//===- RDFLiveness.cpp ----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Computation of the liveness information from the data-flow graph. // // The main functionality of this code is to compute block live-in // information. With the live-in information in place, the placement // of kill flags can also be recalculated. // // The block live-in calculation is based on the ideas from the following // publication: // // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." // ACM Transactions on Architecture and Code Optimization, Association for // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance // and Embedded Architectures and Compilers", 8 (4), // <10.1145/2086696.2086706>. // #include "llvm/CodeGen/RDFLiveness.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominanceFrontier.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/RDFGraph.h" #include "llvm/CodeGen/RDFRegisters.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include using namespace llvm; using namespace rdf; static cl::opt MaxRecNest("rdf-liveness-max-rec", cl::init(25), cl::Hidden, cl::desc("Maximum recursion level")); namespace llvm { namespace rdf { raw_ostream &operator<< (raw_ostream &OS, const Print &P) { OS << '{'; for (const auto &I : P.Obj) { OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{'; for (auto J = I.second.begin(), E = I.second.end(); J != E; ) { OS << Print(J->first, P.G) << PrintLaneMaskOpt(J->second); if (++J != E) OS << ','; } OS << '}'; } OS << " }"; return OS; } } // end namespace rdf } // end namespace llvm // The order in the returned sequence is the order of reaching defs in the // upward traversal: the first def is the closest to the given reference RefA, // the next one is further up, and so on. // The list ends at a reaching phi def, or when the reference from RefA is // covered by the defs in the list (see FullChain). // This function provides two modes of operation: // (1) Returning the sequence of reaching defs for a particular reference // node. This sequence will terminate at the first phi node [1]. // (2) Returning a partial sequence of reaching defs, where the final goal // is to traverse past phi nodes to the actual defs arising from the code // itself. // In mode (2), the register reference for which the search was started // may be different from the reference node RefA, for which this call was // made, hence the argument RefRR, which holds the original register. // Also, some definitions may have already been encountered in a previous // call that will influence register covering. The register references // already defined are passed in through DefRRs. // In mode (1), the "continuation" considerations do not apply, and the // RefRR is the same as the register in RefA, and the set DefRRs is empty. // // [1] It is possible for multiple phi nodes to be included in the returned // sequence: // SubA = phi ... // SubB = phi ... // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) // However, these phi nodes are independent from one another in terms of // the data-flow. NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, NodeAddr RefA, bool TopShadows, bool FullChain, const RegisterAggr &DefRRs) { NodeList RDefs; // Return value. SetVector DefQ; DenseMap OrdMap; // Dead defs will be treated as if they were live, since they are actually // on the data-flow path. They cannot be ignored because even though they // do not generate meaningful values, they still modify registers. // If the reference is undefined, there is nothing to do. if (RefA.Addr->getFlags() & NodeAttrs::Undef) return RDefs; // The initial queue should not have reaching defs for shadows. The // whole point of a shadow is that it will have a reaching def that // is not aliased to the reaching defs of the related shadows. NodeId Start = RefA.Id; auto SNA = DFG.addr(Start); if (NodeId RD = SNA.Addr->getReachingDef()) DefQ.insert(RD); if (TopShadows) { for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA)) if (NodeId RD = NodeAddr(S).Addr->getReachingDef()) DefQ.insert(RD); } // Collect all the reaching defs, going up until a phi node is encountered, // or there are no more reaching defs. From this set, the actual set of // reaching defs will be selected. // The traversal upwards must go on until a covering def is encountered. // It is possible that a collection of