. bool SDValue::isOperandOf(const SDNode *N) const { return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); } bool SDNode::isOperandOf(const SDNode *N) const { return any_of(N->op_values(), [this](SDValue Op) { return this == Op.getNode(); }); } /// reachesChainWithoutSideEffects - Return true if this operand (which must /// be a chain) reaches the specified operand without crossing any /// side-effecting instructions on any chain path. In practice, this looks /// through token factors and non-volatile loads. In order to remain efficient, /// this only looks a couple of nodes in, it does not do an exhaustive search. /// /// Note that we only need to examine chains when we're searching for /// side-effects; SelectionDAG requires that all side-effects are represented /// by chains, even if another operand would force a specific ordering. This /// constraint is necessary to allow transformations like splitting loads. bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth) const { if (*this == Dest) return true; // Don't search too deeply, we just want to be able to see through // TokenFactor's etc. if (Depth == 0) return false; // If this is a token factor, all inputs to the TF happen in parallel. if (getOpcode() == ISD::TokenFactor) { // First, try a shallow search. if (is_contained((*this)->ops(), Dest)) { // We found the chain we want as an operand of this TokenFactor. // Essentially, we reach the chain without side-effects if we could // serialize the TokenFactor into a simple chain of operations with // Dest as the last operation. This is automatically true if the // chain has one use: there are no other ordering constraints. // If the chain has more than one use, we give up: some other // use of Dest might force a side-effect between Dest and the current // node. if (Dest.hasOneUse()) return true; } // Next, try a deep search: check whether every operand of the TokenFactor // reaches Dest. return llvm::all_of((*this)->ops(), [=](SDValue Op) { return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); }); } // Loads don't have side effects, look through them. if (LoadSDNode *Ld = dyn_cast(*this)) { if (Ld->isUnordered()) return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); } return false; } bool SDNode::hasPredecessor(const SDNode *N) const { SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(this); return hasPredecessorHelper(N, Visited, Worklist); } void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { this->Flags.intersectWith(Flags); } SDValue SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef CandidateBinOps, bool AllowPartials) { // The pattern must end in an extract from index 0. if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || !isNullConstant(Extract->getOperand(1))) return SDValue(); // Match against one of the candidate binary ops. SDValue Op = Extract->getOperand(0); if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { return Op.getOpcode() == unsigned(BinOp); })) return SDValue(); // Floating-point reductions may require relaxed constraints on the final step // of the reduction because they may reorder intermediate operations. unsigned CandidateBinOp = Op.getOpcode(); if (Op.getValueType().isFloatingPoint()) { SDNodeFlags Flags = Op->getFlags(); switch (CandidateBinOp) { case ISD::FADD: if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) return SDValue(); break; default: llvm_unreachable("Unhandled FP opcode for binop reduction"); } } // Matching failed - attempt to see if we did enough stages that a partial // reduction from a subvector is possible. auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { if (!AllowPartials || !Op) return SDValue(); EVT OpVT = Op.getValueType(); EVT OpSVT = OpVT.getScalarType(); EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) return SDValue(); BinOp = (ISD::NodeType)CandidateBinOp; return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, getVectorIdxConstant(0, SDLoc(Op))); }; // At each stage, we're looking for something that looks like: // %s = shufflevector <8 x i32> %op, <8 x i32> undef, // <8 x i32> // %a = binop <8 x i32> %op, %s // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, // we expect something like: // <4,5,6,7,u,u,u,u> // <2,3,u,u,u,u,u,u> // <1,u,u,u,u,u,u,u> // While a partial reduction match would be: // <2,3,u,u,u,u,u,u> // <1,u,u,u,u,u,u,u> unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); SDValue PrevOp; for (unsigned i = 0; i < Stages; ++i) { unsigned MaskEnd = (1 << i); if (Op.getOpcode() != CandidateBinOp) return PartialReduction(PrevOp, MaskEnd); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); ShuffleVectorSDNode *Shuffle = dyn_cast(Op0); if (Shuffle) { Op = Op1; } else { Shuffle = dyn_cast(Op1); Op = Op0; } // The first operand of the shuffle should be the same as the other operand // of the binop. if (!Shuffle || Shuffle->getOperand(0) != Op) return PartialReduction(PrevOp, MaskEnd); // Verify the shuffle has the expected (at this stage of the pyramid) mask. for (int Index = 0; Index < (int)MaskEnd; ++Index) if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) return PartialReduction(PrevOp, MaskEnd); PrevOp = Op; } // Handle subvector reductions, which tend to appear after the shuffle // reduction stages. while (Op.getOpcode() == CandidateBinOp) { unsigned NumElts = Op.getValueType().getVectorNumElements(); SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || Op0.getOperand(0) != Op1.getOperand(0)) break; SDValue Src = Op0.getOperand(0); unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); if (NumSrcElts != (2 * NumElts)) break; if (!