//===-- FunctionLoweringInfo.cpp ------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This implements routines for translating functions from LLVM IR into // Machine IR. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/ADT/APInt.h" #include "llvm/Analysis/LegacyDivergenceAnalysis.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/WasmEHFuncInfo.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; #define DEBUG_TYPE "function-lowering-info" /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it, or used by a /// switch or atomic instruction, which may expand to multiple basic blocks. static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { if (I->use_empty()) return false; if (isa(I)) return true; const BasicBlock *BB = I->getParent(); for (const User *U : I->users()) if (cast(U)->getParent() != BB || isa(U)) return true; return false; } static ISD::NodeType getPreferredExtendForValue(const Instruction *I) { // For the users of the source value being used for compare instruction, if // the number of signed predicate is greater than unsigned predicate, we // prefer to use SIGN_EXTEND. // // With this optimization, we would be able to reduce some redundant sign or // zero extension instruction, and eventually more machine CSE opportunities // can be exposed. ISD::NodeType ExtendKind = ISD::ANY_EXTEND; unsigned NumOfSigned = 0, NumOfUnsigned = 0; for (const User *U : I->users()) { if (const auto *CI = dyn_cast(U)) { NumOfSigned += CI->isSigned(); NumOfUnsigned += CI->isUnsigned(); } } if (NumOfSigned > NumOfUnsigned) ExtendKind = ISD::SIGN_EXTEND; return ExtendKind; } void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, SelectionDAG *DAG) { Fn = &fn; MF = &mf; TLI = MF->getSubtarget().getTargetLowering(); RegInfo = &MF->getRegInfo(); const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); DA = DAG->getDivergenceAnalysis(); // Check whether the function can return without sret-demotion. SmallVector Outs; CallingConv::ID CC = Fn->getCallingConv(); GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, mf.getDataLayout()); CanLowerReturn = TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext()); // If this personality uses funclets, we need to do a bit more work. DenseMap> CatchObjects; EHPersonality Personality = classifyEHPersonality( Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); if (isFuncletEHPersonality(Personality)) { // Calculate state numbers if we haven't already. WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); if (Personality == EHPersonality::MSVC_CXX) calculateWinCXXEHStateNumbers(&fn, EHInfo); else if (isAsynchronousEHPersonality(Personality)) calculateSEHStateNumbers(&fn, EHInfo); else if (Personality == EHPersonality::CoreCLR) calculateClrEHStateNumbers(&fn, EHInfo); // Map all BB references in the WinEH data to MBBs. for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { for (WinEHHandlerType &H : TBME.HandlerArray) { if (const AllocaInst *AI = H.CatchObj.Alloca) CatchObjects.insert({AI, {}}).first->second.push_back( &H.CatchObj.FrameIndex); else H.CatchObj.FrameIndex = INT_MAX; } } } if (Personality == EHPersonality::Wasm_CXX) { WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); calculateWasmEHInfo(&fn, EHInfo); } // Initialize the mapping of values to registers. This is only set up for // instruction values that are used outside of the block that defines // them. const Align StackAlign = TFI->getStackAlign(); for (const BasicBlock &BB : *Fn) { for (const Instruction &I : BB) { if (const AllocaInst *AI = dyn_cast(&I)) { Type *Ty = AI->getAllocatedType(); Align TyPrefAlign = MF->getDataLayout().getPrefTypeAlign(Ty); // The "specified" alignment is the alignment written on the alloca, // or the preferred alignment of the type if none is specified. // // (Unspecified alignment on allocas will be going away soon.) Align SpecifiedAlign = AI->getAlign(); // If the preferred alignment of the type is higher than the specified // alignment of the alloca, promote the alignment, as long as it doesn't // require realigning the stack. // // FIXME: Do we really want to second-guess the IR in isel? Align Alignment = std::max(std::min(TyPrefAlign, StackAlign), SpecifiedAlign); // Static allocas can be folded into the initial stack frame // adjustment. For targets that don't realign