//==- RegAllocGreedy.h ------- greedy register allocator ----------*-C++-*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This file defines the RAGreedy function pass for register allocation in // optimized builds. //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_REGALLOCGREEDY_H_ #define LLVM_CODEGEN_REGALLOCGREEDY_H_ #include "InterferenceCache.h" #include "RegAllocBase.h" #include "RegAllocEvictionAdvisor.h" #include "RegAllocPriorityAdvisor.h" #include "SpillPlacement.h" #include "SplitKit.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveRangeEdit.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/Spiller.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include #include #include #include #include namespace llvm { class AllocationOrder; class AnalysisUsage; class EdgeBundles; class LiveDebugVariables; class LiveIntervals; class LiveRegMatrix; class MachineBasicBlock; class MachineBlockFrequencyInfo; class MachineDominatorTree; class MachineLoop; class MachineLoopInfo; class MachineOptimizationRemarkEmitter; class MachineOptimizationRemarkMissed; class SlotIndexes; class TargetInstrInfo; class VirtRegMap; class LLVM_LIBRARY_VISIBILITY RAGreedy : public MachineFunctionPass, public RegAllocBase, private LiveRangeEdit::Delegate { // Interface to eviction advisers public: /// Track allocation stage and eviction loop prevention during allocation. class ExtraRegInfo final { // RegInfo - Keep additional information about each live range. struct RegInfo { LiveRangeStage Stage = RS_New; // Cascade - Eviction loop prevention. See // canEvictInterferenceBasedOnCost(). unsigned Cascade = 0; RegInfo() = default; }; IndexedMap Info; unsigned NextCascade = 1; public: ExtraRegInfo() {} ExtraRegInfo(const ExtraRegInfo &) = delete; LiveRangeStage getStage(Register Reg) const { return Info[Reg].Stage; } LiveRangeStage getStage(const LiveInterval &VirtReg) const { return getStage(VirtReg.reg()); } void setStage(Register Reg, LiveRangeStage Stage) { Info.grow(Reg.id()); Info[Reg].Stage = Stage; } void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { setStage(VirtReg.reg(), Stage); } /// Return the current stage of the register, if present, otherwise /// initialize it and return that. LiveRangeStage getOrInitStage(Register Reg) { Info.grow(Reg.id()); return getStage(Reg); } unsigned getCascade(Register Reg) const { return Info[Reg].Cascade; } void setCascade(Register Reg, unsigned Cascade) { Info.grow(Reg.id()); Info[Reg].Cascade = Cascade; } unsigned getOrAssignNewCascade(Register Reg) { unsigned Cascade = getCascade(Reg); if (!Cascade) { Cascade = NextCascade++; setCascade(Reg, Cascade); } return Cascade; } unsigned getCascadeOrCurrentNext(Register Reg) const { unsigned Cascade = getCascade(Reg); if (!Cascade) Cascade = NextCascade; return Cascade; } template void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { for (; Begin != End; ++Begin) { Register Reg = *Begin; Info.grow(Reg.id()); if (Info[Reg].Stage == RS_New) Info[Reg].Stage = NewStage; } } void LRE_DidCloneVirtReg(Register New, Register Old); }; LiveRegMatrix *getInterferenceMatrix() const { return Matrix; } LiveIntervals *getLiveIntervals() const { return LIS; } VirtRegMap *getVirtRegMap() const { return VRM; } const RegisterClassInfo &getRegClassInfo() const { return RegClassInfo; } const ExtraRegInfo &getExtraInfo() const { return *ExtraInfo; } size_t getQueueSize() const { return Queue.size(); } // end (interface to eviction advisers) // Interface to priority advisers bool getRegClassPriorityTrumpsGlobalness() const { return RegClassPriorityTrumpsGlobalness; } bool getReverseLocalAssignment() const { return ReverseLocalAssignment; } // end (interface to priority advisers) private: // Convenient shortcuts. using PQueue = std::priority_queue>; using SmallLISet = SmallSetVector; // We need to track all tentative recolorings so we can roll back any // successful and unsuccessful recoloring attempts. using RecoloringStack = SmallVector, 8>; // context MachineFunction *MF = nullptr; // Shortcuts to some useful interface. const TargetInstrInfo *TII = nullptr; // analyses SlotIndexes *Indexes = nullptr; MachineBlockFrequencyInfo *MBFI = nullptr; MachineDominatorTree *DomTree = nullptr; MachineLoopInfo *Loops = nullptr; MachineOptimizationRemarkEmitter *ORE = nullptr; EdgeBundles *Bundles = nullptr; SpillPlacement *SpillPlacer = nullptr; LiveDebugVariables *DebugVars = nullptr; // state std::unique_ptr SpillerInstance; PQueue Queue; std::unique_ptr VRAI; std::optional ExtraInfo; std::unique_ptr EvictAdvisor; std::unique_ptr PriorityAdvisor; // Enum CutOffStage to keep a track whether the register allocation failed // because of the cutoffs encountered in last chance recoloring. // Note: This is used as bitmask. New value should be next power of 2. enum CutOffStage { // No cutoffs encountered CO_None = 0, // lcr-max-depth cutoff encountered CO_Depth = 1, // lcr-max-interf cutoff encountered CO_Interf = 2 }; uint8_t CutOffInfo = CutOffStage::CO_None; #ifndef NDEBUG static const char *const StageName[]; #endif // splitting state. std::unique_ptr SA; std::unique_ptr SE; /// Cached per-block interference maps InterferenceCache IntfCache; /// All basic blocks where the current register has uses. SmallVector SplitConstraints; /// Global live range splitting candidate info. struct GlobalSplitCandidate { // Register intended for assignment, or 0. MCRegister PhysReg; // SplitKit interval index for this candidate. unsigned IntvIdx; // Interference for PhysReg. InterferenceCache::Cursor Intf; // Bundles where this candidate should be live. BitVector LiveBundles; SmallVector ActiveBlocks; void reset(InterferenceCache &Cache, MCRegister Reg) { PhysReg = Reg; IntvIdx = 0; Intf.setPhysReg(Cache, Reg); LiveBundles.clear(); ActiveBlocks.clear(); } // Set B[I] = C for every live bundle where B[I] was NoCand. unsigned getBundles(SmallVectorImpl &B, unsigned C) { unsigned Count = 0; for (unsigned I : LiveBundles.set_bits()) if (B[I] == NoCand) { B[I] = C; Count++; } return Count; } }; /// Candidate info for each PhysReg in AllocationOrder. /// This vector never shrinks, but grows to the size of the largest register /// class. SmallVector GlobalCand; enum : unsigned { NoCand = ~0u }; /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to /// NoCand which indicates the stack interval. SmallVector BundleCand; /// Callee-save register cost, calculated once per machine function. BlockFrequency CSRCost; /// Set of broken hints that may be reconciled later because of eviction. SmallSetVector SetOfBrokenHints; /// The register cost values. This list will be recreated for each Machine /// Function ArrayRef RegCosts; /// Flags for the live range priority calculation, determined once per /// machine function. bool RegClassPriorityTrumpsGlobalness = false; bool ReverseLocalAssignment = false; public: RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses); /// Return the pass name. StringRef getPassName() const override { return "Greedy Register Allocator"; } /// RAGreedy analysis usage. void getAnalysisUsage(AnalysisUsage &AU) const override; void releaseMemory() override; Spiller &spiller() override { return *SpillerInstance; } void enqueueImpl(const LiveInterval *LI) override; const LiveInterval *dequeue() override; MCRegister selectOrSplit(const LiveInterval &, SmallVectorImpl &) override; void aboutToRemoveInterval(const LiveInterval &) override; /// Perform register allocation. bool runOnMachineFunction(MachineFunction &mf) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoPHIs); } MachineFunctionProperties getClearedProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::IsSSA); } static char ID; private: MCRegister selectOrSplitImpl(const LiveInterval &, SmallVectorImpl &, SmallVirtRegSet &, RecoloringStack &, unsigned = 0); bool LRE_CanEraseVirtReg(Register) override; void LRE_WillShrinkVirtReg(Register) override; void LRE_DidCloneVirtReg(Register, Register) override; void enqueue(PQueue &CurQueue, const LiveInterval *LI); const LiveInterval *dequeue(PQueue &CurQueue); bool hasVirtRegAlloc(); BlockFrequency calcSpillCost(); bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency &); bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef); bool growRegion(GlobalSplitCandidate &Cand); BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, const AllocationOrder &Order); bool calcCompactRegion(GlobalSplitCandidate &); void splitAroundRegion(LiveRangeEdit &, ArrayRef); void calcGapWeights(MCRegister, SmallVectorImpl &); void evictInterference(const LiveInterval &, MCRegister, SmallVectorImpl &); bool mayRecolorAllInterferences(MCRegister PhysReg, const LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters); MCRegister tryAssign(const LiveInterval &, AllocationOrder &, SmallVectorImpl &, const SmallVirtRegSet &); MCRegister tryEvict(const LiveInterval &, AllocationOrder &, SmallVectorImpl &, uint8_t, const SmallVirtRegSet &); MCRegister tryRegionSplit(const LiveInterval &, AllocationOrder &, SmallVectorImpl &); /// Calculate cost of region splitting around the specified register. unsigned calculateRegionSplitCostAroundReg(MCPhysReg PhysReg, AllocationOrder &Order, BlockFrequency &BestCost, unsigned &NumCands, unsigned &BestCand); /// Calculate cost of region splitting. unsigned calculateRegionSplitCost(const LiveInterval &VirtReg, AllocationOrder &Order, BlockFrequency &BestCost, unsigned &NumCands, bool IgnoreCSR); /// Perform region splitting. unsigned doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand, bool HasCompact, SmallVectorImpl &NewVRegs); /// Try to split VirtReg around physical Hint register. bool trySplitAroundHintReg(MCPhysReg Hint, const LiveInterval &VirtReg, SmallVectorImpl &NewVRegs, AllocationOrder &Order); /// Check other options before using a callee-saved register for the first /// time. MCRegister tryAssignCSRFirstTime(const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg, uint8_t &CostPerUseLimit, SmallVectorImpl &NewVRegs); void initializeCSRCost(); unsigned tryBlockSplit(const LiveInterval &, AllocationOrder &, SmallVectorImpl &); unsigned tryInstructionSplit(const LiveInterval &, AllocationOrder &, SmallVectorImpl &); unsigned tryLocalSplit(const LiveInterval &, AllocationOrder &, SmallVectorImpl &); unsigned trySplit(const LiveInterval &, AllocationOrder &, SmallVectorImpl &, const SmallVirtRegSet &); unsigned tryLastChanceRecoloring(const LiveInterval &, AllocationOrder &, SmallVectorImpl &, SmallVirtRegSet &, RecoloringStack &, unsigned); bool tryRecoloringCandidates(PQueue &, SmallVectorImpl &, SmallVirtRegSet &, RecoloringStack &, unsigned); void tryHintRecoloring(const LiveInterval &); void tryHintsRecoloring(); /// Model the information carried by one end of a copy. struct HintInfo { /// The frequency of the copy. BlockFrequency Freq; /// The virtual register or physical register. Register Reg; /// Its currently assigned register. /// In case of a physical register Reg == PhysReg. MCRegister PhysReg; HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} }; using HintsInfo = SmallVector; BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); void collectHintInfo(Register, HintsInfo &); /// Greedy RA statistic to remark. struct RAGreedyStats { unsigned Reloads = 0; unsigned FoldedReloads = 0; unsigned ZeroCostFoldedReloads = 0; unsigned Spills = 0; unsigned FoldedSpills = 0; unsigned Copies = 0; float ReloadsCost = 0.0f; float FoldedReloadsCost = 0.0f; float SpillsCost = 0.0f; float FoldedSpillsCost = 0.0f; float CopiesCost = 0.0f; bool isEmpty() { return !(Reloads || FoldedReloads || Spills || FoldedSpills || ZeroCostFoldedReloads || Copies); } void add(RAGreedyStats other) { Reloads += other.Reloads; FoldedReloads += other.FoldedReloads; ZeroCostFoldedReloads += other.ZeroCostFoldedReloads; Spills += other.Spills; FoldedSpills += other.FoldedSpills; Copies += other.Copies; ReloadsCost += other.ReloadsCost; FoldedReloadsCost += other.FoldedReloadsCost; SpillsCost += other.SpillsCost; FoldedSpillsCost += other.FoldedSpillsCost; CopiesCost += other.CopiesCost; } void report(MachineOptimizationRemarkMissed &R); }; /// Compute statistic for a basic block. RAGreedyStats computeStats(MachineBasicBlock &MBB); /// Compute and report statistic through a remark. RAGreedyStats reportStats(MachineLoop *L); /// Report the statistic for each loop. void reportStats(); }; } // namespace llvm #endif // #ifndef LLVM_CODEGEN_REGALLOCGREEDY_H_