//===--- SelectOptimize.cpp - Convert select to branches if profitable ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass converts selects to conditional jumps when profitable. // //===----------------------------------------------------------------------===// #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/ScaledNumber.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Utils/SizeOpts.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "select-optimize" STATISTIC(NumSelectOptAnalyzed, "Number of select groups considered for conversion to branch"); STATISTIC(NumSelectConvertedExpColdOperand, "Number of select groups converted due to expensive cold operand"); STATISTIC(NumSelectConvertedHighPred, "Number of select groups converted due to high-predictability"); STATISTIC(NumSelectUnPred, "Number of select groups not converted due to unpredictability"); STATISTIC(NumSelectColdBB, "Number of select groups not converted due to cold basic block"); STATISTIC(NumSelectConvertedLoop, "Number of select groups converted due to loop-level analysis"); STATISTIC(NumSelectsConverted, "Number of selects converted"); static cl::opt ColdOperandThreshold( "cold-operand-threshold", cl::desc("Maximum frequency of path for an operand to be considered cold."), cl::init(20), cl::Hidden); static cl::opt ColdOperandMaxCostMultiplier( "cold-operand-max-cost-multiplier", cl::desc("Maximum cost multiplier of TCC_expensive for the dependence " "slice of a cold operand to be considered inexpensive."), cl::init(1), cl::Hidden); static cl::opt GainGradientThreshold("select-opti-loop-gradient-gain-threshold", cl::desc("Gradient gain threshold (%)."), cl::init(25), cl::Hidden); static cl::opt GainCycleThreshold("select-opti-loop-cycle-gain-threshold", cl::desc("Minimum gain per loop (in cycles) threshold."), cl::init(4), cl::Hidden); static cl::opt GainRelativeThreshold( "select-opti-loop-relative-gain-threshold", cl::desc( "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"), cl::init(8), cl::Hidden); static cl::opt MispredictDefaultRate( "mispredict-default-rate", cl::Hidden, cl::init(25), cl::desc("Default mispredict rate (initialized to 25%).")); static cl::opt DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden, cl::init(false), cl::desc("Disable loop-level heuristics.")); namespace { class SelectOptimize : public FunctionPass { const TargetMachine *TM = nullptr; const TargetSubtargetInfo *TSI; const TargetLowering *TLI = nullptr; const TargetTransformInfo *TTI = nullptr; const LoopInfo *LI; DominatorTree *DT; std::unique_ptr BFI; std::unique_ptr BPI; ProfileSummaryInfo *PSI; OptimizationRemarkEmitter *ORE; TargetSchedModel TSchedModel; public: static char ID; SelectOptimize() : FunctionPass(ID) { initializeSelectOptimizePass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } private: // Select groups consist of consecutive select instructions with the same // condition. using SelectGroup = SmallVector; using SelectGroups = SmallVector; using Scaled64 = ScaledNumber; struct CostInfo { /// Predicated cost (with selects as conditional moves). Scaled64 PredCost; /// Non-predicated cost (with selects converted to branches). Scaled64 NonPredCost; }; // Converts select instructions of a function to conditional jumps when deemed // profitable. Returns true if at least one select was converted. bool optimizeSelects(Function &F); // Heuristics for determining which select instructions can be profitably // conveted to branches. Separate heuristics for selects in inner-most loops // and the rest of code regions (base heuristics for non-inner-most loop // regions). void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups); void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups); // Converts to branches the select groups that were deemed // profitable-to-convert. void convertProfitableSIGroups(SelectGroups &ProfSIGroups); // Splits selects of a given basic block into select groups. void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups); // Determines for which select groups it is profitable converting to branches // (base and inner-most-loop heuristics). void findProfitableSIGroupsBase(SelectGroups &SIGroups, SelectGroups &ProfSIGroups); void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups); // Determines if a select group should be converted to a branch (base // heuristics). bool isConvertToBranchProfitableBase(const SmallVector &ASI); // Returns true if there are expensive instructions in the cold value // operand's (if any) dependence slice of any of the selects of the given // group. bool