non-covering (individually) defs // will be sufficient, but keep going until a covering one is found. for (unsigned i = 0; i < DefQ.size(); ++i) { auto TA = DFG.addr(DefQ[i]); if (TA.Addr->getFlags() & NodeAttrs::PhiRef) continue; // Stop at the covering/overwriting def of the initial register reference. RegisterRef RR = TA.Addr->getRegRef(DFG); if (!DFG.IsPreservingDef(TA)) if (RegisterAggr::isCoverOf(RR, RefRR, PRI)) continue; // Get the next level of reaching defs. This will include multiple // reaching defs for shadows. for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA)) if (NodeId RD = NodeAddr(S).Addr->getReachingDef()) DefQ.insert(RD); // Don't visit sibling defs. They share the same reaching def (which // will be visited anyway), but they define something not aliased to // this ref. } // Return the MachineBasicBlock containing a given instruction. auto Block = [this] (NodeAddr IA) -> MachineBasicBlock* { if (IA.Addr->getKind() == NodeAttrs::Stmt) return NodeAddr(IA).Addr->getCode()->getParent(); assert(IA.Addr->getKind() == NodeAttrs::Phi); NodeAddr PA = IA; NodeAddr BA = PA.Addr->getOwner(DFG); return BA.Addr->getCode(); }; SmallSet Defs; // Remove all non-phi defs that are not aliased to RefRR, and separate // the the remaining defs into buckets for containing blocks. std::map> Owners; std::map> Blocks; for (NodeId N : DefQ) { auto TA = DFG.addr(N); bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG))) continue; Defs.insert(TA.Id); NodeAddr IA = TA.Addr->getOwner(DFG); Owners[TA.Id] = IA; Blocks[Block(IA)].push_back(IA.Id); } auto Precedes = [this,&OrdMap] (NodeId A, NodeId B) { if (A == B) return false; NodeAddr OA = DFG.addr(A); NodeAddr OB = DFG.addr(B); bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; if (StmtA && StmtB) { const MachineInstr *InA = NodeAddr(OA).Addr->getCode(); const MachineInstr *InB = NodeAddr(OB).Addr->getCode(); assert(InA->getParent() == InB->getParent()); auto FA = OrdMap.find(InA); if (FA != OrdMap.end()) return FA->second < OrdMap.find(InB)->second; const MachineBasicBlock *BB = InA->getParent(); for (auto It = BB->begin(), E = BB->end(); It != E; ++It) { if (It == InA->getIterator()) return true; if (It == InB->getIterator()) return false; } llvm_unreachable("InA and InB should be in the same block"); } // One of them is a phi node. if (!StmtA && !StmtB) { // Both are phis, which are unordered. Break the tie by id numbers. return A < B; } // Only one of them is a phi. Phis always precede statements. return !StmtA; }; auto GetOrder = [&OrdMap] (MachineBasicBlock &B) { uint32_t Pos = 0; for (MachineInstr &In : B) OrdMap.insert({&In, ++Pos}); }; // For each block, sort the nodes in it. std::vector TmpBB; for (auto &Bucket : Blocks) { TmpBB.push_back(Bucket.first); if (Bucket.second.size() > 2) GetOrder(*Bucket.first); llvm::sort(Bucket.second, Precedes); } // Sort the blocks with respect to dominance. llvm::sort(TmpBB, [this](auto A, auto B) { return MDT.properlyDominates(A, B); }); std::vector TmpInst; for (MachineBasicBlock *MBB : llvm::reverse(TmpBB)) { auto &Bucket = Blocks[MBB]; TmpInst.insert(TmpInst.end(), Bucket.rbegin(), Bucket.rend()); } // The vector is a list of instructions, so that defs coming from // the same instruction don't need to be artificially ordered. // Then, when computing the initial segment, and iterating over an // instruction, pick the defs that contribute to the covering (i.e. is // not covered by previously added defs). Check the defs individually, // i.e. first check each def if is covered or not (without adding them // to the tracking set), and then add all the selected ones. // The reason for this is this example: // *d1, *d2, ... Assume A and B are aliased (can happen in phi nodes). // *d3 If A \incl BuC, and B \incl AuC, then *d2 would be // covered if we added A first, and A would be covered // if we added B first. // In this example we want both A and B, because we don't want to give // either one priority over the other, since they belong to the same // statement. RegisterAggr RRs(DefRRs); auto DefInSet = [&Defs] (NodeAddr TA) -> bool { return TA.Addr->getKind() == NodeAttrs::Def && Defs.count(TA.Id); }; for (NodeId T : TmpInst) { if (!FullChain && RRs.hasCoverOf(RefRR)) break; auto TA = DFG.addr(T); bool IsPhi = DFG.IsCode(TA); NodeList Ds; for (NodeAddr DA : TA.Addr->members_if(DefInSet, DFG)) { RegisterRef QR = DA.Addr->getRegRef(DFG); // Add phi defs even if they are covered by subsequent defs. This is // for cases where the reached use is not covered by any of the defs // encountered so far: the phi def is needed to expose the liveness // of that use to the entry of the block. // Example: // phi d1(,d2,), ... Phi def d1 is covered by d2. // d2(d1,,u3), ... // ..., u3(d2) This use needs to be live on entry. if (FullChain || IsPhi || !RRs.hasCoverOf(QR)) Ds.push_back(DA); } llvm::append_range(RDefs, Ds); for (NodeAddr DA : Ds) { // When collecting a full chain of definitions, do not consider phi // defs to actually define a register. uint16_t Flags = DA.Addr->getFlags(); if (!FullChain || !(Flags & NodeAttrs::PhiRef)) if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here. RRs.insert(DA.Addr->getRegRef(DFG)); } } auto DeadP = [](const NodeAddr DA) -> bool { return DA.Addr->getFlags() & NodeAttrs::Dead; }; llvm::erase_if(RDefs, DeadP); return RDefs; } std::pair Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr RefA, NodeSet &Visited, const NodeSet &Defs) { return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest); } std::pair Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr RefA, NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) { if (Nest > MaxNest) return { NodeSet(), false }; // Collect all defined registers. Do not consider phis to be defining // anything, only collect "real" definitions. RegisterAggr DefRRs(PRI); for (NodeId D : Defs) { const auto DA = DFG.addr(D); if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) DefRRs.insert(DA.Addr->getRegRef(DFG)); } NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs); if (RDs.empty()) return { Defs, true }; // Make a copy of the preexisting definitions and add the newly found ones. NodeSet TmpDefs = Defs; for (NodeAddr R : RDs) TmpDefs.insert(R.Id); NodeSet Result = Defs; for (NodeAddr DA : RDs) { Result.insert(DA.Id); if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) continue; NodeAddr PA = DA.Addr->getOwner(DFG); if (!Visited.insert(PA.Id).second) continue; // Go over all phi uses and get the reaching defs for each use. for (auto U : PA.Addr->members_if(DFG.IsRef, DFG)) { const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs, Nest+1, MaxNest); if (!T.second) return { T.first, false }; Result.insert(T.first.begin(), T.first.end()); } } return { Result, true }; } /// Find the nearest ref node aliased to RefRR, going upwards in the data /// flow, starting from the instruction immediately preceding Inst. NodeAddr Liveness::getNearestAliasedRef(RegisterRef RefRR, NodeAddr IA) { NodeAddr BA = IA.Addr->getOwner(DFG); NodeList Ins = BA.Addr->members(DFG); NodeId FindId = IA.Id; auto E = Ins.rend(); auto B = std::find_if(Ins.rbegin(), E, [FindId] (const NodeAddr T) { return T.Id == FindId; }); // Do not scan IA (which is what B would point to). if (B != E) ++B; do { // Process the range of instructions from B to E. for (NodeAddr I : make_range(B, E)) { NodeList Refs = I.Addr->members(DFG); NodeAddr Clob, Use; // Scan all the refs in I aliased to RefRR, and return the one that // is the closest to the output of I, i.e. def > clobber > use. for (NodeAddr R : Refs) { if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR)) continue; if (DFG.IsDef(R)) { // If it's a non-clobbering def, just return it. if (!(R.Addr->getFlags() & NodeAttrs::Clobbering)) return R; Clob = R; } else { Use = R; } } if (Clob.Id != 0) return Clob; if (Use.Id != 0) return Use; } // Go up to the immediate dominator, if any. MachineBasicBlock *BB = BA.Addr->getCode(); BA = NodeAddr(); if (MachineDomTreeNode *N = MDT.getNode(BB)) { if ((N = N->getIDom())) BA = DFG.findBlock(N->getBlock()); } if (!BA.Id) break; Ins = BA.Addr->members(DFG); B = Ins.rbegin(); E = Ins.rend(); } while (true); return NodeAddr(); } NodeSet Liveness::getAllReachedUses(RegisterRef RefRR, NodeAddr DefA, const RegisterAggr &DefRRs) { NodeSet Uses; // If the original register is already covered by all the intervening // defs, no more uses can be reached. if (DefRRs.hasCoverOf(RefRR)) return Uses; // Add all directly reached uses. // If the def is dead, it does not provide a value for any use. bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead; NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0; while (U != 