//===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Pass to verify generated machine code. The following is checked: // // Operand counts: All explicit operands must be present. // // Register classes: All physical and virtual register operands must be // compatible with the register class required by the instruction descriptor. // // Register live intervals: Registers must be defined only once, and must be // defined before use. // // The machine code verifier is enabled with the command-line option // -verify-machineinstrs. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineVerifier.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/CodeGen/CodeGenCommonISel.h" #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LiveRangeCalc.h" #include "llvm/CodeGen/LiveStacks.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConvergenceVerifier.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBundle.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/RegisterBank.h" #include "llvm/CodeGen/RegisterBankInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGenTypes/LowLevelType.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/EHPersonalities.h" #include "llvm/IR/Function.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/InitializePasses.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/ModRef.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include #include #include using namespace llvm; namespace { struct MachineVerifier { MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b) : MFAM(&MFAM), Banner(b) {} MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} MachineVerifier(const char *b, LiveVariables *LiveVars, LiveIntervals *LiveInts, LiveStacks *LiveStks, SlotIndexes *Indexes) : Banner(b), LiveVars(LiveVars), LiveInts(LiveInts), LiveStks(LiveStks), Indexes(Indexes) {} unsigned verify(const MachineFunction &MF); MachineFunctionAnalysisManager *MFAM = nullptr; Pass *const PASS = nullptr; const char *Banner; const MachineFunction *MF = nullptr; const TargetMachine *TM = nullptr; const TargetInstrInfo *TII = nullptr; const TargetRegisterInfo *TRI = nullptr; const MachineRegisterInfo *MRI = nullptr; const RegisterBankInfo *RBI = nullptr; unsigned foundErrors = 0; // Avoid querying the MachineFunctionProperties for each operand. bool isFunctionRegBankSelected = false; bool isFunctionSelected = false; bool isFunctionTracksDebugUserValues = false; using RegVector = SmallVector; using RegMaskVector = SmallVector; using RegSet = DenseSet; using RegMap = DenseMap; using BlockSet = SmallPtrSet; const MachineInstr *FirstNonPHI = nullptr; const MachineInstr *FirstTerminator = nullptr; BlockSet FunctionBlocks; BitVector regsReserved; RegSet regsLive; RegVector regsDefined, regsDead, regsKilled; RegMaskVector regMasks; SlotIndex lastIndex; // Add Reg and any sub-registers to RV void addRegWithSubRegs(RegVector &RV, Register Reg) { RV.push_back(Reg); if (Reg.isPhysical()) append_range(RV, TRI->subregs(Reg.asMCReg())); } struct BBInfo { // Is this MBB reachable from the MF entry point? bool reachable = false; // Vregs that must be live in because they are used without being // defined. Map value is the user. vregsLiveIn doesn't include regs // that only are used by PHI nodes. RegMap vregsLiveIn; // Regs killed in MBB. They may be defined again, and will then be in both // regsKilled and regsLiveOut. RegSet regsKilled; // Regs defined in MBB and live out. Note that vregs passing through may // be live out without being mentioned here. RegSet regsLiveOut; // Vregs that pass through MBB untouched. This set is disjoint from // regsKilled and regsLiveOut. RegSet vregsPassed; // Vregs that must pass through MBB because they are needed by a successor // block. This set is disjoint from regsLiveOut. RegSet vregsRequired; // Set versions of block's predecessor and successor lists. BlockSet Preds, Succs; BBInfo() = default; // Add register to vregsRequired if it belongs there. Return true if // anything changed. bool addRequired(Register Reg) { if (!Reg.isVirtual()) return false; if (regsLiveOut.count(Reg)) return false; return vregsRequired.insert(Reg).second; } // Same for a full set. bool addRequired(const RegSet &RS) { bool Changed = false; for (Register Reg : RS) Changed |= addRequired(Reg); return Changed; } // Same for a full map. bool addRequired(const RegMap &RM) { bool Changed = false; for (const auto &I : RM) Changed |= addRequired(I.first); return Changed; } // Live-out registers are either in regsLiveOut or vregsPassed. bool isLiveOut(Register Reg) const { return regsLiveOut.count(Reg) || vregsPassed.count(Reg); } }; // Extra register info per MBB. DenseMap MBBInfoMap; bool isReserved(Register Reg) { return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); } bool isAllocatable(Register Reg) const { return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && !regsReserved.test(Reg.id()); } // Analysis information if available LiveVariables *LiveVars = nullptr; LiveIntervals *LiveInts = nullptr; LiveStacks *LiveStks = nullptr; SlotIndexes *Indexes = nullptr; // This is calculated only when trying to verify convergence control tokens. // Similar to the LLVM IR verifier, we calculate this locally instead of // relying on the pass manager. MachineDominatorTree DT; void visitMachineFunctionBefore(); void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); void visitMachineBundleBefore(const MachineInstr *MI); /// Verify that all of \p MI's virtual register operands are scalars. /// \returns True if all virtual register operands are scalar. False /// otherwise. bool verifyAllRegOpsScalar(const MachineInstr &MI, const MachineRegisterInfo &MRI); bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); bool verifyGIntrinsicSideEffects(const MachineInstr *MI); bool verifyGIntrinsicConvergence(const MachineInstr *MI); void verifyPreISelGenericInstruction(const MachineInstr *MI); void visitMachineInstrBefore(const MachineInstr *MI); void visitMachineOperand(const MachineOperand *MO, unsigned MONum); void visitMachineBundleAfter(const MachineInstr *MI); void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); void visitMachineFunctionAfter(); void report(const char *msg, const MachineFunction *MF); void report(const char *msg, const MachineBasicBlock *MBB); void report(const char *msg, const MachineInstr *MI); void report(const char *msg, const