(Op0.getConstantOperandAPInt(1) == 0 && Op1.getConstantOperandAPInt(1) == NumElts) && !(Op1.getConstantOperandAPInt(1) == 0 && Op0.getConstantOperandAPInt(1) == NumElts)) break; Op = Src; } BinOp = (ISD::NodeType)CandidateBinOp; return Op; } SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { assert(N->getNumValues() == 1 && "Can't unroll a vector with multiple results!"); EVT VT = N->getValueType(0); unsigned NE = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); SDLoc dl(N); SmallVector Scalars; SmallVector Operands(N->getNumOperands()); // If ResNE is 0, fully unroll the vector op. if (ResNE == 0) ResNE = NE; else if (NE > ResNE) NE = ResNE; unsigned i; for (i= 0; i != NE; ++i) { for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { SDValue Operand = N->getOperand(j); EVT OperandVT = Operand.getValueType(); if (OperandVT.isVector()) { // A vector operand; extract a single element. EVT OperandEltVT = OperandVT.getVectorElementType(); Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, getVectorIdxConstant(i, dl)); } else { // A scalar operand; just use it as is. Operands[j] = Operand; } } switch (N->getOpcode()) { default: { Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, N->getFlags())); break; } case ISD::VSELECT: Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], getShiftAmountOperand(Operands[0].getValueType(), Operands[1]))); break; case ISD::SIGN_EXTEND_INREG: { EVT ExtVT = cast(Operands[1])->getVT().getVectorElementType(); Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], getValueType(ExtVT))); } } } for (; i < ResNE; ++i) Scalars.push_back(getUNDEF(EltVT)); EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); return getBuildVector(VecVT, dl, Scalars); } std::pair SelectionDAG::UnrollVectorOverflowOp( SDNode *N, unsigned ResNE) { unsigned Opcode = N->getOpcode(); assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || Opcode == ISD::USUBO || Opcode == ISD::SSUBO || Opcode == ISD::UMULO || Opcode == ISD::SMULO) && "Expected an overflow opcode"); EVT ResVT = N->getValueType(0); EVT OvVT = N->getValueType(1); EVT ResEltVT = ResVT.getVectorElementType(); EVT OvEltVT = OvVT.getVectorElementType(); SDLoc dl(N); // If ResNE is 0, fully unroll the vector op. unsigned NE = ResVT.getVectorNumElements(); if (ResNE == 0) ResNE = NE; else if (NE > ResNE) NE = ResNE; SmallVector LHSScalars; SmallVector RHSScalars; ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); SDVTList VTs = getVTList(ResEltVT, SVT); SmallVector ResScalars; SmallVector OvScalars; for (unsigned i = 0; i < NE; ++i) { SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); SDValue Ov = getSelect(dl, OvEltVT, Res.getValue(1), getBoolConstant(true, dl, OvEltVT, ResVT), getConstant(0, dl, OvEltVT)); ResScalars.push_back(Res); OvScalars.push_back(Ov); } ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), getBuildVector(NewOvVT, dl, OvScalars)); } bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const { if (LD->isVolatile() || Base->isVolatile()) return false; // TODO: probably too restrictive for atomics, revisit if (!LD->isSimple()) return false; if (LD->isIndexed() || Base->isIndexed()) return false; if (LD->getChain() != Base->getChain()) return false; EVT VT = LD->getValueType(0); if (VT.getSizeInBits() / 8 != Bytes) return false; auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); auto LocDecomp = BaseIndexOffset::match(LD, *this); int64_t Offset = 0; if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) return (Dist * Bytes == Offset); return false; } /// InferPtrAlignment - Infer alignment of a load / store address. Return None /// if it cannot be inferred. MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { // If this is a GlobalAddress + cst, return the alignment. const GlobalValue *GV = nullptr; int64_t GVOffset = 0; if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); KnownBits Known(PtrWidth); llvm::computeKnownBits(GV, Known, getDataLayout()); unsigned AlignBits = Known.countMinTrailingZeros(); if (AlignBits) return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); } // If this is a direct reference to a stack slot, use information about the // stack slot's alignment. int FrameIdx = INT_MIN; int64_t FrameOffset = 0; if (FrameIndexSDNode *FI = dyn_cast(Ptr)) { FrameIdx = FI->getIndex(); } else if (isBaseWithConstantOffset(Ptr) && isa(Ptr.getOperand(0))) { // Handle FI+Cst FrameIdx = cast(Ptr.getOperand(0))->getIndex(); FrameOffset = Ptr.getConstantOperandVal(1); } if (FrameIdx != INT_MIN) { const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); } return None; } /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type /// which is split (or expanded) into two not necessarily identical pieces. std::pair SelectionDAG::GetSplitDestVTs(const EVT &VT) const { // Currently all types are split in half. EVT LoVT, HiVT; if (!VT.isVector()) LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); else LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); return std::make_pair(LoVT, HiVT); } /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a /// type, dependent on an enveloping VT that has been split into two identical /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. std::pair SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const { EVT EltTp = VT.getVectorElementType(); bool IsScalable = VT.isScalableVector(); // Examples: // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) // custom VL=9 with enveloping VL=8/8 yields 8/1 // custom VL=10 with enveloping VL=8/8 yields 8/2 // etc. unsigned VTNumElts = VT.getVectorNumElements(); unsigned EnvNumElts = EnvVT.getVectorNumElements(); EVT LoVT, HiVT; if (VTNumElts > EnvNumElts) { LoVT = EnvVT; HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts, IsScalable); *HiIsEmpty = false; } else { // Flag that hi type has zero storage size, but return split envelop type // (this would be easier if vector types with zero elements were allowed). LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable); HiVT = EnvVT; *HiIsEmpty = true; } return std::make_pair(LoVT, HiVT); } /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the /// low/high part. std::pair SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT) { assert(LoVT.isScalableVector() == HiVT.isScalableVector() && LoVT.isScalableVector() == N.getValueType().isScalableVector() && "Splitting vector with an invalid mixture of fixed and scalable " "vector types"); assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= N.getValueType().getVectorMinNumElements() && "More vector elements requested than available!"); SDValue Lo, Hi; Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales // IDX with the runtime scaling factor of the result vector type. For // fixed-width result vectors, that runtime scaling factor is 1. Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); return std::make_pair(Lo, Hi); } /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { EVT VT = N.getValueType(); EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), NextPowerOf2(VT.getVectorNumElements())); return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, getVectorIdxConstant(0, DL)); } void SelectionDAG::ExtractVectorElements(SDValue Op, SmallVectorImpl &Args, unsigned Start, unsigned Count, EVT EltVT) { EVT VT = Op.getValueType(); if (Count == 0) Count = VT.getVectorNumElements(); if (EltVT == EVT()) EltVT = VT.getVectorElementType(); SDLoc SL(Op); for (unsigned i = Start, e = Start + Count; i != e; ++i) { Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, getVectorIdxConstant(i, SL))); } } // getAddressSpace - Return the address space this GlobalAddress belongs to. unsigned GlobalAddressSDNode::getAddressSpace() const { return getGlobal()->getType()->getAddressSpace(); } Type *ConstantPoolSDNode::getType() const { if (isMachineConstantPoolEntry()) return Val.MachineCPVal->getType(); return Val.ConstVal->getType(); } bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits, bool IsBigEndian) const { EVT VT = getValueType(0); assert(VT.isVector() && "Expected a vector type"); unsigned VecWidth = VT.getSizeInBits(); if (MinSplatBits > VecWidth) return false; // FIXME: The widths are based on this node's type, but build vectors can // truncate their operands. SplatValue = APInt(VecWidth, 0); SplatUndef = APInt(VecWidth, 0); // Get the bits. Bits with undefined values (when the corresponding element // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared // in SplatValue. If any of the values are not constant, give up and return // false. unsigned int NumOps = getNumOperands(); assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); unsigned EltWidth = VT.getScalarSizeInBits(); for (unsigned j = 0; j < NumOps; ++j) { unsigned i = IsBigEndian ? NumOps - 1 - j : j; SDValue OpVal = getOperand(i); unsigned BitPos = j * EltWidth; if (OpVal.isUndef()) SplatUndef.setBits(BitPos, BitPos + EltWidth); else if (auto *CN = dyn_cast(OpVal)) SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); else if (auto *CN = dyn_cast(OpVal)) SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); else return false; } // The build_vector is all constants or undefs. Find the smallest element // size that splats the vector. HasAnyUndefs = (SplatUndef != 0); // FIXME: This does not work for vectors with elements less than 8 bits. while (VecWidth > 8) { unsigned HalfSize = VecWidth / 2; APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); APInt LowValue = SplatValue.trunc(HalfSize); APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); APInt LowUndef = SplatUndef.trunc(HalfSize); // If the two halves do not match (ignoring undef bits), stop here. if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || MinSplatBits > HalfSize) break; SplatValue = HighValue | LowValue; SplatUndef = HighUndef & LowUndef; VecWidth = HalfSize; } SplatBitSize = VecWidth; return true; } SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, BitVector *UndefElements) const { if (UndefElements) { UndefElements->clear(); UndefElements->resize(getNumOperands()); } assert(getNumOperands() == DemandedElts.getBitWidth() && "Unexpected vector size"); if (!DemandedElts) return SDValue(); SDValue