0) { auto UA = DFG.addr(U); if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) { RegisterRef UR = UA.Addr->getRegRef(DFG); if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR)) Uses.insert(U); } U = UA.Addr->getSibling(); } // Traverse all reached defs. This time dead defs cannot be ignored. for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) { auto DA = DFG.addr(D); NextD = DA.Addr->getSibling(); RegisterRef DR = DA.Addr->getRegRef(DFG); // If this def is already covered, it cannot reach anything new. // Similarly, skip it if it is not aliased to the interesting register. if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR)) continue; NodeSet T; if (DFG.IsPreservingDef(DA)) { // If it is a preserving def, do not update the set of intervening defs. T = getAllReachedUses(RefRR, DA, DefRRs); } else { RegisterAggr NewDefRRs = DefRRs; NewDefRRs.insert(DR); T = getAllReachedUses(RefRR, DA, NewDefRRs); } Uses.insert(T.begin(), T.end()); } return Uses; } void Liveness::computePhiInfo() { RealUseMap.clear(); NodeList Phis; NodeAddr FA = DFG.getFunc(); NodeList Blocks = FA.Addr->members(DFG); for (NodeAddr BA : Blocks) { auto Ps = BA.Addr->members_if(DFG.IsCode, DFG); llvm::append_range(Phis, Ps); } // phi use -> (map: reaching phi -> set of registers defined in between) std::map> PhiUp; std::vector PhiUQ; // Work list of phis for upward propagation. std::unordered_map PhiDRs; // Phi -> registers defined by it. // Go over all phis. for (NodeAddr PhiA : Phis) { // Go over all defs and collect the reached uses that are non-phi uses // (i.e. the "real uses"). RefMap &RealUses = RealUseMap[PhiA.Id]; NodeList PhiRefs = PhiA.Addr->members(DFG); // Have a work queue of defs whose reached uses need to be found. // For each def, add to the queue all reached (non-phi) defs. SetVector DefQ; NodeSet PhiDefs; RegisterAggr DRs(PRI); for (NodeAddr R : PhiRefs) { if (!DFG.IsRef(R)) continue; DRs.insert(R.Addr->getRegRef(DFG)); DefQ.insert(R.Id); PhiDefs.insert(R.Id); } PhiDRs.insert(std::make_pair(PhiA.Id, DRs)); // Collect the super-set of all possible reached uses. This set will // contain all uses reached from this phi, either directly from the // phi defs, or (recursively) via non-phi defs reached by the phi defs. // This set of uses will later be trimmed to only contain these uses that // are actually reached by the phi defs. for (unsigned i = 0; i < DefQ.size(); ++i) { NodeAddr DA = DFG.addr(DefQ[i]); // Visit all reached uses. Phi defs should not really have the "dead" // flag set, but check it anyway for consistency. bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead; NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0; while (UN != 0) { NodeAddr A = DFG.addr(UN); uint16_t F = A.Addr->getFlags(); if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) { RegisterRef R = A.Addr->getRegRef(DFG); RealUses[R.Reg].insert({A.Id,R.Mask}); } UN = A.Addr->getSibling(); } // Visit all reached defs, and add them to the queue. These defs may // override some of the uses collected here, but that will be handled // later. NodeId DN = DA.Addr->getReachedDef(); while (DN != 0) { NodeAddr A = DFG.addr(DN); for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) { uint16_t Flags = NodeAddr(T).Addr->getFlags(); // Must traverse the reached-def chain. Consider: // def(D0) -> def(R0) -> def(R0) -> use(D0) // The reachable use of D0 passes through a def of R0. if (!(Flags & NodeAttrs::PhiRef)) DefQ.insert(T.Id); } DN = A.Addr->getSibling(); } } // Filter out these uses that appear to be reachable, but really // are not. For example: // // R1:0 = d1 // = R1:0 u2 Reached by d1. // R0 = d3 // = R1:0 u4 Still reached by d1: indirectly through // the def d3. // R1 = d5 // = R1:0 u6 Not reached by d1 (covered collectively // by d3 and d5), but following reached // defs and uses from d1 will lead here. for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) { // For each reached register UI->first, there is a set UI->second, of // uses of it. For each such use, check if it is reached by this phi, // i.e. check if the set of its reaching uses intersects the set of // this phi's defs. NodeRefSet Uses = UI->second; UI->second.clear(); for (std::pair I : Uses) { auto UA = DFG.addr(I.first); // Undef flag is checked above. assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0); RegisterRef