//===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Perform peephole optimizations on the machine code: // // - Optimize Extensions // // Optimization of sign / zero extension instructions. It may be extended to // handle other instructions with similar properties. // // On some targets, some instructions, e.g. X86 sign / zero extension, may // leave the source value in the lower part of the result. This optimization // will replace some uses of the pre-extension value with uses of the // sub-register of the results. // // - Optimize Comparisons // // Optimization of comparison instructions. For instance, in this code: // // sub r1, 1 // cmp r1, 0 // bz L1 // // If the "sub" instruction all ready sets (or could be modified to set) the // same flag that the "cmp" instruction sets and that "bz" uses, then we can // eliminate the "cmp" instruction. // // Another instance, in this code: // // sub r1, r3 | sub r1, imm // cmp r3, r1 or cmp r1, r3 | cmp r1, imm // bge L1 // // If the branch instruction can use flag from "sub", then we can replace // "sub" with "subs" and eliminate the "cmp" instruction. // // - Optimize Loads: // // Loads that can be folded into a later instruction. A load is foldable // if it loads to virtual registers and the virtual register defined has // a single use. // // - Optimize Copies and Bitcast (more generally, target specific copies): // // Rewrite copies and bitcasts to avoid cross register bank copies // when possible. // E.g., Consider the following example, where capital and lower // letters denote different register file: // b = copy A <-- cross-bank copy // C = copy b <-- cross-bank copy // => // b = copy A <-- cross-bank copy // C = copy A <-- same-bank copy // // E.g., for bitcast: // b = bitcast A <-- cross-bank copy // C = bitcast b <-- cross-bank copy // => // b = bitcast A <-- cross-bank copy // C = copy A <-- same-bank copy //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/InitializePasses.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; using RegSubRegPair = TargetInstrInfo::RegSubRegPair; using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx; #define DEBUG_TYPE "peephole-opt" // Optimize Extensions static cl::opt Aggressive("aggressive-ext-opt", cl::Hidden, cl::desc("Aggressive extension optimization")); static cl::opt DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), cl::desc("Disable the peephole optimizer")); /// Specifiy whether or not the value tracking looks through /// complex instructions. When this is true, the value tracker /// bails on everything that is not a copy or a bitcast. static cl::opt DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), cl::desc("Disable advanced copy optimization")); static cl::opt DisableNAPhysCopyOpt( "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), cl::desc("Disable non-allocatable physical register copy optimization")); // Limit the number of PHI instructions to process // in PeepholeOptimizer::getNextSource. static cl::opt RewritePHILimit( "rewrite-phi-limit", cl::Hidden, cl::init(10), cl::desc("Limit the length of PHI chains to lookup")); // Limit the length of recurrence chain when evaluating the benefit of // commuting operands. static cl::opt MaxRecurrenceChain( "recurrence-chain-limit", cl::Hidden, cl::init(3), cl::desc("Maximum length of recurrence chain when evaluating the benefit " "of commuting operands")); STATISTIC(NumReuse, "Number of extension results reused"); STATISTIC(NumCmps, "Number of compares eliminated"); STATISTIC(NumImmFold, "Number of move immediate folded"); STATISTIC(NumLoadFold, "Number of loads folded"); STATISTIC(NumSelects, "Number of selects optimized"); STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); namespace { class ValueTrackerResult; class RecurrenceInstr; class PeepholeOptimizer : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MachineRegisterInfo *MRI; MachineDominatorTree *DT; // Machine dominator tree MachineLoopInfo *MLI; public: static char ID; // Pass identification PeepholeOptimizer() : MachineFunctionPass(ID) { initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addPreserved(); if (Aggressive) { AU.addRequired(); AU.addPreserved(); } } MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties() .set(MachineFunctionProperties::Property::IsSSA); } /// Track Def -> Use info used for rewriting copies. using RewriteMapTy = SmallDenseMap; /// Sequence of instructions that formulate recurrence cycle. using RecurrenceCycle = SmallVector; private: bool optimizeCmpInstr(MachineInstr &MI); bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, SmallPtrSetImpl &LocalMIs); bool optimizeSelect(MachineInstr &MI, SmallPtrSetImpl &LocalMIs); bool optimizeCondBranch(MachineInstr &MI); bool optimizeCoalescableCopy(MachineInstr &MI); bool optimizeUncoalescableCopy(MachineInstr &MI, SmallPtrSetImpl &LocalMIs); bool optimizeRecurrence(MachineInstr &PHI); bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap); bool isMoveImmediate(MachineInstr &MI, SmallSet &ImmDefRegs, DenseMap &ImmDefMIs); bool foldImmediate(MachineInstr &MI, SmallSet &ImmDefRegs, DenseMap &ImmDefMIs); /// Finds recurrence cycles, but only ones that formulated around /// a def operand and a use operand that are tied. If there is a use /// operand commutable with the tied use operand, find recurrence cycle /// along that operand as well. bool findTargetRecurrence(Register Reg, const SmallSet &TargetReg, RecurrenceCycle &RC); /// If copy instruction \p MI is a virtual register copy, track it in /// the set \p CopyMIs. If this virtual register was previously seen as a /// copy, replace the uses of this copy with the previously seen copy's /// destination register. bool foldRedundantCopy(MachineInstr &MI, DenseMap &CopyMIs); /// Is the register \p Reg a non-allocatable physical register? bool isNAPhysCopy(Register Reg); /// If copy instruction \p MI is a non-allocatable virtual<->physical /// register copy, track it in the \p NAPhysToVirtMIs map. If this /// non-allocatable physical register was previously copied to a virtual /// registered and hasn't been clobbered, the virt->phys copy can be /// deleted. bool foldRedundantNAPhysCopy( MachineInstr &MI, DenseMap &NAPhysToVirtMIs); bool isLoadFoldable(MachineInstr &MI, SmallSet &FoldAsLoadDefCandidates); /// Check whether \p MI is understood by the register coalescer /// but may require some rewriting. bool isCoalescableCopy(const MachineInstr &MI) { // SubregToRegs are not interesting, because they are already register // coalescer friendly. return MI.isCopy() || (!DisableAdvCopyOpt && (MI.isRegSequence() || MI.isInsertSubreg() || MI.isExtractSubreg())); } /// Check whether \p MI is a copy like instruction that is /// not recognized by the register coalescer. bool isUncoalescableCopy(const MachineInstr &MI) { return MI.isBitcast() || (!DisableAdvCopyOpt && (MI.isRegSequenceLike() || MI.isInsertSubregLike() || MI.isExtractSubregLike())); } MachineInstr &rewriteSource(MachineInstr &CopyLike, RegSubRegPair Def, RewriteMapTy &RewriteMap); }; /// Helper class to hold instructions that are inside recurrence cycles. /// The recurrence cycle is formulated around 1) a def operand and its /// tied use operand, or 2) a def operand and a use operand that is commutable /// with another use operand which is tied to the def operand. In the latter /// case, index of the tied use operand and the commutable use operand are /// maintained with CommutePair. class RecurrenceInstr { public: using IndexPair = std::pair; RecurrenceInstr(MachineInstr *MI) : MI(MI) {} RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {} MachineInstr *getMI() const { return MI; } Optional getCommutePair() const { return CommutePair; } private: MachineInstr *MI; Optional CommutePair; }; /// Helper class to hold a reply for ValueTracker queries. /// Contains the returned sources for a given search and the instructions /// where the sources were tracked from. class ValueTrackerResult { private: /// Track all sources found by one ValueTracker query. SmallVector RegSrcs; /// Instruction using the sources in 'RegSrcs'. const MachineInstr *Inst = nullptr; public: ValueTrackerResult() = default; ValueTrackerResult(Register Reg, unsigned SubReg) { addSource(Reg, SubReg); } bool isValid() const { return getNumSources() > 0; } void setInst(const MachineInstr *I) { Inst = I; } const MachineInstr *getInst() const { return