hasExpensiveColdOperand(const SmallVector &ASI); // For a given source instruction, collect its backwards dependence slice // consisting of instructions exclusively computed for producing the operands // of the source instruction. void getExclBackwardsSlice(Instruction *I, std::stack &Slice, bool ForSinking = false); // Returns true if the condition of the select is highly predictable. bool isSelectHighlyPredictable(const SelectInst *SI); // Loop-level checks to determine if a non-predicated version (with branches) // of the given loop is more profitable than its predicated version. bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]); // Computes instruction and loop-critical-path costs for both the predicated // and non-predicated version of the given loop. bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups, DenseMap &InstCostMap, CostInfo *LoopCost); // Returns a set of all the select instructions in the given select groups. SmallPtrSet getSIset(const SelectGroups &SIGroups); // Returns the latency cost of a given instruction. Optional computeInstCost(const Instruction *I); // Returns the misprediction cost of a given select when converted to branch. Scaled64 getMispredictionCost(const SelectInst *SI, const Scaled64 CondCost); // Returns the cost of a branch when the prediction is correct. Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, const SelectInst *SI); // Returns true if the target architecture supports lowering a given select. bool isSelectKindSupported(SelectInst *SI); }; } // namespace char SelectOptimize::ID = 0; INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false, false) FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); } bool SelectOptimize::runOnFunction(Function &F) { TM = &getAnalysis().getTM(); TSI = TM->getSubtargetImpl(F); TLI = TSI->getTargetLowering(); // If none of the select types is supported then skip this pass. // This is an optimization pass. Legality issues will be handled by // instruction selection. if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) && !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) && !TLI->isSelectSupported(TargetLowering::VectorMaskSelect)) return false; TTI = &getAnalysis().getTTI(F); DT = &getAnalysis().getDomTree(); LI = &getAnalysis().getLoopInfo(); BPI.reset(new BranchProbabilityInfo(F, *LI)); BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); PSI = &getAnalysis().getPSI(); ORE = &getAnalysis().getORE(); TSchedModel.init(TSI); // When optimizing for size, selects are preferable over branches. if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI.get())) return false; return optimizeSelects(F); } bool SelectOptimize::optimizeSelects(Function &F) { // Determine for which select groups it is profitable converting to branches. SelectGroups ProfSIGroups; // Base heuristics apply only to non-loops and outer loops. optimizeSelectsBase(F, ProfSIGroups); // Separate heuristics for inner-most loops. optimizeSelectsInnerLoops(F, ProfSIGroups); // Convert to branches the select groups that were deemed // profitable-to-convert. convertProfitableSIGroups(ProfSIGroups); // Code modified if at least one select group was converted. return !ProfSIGroups.empty(); } void SelectOptimize::optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups) { // Collect all the select groups. SelectGroups SIGroups; for (BasicBlock &BB : F) { // Base heuristics apply only to non-loops and outer loops. Loop *L = LI->getLoopFor(&BB); if (L && L->isInnermost()) continue; collectSelectGroups(BB, SIGroups); } // Determine for which select groups it is profitable converting to branches. findProfitableSIGroupsBase(SIGroups, ProfSIGroups); } void SelectOptimize::optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups) { SmallVector Loops(LI->begin(), LI->end()); // Need to check size on each iteration as we accumulate child loops. for (unsigned long i = 0; i < Loops.size(); ++i) for (Loop *ChildL : Loops[i]->getSubLoops()) Loops.push_back(ChildL); for (Loop *L : Loops) { if (!L->isInnermost()) continue; SelectGroups SIGroups; for (BasicBlock *BB : L->getBlocks()) collectSelectGroups(*BB, SIGroups); findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups); } } /// If \p isTrue is true, return the true value of \p SI, otherwise return /// false value of \p SI. If the true/false value of \p SI is defined by any /// select instructions in \p Selects, look through the defining select /// instruction until the true/false value is not defined in \p Selects. static Value * getTrueOrFalseValue(SelectInst *SI, bool isTrue, const