MachineOperand *MO, unsigned MONum, LLT MOVRegType = LLT{}); void report(const Twine &Msg, const MachineInstr *MI); void report_context(const LiveInterval &LI) const; void report_context(const LiveRange &LR, Register VRegUnit, LaneBitmask LaneMask) const; void report_context(const LiveRange::Segment &S) const; void report_context(const VNInfo &VNI) const; void report_context(SlotIndex Pos) const; void report_context(MCPhysReg PhysReg) const; void report_context_liverange(const LiveRange &LR) const; void report_context_lanemask(LaneBitmask LaneMask) const; void report_context_vreg(Register VReg) const; void report_context_vreg_regunit(Register VRegOrUnit) const; void verifyInlineAsm(const MachineInstr *MI); void checkLiveness(const MachineOperand *MO, unsigned MONum); void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, Register VRegOrUnit, LaneBitmask LaneMask = LaneBitmask::getNone()); void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, Register VRegOrUnit, bool SubRangeCheck = false, LaneBitmask LaneMask = LaneBitmask::getNone()); void markReachable(const MachineBasicBlock *MBB); void calcRegsPassed(); void checkPHIOps(const MachineBasicBlock &MBB); void calcRegsRequired(); void verifyLiveVariables(); void verifyLiveIntervals(); void verifyLiveInterval(const LiveInterval&); void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, LaneBitmask); void verifyLiveRangeSegment(const LiveRange &, const LiveRange::const_iterator I, Register, LaneBitmask); void verifyLiveRange(const LiveRange &, Register, LaneBitmask LaneMask = LaneBitmask::getNone()); void verifyStackFrame(); void verifySlotIndexes() const; void verifyProperties(const MachineFunction &MF); }; struct MachineVerifierLegacyPass : public MachineFunctionPass { static char ID; // Pass ID, replacement for typeid const std::string Banner; MachineVerifierLegacyPass(std::string banner = std::string()) : MachineFunctionPass(ID), Banner(std::move(banner)) { initializeMachineVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addUsedIfAvailable(); AU.addUsedIfAvailable(); AU.addUsedIfAvailable(); AU.addUsedIfAvailable(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override { // Skip functions that have known verification problems. // FIXME: Remove this mechanism when all problematic passes have been // fixed. if (MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailsVerification)) return false; unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); if (FoundErrors) report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); return false; } }; } // end anonymous namespace PreservedAnalyses MachineVerifierPass::run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM) { // Skip functions that have known verification problems. // FIXME: Remove this mechanism when all problematic passes have been // fixed. if (MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailsVerification)) return PreservedAnalyses::all(); unsigned FoundErrors = MachineVerifier(MFAM, Banner.c_str()).verify(MF); if (FoundErrors) report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); return PreservedAnalyses::all(); } char MachineVerifierLegacyPass::ID = 0; INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier", "Verify generated machine code", false, false) FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { return new MachineVerifierLegacyPass(Banner); } void llvm::verifyMachineFunction(const std::string &Banner, const MachineFunction &MF) { // TODO: Use MFAM after porting below analyses. // LiveVariables *LiveVars; // LiveIntervals *LiveInts; // LiveStacks *LiveStks; // SlotIndexes *Indexes; unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); if (FoundErrors) report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); } bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) const { MachineFunction &MF = const_cast(*this); unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); if (AbortOnErrors && FoundErrors) report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); return FoundErrors == 0; } bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, const char *Banner, bool AbortOnErrors) const { MachineFunction &MF = const_cast(*this); unsigned FoundErrors = MachineVerifier(Banner, nullptr, LiveInts, nullptr, Indexes).verify(MF); if (AbortOnErrors && FoundErrors) report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); return FoundErrors == 0; } void MachineVerifier::verifySlotIndexes() const { if (Indexes == nullptr) return; // Ensure the IdxMBB list is sorted by slot indexes. SlotIndex Last; for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), E = Indexes->MBBIndexEnd(); I != E; ++I) { assert(!Last.isValid() || I->first > Last); Last = I->first; } } void MachineVerifier::verifyProperties(const MachineFunction &MF) { // If a pass has introduced virtual registers without clearing the // NoVRegs property (or set it without allocating the vregs) // then report an error. if (MF.getProperties().hasProperty( MachineFunctionProperties::Property::NoVRegs) && MRI->getNumVirtRegs()) report("Function has NoVRegs property but there are VReg operands", &MF); } unsigned MachineVerifier::verify(const MachineFunction &MF) { foundErrors = 0; this->MF = &MF; TM = &MF.getTarget(); TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getSubtarget().getRegisterInfo(); RBI = MF.getSubtarget().getRegBankInfo(); MRI = &MF.getRegInfo(); const bool isFunctionFailedISel = MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailedISel); // If we're mid-GlobalISel and we already triggered the fallback path then // it's expected that the MIR is somewhat broken but that's ok since we'll // reset it and clear the FailedISel attribute in ResetMachineFunctions. if (isFunctionFailedISel) return foundErrors; isFunctionRegBankSelected = MF.getProperties().hasProperty( MachineFunctionProperties::Property::RegBankSelected); isFunctionSelected = MF.getProperties().hasProperty( MachineFunctionProperties::Property::Selected); isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( MachineFunctionProperties::Property::TracksDebugUserValues); if (PASS) { auto *LISWrapper = PASS->getAnalysisIfAvailable(); LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr; // We don't want to verify LiveVariables if LiveIntervals is available. auto *LVWrapper = PASS->getAnalysisIfAvailable(); if (!LiveInts) LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr; LiveStks = PASS->getAnalysisIfAvailable(); auto *SIWrapper = PASS->getAnalysisIfAvailable(); Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr; } if (MFAM) { MachineFunction &Func = const_cast(MF); LiveInts = MFAM->getCachedResult(Func); if (!LiveInts) LiveVars = MFAM->getCachedResult(Func); // TODO: LiveStks = MFAM->getCachedResult(Func); Indexes = MFAM->getCachedResult(Func); } verifySlotIndexes(); verifyProperties(MF); visitMachineFunctionBefore(); for (const MachineBasicBlock &MBB : MF) { visitMachineBasicBlockBefore(&MBB); // Keep track of the current bundle header. const MachineInstr *CurBundle = nullptr; // Do we expect the next instruction to be part of the same bundle? bool InBundle = false; for (const MachineInstr &MI : MBB.instrs()) { if (MI.getParent() != &MBB) { report("Bad instruction parent pointer", &MBB); errs() << "Instruction: " << MI; continue; } // Check for consistent bundle flags. if (InBundle && !MI.isBundledWithPred()) report("Missing BundledPred flag, " "BundledSucc was set on predecessor", &MI); if (!InBundle && MI.isBundledWithPred()) report("BundledPred flag is set, " "but BundledSucc not set on predecessor", &MI); // Is this a bundle header? if (!MI.isInsideBundle()) { if (CurBundle) visitMachineBundleAfter(CurBundle); CurBundle = &MI; visitMachineBundleBefore(CurBundle); } else if (!CurBundle) report("No bundle header", &MI); visitMachineInstrBefore(&MI); for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { const MachineOperand &Op = MI.getOperand(I); if (Op.getParent() != &MI) { // Make sure to use correct addOperand / removeOperand / ChangeTo // functions when replacing operands of a MachineInstr. report("Instruction has operand with wrong parent set", &MI); } visitMachineOperand(&Op, I); } // Was this the last bundled instruction? InBundle = MI.isBundledWithSucc(); } if (CurBundle) visitMachineBundleAfter(CurBundle); if (InBundle) report("BundledSucc flag set on last instruction in block", &MBB.back()); visitMachineBasicBlockAfter(&MBB); } visitMachineFunctionAfter(); // Clean up. regsLive.clear(); regsDefined.clear(); regsDead.clear(); regsKilled.clear(); regMasks.clear(); MBBInfoMap.clear(); return foundErrors; } void MachineVerifier::report(const char *msg, const MachineFunction *MF) { assert(MF); errs() << '\n'; if (!foundErrors++) { if (Banner) errs() << "# " << Banner << '\n'; if (LiveInts != nullptr) LiveInts->print(errs()); else MF->print(errs(), Indexes); } errs() << "*** Bad machine code: " << msg << " ***\n" << "- function: " << MF->getName() << "\n"; } void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { assert(MBB); report(msg, MBB->getParent()); errs() << "- basic block: " << printMBBReference(*MBB) << ' ' << MBB->getName() << " (" << (const void *)MBB << ')'; if (Indexes) errs() << " [" << Indexes->getMBBStartIdx(MBB) << ';' << Indexes->getMBBEndIdx(MBB) << ')'; errs() << '\n'; } void MachineVerifier::report(const char *msg, const MachineInstr *MI) { assert(MI); report(msg, MI->getParent()); errs() << "- instruction: "; if (Indexes && Indexes->hasIndex(*MI)) errs() << Indexes->getInstructionIndex(*MI) << '\t'; MI->print(errs(), /*IsStandalone=*/true); } void MachineVerifier::report(const char *msg, const MachineOperand *MO, unsigned MONum, LLT MOVRegType) { assert(MO); report(msg, MO->getParent()); errs() << "- operand " << MONum << ": "; MO->print(errs(), MOVRegType, TRI); errs() << "\n"; } void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { report(Msg.str().c_str(), MI); } void MachineVerifier::report_context(SlotIndex Pos) const { errs() << "- at: " << Pos << '\n'; } void MachineVerifier::report_context(const LiveInterval &LI) const { errs() << "- interval: " << LI << '\n'; } void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, LaneBitmask LaneMask) const { report_context_liverange(LR); report_context_vreg_regunit(VRegUnit); if (LaneMask.any()) report_context_lanemask(LaneMask); } void MachineVerifier::report_context(const LiveRange::Segment &S) const { errs() << "- segment: " << S << '\n'; } void MachineVerifier::report_context(const VNInfo &VNI) const { errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; } void MachineVerifier::report_context_liverange(const LiveRange &LR) const { errs() << "- liverange: " << LR << '\n'; } void MachineVerifier::report_context(MCPhysReg PReg) const { errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; } void MachineVerifier::report_context_vreg(Register VReg) const { errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; } void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { if (VRegOrUnit.isVirtual()) { report_context_vreg(VRegOrUnit); } else { errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; } } void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; } void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { BBInfo &MInfo = MBBInfoMap[MBB]; if (!MInfo.reachable) { MInfo.reachable = true; for (const MachineBasicBlock *Succ : MBB->successors()) markReachable(Succ); } } void MachineVerifier::visitMachineFunctionBefore() { lastIndex = SlotIndex(); regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() : TRI->getReservedRegs(*MF); if (!MF->empty()) markReachable(&MF->front()); // Build a set of the basic blocks in the function. FunctionBlocks.clear(); for (const auto &MBB : *MF) { FunctionBlocks.insert(&MBB); BBInfo &MInfo = MBBInfoMap[&MBB]; MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); if (MInfo.Preds.size() != MBB.pred_size()) report("MBB has duplicate entries in its predecessor list.", &MBB); MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); if (MInfo.Succs.size() != MBB.succ_size()) report("MBB has duplicate entries in its successor list.", &MBB); } // Check that the register use lists are sane. MRI->verifyUseLists(); if (!MF->empty()) verifyStackFrame(); } void MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { FirstTerminator = nullptr; FirstNonPHI = nullptr; if (!MF->getProperties().hasProperty( MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { // If this block has allocatable physical registers live-in, check that // it is an entry block or landing pad. for (const auto &LI : MBB->liveins()) { if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && MBB->getIterator() != MBB->getParent()->begin() && !MBB->isInlineAsmBrIndirectTarget()) { report("MBB has allocatable live-in, but isn't entry, landing-pad, or " "inlineasm-br-indirect-target.", MBB); report_context(LI.PhysReg); } } } if (MBB->isIRBlockAddressTaken()) { if (!MBB->getAddressTakenIRBlock()->hasAddressTaken()) report("ir-block-address-taken is associated with basic block not used by " "a blockaddress.", MBB); } // Count the number of landing pad successors. SmallPtrSet LandingPadSuccs; for (const auto *succ : MBB->successors()) { if (succ->isEHPad()) LandingPadSuccs.insert(succ); if (!FunctionBlocks.count(succ)) report("MBB has successor that isn't part of the function.", MBB); if (!MBBInfoMap[succ].Preds.count(MBB)) { report("Inconsistent CFG", MBB); errs() << "MBB is not in the predecessor list of the successor " << printMBBReference(*succ) << ".