Inst; } void clear() { RegSrcs.clear(); Inst = nullptr; } void addSource(Register SrcReg, unsigned SrcSubReg) { RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg)); } void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) { assert(Idx < getNumSources() && "Reg pair source out of index"); RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg); } int getNumSources() const { return RegSrcs.size(); } RegSubRegPair getSrc(int Idx) const { return RegSrcs[Idx]; } Register getSrcReg(int Idx) const { assert(Idx < getNumSources() && "Reg source out of index"); return RegSrcs[Idx].Reg; } unsigned getSrcSubReg(int Idx) const { assert(Idx < getNumSources() && "SubReg source out of index"); return RegSrcs[Idx].SubReg; } bool operator==(const ValueTrackerResult &Other) const { if (Other.getInst() != getInst()) return false; if (Other.getNumSources() != getNumSources()) return false; for (int i = 0, e = Other.getNumSources(); i != e; ++i) if (Other.getSrcReg(i) != getSrcReg(i) || Other.getSrcSubReg(i) != getSrcSubReg(i)) return false; return true; } }; /// Helper class to track the possible sources of a value defined by /// a (chain of) copy related instructions. /// Given a definition (instruction and definition index), this class /// follows the use-def chain to find successive suitable sources. /// The given source can be used to rewrite the definition into /// def = COPY src. /// /// For instance, let us consider the following snippet: /// v0 = /// v2 = INSERT_SUBREG v1, v0, sub0 /// def = COPY v2.sub0 /// /// Using a ValueTracker for def = COPY v2.sub0 will give the following /// suitable sources: /// v2.sub0 and v0. /// Then, def can be rewritten into def = COPY v0. class ValueTracker { private: /// The current point into the use-def chain. const MachineInstr *Def = nullptr; /// The index of the definition in Def. unsigned DefIdx = 0; /// The sub register index of the definition. unsigned DefSubReg; /// The register where the value can be found. Register Reg; /// MachineRegisterInfo used to perform tracking. const MachineRegisterInfo &MRI; /// Optional TargetInstrInfo used to perform some complex tracking. const TargetInstrInfo *TII; /// Dispatcher to the right underlying implementation of getNextSource. ValueTrackerResult getNextSourceImpl(); /// Specialized version of getNextSource for Copy instructions. ValueTrackerResult getNextSourceFromCopy(); /// Specialized version of getNextSource for Bitcast instructions. ValueTrackerResult getNextSourceFromBitcast(); /// Specialized version of getNextSource for RegSequence instructions. ValueTrackerResult getNextSourceFromRegSequence(); /// Specialized version of getNextSource for InsertSubreg instructions. ValueTrackerResult getNextSourceFromInsertSubreg(); /// Specialized version of getNextSource for ExtractSubreg instructions. ValueTrackerResult getNextSourceFromExtractSubreg(); /// Specialized version of getNextSource for SubregToReg instructions. ValueTrackerResult getNextSourceFromSubregToReg(); /// Specialized version of getNextSource for PHI instructions. ValueTrackerResult getNextSourceFromPHI(); public: /// Create a ValueTracker instance for the value defined by \p Reg. /// \p DefSubReg represents the sub register index the value tracker will /// track. It does not need to match the sub register index used in the /// definition of \p Reg. /// If \p Reg is a physical register, a value tracker constructed with /// this constructor will not find any alternative source. /// Indeed, when \p Reg is a physical register that constructor does not /// know which definition of \p Reg it should track. /// Use the next constructor to track a physical register. ValueTracker(Register Reg, unsigned DefSubReg, const MachineRegisterInfo &MRI, const TargetInstrInfo *TII = nullptr) : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) { if (!Reg.isPhysical()) { Def = MRI.getVRegDef(Reg); DefIdx = MRI.def_begin(Reg).getOperandNo(); } } /// Following the use-def chain, get the next available source /// for the tracked value. /// \return A ValueTrackerResult containing a set of registers /// and sub registers with tracked values. A ValueTrackerResult with /// an empty set of registers means no source was found. ValueTrackerResult getNextSource(); }; } // end anonymous namespace char PeepholeOptimizer::ID = 0; char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE, "Peephole Optimizations", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE, "Peephole Optimizations", false, false) /// If instruction is a copy-like instruction, i.e. it reads a single register /// and writes a single register and it does not modify the source, and if the /// source value is preserved as a sub-register of the result, then replace all /// reachable uses of the source with the subreg of the result. /// /// Do not generate an EXTRACT that is used only in a debug use, as this changes /// the code. Since this code does not currently share EXTRACTs, just ignore all /// debug uses. bool PeepholeOptimizer:: optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, SmallPtrSetImpl &LocalMIs) { Register SrcReg, DstReg; unsigned SubIdx; if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx)) return false; if (DstReg.isPhysical() || SrcReg.isPhysical()) return false; if (MRI->hasOneNonDBGUse(SrcReg)) // No other uses. return false; // Ensure DstReg can get a register class that actually supports // sub-registers. Don't change the class until we commit. const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); if (!DstRC) return false; // The ext instr may be operating on a sub-register of SrcReg as well. // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit // register. // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of // SrcReg:SubIdx should be replaced. bool UseSrcSubIdx = TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; // The source has other uses. See if we can replace the other uses with use of // the result of the extension. SmallPtrSet ReachedBBs; for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) ReachedBBs.insert(UI.getParent()); // Uses that are in the same BB of uses of the result of the instruction. SmallVector Uses; // Uses that the result of the instruction can reach. SmallVector ExtendedUses; bool ExtendLife = true; for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { MachineInstr *UseMI = UseMO.getParent(); if (UseMI == &MI) continue; if (UseMI->isPHI()) { ExtendLife = false; continue; } // Only accept uses of SrcReg:SubIdx. if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) continue; // It's an error to translate this: // // %reg1025 = %reg1024 // ... // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 // // into this: // // %reg1025 = %reg1024 // ... // %reg1027 = COPY %reg1025:4 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 // // The problem here is that SUBREG_TO_REG is there to assert that an // implicit zext occurs. It doesn't insert a zext instruction. If we allow // the COPY here, it will give us the value after the , not the // original value of %reg1024 before . if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) continue; MachineBasicBlock *UseMBB = UseMI->getParent(); if (UseMBB == &MBB) { // Local uses that come after the extension. if (!LocalMIs.count(UseMI)) Uses.push_back(&UseMO); } else if (ReachedBBs.count(UseMBB)) { // Non-local uses where the result of the extension is used. Always // replace these unless it's a PHI. Uses.push_back(&UseMO); } else if (Aggressive && DT->dominates(&MBB, UseMBB)) { // We may want to extend the live range of the extension result in order // to replace these uses. ExtendedUses.push_back(&UseMO); } else { // Both will be live out of the def MBB anyway. Don't extend live range of // the extension result. ExtendLife = false; break; } } if (ExtendLife && !ExtendedUses.empty()) // Extend the liveness of the extension result. Uses.append(ExtendedUses.begin(), ExtendedUses.end()); // Now replace all uses. bool Changed = false; if (!Uses.empty()) { SmallPtrSet PHIBBs; // Look for PHI uses of the extended result, we don't want to extend the // liveness of a PHI input. It breaks all kinds of assumptions down // stream. A PHI use is expected to be the kill of its source values. for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) if (UI.isPHI()) PHIBBs.insert(UI.getParent()); const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); for (unsigned i = 0, e = Uses.size(); i != e; ++i) { MachineOperand *UseMO = Uses[i]; MachineInstr *UseMI = UseMO->getParent(); MachineBasicBlock *UseMBB = UseMI->getParent(); if (PHIBBs.count(UseMBB)) continue; // About to add uses of DstReg, clear DstReg's kill flags. if (!Changed) { MRI->clearKillFlags(DstReg); MRI->constrainRegClass(DstReg, DstRC); } // SubReg defs are illegal in machine SSA phase, // we should not generate SubReg defs. // // For example, for the instructions: // // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc // // We should generate: // // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0 // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0 // if (UseSrcSubIdx) RC = MRI->getRegClass(UseMI->getOperand(0).getReg()); Register NewVR = MRI->createVirtualRegister(RC); BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY), NewVR) .addReg(DstReg, 0, SubIdx); if (UseSrcSubIdx) UseMO->setSubReg(0); UseMO->setReg(NewVR); ++NumReuse; Changed = true; } } return Changed; } /// If the instruction is a compare and the previous instruction it's comparing /// against already sets (or could be modified to set) the same flag as the /// compare, then we can remove the comparison and use the flag from the /// previous instruction. bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) { // If this instruction is a comparison against zero and isn't comparing a // physical register, we can try to optimize it. Register SrcReg, SrcReg2; int CmpMask, CmpValue; if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || SrcReg.isPhysical() || SrcReg2.isPhysical()) return false; // Attempt to optimize the comparison instruction. LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI); if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n"); ++NumCmps; return true; } return false; } /// Optimize a select instruction. bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI, SmallPtrSetImpl &LocalMIs) { unsigned TrueOp = 0; unsigned FalseOp = 0; bool Optimizable = false; SmallVector Cond; if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) return false; if (!Optimizable) return false; if (!TII->optimizeSelect(MI, LocalMIs)) return false; LLVM_DEBUG(dbgs() << "Deleting select: " << MI); MI.eraseFromParent(); ++NumSelects; return true; } /// Check if a simpler conditional branch can be generated. bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) { return TII->optimizeCondBranch(MI); } /// Try to find the next source that share the same register file /// for the value defined by \p Reg and \p SubReg. /// When true is returned, the \p RewriteMap can be used by the client to /// retrieve all Def -> Use along the way up to the next source. Any found /// Use that is not itself a key for another entry, is the next source to /// use. During the search for the next source, multiple sources can be found /// given multiple incoming sources of a PHI instruction. In this case, we /// look in each PHI source for the next source; all found next sources must /// share the same register file as \p Reg and \p SubReg. The client should /// then be capable to rewrite all intermediate PHIs to get the next source. /// \return False if no alternative sources are available. True otherwise. bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap) { // Do not try to find a new source for a physical register. // So far we do not have any motivating example for doing that. // Thus, instead of maintaining untested code, we will revisit that if // that changes at some point. Register Reg = RegSubReg.Reg; if (Reg.isPhysical()) return false; const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); SmallVector SrcToLook; RegSubRegPair CurSrcPair = RegSubReg; SrcToLook.push_back(CurSrcPair); unsigned PHICount = 0; do { CurSrcPair = SrcToLook.pop_back_val(); // As explained above, do not handle physical registers if (Register::isPhysicalRegister(CurSrcPair.Reg)) return false; ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII); // Follow the chain of copies until we find a more suitable source, a phi // or have to abort. while (true) { ValueTrackerResult Res = ValTracker.getNextSource(); // Abort at the end of a chain (without finding a suitable source). if (!Res.isValid()) return false; // Insert the Def -> Use entry for the recently found source. ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); if (CurSrcRes.isValid()) { assert(CurSrcRes == Res && "ValueTrackerResult found must match"); // An existent entry with multiple sources is a PHI cycle we must avoid. // Otherwise it's an entry with a valid next source we already found. if (CurSrcRes.getNumSources() > 1) { LLVM_DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n"); return false; } break; } RewriteMap.insert(std::make_pair(CurSrcPair, Res)); // ValueTrackerResult usually have one source unless it's the result from // a PHI instruction. Add the found PHI edges to be looked up further. unsigned NumSrcs = Res.getNumSources(); if (NumSrcs > 1) { PHICount++; if (PHICount >= RewritePHILimit) { LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); return false; } for (unsigned i = 0; i < NumSrcs; ++i) SrcToLook.push_back(Res.getSrc(i)); break; } CurSrcPair = Res.getSrc(0); // Do not extend the live-ranges of physical registers as they add // constraints to the register allocator. Moreover, if we want to extend // the live-range of a physical register, unlike SSA virtual register, // we will have to check that they aren't redefine before the related use. if (Register::isPhysicalRegister(CurSrcPair.Reg)) return false; // Keep following the chain if the value isn't any better yet. const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC, CurSrcPair.SubReg)) continue; // We currently cannot deal with subreg operands on PHI instructions // (see insertPHI()). if (PHICount > 0 && CurSrcPair.SubReg != 0) continue; // We found a suitable source, and are done with this chain. break; } } while (!SrcToLook.empty()); // If we did not find a more suitable source, there is nothing to optimize. return CurSrcPair.Reg != Reg; } /// Insert a PHI instruction with incoming edges \p SrcRegs that are /// guaranteed to have the same register class. This is necessary whenever we /// successfully traverse a PHI instruction and find suitable sources coming /// from its edges. By inserting a new PHI, we provide a rewritten PHI def /// suitable to be used in a new COPY instruction. static MachineInstr & insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const SmallVectorImpl &SrcRegs, MachineInstr &OrigPHI) { assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg); // NewRC is only correct if no subregisters are involved. findNextSource() // should have rejected those cases already. assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand"); Register NewVR = MRI.createVirtualRegister(NewRC); MachineBasicBlock *MBB = OrigPHI.getParent(); MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(), TII.get(TargetOpcode::PHI), NewVR); unsigned MBBOpIdx = 2; for (const RegSubRegPair &RegPair : SrcRegs) { MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB()); // Since we're extended the lifetime of RegPair.Reg, clear the // kill flags to account for that and make RegPair.Reg reaches // the new PHI. MRI.clearKillFlags(RegPair.Reg); MBBOpIdx += 2; } return *MIB; } namespace { /// Interface to query instructions amenable to copy rewriting. class Rewriter { protected: MachineInstr &CopyLike; unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten. public: Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {} virtual ~Rewriter() {} /// Get the next rewritable source (SrcReg, SrcSubReg) and /// the related value that it affects (DstReg, DstSubReg). /// A source is considered rewritable if its register class and the /// register class of the related DstReg may not be register /// coalescer friendly. In other words, given a copy-like instruction /// not all the arguments may be returned at rewritable source, since /// some arguments are none to be register coalescer friendly. /// /// Each call of this method moves the current source to the next /// rewritable source. /// For instance, let CopyLike be the instruction to rewrite. /// CopyLike has one definition and one source: /// dst.dstSubIdx = CopyLike src.srcSubIdx. /// /// The first call will give the first rewritable source, i.e., /// the only source