SmallPtrSet &Selects) { Value *V = nullptr; for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); DefSI = dyn_cast(V)) { assert(DefSI->getCondition() == SI->getCondition() && "The condition of DefSI does not match with SI"); V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); } assert(V && "Failed to get select true/false value"); return V; } void SelectOptimize::convertProfitableSIGroups(SelectGroups &ProfSIGroups) { for (SelectGroup &ASI : ProfSIGroups) { // The code transformation here is a modified version of the sinking // transformation in CodeGenPrepare::optimizeSelectInst with a more // aggressive strategy of which instructions to sink. // // TODO: eliminate the redundancy of logic transforming selects to branches // by removing CodeGenPrepare::optimizeSelectInst and optimizing here // selects for all cases (with and without profile information). // Transform a sequence like this: // start: // %cmp = cmp uge i32 %a, %b // %sel = select i1 %cmp, i32 %c, i32 %d // // Into: // start: // %cmp = cmp uge i32 %a, %b // %cmp.frozen = freeze %cmp // br i1 %cmp.frozen, label %select.true, label %select.false // select.true: // br label %select.end // select.false: // br label %select.end // select.end: // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] // // %cmp should be frozen, otherwise it may introduce undefined behavior. // In addition, we may sink instructions that produce %c or %d into the // destination(s) of the new branch. // If the true or false blocks do not contain a sunken instruction, that // block and its branch may be optimized away. In that case, one side of the // first branch will point directly to select.end, and the corresponding PHI // predecessor block will be the start block. // Find all the instructions that can be soundly sunk to the true/false // blocks. These are instructions that are computed solely for producing the // operands of the select instructions in the group and can be sunk without // breaking the semantics of the LLVM IR (e.g., cannot sink instructions // with side effects). SmallVector, 2> TrueSlices, FalseSlices; typedef std::stack::size_type StackSizeType; StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0; for (SelectInst *SI : ASI) { // For each select, compute the sinkable dependence chains of the true and // false operands. if (auto *TI = dyn_cast(SI->getTrueValue())) { std::stack TrueSlice; getExclBackwardsSlice(TI, TrueSlice, true); maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size()); TrueSlices.push_back(TrueSlice); } if (auto *FI = dyn_cast(SI->getFalseValue())) { std::stack FalseSlice; getExclBackwardsSlice(FI, FalseSlice, true); maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size()); FalseSlices.push_back(FalseSlice); } } // In the case of multiple select instructions in the same group, the order // of non-dependent instructions (instructions of different dependence // slices) in the true/false blocks appears to affect performance. // Interleaving the slices seems to experimentally be the optimal approach. // This interleaving scheduling allows for more ILP (with a natural downside // of increasing a bit register pressure) compared to a simple ordering of // one whole chain after another. One would expect that this ordering would // not matter since the scheduling in the backend of the compiler would // take care of it, but apparently the scheduler fails to deliver optimal // ILP with a naive ordering here. SmallVector TrueSlicesInterleaved, FalseSlicesInterleaved; for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) { for (auto &S : TrueSlices) { if (!S.empty()) { TrueSlicesInterleaved.push_back(S.top()); S.pop(); } } } for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) { for (auto &S : FalseSlices) { if (!S.empty()) { FalseSlicesInterleaved.push_back(S.top()); S.pop(); } } } // We split the block containing the select(s) into two blocks. SelectInst *SI = ASI.front(); SelectInst *LastSI = ASI.back(); BasicBlock *StartBlock = SI->getParent(); BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); // Delete the unconditional branch that was just created by the split. StartBlock->getTerminator()->eraseFromParent(); // Move any debug/pseudo instructions that were in-between the select // group to the newly-created end block. SmallVector DebugPseudoINS; auto DIt = SI->getIterator(); while (&*DIt != LastSI) { if (DIt->isDebugOrPseudoInst()) DebugPseudoINS.push_back(&*DIt); DIt++; } for (auto *DI : DebugPseudoINS) { DI->moveBefore(&*EndBlock->getFirstInsertionPt()); } // These are the new basic