R(UI->first, I.second); // Calculate the exposed part of the reached use. RegisterAggr Covered(PRI); for (NodeAddr DA : getAllReachingDefs(R, UA)) { if (PhiDefs.count(DA.Id)) break; Covered.insert(DA.Addr->getRegRef(DFG)); } if (RegisterRef RC = Covered.clearIn(R)) { // We are updating the map for register UI->first, so we need // to map RC to be expressed in terms of that register. RegisterRef S = PRI.mapTo(RC, UI->first); UI->second.insert({I.first, S.Mask}); } } UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI); } // If this phi reaches some "real" uses, add it to the queue for upward // propagation. if (!RealUses.empty()) PhiUQ.push_back(PhiA.Id); // Go over all phi uses and check if the reaching def is another phi. // Collect the phis that are among the reaching defs of these uses. // While traversing the list of reaching defs for each phi use, accumulate // the set of registers defined between this phi (PhiA) and the owner phi // of the reaching def. NodeSet SeenUses; for (auto I : PhiRefs) { if (!DFG.IsRef(I) || SeenUses.count(I.Id)) continue; NodeAddr PUA = I; if (PUA.Addr->getReachingDef() == 0) continue; RegisterRef UR = PUA.Addr->getRegRef(DFG); NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs); RegisterAggr DefRRs(PRI); for (NodeAddr D : Ds) { if (D.Addr->getFlags() & NodeAttrs::PhiRef) { NodeId RP = D.Addr->getOwner(DFG).Id; std::map &M = PhiUp[PUA.Id]; auto F = M.find(RP); if (F == M.end()) M.insert(std::make_pair(RP, DefRRs)); else F->second.insert(DefRRs); } DefRRs.insert(D.Addr->getRegRef(DFG)); } for (NodeAddr T : DFG.getRelatedRefs(PhiA, PUA)) SeenUses.insert(T.Id); } } if (Trace) { dbgs() << "Phi-up-to-phi map with intervening defs:\n"; for (auto I : PhiUp) { dbgs() << "phi " << Print(I.first, DFG) << " -> {"; for (auto R : I.second) dbgs() << ' ' << Print(R.first, DFG) << Print(R.second, DFG); dbgs() << " }\n"; } } // Propagate the reached registers up in the phi chain. // // The following type of situation needs careful handling: // // phi d1 (1) // | // ... d2 // | // phi u3 (2) // | // ... u4 // // The phi node (2) defines a register pair R1:0, and reaches a "real" // use u4 of just R1. The same phi node is also known to reach (upwards) // the phi node (1). However, the use u4 is not reached by phi (1), // because of the intervening definition d2 of R1. The data flow between // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. // // When propagating uses up the phi chains, get the all reaching defs // for a given phi use, and traverse the list until the propagated ref // is covered, or until reaching the final phi. Only assume that the // reference reaches the phi in the latter case. // The operation "clearIn" can be expensive. For a given set of intervening // defs, cache the result of subtracting these defs from a given register // ref. using SubMap = std::unordered_map; std::unordered_map Subs; auto ClearIn = [] (RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) { if (Mid.empty()) return RR; auto F = SM.find(RR); if (F != SM.end()) return F->second; RegisterRef S = Mid.clearIn(RR); SM.insert({RR, S}); return S; }; // Go over all phis. for (unsigned i = 0; i < PhiUQ.size(); ++i) { auto PA = DFG.addr(PhiUQ[i]); NodeList PUs = PA.Addr->members_if(DFG.IsRef, DFG); RefMap &RUM = RealUseMap[PA.Id]; for (NodeAddr UA : PUs) { std::map &PUM = PhiUp[UA.Id]; RegisterRef UR = UA.Addr->getRegRef(DFG); for (const std::pair &P : PUM) { bool Changed = false; const RegisterAggr &MidDefs = P.second; // Collect the set PropUp of uses that are reached by the current // phi PA, and are not covered by any intervening def between the // currently visited use UA and the upward phi P. if (MidDefs.hasCoverOf(UR)) continue; SubMap &SM = Subs[MidDefs]; // General algorithm: // for each (R,U) : U is use node of R, U is reached by PA // if MidDefs does not cover (R,U) // then add (R-MidDefs,U) to RealUseMap[P] // for (const std::pair &T : RUM) { RegisterRef R(T.first); // The current phi (PA) could be a phi for a regmask. It could // reach a whole variety of uses that are not related to the // specific upward phi (P.first). const RegisterAggr &DRs = PhiDRs.at(P.first); if (!DRs.hasAliasOf(R)) continue; R = PRI.mapTo(DRs.intersectWith(R), T.first); for (std::pair V : T.second) { LaneBitmask M = R.Mask & V.second; if (M.none()) continue; if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) { NodeRefSet &RS = RealUseMap[P.first][SS.Reg]; Changed |= RS.insert({V.first,SS.Mask}).second; } } } if (Changed) PhiUQ.push_back(P.first); } } } if (Trace) { dbgs() << "Real use map:\n"; for (auto I : RealUseMap) { dbgs() << "phi " << Print(I.first, DFG); NodeAddr PA = DFG.addr(I.first); NodeList Ds = PA.Addr->members_if(DFG.IsRef, DFG); if (!Ds.empty()) { RegisterRef RR = NodeAddr(Ds[0]).Addr->getRegRef(DFG); dbgs() << '<' << Print(RR, DFG) << '>'; } else { dbgs() << ""; } dbgs() << " -> " << Print(I.second, DFG) << '\n'; } } } void Liveness::computeLiveIns() { // Populate the node-to-block map. This speeds up the calculations // significantly. NBMap.clear(); for (NodeAddr BA : DFG.getFunc().Addr->members(DFG)) { MachineBasicBlock *BB = BA.Addr->getCode(); for (NodeAddr IA : BA.Addr->members(DFG)) { for (NodeAddr RA : IA.Addr->members(DFG)) NBMap.insert(std::make_pair(RA.Id, BB)); NBMap.insert(std::make_pair(IA.Id, BB)); } } MachineFunction &MF = DFG.getMF(); // Compute IDF first, then the inverse. decltype(IIDF) IDF; for (MachineBasicBlock &B : MF) { auto F1 = MDF.find(&B); if (F1 == MDF.end()) continue; SetVector IDFB(F1->second.begin(), F1->second.end()); for (unsigned i = 0; i < IDFB.size(); ++i) { auto F2 = MDF.find(IDFB[i]); if (F2 != MDF.end()) IDFB.insert(F2->second.begin(), F2->second.end()); } // Add B to the IDF(B). This will put B in the IIDF(B). IDFB.insert(&B); IDF[&B].insert(IDFB.begin(), IDFB.end()); } for (auto I : IDF) for (auto *S : I.second) IIDF[S].insert(I.first); computePhiInfo(); NodeAddr FA = DFG.getFunc(); NodeList Blocks = FA.Addr->members(DFG); // Build the phi live-on-entry map. for (NodeAddr BA : Blocks) { MachineBasicBlock *MB = BA.Addr->getCode(); RefMap &LON = PhiLON[MB]; for (auto P : BA.Addr->members_if(DFG.IsCode, DFG)) for (const RefMap::value_type &S : RealUseMap[P.Id]) LON[S.first].insert(S.second.begin(), S.second.end()); } if (Trace) { dbgs() << "Phi live-on-entry map:\n"; for (auto &I : PhiLON) dbgs() << "block #" << I.first->getNumber() << " -> " << Print(I.second, DFG) << '\n'; } // Build the phi live-on-exit map. Each phi node has some set of reached // "real" uses. Propagate this set backwards into the block predecessors // through the reaching defs of the corresponding phi uses. for (NodeAddr BA : Blocks) { NodeList Phis = BA.Addr->members_if(DFG.IsCode, DFG); for (NodeAddr PA : Phis) { RefMap &RUs = RealUseMap[PA.Id]; if (RUs.empty()) continue; NodeSet SeenUses; for (auto U : PA.Addr->members_if(DFG.IsRef, DFG)) { if (!SeenUses.insert(U.Id).second) continue; NodeAddr PUA = U; if (PUA.Addr->getReachingDef() == 0) continue; // Each phi has some set (possibly empty) of reached "real" uses, // that is, uses that are part of the compiled program. Such a use // may be located in some farther block, but following a chain of // reaching defs will eventually lead to this phi. // Any chain of reaching defs may fork at a phi node, but there // will be a path upwards that will lead to this phi. Now, this // chain will need to fork at this phi, since some of the reached // uses may have definitions joining in from multiple predecessors. // For each reached "real" use, identify the set of reaching defs // coming from each predecessor P, and add them to PhiLOX[P]. // auto PrA = DFG.addr(PUA.Addr->getPredecessor()); RefMap &LOX = PhiLOX[PrA.Addr->getCode()]; for (const std::pair &RS : RUs) { // We need to visit each individual use. for (std::pair P : RS.second) { // Create a register ref corresponding to the use, and find // all reaching defs starting from the phi use, and treating // all related shadows as a single use cluster. RegisterRef S(RS.first, P.second); NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs); for (NodeAddr D : Ds) { // Calculate the mask corresponding to the visited def. RegisterAggr TA(PRI); TA.insert(D.Addr->getRegRef(DFG)).intersect(S); LaneBitmask TM = TA.makeRegRef().Mask; LOX[S.Reg].insert({D.Id, TM}); } } } for (NodeAddr T : DFG.getRelatedRefs(PA, PUA)) SeenUses.insert(T.Id); } // for U : phi uses } // for P : Phis } // for B : Blocks if (Trace) { dbgs() << "Phi live-on-exit map:\n"; for (auto &I : PhiLOX) dbgs() << "block #" << I.first->getNumber() << " -> " << Print(I.second, DFG) << '\n'; } RefMap LiveIn; traverse(&MF.front(), LiveIn); // Add function live-ins