Splatted; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { if (!DemandedElts[i]) continue; SDValue Op = getOperand(i); if (Op.isUndef()) { if (UndefElements) (*UndefElements)[i] = true; } else if (!Splatted) { Splatted = Op; } else if (Splatted != Op) { return SDValue(); } } if (!Splatted) { unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); assert(getOperand(FirstDemandedIdx).isUndef() && "Can only have a splat without a constant for all undefs."); return getOperand(FirstDemandedIdx); } return Splatted; } SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); return getSplatValue(DemandedElts, UndefElements); } ConstantSDNode * BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements) const { return dyn_cast_or_null( getSplatValue(DemandedElts, UndefElements)); } ConstantSDNode * BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { return dyn_cast_or_null(getSplatValue(UndefElements)); } ConstantFPSDNode * BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements) const { return dyn_cast_or_null( getSplatValue(DemandedElts, UndefElements)); } ConstantFPSDNode * BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { return dyn_cast_or_null(getSplatValue(UndefElements)); } int32_t BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const { if (ConstantFPSDNode *CN = dyn_cast_or_null(getSplatValue(UndefElements))) { bool IsExact; APSInt IntVal(BitWidth); const APFloat &APF = CN->getValueAPF(); if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != APFloat::opOK || !IsExact) return -1; return IntVal.exactLogBase2(); } return -1; } bool BuildVectorSDNode::isConstant() const { for (const SDValue &Op : op_values()) { unsigned Opc = Op.getOpcode(); if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) return false; } return true; } bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { // Find the first non-undef value in the shuffle mask. unsigned i, e; for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) /* search */; // If all elements are undefined, this shuffle can be considered a splat // (although it should eventually get simplified away completely). if (i == e) return true; // Make sure all remaining elements are either undef or the same as the first // non-undef value. for (int Idx = Mask[i]; i != e; ++i) if (Mask[i] >= 0 && Mask[i] != Idx) return false; return true; } // Returns the SDNode if it is a constant integer BuildVector // or constant integer. SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { if (isa(N)) return N.getNode(); if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) return N.getNode(); // Treat a GlobalAddress supporting constant offset folding as a // constant integer. if (GlobalAddressSDNode *GA = dyn_cast(N)) if (GA->getOpcode() == ISD::GlobalAddress && TLI->isOffsetFoldingLegal(GA)) return GA; return nullptr; } SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { if (isa(N)) return N.getNode(); if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) return N.getNode(); return nullptr; } void SelectionDAG::createOperands(SDNode *Node, ArrayRef Vals) { assert(!Node->OperandList && "Node already has operands"); assert(SDNode::getMaxNumOperands() >= Vals.size() && "too many operands to fit into SDNode"); SDUse *Ops = OperandRecycler.allocate( ArrayRecycler::Capacity::get(Vals.size()), OperandAllocator); bool IsDivergent = false; for (unsigned I = 0; I != Vals.size(); ++I) { Ops[I].setUser(Node); Ops[I].setInitial(Vals[I]); if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); } Node->NumOperands = Vals.size(); Node->OperandList = Ops; IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); if (!TLI->isSDNodeAlwaysUniform(Node)) Node->SDNodeBits.IsDivergent = IsDivergent; checkForCycles(Node); } SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, SmallVectorImpl &Vals) { size_t Limit = SDNode::getMaxNumOperands(); while (Vals.size() > Limit) { unsigned SliceIdx = Vals.size() - Limit; auto ExtractedTFs = ArrayRef(Vals).slice(SliceIdx, Limit); SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); Vals.erase(Vals.begin() + SliceIdx, Vals.end()); Vals.emplace_back(NewTF); } return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); } #ifndef NDEBUG static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl &Visited, SmallPtrSetImpl &Checked, const llvm::SelectionDAG *DAG) { // If this node has already been checked, don't check it again. if (Checked.count(N)) return; // If a node has already been visited on this depth-first walk, reject it as // a cycle. if (!Visited.insert(N).second) { errs() << "Detected cycle in SelectionDAG\n"; dbgs() << "Offending node:\n"; N->dumprFull(DAG); dbgs() << "\n"; abort(); } for (const SDValue &Op : N->op_values()) checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); Checked.insert(N); Visited.erase(N); } #endif void llvm::checkForCycles(const llvm::SDNode *N, const llvm::SelectionDAG *DAG, bool force) { #ifndef NDEBUG bool check = force; #ifdef EXPENSIVE_CHECKS check = true; #endif // EXPENSIVE_CHECKS if (check) { assert(N && "Checking nonexistent SDNode"); SmallPtrSet visited; SmallPtrSet checked; checkForCyclesHelper(N, visited, checked, DAG); } #endif // !NDEBUG } void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { checkForCycles(DAG->getRoot().getNode(), DAG, force); }