blocks for the conditional branch. // At least one will become an actual new basic block. BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr; BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr; if (!TrueSlicesInterleaved.empty()) { TrueBlock = BasicBlock::Create(LastSI->getContext(), "select.true.sink", EndBlock->getParent(), EndBlock); TrueBranch = BranchInst::Create(EndBlock, TrueBlock); TrueBranch->setDebugLoc(LastSI->getDebugLoc()); for (Instruction *TrueInst : TrueSlicesInterleaved) TrueInst->moveBefore(TrueBranch); } if (!FalseSlicesInterleaved.empty()) { FalseBlock = BasicBlock::Create(LastSI->getContext(), "select.false.sink", EndBlock->getParent(), EndBlock); FalseBranch = BranchInst::Create(EndBlock, FalseBlock); FalseBranch->setDebugLoc(LastSI->getDebugLoc()); for (Instruction *FalseInst : FalseSlicesInterleaved) FalseInst->moveBefore(FalseBranch); } // If there was nothing to sink, then arbitrarily choose the 'false' side // for a new input value to the PHI. if (TrueBlock == FalseBlock) { assert(TrueBlock == nullptr && "Unexpected basic block transform while optimizing select"); FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", EndBlock->getParent(), EndBlock); auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); FalseBranch->setDebugLoc(SI->getDebugLoc()); } // Insert the real conditional branch based on the original condition. // If we did not create a new block for one of the 'true' or 'false' paths // of the condition, it means that side of the branch goes to the end block // directly and the path originates from the start block from the point of // view of the new PHI. BasicBlock *TT, *FT; if (TrueBlock == nullptr) { TT = EndBlock; FT = FalseBlock; TrueBlock = StartBlock; } else if (FalseBlock == nullptr) { TT = TrueBlock; FT = EndBlock; FalseBlock = StartBlock; } else { TT = TrueBlock; FT = FalseBlock; } IRBuilder<> IB(SI); auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); IB.CreateCondBr(CondFr, TT, FT, SI); SmallPtrSet INS; INS.insert(ASI.begin(), ASI.end()); // Use reverse iterator because later select may use the value of the // earlier select, and we need to propagate value through earlier select // to get the PHI operand. for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { SelectInst *SI = *It; // The select itself is replaced with a PHI Node. PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); PN->takeName(SI); PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); PN->setDebugLoc(SI->getDebugLoc()); SI->replaceAllUsesWith(PN); SI->eraseFromParent(); INS.erase(SI); ++NumSelectsConverted; } } } void SelectOptimize::collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups) { BasicBlock::iterator BBIt = BB.begin(); while (BBIt != BB.end()) { Instruction *I = &*BBIt++; if (SelectInst *SI = dyn_cast(I)) { SelectGroup SIGroup; SIGroup.push_back(SI); while (BBIt != BB.end()) { Instruction *NI = &*BBIt; SelectInst *NSI = dyn_cast(NI); if (NSI && SI->getCondition() == NSI->getCondition()) { SIGroup.push_back(NSI); } else if (!NI->isDebugOrPseudoInst()) { // Debug/pseudo instructions should be skipped and not prevent the // formation of a select group. break; } ++BBIt; } // If the select type is not supported, no point optimizing it. // Instruction selection will take care of it. if (!isSelectKindSupported(SI)) continue; SIGroups.push_back(SIGroup); } } } void SelectOptimize::findProfitableSIGroupsBase(SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { for (SelectGroup &ASI : SIGroups) { ++NumSelectOptAnalyzed; if (isConvertToBranchProfitableBase(ASI)) ProfSIGroups.push_back(ASI); } } void SelectOptimize::findProfitableSIGroupsInnerLoops( const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { NumSelectOptAnalyzed += SIGroups.size(); // For each select group in an inner-most loop, // a branch is more preferable than a select/conditional-move if: // i) conversion to branches for all the select groups of the loop satisfies // loop-level heuristics including reducing the loop's critical path by // some threshold (see SelectOptimize::checkLoopHeuristics); and // ii) the total cost of the select group is cheaper with a branch compared // to its predicated version. The cost is in terms of latency and the cost // of a select group is the cost of its most expensive select instruction // (assuming infinite resources and thus fully leveraging available ILP). DenseMap InstCostMap; CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()}, {Scaled64::getZero(), Scaled64::getZero()}}; if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) || !checkLoopHeuristics(L, LoopCost)) { return; } for (SelectGroup &ASI : SIGroups) { // Assuming infinite resources, the cost of a group of instructions is the // cost of the most expensive instruction of the group. Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero(); for (SelectInst *SI : ASI) { SelectCost = std::max(SelectCost, InstCostMap[SI].PredCost); BranchCost = std::max(BranchCost, InstCostMap[SI].NonPredCost); } if (BranchCost < SelectCost) { OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front()); OR << "Profitable to convert to branch (loop analysis). BranchCost=" << BranchCost.toString() << ", SelectCost=" << SelectCost.toString() << ". "; ORE->emit(OR); ++NumSelectConvertedLoop; ProfSIGroups.push_back(ASI); } else { OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front()); ORmiss << "Select is more profitable (loop analysis). BranchCost=" << BranchCost.toString() << ", SelectCost=" << SelectCost.toString() << ". "; ORE->emit(ORmiss); } } } bool SelectOptimize::isConvertToBranchProfitableBase( const SmallVector &ASI) { SelectInst *SI = ASI.front(); OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI); OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI); // Skip cold basic blocks. Better to optimize for size for cold blocks. if (PSI->isColdBlock(SI->getParent(), BFI.get())) { ++NumSelectColdBB; ORmiss << "Not converted to branch because of cold basic block. "; ORE->emit(ORmiss); return false; } // If unpredictable, branch form is less profitable. if (SI->getMetadata(LLVMContext::MD_unpredictable)) { ++NumSelectUnPred; ORmiss << "Not converted to branch because of unpredictable branch. "; ORE->emit(ORmiss); return false; } // If highly predictable, branch form is more profitable, unless a // predictable select is inexpensive in the target architecture. if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) { ++NumSelectConvertedHighPred; OR << "Converted to branch because of highly predictable branch. "; ORE->emit(OR); return true; } // Look for expensive instructions in the cold operand's (if any) dependence // slice of any of the selects in the group. if (hasExpensiveColdOperand(ASI)) { ++NumSelectConvertedExpColdOperand; OR << "Converted to branch because of expensive cold operand."; ORE->emit(OR); return true; } ORmiss << "Not profitable to convert to branch (base heuristic)."; ORE->emit(ORmiss); return false; } static InstructionCost divideNearest(InstructionCost Numerator, uint64_t Denominator) { return (Numerator + (Denominator / 2)) / Denominator; } bool SelectOptimize::hasExpensiveColdOperand( const SmallVector &ASI) { bool ColdOperand = false; uint64_t TrueWeight, FalseWeight, TotalWeight; if (ASI.front()->extractProfMetadata(TrueWeight, FalseWeight)) { uint64_t MinWeight = std::min(TrueWeight, FalseWeight); TotalWeight = TrueWeight + FalseWeight; // Is there a path with frequency 100 * MinWeight; } else if (PSI->hasProfileSummary()) { OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front()); ORmiss << "Profile data available but missing branch-weights metadata for " "select instruction. "; ORE->emit(ORmiss); } if (!ColdOperand) return false; // Check if the cold path's dependence slice is expensive for any of the // selects of the group. for (SelectInst *SI : ASI) { Instruction *ColdI = nullptr; uint64_t HotWeight; if (TrueWeight < FalseWeight) { ColdI = dyn_cast(SI->getTrueValue()); HotWeight = FalseWeight; } else { ColdI = dyn_cast(SI->getFalseValue()); HotWeight = TrueWeight; } if (ColdI) { std::stack ColdSlice; getExclBackwardsSlice(ColdI, ColdSlice); InstructionCost SliceCost = 0; while (!ColdSlice.empty()) { SliceCost += TTI->getInstructionCost(ColdSlice.top(), TargetTransformInfo::TCK_Latency); ColdSlice.pop(); } // The colder the cold value operand of the select is the more expensive // the cmov becomes for computing the cold value operand every time. Thus, // the colder the cold operand is the more its cost counts. // Get nearest integer cost adjusted for coldness. InstructionCost AdjSliceCost = divideNearest(SliceCost * HotWeight, TotalWeight); if (AdjSliceCost >= ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive) return true; } } return false; } // For a given source instruction, collect its backwards dependence slice // consisting of instructions exclusively computed for the purpose of producing // the operands of the source instruction. As an approximation // (sufficiently-accurate in practice), we populate this set with the // instructions of the backwards dependence slice that only have one-use and // form an one-use