to the live-in set of the function entry block. LiveMap[&MF.front()].insert(DFG.getLiveIns()); if (Trace) { // Dump the liveness map for (MachineBasicBlock &B : MF) { std::vector LV; for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins()) LV.push_back(RegisterRef(LI.PhysReg, LI.LaneMask)); llvm::sort(LV); dbgs() << printMBBReference(B) << "\t rec = {"; for (auto I : LV) dbgs() << ' ' << Print(I, DFG); dbgs() << " }\n"; //dbgs() << "\tcomp = " << Print(LiveMap[&B], DFG) << '\n'; LV.clear(); const RegisterAggr &LG = LiveMap[&B]; for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I) LV.push_back(*I); llvm::sort(LV); dbgs() << "\tcomp = {"; for (auto I : LV) dbgs() << ' ' << Print(I, DFG); dbgs() << " }\n"; } } } void Liveness::resetLiveIns() { for (auto &B : DFG.getMF()) { // Remove all live-ins. std::vector T; for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins()) T.push_back(LI.PhysReg); for (auto I : T) B.removeLiveIn(I); // Add the newly computed live-ins. const RegisterAggr &LiveIns = LiveMap[&B]; for (const RegisterRef R : make_range(LiveIns.rr_begin(), LiveIns.rr_end())) B.addLiveIn({MCPhysReg(R.Reg), R.Mask}); } } void Liveness::resetKills() { for (auto &B : DFG.getMF()) resetKills(&B); } void Liveness::resetKills(MachineBasicBlock *B) { auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void { for (auto I : B->liveins()) { MCSubRegIndexIterator S(I.PhysReg, &TRI); if (!S.isValid()) { LV.set(I.PhysReg); continue; } do { LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex()); if ((M & I.LaneMask).any()) LV.set(S.getSubReg()); ++S; } while (S.isValid()); } }; BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); CopyLiveIns(B, LiveIn); for (auto *SI : B->successors()) CopyLiveIns(SI, Live); for (MachineInstr &MI : llvm::reverse(*B)) { if (MI.isDebugInstr()) continue; MI.clearKillInfo(); for (auto &Op : MI.operands()) { // An implicit def of a super-register may not necessarily start a // live range of it, since an implicit use could be used to keep parts // of it live. Instead of analyzing the implicit operands, ignore // implicit defs. if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) continue; Register R = Op.getReg(); if (!Register::isPhysicalRegister(R)) continue; for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) Live.reset(*SR); } for (auto &Op : MI.operands()) { if (!Op.isReg() || !Op.isUse() || Op.isUndef()) continue; Register R = Op.getReg(); if (!Register::isPhysicalRegister(R)) continue; bool IsLive = false; for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) { if (!Live[*AR]) continue; IsLive = true; break; } if (!IsLive) Op.setIsKill(true); for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) Live.set(*SR); } } } // Helper function to obtain the basic block containing the reaching def // of the given use. MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { auto F = NBMap.find(RN); if (F != NBMap.end()) return F->second; llvm_unreachable("Node id not in map"); } void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { // The LiveIn map, for each (physical) register, contains the set of live // reaching defs of that register that are live on entry to the associated // block. // The summary of the traversal algorithm: // // R is live-in in B, if there exists a U(R), such that rdef(R) dom B // and (U \in IDF(B) or B dom U). // // for (C : children) { // LU = {} // traverse(C, LU) // LiveUses += LU // } // // LiveUses -= Defs(B); // LiveUses += UpwardExposedUses(B); // for (C : IIDF[B]) // for (U : LiveUses) // if (Rdef(U) dom C) // C.addLiveIn(U) // // Go up the dominator tree (depth-first). MachineDomTreeNode *N = MDT.getNode(B); for (auto *I : *N) { RefMap L; MachineBasicBlock *SB = I->getBlock(); traverse(SB, L); for (auto S : L) LiveIn[S.first].insert(S.second.begin(), S.second.end()); } if (Trace) { dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__ << " after recursion into: {"; for (auto *I : *N) dbgs() << ' ' << I->getBlock()->getNumber(); dbgs() << " }\n"; dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; } // Add reaching defs of phi uses that are live on exit from this block. RefMap &PUs = PhiLOX[B]; for (auto &S : PUs) LiveIn[S.first].insert(S.second.begin(), S.second.end()); if (Trace) { dbgs() << "after LOX\n"; dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; } // The