this instruction has: /// (SrcReg, SrcSubReg) = (src, srcSubIdx). /// This source defines the whole definition, i.e., /// (DstReg, DstSubReg) = (dst, dstSubIdx). /// /// The second and subsequent calls will return false, as there is only one /// rewritable source. /// /// \return True if a rewritable source has been found, false otherwise. /// The output arguments are valid if and only if true is returned. virtual bool getNextRewritableSource(RegSubRegPair &Src, RegSubRegPair &Dst) = 0; /// Rewrite the current source with \p NewReg and \p NewSubReg if possible. /// \return True if the rewriting was possible, false otherwise. virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0; }; /// Rewriter for COPY instructions. class CopyRewriter : public Rewriter { public: CopyRewriter(MachineInstr &MI) : Rewriter(MI) { assert(MI.isCopy() && "Expected copy instruction"); } virtual ~CopyRewriter() = default; bool getNextRewritableSource(RegSubRegPair &Src, RegSubRegPair &Dst) override { // CurrentSrcIdx > 0 means this function has already been called. if (CurrentSrcIdx > 0) return false; // This is the first call to getNextRewritableSource. // Move the CurrentSrcIdx to remember that we made that call. CurrentSrcIdx = 1; // The rewritable source is the argument. const MachineOperand &MOSrc = CopyLike.getOperand(1); Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg()); // What we track are the alternative sources of the definition. const MachineOperand &MODef = CopyLike.getOperand(0); Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); return true; } bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { if (CurrentSrcIdx != 1) return false; MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); MOSrc.setReg(NewReg); MOSrc.setSubReg(NewSubReg); return true; } }; /// Helper class to rewrite uncoalescable copy like instructions /// into new COPY (coalescable friendly) instructions. class UncoalescableRewriter : public Rewriter { unsigned NumDefs; ///< Number of defs in the bitcast. public: UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) { NumDefs = MI.getDesc().getNumDefs(); } /// \see See Rewriter::getNextRewritableSource() /// All such sources need to be considered rewritable in order to /// rewrite a uncoalescable copy-like instruction. This method return /// each definition that must be checked if rewritable. bool getNextRewritableSource(RegSubRegPair &Src, RegSubRegPair &Dst) override { // Find the next non-dead definition and continue from there. if (CurrentSrcIdx == NumDefs) return false; while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { ++CurrentSrcIdx; if (CurrentSrcIdx == NumDefs) return false; } // What we track are the alternative sources of the definition. Src = RegSubRegPair(0, 0); const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); CurrentSrcIdx++; return true; } bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { return false; } }; /// Specialized rewriter for INSERT_SUBREG instruction. class InsertSubregRewriter : public Rewriter { public: InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) { assert(MI.isInsertSubreg() && "Invalid instruction"); } /// \see See Rewriter::getNextRewritableSource() /// Here CopyLike has the following form: /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. /// Src1 has the same register class has dst, hence, there is /// nothing to rewrite. /// Src2.src2SubIdx, may not be register coalescer friendly. /// Therefore, the first call to this method returns: /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). /// (DstReg, DstSubReg) = (dst, subIdx). /// /// Subsequence calls will return false. bool getNextRewritableSource(RegSubRegPair &Src, RegSubRegPair &Dst) override { // If we already get the only source we can rewrite, return false. if (CurrentSrcIdx == 2) return false; // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. CurrentSrcIdx = 2; const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg()); const MachineOperand &MODef = CopyLike.getOperand(0); // We want to track something that is compatible with the // partial definition. if (MODef.getSubReg()) // Bail if we have to compose sub-register indices. return false; Dst = RegSubRegPair(MODef.getReg(), (unsigned)CopyLike.getOperand(3).getImm()); return true; } bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { if (CurrentSrcIdx != 2) return false; // We are rewriting the inserted reg. MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); MO.setReg(NewReg); MO.setSubReg(NewSubReg); return true; } }; /// Specialized rewriter for EXTRACT_SUBREG instruction. class ExtractSubregRewriter : public Rewriter { const TargetInstrInfo &TII; public: ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) : Rewriter(MI), TII(TII) { assert(MI.isExtractSubreg() && "Invalid instruction"); } /// \see Rewriter::getNextRewritableSource() /// Here CopyLike has the following form: /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. /// There is only one rewritable source: Src.subIdx, /// which defines dst.dstSubIdx. bool getNextRewritableSource(RegSubRegPair &Src, RegSubRegPair &Dst) override { // If we already get the only source we can rewrite, return false. if (CurrentSrcIdx == 1) return false; // We are looking at v1 = EXTRACT_SUBREG v0, sub0. CurrentSrcIdx = 1; const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); // If we have to compose sub-register indices, bail out. if (MOExtractedReg.getSubReg()) return false; Src = RegSubRegPair(MOExtractedReg.getReg(), CopyLike.getOperand(2).getImm()); // We want to track something that is compatible with the definition. const MachineOperand &MODef = CopyLike.getOperand(0); Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); return true; } bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { // The only source we can rewrite is the input register. if (CurrentSrcIdx != 1) return false; CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); // If we find a source that does not require to extract something, // rewrite the operation with a copy. if (!NewSubReg) { // Move the current index to an invalid position. // We do not want another call to this method to be able // to do any change. CurrentSrcIdx = -1; // Rewrite the operation as a COPY. // Get rid of the sub-register index. CopyLike.RemoveOperand(2); // Morph the operation into a COPY. CopyLike.setDesc(TII.get(TargetOpcode::COPY)); return true; } CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); return true; } }; /// Specialized rewriter for REG_SEQUENCE instruction. class RegSequenceRewriter : public Rewriter { public: RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) { assert(MI.isRegSequence() && "Invalid instruction"); } /// \see Rewriter::getNextRewritableSource() /// Here CopyLike has the following form: /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. /// Each call will return a different source, walking all the available /// source. /// /// The first call returns: /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). /// (DstReg, DstSubReg) = (dst, subIdx1). /// /// The second call returns: /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). /// (DstReg, DstSubReg) = (dst, subIdx2). /// /// And so on, until all the sources have been traversed, then /// it returns false. bool getNextRewritableSource(RegSubRegPair &Src, RegSubRegPair &Dst) override { // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. // If this is the first call, move to the first argument. if (CurrentSrcIdx == 0) { CurrentSrcIdx = 1; } else { // Otherwise, move to the next argument and check that it is valid. CurrentSrcIdx += 2; if (CurrentSrcIdx >= CopyLike.getNumOperands()) return false; } const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); Src.Reg = MOInsertedReg.getReg(); // If we have to compose sub-register indices, bail out. if ((Src.SubReg = MOInsertedReg.getSubReg())) return false; // We want to track something that is compatible with the related // partial definition. Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); const MachineOperand &MODef = CopyLike.getOperand(0); Dst.Reg = MODef.getReg(); // If we have to compose sub-registers, bail. return MODef.getSubReg() == 0; } bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { // We cannot rewrite out of bound operands. // Moreover, rewritable sources are at odd positions. if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) return false; MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); MO.setReg(NewReg); MO.setSubReg(NewSubReg); return true; } }; } // end anonymous namespace /// Get the appropriated Rewriter for \p MI. /// \return A pointer to a dynamically allocated Rewriter or nullptr if no /// rewriter works for \p MI. static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) { // Handle uncoalescable copy-like instructions. if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() || MI.isExtractSubregLike()) return new UncoalescableRewriter(MI); switch (MI.getOpcode()) { default: return nullptr; case TargetOpcode::COPY: return new CopyRewriter(MI); case TargetOpcode::INSERT_SUBREG: return new InsertSubregRewriter(MI); case TargetOpcode::EXTRACT_SUBREG: return new ExtractSubregRewriter(MI, TII); case TargetOpcode::REG_SEQUENCE: return new RegSequenceRewriter(MI); } } /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find /// the new source to use for rewrite. If \p HandleMultipleSources is true and /// multiple sources for a given \p Def are found along the way, we found a /// PHI instructions that needs to be rewritten. /// TODO: HandleMultipleSources should be removed once we test PHI handling /// with coalescable copies. static RegSubRegPair getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, RegSubRegPair Def, const PeepholeOptimizer::RewriteMapTy &RewriteMap, bool HandleMultipleSources = true) { RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); while (true) { ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); // If there are no entries on the map, LookupSrc is the new source. if (!Res.isValid()) return LookupSrc; // There's only one source for this definition, keep searching... unsigned NumSrcs = Res.getNumSources(); if (NumSrcs == 1) { LookupSrc.Reg = Res.getSrcReg(0); LookupSrc.SubReg = Res.getSrcSubReg(0); continue; } // TODO: Remove once multiple srcs w/ coalescable copies are supported. if (!HandleMultipleSources) break; // Multiple sources, recurse into each source to find a new source // for it. Then, rewrite the PHI accordingly to its new edges. SmallVector NewPHISrcs; for (unsigned i = 0; i < NumSrcs; ++i) { RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i)); NewPHISrcs.push_back( getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); } // Build the new PHI node and return its def register as the new source. MachineInstr &OrigPHI = const_cast(*Res.getInst()); MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI); LLVM_DEBUG(dbgs() << "-- getNewSource\n"); LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI); LLVM_DEBUG(dbgs() << " With: " << NewPHI); const MachineOperand &MODef = NewPHI.getOperand(0); return RegSubRegPair(MODef.getReg(), MODef.getSubReg()); } return RegSubRegPair(0, 0); } /// Optimize generic copy instructions to avoid cross register bank copy. /// The optimization looks through a chain of copies and tries to find a source /// that has a compatible register class. /// Two register classes are considered to be compatible if they share the same /// register bank. /// New copies issued by this optimization are register allocator /// friendly. This optimization does not remove any copy as it may /// overconstrain the register allocator, but replaces some operands /// when possible. /// \pre isCoalescableCopy(*MI) is true. /// \return True, when \p MI has been rewritten. False otherwise. bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) { assert(isCoalescableCopy(MI) && "Invalid argument"); assert(MI.getDesc().getNumDefs() == 1 && "Coalescer can understand multiple defs?!"); const MachineOperand &MODef = MI.getOperand(0); // Do not rewrite physical definitions. if (Register::isPhysicalRegister(MODef.getReg())) return false; bool Changed = false; // Get the right rewriter for the current copy. std::unique_ptr CpyRewriter(getCopyRewriter(MI, *TII)); // If none exists, bail out. if (!CpyRewriter) return false; // Rewrite each rewritable source. RegSubRegPair Src; RegSubRegPair TrackPair; while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) { // Keep track of PHI nodes and its incoming edges when looking for sources. RewriteMapTy RewriteMap; // Try to find a more suitable source. If we failed to do so, or get the // actual source, move to the next source. if (!findNextSource(TrackPair, RewriteMap)) continue; // Get the new source to rewrite. TODO: Only enable handling of multiple // sources (PHIs) once we have a motivating example and testcases for it. RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap, /*HandleMultipleSources=*/false); if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0) continue; // Rewrite source. if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { // We may have extended the live-range of NewSrc, account for that. MRI->clearKillFlags(NewSrc.Reg); Changed = true; } } // TODO: We could have a clean-up method to tidy the instruction. // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 // => v0 = COPY v1 // Currently we haven't seen motivating example for that and we // want to avoid untested code. NumRewrittenCopies += Changed; return Changed; } /// Rewrite the source found through \p Def, by using the \p RewriteMap /// and create a new COPY instruction. More info about RewriteMap in /// PeepholeOptimizer::findNextSource. Right now this is only used to handle /// Uncoalescable copies, since they are copy like instructions that aren't /// recognized by the register allocator. MachineInstr & PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike, RegSubRegPair Def, RewriteMapTy &RewriteMap) { assert(!Register::isPhysicalRegister(Def.Reg) && "We do not rewrite physical registers"); // Find the new source to use in the COPY rewrite. RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap); // Insert the COPY. const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg); Register NewVReg = MRI->createVirtualRegister(DefRC); MachineInstr *NewCopy = BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), TII->get(TargetOpcode::COPY), NewVReg) .addReg(NewSrc.Reg, 0, NewSrc.SubReg); if (Def.SubReg) { NewCopy->getOperand(0).setSubReg(Def.SubReg); NewCopy->getOperand(0).setIsUndef(); } LLVM_DEBUG(dbgs() << "-- RewriteSource\n"); LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike); LLVM_DEBUG(dbgs() << " With: " << *NewCopy); MRI->replaceRegWith(Def.Reg, NewVReg); MRI->clearKillFlags(NewVReg); // We extended the lifetime of NewSrc.Reg, clear the kill flags to // account for that. MRI->clearKillFlags(NewSrc.Reg); return *NewCopy; } /// Optimize copy-like instructions to create /// register coalescer friendly instruction. /// The optimization tries to kill-off the \p MI by looking /// through a chain of copies to find a source that has a compatible /// register class. /// If such a source is found, it replace \p MI by a generic COPY /// operation. /// \pre isUncoalescableCopy(*MI) is true. /// \return True, when \p MI has been optimized. In that case, \p MI has /// been removed from its parent. /// All COPY instructions created, are inserted in \p LocalMIs. bool PeepholeOptimizer::optimizeUncoalescableCopy( MachineInstr &MI, SmallPtrSetImpl &LocalMIs) { assert(isUncoalescableCopy(MI) && "Invalid argument"); UncoalescableRewriter CpyRewriter(MI); // Rewrite each rewritable source by generating new COPYs. This works // differently from optimizeCoalescableCopy since it first makes sure that all // definitions can be rewritten. RewriteMapTy RewriteMap; RegSubRegPair Src; RegSubRegPair Def; SmallVector RewritePairs; while (CpyRewriter.getNextRewritableSource(Src, Def)) { // If a physical register is here, this is probably for a good reason. // Do not rewrite that. if (Register::isPhysicalRegister(Def.Reg)) return false; // If we do not know how to rewrite this definition, there is no point // in trying to kill this instruction. if (!findNextSource(Def, RewriteMap)) return false; RewritePairs.push_back(Def); } // The change is possible for all defs, do it. for (const RegSubRegPair &Def : RewritePairs) { // Rewrite the "copy" in a way the register coalescer understands. MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap); LocalMIs.insert(&NewCopy); } // MI is now dead. LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI); MI.eraseFromParent(); ++NumUncoalescableCopies; return true; } /// Check whether MI is a candidate for folding into a