\n"; } } // Check the predecessor list. for (const MachineBasicBlock *Pred : MBB->predecessors()) { if (!FunctionBlocks.count(Pred)) report("MBB has predecessor that isn't part of the function.", MBB); if (!MBBInfoMap[Pred].Succs.count(MBB)) { report("Inconsistent CFG", MBB); errs() << "MBB is not in the successor list of the predecessor " << printMBBReference(*Pred) << ".\n"; } } const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); const BasicBlock *BB = MBB->getBasicBlock(); const Function &F = MF->getFunction(); if (LandingPadSuccs.size() > 1 && !(AsmInfo && AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && BB && isa(BB->getTerminator())) && !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) report("MBB has more than one landing pad successor", MBB); // Call analyzeBranch. If it succeeds, there several more conditions to check. MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; if (!TII->analyzeBranch(*const_cast(MBB), TBB, FBB, Cond)) { // Ok, analyzeBranch thinks it knows what's going on with this block. Let's // check whether its answers match up with reality. if (!TBB && !FBB) { // Block falls through to its successor. if (!MBB->empty() && MBB->back().isBarrier() && !TII->isPredicated(MBB->back())) { report("MBB exits via unconditional fall-through but ends with a " "barrier instruction!", MBB); } if (!Cond.empty()) { report("MBB exits via unconditional fall-through but has a condition!", MBB); } } else if (TBB && !FBB && Cond.empty()) { // Block unconditionally branches somewhere. if (MBB->empty()) { report("MBB exits via unconditional branch but doesn't contain " "any instructions!", MBB); } else if (!MBB->back().isBarrier()) { report("MBB exits via unconditional branch but doesn't end with a " "barrier instruction!", MBB); } else if (!MBB->back().isTerminator()) { report("MBB exits via unconditional branch but the branch isn't a " "terminator instruction!", MBB); } } else if (TBB && !FBB && !Cond.empty()) { // Block conditionally branches somewhere, otherwise falls through. if (MBB->empty()) { report("MBB exits via conditional branch/fall-through but doesn't " "contain any instructions!", MBB); } else if (MBB->back().isBarrier()) { report("MBB exits via conditional branch/fall-through but ends with a " "barrier instruction!", MBB); } else if (!MBB->back().isTerminator()) { report("MBB exits via conditional branch/fall-through but the branch " "isn't a terminator instruction!", MBB); } } else if (TBB && FBB) { // Block conditionally branches somewhere, otherwise branches // somewhere else. if (MBB->empty()) { report("MBB exits via conditional branch/branch but doesn't " "contain any instructions!", MBB); } else if (!MBB->back().isBarrier()) { report("MBB exits via conditional branch/branch but doesn't end with a " "barrier instruction!", MBB); } else if (!MBB->back().isTerminator()) { report("MBB exits via conditional branch/branch but the branch " "isn't a terminator instruction!", MBB); } if (Cond.empty()) { report("MBB exits via conditional branch/branch but there's no " "condition!", MBB); } } else { report("analyzeBranch returned invalid data!", MBB); } // Now check that the successors match up with the answers reported by // analyzeBranch. if (TBB && !MBB->isSuccessor(TBB)) report("MBB exits via jump or conditional branch, but its target isn't a " "CFG successor!", MBB); if (FBB && !MBB->isSuccessor(FBB)) report("MBB exits via conditional branch, but its target isn't a CFG " "successor!", MBB); // There might be a fallthrough to the next block if there's either no // unconditional true branch, or if there's a condition, and one of the // branches is missing. bool Fallthrough = !TBB || (!Cond.empty() && !FBB); // A conditional fallthrough must be an actual CFG successor, not // unreachable. (Conversely, an unconditional fallthrough might not really // be a successor, because the block might end in unreachable.) if (!Cond.empty() && !FBB) { MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); if (MBBI == MF->end()) { report("MBB conditionally falls through out of function!", MBB); } else if (!MBB->isSuccessor(&*MBBI)) report("MBB exits via conditional branch/fall-through but the CFG " "successors don't match the actual successors!", MBB); } // Verify that there aren't any extra un-accounted-for successors. for (const MachineBasicBlock *SuccMBB : MBB->successors()) { // If this successor is one of the branch targets, it's okay. if (SuccMBB == TBB || SuccMBB == FBB) continue; // If we might have a fallthrough, and the successor is the fallthrough // block, that's also ok. if (Fallthrough && SuccMBB == MBB->getNextNode()) continue; // Also accept successors which are for exception-handling or might be // inlineasm_br targets. if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) continue; report("MBB has unexpected successors which are not branch targets, " "fallthrough, EHPads, or inlineasm_br targets.", MBB); } } regsLive.clear(); if (MRI->tracksLiveness()) { for (const auto &LI : MBB->liveins()) { if (!Register::isPhysicalRegister(LI.PhysReg)) { report("MBB live-in list contains non-physical register", MBB); continue; } for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) regsLive.insert(SubReg); } } const MachineFrameInfo &MFI = MF->getFrameInfo(); BitVector PR = MFI.getPristineRegs(*MF); for (unsigned I : PR.set_bits()) { for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) regsLive.insert(SubReg); } regsKilled.clear(); regsDefined.clear(); if (Indexes) lastIndex = Indexes->getMBBStartIdx(MBB); } // This function gets called for all bundle headers, including normal // stand-alone unbundled instructions. void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { if (Indexes && Indexes->hasIndex(*MI)) { SlotIndex idx = Indexes->getInstructionIndex(*MI); if (!