LiveIn map at this point has all defs that are live-on-exit from B, // as if they were live-on-entry to B. First, we need to filter out all // defs that are present in this block. Then we will add reaching defs of // all upward-exposed uses. // To filter out the defs, first make a copy of LiveIn, and then re-populate // LiveIn with the defs that should remain. RefMap LiveInCopy = LiveIn; LiveIn.clear(); for (const std::pair &LE : LiveInCopy) { RegisterRef LRef(LE.first); NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled. const NodeRefSet &OldDefs = LE.second; for (NodeRef OR : OldDefs) { // R is a def node that was live-on-exit auto DA = DFG.addr(OR.first); NodeAddr IA = DA.Addr->getOwner(DFG); NodeAddr BA = IA.Addr->getOwner(DFG); if (B != BA.Addr->getCode()) { // Defs from a different block need to be preserved. Defs from this // block will need to be processed further, except for phi defs, the // liveness of which is handled through the PhiLON/PhiLOX maps. NewDefs.insert(OR); continue; } // Defs from this block need to stop the liveness from being // propagated upwards. This only applies to non-preserving defs, // and to the parts of the register actually covered by those defs. // (Note that phi defs should always be preserving.) RegisterAggr RRs(PRI); LRef.Mask = OR.second; if (!DFG.IsPreservingDef(DA)) { assert(!(IA.Addr->getFlags() & NodeAttrs::Phi)); // DA is a non-phi def that is live-on-exit from this block, and // that is also located in this block. LRef is a register ref // whose use this def reaches. If DA covers LRef, then no part // of LRef is exposed upwards.A if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef)) continue; } // DA itself was not sufficient to cover LRef. In general, it is // the last in a chain of aliased defs before the exit from this block. // There could be other defs in this block that are a part of that // chain. Check that now: accumulate the registers from these defs, // and if they all together cover LRef, it is not live-on-entry. for (NodeAddr TA : getAllReachingDefs(DA)) { // DefNode -> InstrNode -> BlockNode. NodeAddr ITA = TA.Addr->getOwner(DFG); NodeAddr BTA = ITA.Addr->getOwner(DFG); // Reaching defs are ordered in the upward direction. if (BTA.Addr->getCode() != B) { // We have reached past the beginning of B, and the accumulated // registers are not covering LRef. The first def from the // upward chain will be live. // Subtract all accumulated defs (RRs) from LRef. RegisterRef T = RRs.clearIn(LRef); assert(T); NewDefs.insert({TA.Id,T.Mask}); break; } // TA is in B. Only add this def to the accumulated cover if it is // not preserving. if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) RRs.insert(TA.Addr->getRegRef(DFG)); // If this is enough to cover LRef, then stop. if (RRs.hasCoverOf(LRef)) break; } } } emptify(LiveIn); if (Trace) { dbgs() << "after defs in block\n"; dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; } // Scan the block for upward-exposed uses and add them to the tracking set. for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) { NodeAddr IA = I; if (IA.Addr->getKind() != NodeAttrs::Stmt) continue; for (NodeAddr UA : IA.Addr->members_if(DFG.IsUse, DFG)) { if (UA.Addr->getFlags() & NodeAttrs::Undef) continue; RegisterRef RR = UA.Addr->getRegRef(DFG); for (NodeAddr D : getAllReachingDefs(UA)) if (getBlockWithRef(D.Id) != B) LiveIn[RR.Reg].insert({D.Id,RR.Mask}); } } if (Trace) { dbgs() << "after uses in block\n"; dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; } // Phi uses should not be propagated up the dominator tree, since they // are not dominated by their corresponding reaching defs. RegisterAggr &Local = LiveMap[B]; RefMap &LON = PhiLON[B]; for (auto &R : LON) { LaneBitmask M; for (auto P : R.second) M |= P.second; Local.insert(RegisterRef(R.first,M)); } if (Trace) { dbgs() << "after phi uses in block\n"; dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; dbgs() << " Local: " << Print(Local, DFG) << '\n'; } for (auto *C : IIDF[B]) { RegisterAggr &LiveC = LiveMap[C]; for (const std::pair &S : LiveIn) for (auto R : S.second) if (MDT.properlyDominates(getBlockWithRef(R.first), C)) LiveC.insert(RegisterRef(S.first, R.second)); } } void Liveness::emptify(RefMap &M) { for (auto I = M.begin(), E = M.end(); I != E; ) I = I->second.empty() ? M.erase(I) : std::next(I); }