the stack, don't // do this if there is an extra alignment requirement. if (AI->isStaticAlloca() && (TFI->isStackRealignable() || (Alignment <= StackAlign))) { const ConstantInt *CUI = cast(AI->getArraySize()); uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinSize(); TySize *= CUI->getZExtValue(); // Get total allocated size. if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. int FrameIndex = INT_MAX; auto Iter = CatchObjects.find(AI); if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { FrameIndex = MF->getFrameInfo().CreateFixedObject( TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true); MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment); } else { FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment, false, AI); } // Scalable vectors may need a special StackID to distinguish // them from other (fixed size) stack objects. if (isa(Ty)) MF->getFrameInfo().setStackID(FrameIndex, TFI->getStackIDForScalableVectors()); StaticAllocaMap[AI] = FrameIndex; // Update the catch handler information. if (Iter != CatchObjects.end()) { for (int *CatchObjPtr : Iter->second) *CatchObjPtr = FrameIndex; } } else { // FIXME: Overaligned static allocas should be grouped into // a single dynamic allocation instead of using a separate // stack allocation for each one. // Inform the Frame Information that we have variable-sized objects. MF->getFrameInfo().CreateVariableSizedObject( Alignment <= StackAlign ? Align(1) : Alignment, AI); } } else if (auto *Call = dyn_cast(&I)) { // Look for inline asm that clobbers the SP register. if (Call->isInlineAsm()) { Register SP = TLI->getStackPointerRegisterToSaveRestore(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); std::vector Ops = TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, *Call); for (TargetLowering::AsmOperandInfo &Op : Ops) { if (Op.Type == InlineAsm::isClobber) { // Clobbers don't have SDValue operands, hence SDValue(). TLI->ComputeConstraintToUse(Op, SDValue(), DAG); std::pair PhysReg = TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, Op.ConstraintVT); if (PhysReg.first == SP) MF->getFrameInfo().setHasOpaqueSPAdjustment(true); } } } // Look for calls to the @llvm.va_start intrinsic. We can omit some // prologue boilerplate for variadic functions that don't examine their // arguments. if (const auto *II = dyn_cast(&I)) { if (II->getIntrinsicID() == Intrinsic::vastart) MF->getFrameInfo().setHasVAStart(true); } // If we have a musttail call in a variadic function, we need to ensure // we forward implicit register parameters. if (const auto *CI = dyn_cast(&I)) { if (CI->isMustTailCall() && Fn->isVarArg()) MF->getFrameInfo().setHasMustTailInVarArgFunc(true); } } // Mark values used outside their block as exported, by allocating // a virtual register for them. if (isUsedOutsideOfDefiningBlock(&I)) if (!isa(I) || !StaticAllocaMap.count(cast(&I))) InitializeRegForValue(&I); // Decide the preferred extend type for a value. PreferredExtendType[&I] = getPreferredExtendForValue(&I); } } // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This // also creates the initial PHI MachineInstrs, though none of the input // operands are populated. for (const BasicBlock &BB : *Fn) { // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks // are really data, and no instructions can live here. if (BB.isEHPad()) { const Instruction *PadInst = BB.getFirstNonPHI(); // If this is a non-landingpad EH pad, mark this function as using // funclets. // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid // setting this in such cases in order to improve frame layout. if (!isa(PadInst)) { MF->setHasEHScopes(true); MF->setHasEHFunclets(true); MF->getFrameInfo().setHasOpaqueSPAdjustment(true); } if (isa(PadInst)) { assert(&*BB.begin() == PadInst && "WinEHPrepare failed to remove PHIs from imaginary BBs"); continue; } if (isa(PadInst)) assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); } MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); MBBMap[&BB] = MBB; MF->push_back(MBB); // Transfer the address-taken flag. This is necessary because there could // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only // the first one should be marked. if (BB.hasAddressTaken()) MBB->setHasAddressTaken(); // Mark landing pad blocks. if (BB.isEHPad()) MBB->setIsEHPad(); // Create