chain that leads to the source instruction. void SelectOptimize::getExclBackwardsSlice(Instruction *I, std::stack &Slice, bool ForSinking) { SmallPtrSet Visited; std::queue Worklist; Worklist.push(I); while (!Worklist.empty()) { Instruction *II = Worklist.front(); Worklist.pop(); // Avoid cycles. if (!Visited.insert(II).second) continue; if (!II->hasOneUse()) continue; // Cannot soundly sink instructions with side-effects. // Terminator or phi instructions cannot be sunk. // Avoid sinking other select instructions (should be handled separetely). if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() || isa(II) || isa(II))) continue; // Avoid considering instructions with less frequency than the source // instruction (i.e., avoid colder code regions of the dependence slice). if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent())) continue; // Eligible one-use instruction added to the dependence slice. Slice.push(II); // Explore all the operands of the current instruction to expand the slice. for (unsigned k = 0; k < II->getNumOperands(); ++k) if (auto *OpI = dyn_cast(II->getOperand(k))) Worklist.push(OpI); } } bool SelectOptimize::isSelectHighlyPredictable(const SelectInst *SI) { uint64_t TrueWeight, FalseWeight; if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { uint64_t Max = std::max(TrueWeight, FalseWeight); uint64_t Sum = TrueWeight + FalseWeight; if (Sum != 0) { auto Probability = BranchProbability::getBranchProbability(Max, Sum); if (Probability > TTI->getPredictableBranchThreshold()) return true; } } return false; } bool SelectOptimize::checkLoopHeuristics(const Loop *L, const CostInfo LoopCost[2]) { // Loop-level checks to determine if a non-predicated version (with branches) // of the loop is more profitable than its predicated version. if (DisableLoopLevelHeuristics) return true; OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", L->getHeader()->getFirstNonPHI()); if (LoopCost[0].NonPredCost > LoopCost[0].PredCost || LoopCost[1].NonPredCost >= LoopCost[1].PredCost) { ORmissL << "No select conversion in the loop due to no reduction of loop's " "critical path. "; ORE->emit(ORmissL); return false; } Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost, LoopCost[1].PredCost - LoopCost[1].NonPredCost}; // Profitably converting to branches need to reduce the loop's critical path // by at least some threshold (absolute gain of GainCycleThreshold cycles and // relative gain of 12.5%). if (Gain[1] < Scaled64::get(GainCycleThreshold) || Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) { Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost; ORmissL << "No select conversion in the loop due to small reduction of " "loop's critical path. Gain=" << Gain[1].toString() << ", RelativeGain=" << RelativeGain.toString() << "%. "; ORE->emit(ORmissL); return false; } // If the loop's critical path involves loop-carried dependences, the gradient // of the gain needs to be at least GainGradientThreshold% (defaults to 25%). // This check ensures that the latency reduction for the loop's critical path // keeps decreasing with sufficient rate beyond the two analyzed loop // iterations. if (Gain[1] > Gain[0]) { Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) / (LoopCost[1].PredCost - LoopCost[0].PredCost); if (GradientGain < Scaled64::get(GainGradientThreshold)) { ORmissL << "No select conversion in the loop due to small gradient gain. " "GradientGain=" << GradientGain.toString() << "%. "; ORE->emit(ORmissL); return false; } } // If the gain decreases it is not profitable to convert. else if (Gain[1] < Gain[0]) { ORmissL << "No select conversion in the loop due to negative gradient gain. "; ORE->emit(ORmissL); return false; } // Non-predicated version of the loop is more profitable than its // predicated version. return true; } // Computes instruction and loop-critical-path costs for both the predicated // and non-predicated version of the given loop. // Returns false if unable to compute these costs due to invalid cost of loop // instruction(s). bool SelectOptimize::computeLoopCosts( const Loop *L, const SelectGroups &SIGroups, DenseMap &InstCostMap, CostInfo *LoopCost) { const auto &SIset = getSIset(SIGroups); // Compute instruction and loop-critical-path costs across two iterations for // both predicated and non-predicated version. const unsigned Iterations = 2; for (unsigned Iter = 0; Iter < Iterations; ++Iter) { // Cost of the loop's critical path. CostInfo &MaxCost = LoopCost[Iter]; for (BasicBlock *BB : L->getBlocks()) { for (const Instruction &I : *BB) { if (I.isDebugOrPseudoInst()) continue; // Compute the predicated and non-predicated cost of the instruction. Scaled64 IPredCost = Scaled64::getZero(), INonPredCost = Scaled64::getZero(); // Assume infinite resources that allow to fully exploit the available // instruction-level parallelism. // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost) for (const Use &U : I.operands()) { auto UI = dyn_cast(U.get()); if (!UI) continue; if (InstCostMap.count(UI)) { IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost); INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost); } } auto ILatency = computeInstCost(&I); if (!ILatency) { OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I); ORmissL << "Invalid instruction cost preventing analysis and " "optimization of the inner-most loop containing this " "instruction. "; ORE->emit(ORmissL); return false; } IPredCost += Scaled64::get(ILatency.value()); INonPredCost += Scaled64::get(ILatency.value()); // For a select that can be converted to branch, // compute its cost as a branch (non-predicated cost). // // BranchCost = PredictedPathCost + MispredictCost // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate if (SIset.contains(&I)) { auto SI = dyn_cast(&I); Scaled64 TrueOpCost = Scaled64::getZero(), FalseOpCost = Scaled64::getZero(); if (auto *TI = dyn_cast(SI->getTrueValue())) if (InstCostMap.count(TI)) TrueOpCost = InstCostMap[TI].NonPredCost; if (auto *FI = dyn_cast(SI->getFalseValue())) if (InstCostMap.count(FI)) FalseOpCost = InstCostMap[FI].NonPredCost; Scaled64 PredictedPathCost = getPredictedPathCost(TrueOpCost, FalseOpCost, SI); Scaled64 CondCost = Scaled64::getZero(); if (auto *CI = dyn_cast(SI->getCondition())) if (InstCostMap.count(CI)) CondCost = InstCostMap[CI].NonPredCost; Scaled64 MispredictCost = getMispredictionCost(SI, CondCost); INonPredCost = PredictedPathCost + MispredictCost; } InstCostMap[&I] = {IPredCost, INonPredCost}; MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost); MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost); } } } return true; } SmallPtrSet SelectOptimize::getSIset(const SelectGroups &SIGroups) { SmallPtrSet SIset; for (const SelectGroup &ASI : SIGroups) for (const SelectInst *SI : ASI) SIset.insert(SI); return SIset; } Optional SelectOptimize::computeInstCost(const Instruction *I) { InstructionCost ICost = TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency); if (auto OC = ICost.getValue()) return Optional(*OC); return Optional(None); } ScaledNumber SelectOptimize::getMispredictionCost(const SelectInst *SI, const Scaled64 CondCost) { uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; // Account for the default misprediction rate when using a branch // (conservatively set to 25% by default). uint64_t MispredictRate = MispredictDefaultRate; // If the select condition is obviously predictable, then the misprediction // rate is zero. if (isSelectHighlyPredictable(SI)) MispredictRate = 0; // CondCost is included to account for cases where the computation of the // condition is part of a long dependence chain (potentially loop-carried) // that would delay detection of a misprediction and increase its cost. Scaled64 MispredictCost = std::max(Scaled64::get(MispredictPenalty), CondCost) * Scaled64::get(MispredictRate); MispredictCost /= Scaled64::get(100); return MispredictCost; } // Returns the cost of a branch when the prediction is correct. // TrueCost * TrueProbability + FalseCost * FalseProbability. ScaledNumber SelectOptimize::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, const SelectInst *SI) { Scaled64 PredPathCost; uint64_t TrueWeight, FalseWeight; if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { uint64_t SumWeight = TrueWeight + FalseWeight; if (SumWeight != 0) { PredPathCost = TrueCost * Scaled64::get(TrueWeight) + FalseCost * Scaled64::get(FalseWeight); PredPathCost /= Scaled64::get(SumWeight); return PredPathCost; } } // Without branch weight metadata, we assume 75% for the one path and 25% for // the other, and pick the result with the biggest cost. PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost, FalseCost * Scaled64::get(3) + TrueCost); PredPathCost /= Scaled64::get(4); return PredPathCost; } bool SelectOptimize::isSelectKindSupported(SelectInst *SI) { bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); if (VectorCond) return false; TargetLowering::SelectSupportKind SelectKind; if (SI->getType()->isVectorTy()) SelectKind = TargetLowering::ScalarCondVectorVal; else SelectKind = TargetLowering::ScalarValSelect; return TLI->isSelectSupported(SelectKind); }