later instruction. /// We only fold loads to virtual registers and the virtual register defined /// has a single user. bool PeepholeOptimizer::isLoadFoldable( MachineInstr &MI, SmallSet &FoldAsLoadDefCandidates) { if (!MI.canFoldAsLoad() || !MI.mayLoad()) return false; const MCInstrDesc &MCID = MI.getDesc(); if (MCID.getNumDefs() != 1) return false; Register Reg = MI.getOperand(0).getReg(); // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting // loads. It should be checked when processing uses of the load, since // uses can be removed during peephole. if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() && MRI->hasOneNonDBGUser(Reg)) { FoldAsLoadDefCandidates.insert(Reg); return true; } return false; } bool PeepholeOptimizer::isMoveImmediate( MachineInstr &MI, SmallSet &ImmDefRegs, DenseMap &ImmDefMIs) { const MCInstrDesc &MCID = MI.getDesc(); if (!MI.isMoveImmediate()) return false; if (MCID.getNumDefs() != 1) return false; Register Reg = MI.getOperand(0).getReg(); if (Reg.isVirtual()) { ImmDefMIs.insert(std::make_pair(Reg, &MI)); ImmDefRegs.insert(Reg); return true; } return false; } /// Try folding register operands that are defined by move immediate /// instructions, i.e. a trivial constant folding optimization, if /// and only if the def and use are in the same BB. bool PeepholeOptimizer::foldImmediate( MachineInstr &MI, SmallSet &ImmDefRegs, DenseMap &ImmDefMIs) { for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || MO.isDef()) continue; Register Reg = MO.getReg(); if (!Reg.isVirtual()) continue; if (ImmDefRegs.count(Reg) == 0) continue; DenseMap::iterator II = ImmDefMIs.find(Reg); assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) { ++NumImmFold; return true; } } return false; } // FIXME: This is very simple and misses some cases which should be handled when // motivating examples are found. // // The copy rewriting logic should look at uses as well as defs and be able to // eliminate copies across blocks. // // Later copies that are subregister extracts will also not be eliminated since // only the first copy is considered. // // e.g. // %1 = COPY %0 // %2 = COPY %0:sub1 // // Should replace %2 uses with %1:sub1 bool PeepholeOptimizer::foldRedundantCopy( MachineInstr &MI, DenseMap &CopyMIs) { assert(MI.isCopy() && "expected a COPY machine instruction"); Register SrcReg = MI.getOperand(1).getReg(); unsigned SrcSubReg = MI.getOperand(1).getSubReg(); if (!SrcReg.isVirtual()) return false; Register DstReg = MI.getOperand(0).getReg(); if (!DstReg.isVirtual()) return false; RegSubRegPair SrcPair(SrcReg, SrcSubReg); if (CopyMIs.insert(std::make_pair(SrcPair, &MI)).second) { // First copy of this reg seen. return false; } MachineInstr *PrevCopy = CopyMIs.find(SrcPair)->second; assert(SrcSubReg == PrevCopy->getOperand(1).getSubReg() && "Unexpected mismatching subreg!"); Register PrevDstReg = PrevCopy->getOperand(0).getReg(); // Only replace if the copy register class is the same. // // TODO: If we have multiple copies to different register classes, we may want // to track multiple copies of the same source register. if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) return false; MRI->replaceRegWith(DstReg, PrevDstReg); // Lifetime of the previous copy has been extended. MRI->clearKillFlags(PrevDstReg); return true; } bool PeepholeOptimizer::isNAPhysCopy(Register Reg) { return Reg.isPhysical() && !MRI->isAllocatable(Reg); } bool PeepholeOptimizer::foldRedundantNAPhysCopy( MachineInstr &MI, DenseMap &NAPhysToVirtMIs) { assert(MI.isCopy() && "expected a COPY machine instruction"); if (DisableNAPhysCopyOpt) return false; Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) { // %vreg = COPY $physreg // Avoid using a datastructure which can track multiple live non-allocatable // phys->virt copies since LLVM doesn't seem to do this. NAPhysToVirtMIs.insert({SrcReg, &MI}); return false; } if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg))) return false; // $physreg = COPY %vreg auto PrevCopy = NAPhysToVirtMIs.find(DstReg); if (PrevCopy == NAPhysToVirtMIs.end()) { // We can't remove the copy: there was an intervening clobber of the // non-allocatable physical register after the copy to virtual. LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " << MI); return false; } Register PrevDstReg = PrevCopy->second->getOperand(0).getReg(); if (PrevDstReg == SrcReg) { // Remove the virt->phys copy: we saw the virtual register definition, and // the non-allocatable physical register's state hasn't changed since then. LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI); ++NumNAPhysCopies; return true; } // Potential missed optimization opportunity: we saw a different virtual // register get a copy of the non-allocatable physical register, and we only // track one such copy. Avoid getting confused by this new non-allocatable // physical register definition, and remove it from the tracked copies. LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI); NAPhysToVirtMIs.erase(PrevCopy); return false; } /// \bried Returns true if \p MO is a virtual register operand. static bool isVirtualRegisterOperand(MachineOperand &MO) { return MO.isReg() && MO.getReg().isVirtual(); } bool PeepholeOptimizer::findTargetRecurrence( Register Reg, const SmallSet &TargetRegs, RecurrenceCycle &RC) { // Recurrence found if Reg is in TargetRegs. if (TargetRegs.count(Reg)) return true; // TODO: Curerntly, we only allow the last instruction of the recurrence // cycle (the instruction that feeds the PHI instruction) to have more than // one uses to guarantee that commuting operands does not tie registers // with overlapping live range. Once we have actual live range info of // each register, this constraint can be relaxed. if (!MRI->hasOneNonDBGUse(Reg)) return false; // Give up if the reccurrence chain length is longer than the limit. if (RC.size() >= MaxRecurrenceChain) return false; MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg)); unsigned Idx = MI.findRegisterUseOperandIdx(Reg); // Only interested in recurrences whose instructions have only one def, which // is a virtual register. if (MI.getDesc().getNumDefs() != 1) return false; MachineOperand &DefOp = MI.getOperand(0); if (!isVirtualRegisterOperand(DefOp)) return false; // Check if def operand of MI is tied to any use operand. We are only // interested in the case that all the instructions in the recurrence chain // have there def operand tied with one of the use operand. unsigned TiedUseIdx; if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx)) return false; if (Idx == TiedUseIdx) { RC.push_back(RecurrenceInstr(&MI)); return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); } else { // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) { RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx)); return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); } } return false; } /// Phi instructions will eventually be lowered to copy instructions. /// If phi is in a loop header, a recurrence may formulated around the source /// and destination of the phi. For such case commuting operands of the /// instructions in the recurrence may enable coalescing of the copy instruction /// generated from the phi. For example, if there is a recurrence of /// /// LoopHeader: /// %1 = phi(%0, %100) /// LoopLatch: /// %0 = ADD %2, %1 /// /// , the fact that %0 and %2 are in the same tied operands set makes /// the coalescing of copy instruction generated from the phi in /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and /// %2 have overlapping live range. This introduces additional move /// instruction to the final assembly. However, if we commute %2 and /// %1 of ADD instruction, the redundant move instruction can be /// avoided. bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { SmallSet TargetRegs; for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { MachineOperand &MO = PHI.getOperand(Idx); assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction"); TargetRegs.insert(MO.getReg()); } bool Changed = false; RecurrenceCycle RC; if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) { // Commutes operands of instructions in RC if necessary so that the copy to // be generated from PHI can be coalesced. LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI); for (auto &RI : RC) { LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI())); auto CP = RI.getCommutePair(); if (CP) { Changed = true; TII->commuteInstruction(*(RI.getMI()), false, (*CP).first, (*CP).second); LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI())); } } } return Changed; } bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); if (DisablePeephole) return false; TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getSubtarget().getRegisterInfo(); MRI = &MF.getRegInfo(); DT = Aggressive ? &getAnalysis() : nullptr; MLI = &getAnalysis(); bool Changed = false; for (MachineBasicBlock &MBB : MF) { bool SeenMoveImm = false; // During this forward scan, at some point it needs to answer the question // "given a pointer to an MI in the current BB, is it located before or // after the current instruction". // To perform this, the following set keeps track of the MIs already seen // during the scan, if a MI is not in the set, it is assumed to be located // after. Newly created MIs have to be inserted in the set as well. SmallPtrSet LocalMIs; SmallSet ImmDefRegs; DenseMap ImmDefMIs; SmallSet FoldAsLoadDefCandidates; // Track when a non-allocatable physical register is copied to a virtual // register so that useless moves can be removed. // // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg` // without any intervening re-definition of $physreg. DenseMap NAPhysToVirtMIs; // Set of pairs of virtual registers and their subregs that are copied // from. DenseMap CopySrcMIs; bool IsLoopHeader = MLI->isLoopHeader(&MBB); for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); MII != MIE; ) { MachineInstr *MI = &*MII; // We may be erasing MI below, increment MII now. ++MII; LocalMIs.insert(MI); // Skip debug instructions. They should not affect this peephole // optimization. if (MI->isDebugInstr()) continue; if (MI->isPosition()) continue; if (IsLoopHeader && MI->isPHI()) { if (optimizeRecurrence(*MI)) { Changed = true; continue; } } if (!MI->isCopy()) { for (const MachineOperand &MO : MI->operands()) { // Visit all operands: definitions can be implicit or explicit. if (MO.isReg()) { Register Reg = MO.getReg(); if (MO.isDef() && isNAPhysCopy(Reg)) { const auto &Def = NAPhysToVirtMIs.find(Reg); if (Def != NAPhysToVirtMIs.end()) { // A new definition of the non-allocatable physical register // invalidates previous copies. LLVM_DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI); NAPhysToVirtMIs.erase(Def); } } } else if (MO.isRegMask()) { const uint32_t *RegMask = MO.getRegMask(); for (auto &RegMI : NAPhysToVirtMIs) { Register Def = RegMI.first; if (MachineOperand::clobbersPhysReg(RegMask, Def)) { LLVM_DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI); NAPhysToVirtMIs.erase(Def); } } } } } if (MI->isImplicitDef() || MI->isKill()) continue; if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { // Blow away all non-allocatable physical registers knowledge since we // don't know what's correct anymore. // // FIXME: handle explicit asm clobbers. LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " << *MI); NAPhysToVirtMIs.clear(); } if ((isUncoalescableCopy(*MI) && optimizeUncoalescableCopy(*MI, LocalMIs)) || (MI->isCompare() && optimizeCmpInstr(*MI)) || (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) { // MI is deleted. LocalMIs.erase(MI); Changed = true; continue; } if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) { Changed = true; continue; } if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) { // MI is just rewritten. Changed = true; continue; } if (MI->isCopy() && (foldRedundantCopy(*MI, CopySrcMIs) || foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) { LocalMIs.erase(MI); LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n"); MI->eraseFromParent(); Changed = true; continue; } if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) { SeenMoveImm = true; } else { Changed |= optimizeExtInstr(*MI, MBB, LocalMIs); // optimizeExtInstr might have created new instructions after MI // and before the already incremented MII. Adjust MII so that the // next iteration sees the new instructions. MII = MI; ++MII; if (SeenMoveImm) Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs); } // Check whether MI is a load candidate for folding into a later // instruction. If MI is not a candidate, check whether we can fold an // earlier load into MI. if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) && !FoldAsLoadDefCandidates.empty()) { // We visit each operand even after successfully folding a previous // one. This allows us to fold multiple loads into a single // instruction. We do assume that optimizeLoadInstr doesn't insert // foldable uses earlier in the argument list. Since we don't restart // iteration, we'd miss such cases. const MCInstrDesc &MIDesc = MI->getDesc(); for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); ++i) { const MachineOperand &MOp = MI->getOperand(i); if (!MOp.isReg()) continue; Register FoldAsLoadDefReg = MOp.getReg(); if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { // We need to fold load after optimizeCmpInstr, since // optimizeCmpInstr can enable folding by converting SUB to CMP. // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and // we need it for markUsesInDebugValueAsUndef(). Register FoldedReg = FoldAsLoadDefReg; MachineInstr *DefMI = nullptr; if (MachineInstr *FoldMI = TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { // Update LocalMIs since we replaced MI with FoldMI and deleted // DefMI. LLVM_DEBUG(dbgs() << "Replacing: " << *MI); LLVM_DEBUG(dbgs() << " With: " << *FoldMI); LocalMIs.erase(MI); LocalMIs.erase(DefMI); LocalMIs.insert(FoldMI); // Update the call site info. if (MI->shouldUpdateCallSiteInfo()) MI->getMF()->moveCallSiteInfo(MI, FoldMI); MI->eraseFromParent(); DefMI->eraseFromParent(); MRI->markUsesInDebugValueAsUndef(FoldedReg); FoldAsLoadDefCandidates.erase(FoldedReg); ++NumLoadFold; // MI is replaced with FoldMI so we can continue trying to fold Changed = true; MI = FoldMI; } } } } // If we run into an instruction we can't fold across, discard // the load candidates. Note: We might be able to fold *into* this // instruction, so this needs to be after the folding logic. if (MI->isLoadFoldBarrier()) { LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI); FoldAsLoadDefCandidates.clear(); } } } return Changed; } ValueTrackerResult ValueTracker::getNextSourceFromCopy() { assert(Def->isCopy() && "Invalid definition"); // Copy instruction are supposed to be: Def = Src. // If someone breaks this assumption, bad things will happen everywhere. // There may be implicit uses preventing the copy to be moved across // some target specific register definitions assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 && "Invalid number of operands"); assert(!Def->hasImplicitDef() && "Only implicit uses are allowed"); if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) // If we look for a different subreg, it means we want a subreg of src. // Bails as we do not support composing subregs yet. return ValueTrackerResult(); // Otherwise, we want the whole source. const MachineOperand &Src = Def->getOperand(1); if (Src.isUndef()) return ValueTrackerResult(); return ValueTrackerResult(Src.getReg(), Src.getSubReg()); } ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { assert(Def->isBitcast() && "Invalid definition"); // Bail if there are effects that a plain copy will not expose. if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects()) return ValueTrackerResult(); // Bitcasts with more than one def are not supported. if (Def->getDesc().getNumDefs() != 1) return ValueTrackerResult(); const MachineOperand DefOp = Def->getOperand(DefIdx); if (DefOp.getSubReg() != DefSubReg) // If we look for a different subreg, it means we want a subreg of the src. // Bails as we do not support composing subregs yet. return ValueTrackerResult(); unsigned SrcIdx = Def->getNumOperands(); for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; ++OpIdx) { const MachineOperand &MO = Def->getOperand(OpIdx); if (!MO.isReg() || !MO.getReg()) continue; // Ignore dead implicit defs. if (MO.isImplicit() && MO.isDead()) continue; assert(!MO.isDef() && "We should have skipped all the definitions by now"); if (SrcIdx != EndOpIdx) // Multiple sources? return ValueTrackerResult(); SrcIdx = OpIdx; } // In some rare case, Def has no input, SrcIdx is out of bound, // getOperand(SrcIdx) will fail below. if (SrcIdx >= Def->getNumOperands()) return