Machine PHI nodes for LLVM PHI nodes, lowering them as // appropriate. for (const PHINode &PN : BB.phis()) { if (PN.use_empty()) continue; // Skip empty types if (PN.getType()->isEmptyTy()) continue; DebugLoc DL = PN.getDebugLoc(); unsigned PHIReg = ValueMap[&PN]; assert(PHIReg && "PHI node does not have an assigned virtual register!"); SmallVector ValueVTs; ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs); for (EVT VT : ValueVTs) { unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); for (unsigned i = 0; i != NumRegisters; ++i) BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); PHIReg += NumRegisters; } } } if (isFuncletEHPersonality(Personality)) { WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); // Map all BB references in the WinEH data to MBBs. for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { for (WinEHHandlerType &H : TBME.HandlerArray) { if (H.Handler) H.Handler = MBBMap[H.Handler.get()]; } } for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) if (UME.Cleanup) UME.Cleanup = MBBMap[UME.Cleanup.get()]; for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { const auto *BB = UME.Handler.get(); UME.Handler = MBBMap[BB]; } for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { const auto *BB = CME.Handler.get(); CME.Handler = MBBMap[BB]; } } else if (Personality == EHPersonality::Wasm_CXX) { WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); // Map all BB references in the Wasm EH data to MBBs. DenseMap SrcToUnwindDest; for (auto &KV : EHInfo.SrcToUnwindDest) { const auto *Src = KV.first.get(); const auto *Dest = KV.second.get(); SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest]; } EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest); DenseMap> UnwindDestToSrcs; for (auto &KV : EHInfo.UnwindDestToSrcs) { const auto *Dest = KV.first.get(); UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet(); for (const auto P : KV.second) UnwindDestToSrcs[MBBMap[Dest]].insert( MBBMap[P.get()]); } EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs); } } /// clear - Clear out all the function-specific state. This returns this /// FunctionLoweringInfo to an empty state, ready to be used for a /// different function. void FunctionLoweringInfo::clear() { MBBMap.clear(); ValueMap.clear(); VirtReg2Value.clear(); StaticAllocaMap.clear(); LiveOutRegInfo.clear(); VisitedBBs.clear(); ArgDbgValues.clear(); DescribedArgs.clear(); ByValArgFrameIndexMap.clear(); RegFixups.clear(); RegsWithFixups.clear(); StatepointStackSlots.clear(); StatepointRelocationMaps.clear(); PreferredExtendType.clear(); } /// CreateReg - Allocate a single virtual register for the given type. Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) { return RegInfo->createVirtualRegister( MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent)); } /// CreateRegs - Allocate the appropriate number of virtual registers of /// the correctly promoted or expanded types. Assign these registers /// consecutive vreg numbers and return the first assigned number. /// /// In the case that the given value has struct or array type, this function /// will assign registers for each member or element. /// Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) { const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); SmallVector ValueVTs; ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); Register FirstReg; for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { EVT ValueVT = ValueVTs[Value]; MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); for (unsigned i = 0; i != NumRegs; ++i) { Register R = CreateReg(RegisterVT, isDivergent); if (!FirstReg) FirstReg = R; } } return FirstReg; } Register FunctionLoweringInfo::CreateRegs(const Value *V) { return CreateRegs(V->getType(), DA && DA->isDivergent(V) && !TLI->requiresUniformRegister(*MF, V)); } /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If /// the register's LiveOutInfo is for a smaller bit width, it is extended to /// the larger bit width by zero extension. The bit width must be no smaller /// than the LiveOutInfo's existing bit width. const FunctionLoweringInfo::LiveOutInfo * FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) { if (!LiveOutRegInfo.inBounds(Reg)) return nullptr; LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; if (!LOI->IsValid) return nullptr; if (BitWidth > LOI->Known.getBitWidth()) { LOI->NumSignBits = 1; LOI->Known = LOI->Known.anyext(BitWidth); } return LOI; } /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination /// register based on the LiveOutInfo of its operands. void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { Type *Ty = PN->getType(); if (!Ty->isIntegerTy() || Ty->isVectorTy()) return; SmallVector ValueVTs; ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); assert(ValueVTs.size() == 1 && "PHIs with non-vector integer types should have a single VT."); EVT IntVT = ValueVTs[0]; if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) return; IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); unsigned BitWidth = IntVT.getSizeInBits(); auto It = ValueMap.find(PN); if (It == ValueMap.end()) return; Register DestReg = It->second; if (DestReg == 0) return assert(Register::isVirtualRegister(DestReg) && "Expected a virtual reg"); LiveOutRegInfo.grow(DestReg); LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; Value *V = PN->getIncomingValue(0); if (isa(V) || isa(V)) { DestLOI.NumSignBits = 1; DestLOI.Known = KnownBits(BitWidth); return; } if (ConstantInt *CI = dyn_cast(V)) { APInt Val; if (TLI->signExtendConstant(CI)) Val = CI->getValue().sext(BitWidth); else Val = CI->getValue().zext(BitWidth); DestLOI.NumSignBits = Val.getNumSignBits(); DestLOI.Known = KnownBits::makeConstant(Val); } else { assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" "CopyToReg node was created."); Register SrcReg = ValueMap[V]; if (!Register::isVirtualRegister(SrcReg)) { DestLOI.IsValid = false; return; } const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); if (!SrcLOI) { DestLOI.IsValid = false; return; } DestLOI = *SrcLOI; } assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && DestLOI.Known.One.getBitWidth() == BitWidth && "Masks should have the same bit width as the type."); for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = PN->getIncomingValue(i); if (isa(V) || isa(V)) { DestLOI.NumSignBits = 1; DestLOI.Known = KnownBits(BitWidth); return; } if (ConstantInt *CI = dyn_cast(V)) { APInt Val; if (TLI->signExtendConstant(CI)) Val = CI->getValue().sext(BitWidth); else Val = CI->getValue().zext(BitWidth); DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); DestLOI.Known.Zero &= ~Val; DestLOI.Known.One &= Val; continue; } assert(ValueMap.count(V) && "V should have been placed in ValueMap when " "its CopyToReg node was created."); Register SrcReg = ValueMap[V]; if (!SrcReg.isVirtual()) { DestLOI.IsValid = false; return; } const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); if (!SrcLOI) { DestLOI.IsValid = false; return; } DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); DestLOI.Known = KnownBits::commonBits(DestLOI.Known, SrcLOI->Known); } } /// setArgumentFrameIndex - Record frame index for the byval /// argument. This overrides previous frame index entry for this argument, /// if any. void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, int FI) { ByValArgFrameIndexMap[A] = FI; } /// getArgumentFrameIndex - Get frame index for the byval argument. /// If the argument does not have any assigned frame index then 0 is /// returned. int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { auto I = ByValArgFrameIndexMap.find(A); if (I != ByValArgFrameIndexMap.end()) return I->second; LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); return INT_MAX; } Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg( const Value *CPI, const TargetRegisterClass *RC) { MachineRegisterInfo &MRI = MF->getRegInfo(); auto I = CatchPadExceptionPointers.insert({CPI, 0}); Register &VReg = I.first->second; if (I.second) VReg = MRI.createVirtualRegister(RC); assert(VReg && "null vreg in exception pointer table!"); return VReg; } const Value * FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) { if (VirtReg2Value.empty()) { SmallVector ValueVTs; for (auto &P : ValueMap) { ValueVTs.clear(); ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(), P.first->getType(), ValueVTs); unsigned Reg = P.second; for (EVT VT : ValueVTs) { unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); for (unsigned i = 0, e = NumRegisters; i != e; ++i) VirtReg2Value[Reg++] = P.first; } } } return VirtReg2Value.lookup(Vreg); }