(idx > lastIndex)) { report("Instruction index out of order", MI); errs() << "Last instruction was at " << lastIndex << '\n'; } lastIndex = idx; } // Ensure non-terminators don't follow terminators. if (MI->isTerminator()) { if (!FirstTerminator) FirstTerminator = MI; } else if (FirstTerminator) { // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to // precede non-terminators. if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) { report("Non-terminator instruction after the first terminator", MI); errs() << "First terminator was:\t" << *FirstTerminator; } } } // The operands on an INLINEASM instruction must follow a template. // Verify that the flag operands make sense. void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { // The first two operands on INLINEASM are the asm string and global flags. if (MI->getNumOperands() < 2) { report("Too few operands on inline asm", MI); return; } if (!MI->getOperand(0).isSymbol()) report("Asm string must be an external symbol", MI); if (!MI->getOperand(1).isImm()) report("Asm flags must be an immediate", MI); // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, // and Extra_IsConvergent = 32. if (!isUInt<6>(MI->getOperand(1).getImm())) report("Unknown asm flags", &MI->getOperand(1), 1); static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); unsigned OpNo = InlineAsm::MIOp_FirstOperand; unsigned NumOps; for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { const MachineOperand &MO = MI->getOperand(OpNo); // There may be implicit ops after the fixed operands. if (!MO.isImm()) break; const InlineAsm::Flag F(MO.getImm()); NumOps = 1 + F.getNumOperandRegisters(); } if (OpNo > MI->getNumOperands()) report("Missing operands in last group", MI); // An optional MDNode follows the groups. if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) ++OpNo; // All trailing operands must be implicit registers. for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { const MachineOperand &MO = MI->getOperand(OpNo); if (!MO.isReg() || !MO.isImplicit()) report("Expected implicit register after groups", &MO, OpNo); } if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) { const MachineBasicBlock *MBB = MI->getParent(); for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isMBB()) continue; // Check the successor & predecessor lists look ok, assume they are // not. Find the indirect target without going through the successors. const MachineBasicBlock *IndirectTargetMBB = MO.getMBB(); if (!IndirectTargetMBB) { report("INLINEASM_BR indirect target does not exist", &MO, i); break; } if (!MBB->isSuccessor(IndirectTargetMBB)) report("INLINEASM_BR indirect target missing from successor list", &MO, i); if (!IndirectTargetMBB->isPredecessor(MBB)) report("INLINEASM_BR indirect target predecessor list missing parent", &MO, i); } } } bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, const MachineRegisterInfo &MRI) { if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { if (!Op.isReg()) return false; const auto Reg = Op.getReg(); if (Reg.isPhysical()) return false; return !MRI.getType(Reg).isScalar(); })) return true; report("All register operands must have scalar types", &MI); return false; } /// Check that types are consistent when two operands need to have the same /// number of vector elements. /// \return true if the types are valid. bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI) { if (Ty0.isVector() != Ty1.isVector()) { report("operand types must be all-vector or all-scalar", MI); // Generally we try to report as many issues as possible at once, but in // this case it's not clear what should we be comparing the size of the // scalar with: the size of the whole vector or its lane. Instead of // making an arbitrary choice and emitting not so helpful message, let's // avoid the extra noise and stop here. return false; } if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) { report("operand types must preserve number of vector elements", MI); return false; } return true; } bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) { auto Opcode = MI->getOpcode(); bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC || Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT; unsigned IntrID = cast(MI)->getIntrinsicID(); if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { AttributeList Attrs = Intrinsic::getAttributes( MF->getFunction().getContext(), static_cast(IntrID)); bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory(); if (NoSideEffects && DeclHasSideEffects) { report(Twine(TII->getName(Opcode), " used with intrinsic that accesses memory"), MI); return false; } if (!NoSideEffects && !DeclHasSideEffects) { report(Twine(TII->getName(Opcode), " used with readnone intrinsic"), MI); return false; } } return true; } bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) { auto Opcode = MI->getOpcode(); bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC || Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS; unsigned IntrID = cast(MI)->getIntrinsicID(); if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { AttributeList Attrs = Intrinsic::getAttributes( MF->getFunction().getContext(), static_cast(IntrID)); bool DeclIsConvergent = Attrs.hasFnAttr(Attribute::Convergent); if (NotConvergent && DeclIsConvergent) { report(Twine(TII->getName(Opcode), " used with a convergent intrinsic"), MI); return false; } if (!NotConvergent && !DeclIsConvergent) { report( Twine(TII->getName(Opcode), " used with a non-convergent intrinsic"), MI); return false; } } return true; } void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { if (isFunctionSelected) report("Unexpected generic instruction in a Selected function", MI); const MCInstrDesc &MCID = MI->getDesc(); unsigned NumOps = MI->getNumOperands(); // Branches must reference a basic block if they are not indirect if (MI->isBranch() && !MI->isIndirectBranch()) { bool HasMBB = false; for (const MachineOperand &Op : MI->operands()) { if (Op.isMBB()) { HasMBB = true; break; } } if (!HasMBB) { report("Branch instruction is missing a basic block operand or " "isIndirectBranch property", MI); } } // Check types. SmallVector