//===- MacroFusion.cpp - Macro Fusion -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This file contains the implementation of the DAG scheduling mutation /// to pair instructions back to back. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MacroFusion.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/CodeGen/ScheduleDAGMutation.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "machine-scheduler" STATISTIC(NumFused, "Number of instr pairs fused"); using namespace llvm; static cl::opt EnableMacroFusion("misched-fusion", cl::Hidden, cl::desc("Enable scheduling for macro fusion."), cl::init(true)); static bool isHazard(const SDep &Dep) { return Dep.getKind() == SDep::Anti || Dep.getKind() == SDep::Output; } static SUnit *getPredClusterSU(const SUnit &SU) { for (const SDep &SI : SU.Preds) if (SI.isCluster()) return SI.getSUnit(); return nullptr; } bool llvm::hasLessThanNumFused(const SUnit &SU, unsigned FuseLimit) { unsigned Num = 1; const SUnit *CurrentSU = &SU; while ((CurrentSU = getPredClusterSU(*CurrentSU)) && Num < FuseLimit) Num ++; return Num < FuseLimit; } bool llvm::fuseInstructionPair(ScheduleDAGInstrs &DAG, SUnit &FirstSU, SUnit &SecondSU) { // Check that neither instr is already paired with another along the edge // between them. for (SDep &SI : FirstSU.Succs) if (SI.isCluster()) return false; for (SDep &SI : SecondSU.Preds) if (SI.isCluster()) return false; // Though the reachability checks above could be made more generic, // perhaps as part of ScheduleDAGInstrs::addEdge(), since such edges are valid, // the extra computation cost makes it less interesting in general cases. // Create a single weak edge between the adjacent instrs. The only effect is // to cause bottom-up scheduling to heavily prioritize the clustered instrs. if (!DAG.addEdge(&SecondSU, SDep(&FirstSU, SDep::Cluster))) return false; // TODO - If we want to chain more than two instructions, we need to create // artifical edges to make dependencies from the FirstSU also dependent // on other chained instructions, and other chained instructions also // dependent on the dependencies of the SecondSU, to prevent them from being // scheduled into these chained instructions. assert(hasLessThanNumFused(FirstSU, 2) && "Currently we only support chaining together two instructions"); // Adjust the latency between both instrs. for (SDep &SI : FirstSU.Succs) if (SI.getSUnit() == &SecondSU) SI.setLatency(0); for (SDep &SI : SecondSU.Preds) if (SI.getSUnit() == &FirstSU) SI.setLatency(0); LLVM_DEBUG( dbgs() << "Macro fuse: "; DAG.dumpNodeName(FirstSU); dbgs() << " - "; DAG.dumpNodeName(SecondSU); dbgs() << " / "; dbgs() << DAG.TII->getName(FirstSU.getInstr()->getOpcode()) << " - " << DAG.TII->getName(SecondSU.getInstr()->getOpcode()) << '\n';); // Make data dependencies from the FirstSU also dependent on the SecondSU to // prevent them from being scheduled between the FirstSU and the SecondSU. if (&SecondSU != &DAG.ExitSU) for (const SDep &SI : FirstSU.Succs) { SUnit *SU = SI.getSUnit(); if (SI.isWeak() || isHazard(SI) || SU == &DAG.ExitSU || SU == &SecondSU || SU->isPred(&SecondSU)) continue; LLVM_DEBUG(dbgs() << " Bind "; DAG.dumpNodeName(SecondSU); dbgs() << " - "; DAG.dumpNodeName(*SU); dbgs() << '\n';); DAG.addEdge(SU, SDep(&SecondSU, SDep::Artificial)); } // Make the FirstSU also dependent on the dependencies of the SecondSU to // prevent them from being scheduled between the FirstSU and the SecondSU. if (&FirstSU != &DAG.EntrySU) { for (const SDep &SI : SecondSU.Preds) { SUnit *SU = SI.getSUnit(); if (SI.isWeak() || isHazard(SI) || &FirstSU == SU || FirstSU.isSucc(SU)) continue; LLVM_DEBUG(dbgs() << " Bind "; DAG.dumpNodeName(*SU); dbgs() << " - "; DAG.dumpNodeName(FirstSU); dbgs() << '\n';); DAG.addEdge(&FirstSU, SDep(SU, SDep::Artificial)); } // ExitSU comes last by design, which acts like an implicit dependency // between ExitSU and any bottom root in the graph. We should transfer // this to FirstSU as well. if (&SecondSU == &DAG.ExitSU) { for (SUnit &SU : DAG.SUnits) { if (SU.Succs.empty()) DAG.addEdge(&FirstSU, SDep(&SU, SDep::Artificial)); } } } ++NumFused; return true; } namespace { /// Post-process the DAG to create cluster edges between instrs that may /// be fused by the processor into a single operation. class MacroFusion : public ScheduleDAGMutation { ShouldSchedulePredTy shouldScheduleAdjacent; bool FuseBlock; bool scheduleAdjacentImpl(ScheduleDAGInstrs &DAG, SUnit &AnchorSU); public: MacroFusion(ShouldSchedulePredTy shouldScheduleAdjacent, bool FuseBlock) : shouldScheduleAdjacent(shouldScheduleAdjacent), FuseBlock(FuseBlock) {} void apply(ScheduleDAGInstrs *DAGInstrs) override; }; } // end anonymous namespace void MacroFusion::apply(ScheduleDAGInstrs *DAG) { if (FuseBlock) // For each of the SUnits in the scheduling block, try to fuse the instr in // it with one in its predecessors. for (SUnit &ISU : DAG->SUnits) scheduleAdjacentImpl(*DAG, ISU); if (DAG->ExitSU.getInstr()) // Try to fuse the instr in the ExitSU with one in its predecessors. scheduleAdjacentImpl(*DAG, DAG->ExitSU); } /// Implement the fusion of instr pairs in the scheduling DAG, /// anchored at the instr in AnchorSU.. bool MacroFusion::scheduleAdjacentImpl(ScheduleDAGInstrs &DAG, SUnit &AnchorSU) { const MachineInstr &AnchorMI = *AnchorSU.getInstr(); const TargetInstrInfo &TII = *DAG.TII; const TargetSubtargetInfo &ST = DAG.MF.getSubtarget(); // Check if the anchor instr may be fused. if (!shouldScheduleAdjacent(TII, ST, nullptr, AnchorMI)) return false; // Explorer for fusion candidates among the dependencies of the anchor instr. for (SDep &Dep : AnchorSU.Preds) { // Ignore dependencies other than data or strong ordering. if (Dep.isWeak() || isHazard(Dep)) continue; SUnit &DepSU = *Dep.getSUnit(); if (DepSU.isBoundaryNode()) continue; // Only chain two instructions together at most. const MachineInstr *DepMI = DepSU.getInstr(); if (!hasLessThanNumFused(DepSU, 2) || !shouldScheduleAdjacent(TII, ST, DepMI, AnchorMI)) continue; if (fuseInstructionPair(DAG, DepSU, AnchorSU)) return true; } return false; } std::unique_ptr llvm::createMacroFusionDAGMutation( ShouldSchedulePredTy shouldScheduleAdjacent) { if(EnableMacroFusion) return std::make_unique(shouldScheduleAdjacent, true); return nullptr; } std::unique_ptr llvm::createBranchMacroFusionDAGMutation( ShouldSchedulePredTy shouldScheduleAdjacent) { if(EnableMacroFusion) return std::make_unique(shouldScheduleAdjacent, false); return nullptr; }