ValueTrackerResult(); // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY // will break the assumed guarantees for the upper bits. for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) { if (UseMI.isSubregToReg()) return ValueTrackerResult(); } const MachineOperand &Src = Def->getOperand(SrcIdx); if (Src.isUndef()) return ValueTrackerResult(); return ValueTrackerResult(Src.getReg(), Src.getSubReg()); } ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { assert((Def->isRegSequence() || Def->isRegSequenceLike()) && "Invalid definition"); if (Def->getOperand(DefIdx).getSubReg()) // If we are composing subregs, bail out. // The case we are checking is Def. = REG_SEQUENCE. // This should almost never happen as the SSA property is tracked at // the register level (as opposed to the subreg level). // I.e., // Def.sub0 = // Def.sub1 = // is a valid SSA representation for Def.sub0 and Def.sub1, but not for // Def. Thus, it must not be generated. // However, some code could theoretically generates a single // Def.sub0 (i.e, not defining the other subregs) and we would // have this case. // If we can ascertain (or force) that this never happens, we could // turn that into an assertion. return ValueTrackerResult(); if (!TII) // We could handle the REG_SEQUENCE here, but we do not want to // duplicate the code from the generic TII. return ValueTrackerResult(); SmallVector RegSeqInputRegs; if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) return ValueTrackerResult(); // We are looking at: // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... // Check if one of the operand defines the subreg we are interested in. for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { if (RegSeqInput.SubIdx == DefSubReg) return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); } // If the subreg we are tracking is super-defined by another subreg, // we could follow this value. However, this would require to compose // the subreg and we do not do that for now. return ValueTrackerResult(); } ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && "Invalid definition"); if (Def->getOperand(DefIdx).getSubReg()) // If we are composing subreg, bail out. // Same remark as getNextSourceFromRegSequence. // I.e., this may be turned into an assert. return ValueTrackerResult(); if (!TII) // We could handle the REG_SEQUENCE here, but we do not want to // duplicate the code from the generic TII. return ValueTrackerResult(); RegSubRegPair BaseReg; RegSubRegPairAndIdx InsertedReg; if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) return ValueTrackerResult(); // We are looking at: // Def = INSERT_SUBREG v0, v1, sub1 // There are two cases: // 1. DefSubReg == sub1, get v1. // 2. DefSubReg != sub1, the value may be available through v0. // #1 Check if the inserted register matches the required sub index. if (InsertedReg.SubIdx == DefSubReg) { return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); } // #2 Otherwise, if the sub register we are looking for is not partial // defined by the inserted element, we can look through the main // register (v0). const MachineOperand &MODef = Def->getOperand(DefIdx); // If the result register (Def) and the base register (v0) do not // have the same register class or if we have to compose // subregisters, bail out. if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || BaseReg.SubReg) return ValueTrackerResult(); // Get the TRI and check if the inserted sub-register overlaps with the // sub-register we are tracking. const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); if (!TRI || !(TRI->getSubRegIndexLaneMask(DefSubReg) & TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none()) return ValueTrackerResult(); // At this point, the value is available in v0 via the same subreg // we used for Def. return ValueTrackerResult(BaseReg.Reg, DefSubReg); } ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { assert((Def->isExtractSubreg() || Def->isExtractSubregLike()) && "Invalid definition"); // We are looking at: // Def = EXTRACT_SUBREG v0, sub0 // Bail if we have to compose sub registers. // Indeed, if DefSubReg != 0, we would have to compose it with sub0. if (DefSubReg) return ValueTrackerResult(); if (!TII) // We could handle the EXTRACT_SUBREG here, but we do not want to // duplicate the code from the generic TII. return ValueTrackerResult(); RegSubRegPairAndIdx ExtractSubregInputReg; if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) return ValueTrackerResult(); // Bail if we have to compose sub registers. // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. if (ExtractSubregInputReg.SubReg) return ValueTrackerResult(); // Otherwise, the value is available in the v0.sub0. return ValueTrackerResult(ExtractSubregInputReg.Reg, ExtractSubregInputReg.SubIdx); } ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { assert(Def->isSubregToReg() && "Invalid definition"); // We are looking at: // Def = SUBREG_TO_REG Imm, v0, sub0 // Bail if we have to compose sub registers. // If DefSubReg != sub0, we would have to check that all the bits // we track are included in sub0 and if yes, we would have to // determine the right subreg in v0. if (DefSubReg != Def->getOperand(3).getImm()) return ValueTrackerResult(); // Bail if we have to compose sub registers. // Likewise, if v0.subreg != 0, we would have to compose it with sub0. if (Def->getOperand(2).getSubReg()) return ValueTrackerResult(); return ValueTrackerResult(Def->getOperand(2).getReg(), Def->getOperand(3).getImm()); } /// Explore each PHI incoming operand and return its sources. ValueTrackerResult ValueTracker::getNextSourceFromPHI() { assert(Def->isPHI() && "Invalid definition"); ValueTrackerResult Res; // If we look for a different subreg, bail as we do not support composing // subregs yet. if (Def->getOperand(0).getSubReg() != DefSubReg) return ValueTrackerResult(); // Return all register sources for PHI instructions. for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { const MachineOperand &MO = Def->getOperand(i); assert(MO.isReg() && "Invalid PHI instruction"); // We have no code to deal with undef operands. They shouldn't happen in // normal programs anyway. if (MO.isUndef()) return ValueTrackerResult(); Res.addSource(MO.getReg(), MO.getSubReg()); } return Res; } ValueTrackerResult ValueTracker::getNextSourceImpl() { assert(Def && "This method needs a valid definition"); assert(((Def->getOperand(DefIdx).isDef() && (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic())) || Def->getOperand(DefIdx).isImplicit()) && "Invalid DefIdx"); if (Def->isCopy()) return getNextSourceFromCopy(); if (Def->isBitcast()) return getNextSourceFromBitcast(); // All the remaining cases involve "complex" instructions. // Bail if we did not ask for the advanced tracking. if (DisableAdvCopyOpt) return ValueTrackerResult(); if (Def->isRegSequence() || Def->isRegSequenceLike()) return getNextSourceFromRegSequence(); if (Def->isInsertSubreg() || Def->isInsertSubregLike()) return getNextSourceFromInsertSubreg(); if (Def->isExtractSubreg() || Def->isExtractSubregLike()) return getNextSourceFromExtractSubreg(); if (Def->isSubregToReg()) return getNextSourceFromSubregToReg(); if (Def->isPHI()) return getNextSourceFromPHI(); return ValueTrackerResult(); } ValueTrackerResult ValueTracker::getNextSource() { // If we reach a point where we cannot move up in the use-def chain, // there is nothing we can get. if (!Def) return ValueTrackerResult(); ValueTrackerResult Res = getNextSourceImpl(); if (Res.isValid()) { // Update definition, definition index, and subregister for the // next call of getNextSource. // Update the current register. bool OneRegSrc = Res.getNumSources() == 1; if (OneRegSrc) Reg = Res.getSrcReg(0); // Update the result before moving up in the use-def chain // with the instruction containing the last found sources. Res.setInst(Def); // If we can still move up in the use-def chain, move to the next // definition. if (!Register::isPhysicalRegister(Reg) && OneRegSrc) { MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg); if (DI != MRI.def_end()) { Def = DI->getParent(); DefIdx = DI.getOperandNo(); DefSubReg = Res.getSrcSubReg(0); } else { Def = nullptr; } return Res; } } // If we end up here, this means we will not be able to find another source // for the next iteration. Make sure any new call to getNextSource bails out // early by cutting the use-def chain. Def = nullptr; return Res; }