Types; for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); I != E; ++I) { if (!MCID.operands()[I].isGenericType()) continue; // Generic instructions specify type equality constraints between some of // their operands. Make sure these are consistent. size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex(); Types.resize(std::max(TypeIdx + 1, Types.size())); const MachineOperand *MO = &MI->getOperand(I); if (!MO->isReg()) { report("generic instruction must use register operands", MI); continue; } LLT OpTy = MRI->getType(MO->getReg()); // Don't report a type mismatch if there is no actual mismatch, only a // type missing, to reduce noise: if (OpTy.isValid()) { // Only the first valid type for a type index will be printed: don't // overwrite it later so it's always clear which type was expected: if (!Types[TypeIdx].isValid()) Types[TypeIdx] = OpTy; else if (Types[TypeIdx] != OpTy) report("Type mismatch in generic instruction", MO, I, OpTy); } else { // Generic instructions must have types attached to their operands. report("Generic instruction is missing a virtual register type", MO, I); } } // Generic opcodes must not have physical register operands. for (unsigned I = 0; I < MI->getNumOperands(); ++I) { const MachineOperand *MO = &MI->getOperand(I); if (MO->isReg() && MO->getReg().isPhysical()) report("Generic instruction cannot have physical register", MO, I); } // Avoid out of bounds in checks below. This was already reported earlier. if (MI->getNumOperands() < MCID.getNumOperands()) return; StringRef ErrorInfo; if (!TII->verifyInstruction(*MI, ErrorInfo)) report(ErrorInfo.data(), MI); // Verify properties of various specific instruction types unsigned Opc = MI->getOpcode(); switch (Opc) { case TargetOpcode::G_ASSERT_SEXT: case TargetOpcode::G_ASSERT_ZEXT: { std::string OpcName = Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; if (!MI->getOperand(2).isImm()) { report(Twine(OpcName, " expects an immediate operand #2"), MI); break; } Register Dst = MI->getOperand(0).getReg(); Register Src = MI->getOperand(1).getReg(); LLT SrcTy = MRI->getType(Src); int64_t Imm = MI->getOperand(2).getImm(); if (Imm <= 0) { report(Twine(OpcName, " size must be >= 1"), MI); break; } if (Imm >= SrcTy.getScalarSizeInBits()) { report(Twine(OpcName, " size must be less than source bit width"), MI); break; } const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI); const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI); // Allow only the source bank to be set. if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { report(Twine(OpcName, " cannot change register bank"), MI); break; } // Don't allow a class change. Do allow member class->regbank. const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst); if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) { report( Twine(OpcName, " source and destination register classes must match"), MI); break; } break; } case TargetOpcode::G_CONSTANT: case TargetOpcode::G_FCONSTANT: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); if (DstTy.isVector()) report("Instruction cannot use a vector result type", MI); if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { if (!MI->getOperand(1).isCImm()) { report("G_CONSTANT operand must be cimm", MI); break; } const ConstantInt *CI = MI->getOperand(1).getCImm(); if (CI->getBitWidth() != DstTy.getSizeInBits()) report("inconsistent constant size", MI); } else { if (!MI->getOperand(1).isFPImm()) { report("G_FCONSTANT operand must be fpimm", MI); break; } const ConstantFP *CF = MI->getOperand(1).getFPImm(); if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != DstTy.getSizeInBits()) { report("inconsistent constant size", MI); } } break; } case TargetOpcode::G_LOAD: case TargetOpcode::G_STORE: case TargetOpcode::G_ZEXTLOAD: case TargetOpcode::G_SEXTLOAD: { LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); if (!PtrTy.isPointer()) report("Generic memory instruction must access a pointer", MI); // Generic loads and stores must have a single MachineMemOperand // describing that access. if (!MI->hasOneMemOperand()) { report("Generic instruction accessing memory must have one mem operand", MI); } else { const MachineMemOperand &MMO = **MI->memoperands_begin(); if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { if (TypeSize::isKnownGE(MMO.getSizeInBits().getValue(), ValTy.getSizeInBits())) report("Generic extload must have a narrower memory type", MI); } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { if (TypeSize::isKnownGT(MMO.getSize().getValue(), ValTy.getSizeInBytes())) report("load memory size cannot exceed result size", MI); } else if (MI->getOpcode() == TargetOpcode::G_STORE) { if (TypeSize::isKnownLT(ValTy.getSizeInBytes(), MMO.getSize().getValue())) report("store memory size cannot exceed value size", MI); } const AtomicOrdering Order = MMO.getSuccessOrdering(); if (Opc == TargetOpcode::G_STORE) { if (Order == AtomicOrdering::Acquire || Order == AtomicOrdering::AcquireRelease) report("atomic store cannot use acquire ordering", MI); } else { if (Order == AtomicOrdering::Release || Order == AtomicOrdering::AcquireRelease) report("atomic load cannot use release ordering", MI); } } break; } case TargetOpcode::G_PHI: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), [this, &DstTy](const MachineOperand &MO) { if (!MO.isReg()) return true; LLT Ty = MRI->getType(MO.getReg()); if (!Ty.isValid() || (Ty != DstTy)) return false; return true; })) report("Generic Instruction G_PHI has operands with incompatible/missing " "types", MI); break; } case TargetOpcode::G_BITCAST: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); if (!DstTy.isValid() || !SrcTy.isValid()) break; if (SrcTy.isPointer() != DstTy.isPointer()) report("bitcast cannot convert between pointers and other types", MI); if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) report("bitcast sizes must match", MI); if (SrcTy == DstTy) report("bitcast must change the type", MI); break; } case TargetOpcode::G_INTTOPTR: case TargetOpcode::G_PTRTOINT: case TargetOpcode::G_ADDRSPACE_CAST: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); if (!DstTy.isValid() || !SrcTy.isValid()) break; verifyVectorElementMatch(DstTy, SrcTy, MI); DstTy = DstTy.getScalarType(); SrcTy = SrcTy.getScalarType(); if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { if (!DstTy.isPointer()) report("inttoptr result type must be a pointer", MI); if (SrcTy.isPointer()) report("inttoptr source type must not be a pointer", MI); } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { if (!SrcTy.isPointer()) report("ptrtoint source type must be a pointer", MI); if (DstTy.isPointer()) report("ptrtoint result type must not be a pointer", MI); } else { assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); if (!SrcTy.isPointer() || !DstTy.isPointer()) report("addrspacecast types must be pointers", MI); else { if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) report("addrspacecast must convert different address spaces", MI); } } break; } case TargetOpcode::G_PTR_ADD: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) break; if (!PtrTy.isPointerOrPointerVector()) report("gep first operand must be a pointer", MI); if (OffsetTy.isPointerOrPointerVector()) report("gep offset operand must not be a pointer", MI); if (PtrTy.isPointerOrPointerVector()) { const DataLayout &DL = MF->getDataLayout(); unsigned AS = PtrTy.getAddressSpace(); unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) { report("gep offset operand must match index size for address space", MI); } } // TODO: Is the offset allowed to be a scalar with a vector? break; } case TargetOpcode::G_PTRMASK: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) break; if (!DstTy.isPointerOrPointerVector()) report("ptrmask result type must be a pointer", MI); if (!MaskTy.getScalarType().isScalar()) report("ptrmask mask type must be an integer", MI); verifyVectorElementMatch(DstTy, MaskTy, MI); break; } case TargetOpcode::G_SEXT: case TargetOpcode::G_ZEXT: case TargetOpcode::G_ANYEXT: case TargetOpcode::G_TRUNC: case TargetOpcode::G_FPEXT: case TargetOpcode::G_FPTRUNC: { // Number of operands and presense of types is already checked (and // reported in case of any issues), so no need to report them again. As // we're trying to report as many issues as possible at once, however, the // instructions aren't guaranteed to have the right number of operands or // types attached to them at this point assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); if (!DstTy.isValid() || !SrcTy.isValid()) break; if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector()) report("Generic extend/truncate can not operate on pointers", MI); verifyVectorElementMatch(DstTy, SrcTy, MI); unsigned DstSize = DstTy.getScalarSizeInBits(); unsigned SrcSize = SrcTy.getScalarSizeInBits(); switch (MI->getOpcode()) { default: if (DstSize <= SrcSize) report("Generic extend has destination type no larger than source", MI); break; case TargetOpcode::G_TRUNC: case TargetOpcode::G_FPTRUNC: if (DstSize >= SrcSize) report("Generic truncate has destination type no smaller than source", MI); break; } break; } case TargetOpcode::G_SELECT: { LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); if (!SelTy.isValid() || !CondTy.isValid()) break; // Scalar condition select on a vector is valid. if (CondTy.isVector()) verifyVectorElementMatch(SelTy, CondTy, MI); break; } case TargetOpcode::G_MERGE_VALUES: { // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, // e.g. s2N = MERGE sN, sN // Merging multiple scalars into a vector is not allowed, should use // G_BUILD_VECTOR for that. LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); if (DstTy.isVector() || SrcTy.isVector()) report("G_MERGE_VALUES cannot operate on vectors", MI); const unsigned NumOps = MI->getNumOperands(); if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) report("G_MERGE_VALUES result size is inconsistent", MI); for (unsigned I = 2; I != NumOps; ++I) { if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) report("G_MERGE_VALUES source types do not match", MI); } break; } case TargetOpcode::G_UNMERGE_VALUES: { unsigned NumDsts = MI->getNumOperands() - 1; LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); for (unsigned i = 1; i < NumDsts; ++i) { if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) { report("G_UNMERGE_VALUES destination types do not match", MI); break; } } LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg()); if (DstTy.isVector()) { // This case is the converse of G_CONCAT_VECTORS. if (!SrcTy.isVector() || SrcTy.getScalarType() != DstTy.getScalarType() || SrcTy.isScalableVector() != DstTy.isScalableVector() || SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) report("G_UNMERGE_VALUES source operand does not match vector " "destination operands", MI); } else if (SrcTy.isVector()) { // This case is the converse of G_BUILD_VECTOR, but relaxed to allow // mismatched types as long as the total size matches: // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>) if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) report("G_UNMERGE_VALUES vector source operand does not match scalar " "destination operands", MI); } else { // This case is the converse of G_MERGE_VALUES. if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) { report("G_UNMERGE_VALUES scalar source operand does not match scalar " "destination operands", MI); } } break; } case TargetOpcode::G_BUILD_VECTOR: { // Source types must be scalars, dest type a vector. Total size of scalars // must match the dest vector size. LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); if (!DstTy.isVector() || SrcEltTy.isVector()) { report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); break; } if (DstTy.getElementType() != SrcEltTy) report("G_BUILD_VECTOR result element type must match source type", MI); if (DstTy.getNumElements() != MI->getNumOperands() - 1) report("G_BUILD_VECTOR must have an operand for each elemement", MI); for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) report("G_BUILD_VECTOR source operand types are not homogeneous", MI); break; } case TargetOpcode::G_BUILD_VECTOR_TRUNC: { // Source types must be scalars, dest type a vector. Scalar types must be // larger than the dest vector elt type, as this is a truncating operation. LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); if (!DstTy.isVector() || SrcEltTy.isVector()) report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", MI); for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", MI); if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " "dest elt type", MI); break; } case TargetOpcode::G_CONCAT_VECTORS: { // Source types should be vectors, and total size should match the dest // vector size. LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); if (!DstTy.isVector() || !SrcTy.isVector()) report("G_CONCAT_VECTOR requires vector source and destination operands", MI); if (MI->getNumOperands() < 3) report("G_CONCAT_VECTOR requires at least 2 source operands", MI); for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); if (DstTy.getElementCount() != SrcTy.getElementCount() * (MI->getNumOperands() - 1)) report("G_CONCAT_VECTOR num dest and source elements should match", MI); break; } case TargetOpcode::G_ICMP: case TargetOpcode::G_FCMP: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); if ((DstTy.isVector() != SrcTy.isVector()) || (DstTy.isVector() && DstTy.getElementCount() != SrcTy.getElementCount())) report("Generic vector icmp/fcmp must preserve number of lanes", MI); break; } case TargetOpcode::G_SCMP: case TargetOpcode::G_UCMP: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); LLT SrcTy2 = MRI->getType(MI->getOperand(2).getReg()); if (SrcTy.isPointerOrPointerVector() || SrcTy2.isPointerOrPointerVector()) { report("Generic scmp/ucmp does not support pointers as operands", MI); break; } if (DstTy.isPointerOrPointerVector()) { report("Generic scmp/ucmp does not support pointers as a result", MI); break; } if ((DstTy.isVector() != SrcTy.isVector()) || (DstTy.isVector() && DstTy.getElementCount() != SrcTy.getElementCount())) { report("Generic vector scmp/ucmp must preserve number of lanes", MI); break; } if (SrcTy != SrcTy2) { report("Generic scmp/ucmp must have same input types", MI); break; } break; } case TargetOpcode::G_EXTRACT: { const MachineOperand &SrcOp = MI->getOperand(1); if (!SrcOp.isReg()) { report("extract source must be a register", MI); break; } const MachineOperand &OffsetOp = MI->getOperand(2); if (!OffsetOp.isImm()) { report("extract offset must be a constant", MI); break; } unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); if (SrcSize == DstSize) report("extract source must be larger than result", MI); if (DstSize + OffsetOp.getImm() > SrcSize) report("extract reads past end of register", MI); break; } case TargetOpcode::G_INSERT: { const MachineOperand &SrcOp = MI->getOperand(2); if (!SrcOp.isReg()) { report("insert source must be a register", MI); break; } const MachineOperand &OffsetOp = MI->getOperand(3); if (!OffsetOp.isImm()) { report("insert offset must be a constant", MI); break; } unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); if (DstSize <= SrcSize) report("inserted size must be smaller than total register", MI); if (SrcSize + OffsetOp.getImm() > DstSize) report("insert writes past end of register", MI); break; } case TargetOpcode::G_JUMP_TABLE: { if (!MI->getOperand(1).isJTI()) report("G_JUMP_TABLE source operand must be a jump table index", MI); LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); if (!DstTy.isPointer()) report("G_JUMP_TABLE dest operand must have a pointer type", MI); break; } case TargetOpcode::G_BRJT: { if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) report("G_BRJT src operand 0 must be a pointer type", MI); if (!MI->getOperand(1).isJTI()) report("G_BRJT src operand 1 must be a jump table index", MI); const auto &IdxOp = MI->getOperand(2); if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) report("G_BRJT src operand 2 must be a scalar reg type", MI); break; } case TargetOpcode::G_INTRINSIC: case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: case TargetOpcode::G_INTRINSIC_CONVERGENT: case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: { // TODO: Should verify number of def and use operands, but the current // interface requires passing in IR types for mangling. const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); if (!IntrIDOp.isIntrinsicID()) { report("G_INTRINSIC first src operand must be an intrinsic ID", MI); break; } if (!verifyGIntrinsicSideEffects(MI)) break; if (!verifyGIntrinsicConvergence(MI)) break; break; } case TargetOpcode::G_SEXT_INREG: { if (!MI->getOperand(2).isImm()) { report("G_SEXT_INREG expects an immediate operand #2", MI); break; } LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); int64_t Imm = MI->getOperand(2).getImm(); if (Imm <= 0) report("G_SEXT_INREG size must be >= 1", MI); if (Imm >= SrcTy.getScalarSizeInBits()) report("G_SEXT_INREG size must be less than source bit width", MI); break; } case TargetOpcode::G_BSWAP: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); if (DstTy.getScalarSizeInBits() % 16 != 0) report("G_BSWAP size must be a multiple of 16 bits", MI); break; } case TargetOpcode::G_VSCALE: { if (!MI->getOperand(1).isCImm()) { report("G_VSCALE operand must be cimm", MI); break; } if (MI->getOperand(1).getCImm()->isZero()) { report("G_VSCALE immediate cannot be zero", MI); break; } break; } case TargetOpcode::G_INSERT_SUBVECTOR: { const MachineOperand &Src0Op = MI->getOperand(1); if (!Src0Op.isReg()) { report("G_INSERT_SUBVECTOR first source must be a register", MI); break; } const MachineOperand &Src1Op = MI->getOperand(2); if (!Src1Op.isReg()) { report("G_INSERT_SUBVECTOR second source must be a register", MI); break; } const MachineOperand &IndexOp = MI->getOperand(3); if (!IndexOp.isImm()) { report("G_INSERT_SUBVECTOR index must be an immediate", MI); break; } LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT Src0Ty = MRI->getType(Src0Op.getReg()); LLT Src1Ty = MRI->getType(Src1Op.getReg()); if (!DstTy.isVector()) { report("Destination type must be a vector", MI); break; } if (!Src0Ty.isVector()) { report("First source must be a vector", MI); break; } if (!Src1Ty.isVector()) { report("Second source must be a vector", MI); break; } if (DstTy != Src0Ty) { report("Destination type must match the first source vector type", MI); break; } if (Src0Ty.getElementType() != Src1Ty.getElementType()) { report("Element type of source vectors must be the same", MI); break; } if (IndexOp.getImm() != 0 && Src1Ty.getElementCount().getKnownMinValue() % IndexOp.getImm() != 0) { report("Index must be a multiple of the second source vector's " "minimum vector length", MI); break; } break; } case TargetOpcode::G_EXTRACT_SUBVECTOR: { const MachineOperand &SrcOp = MI->getOperand(1); if (!SrcOp.isReg()) { report("G_EXTRACT_SUBVECTOR first source must be a register", MI); break; } const MachineOperand &IndexOp = MI->getOperand(2); if (!IndexOp.isImm()) { report("G_EXTRACT_SUBVECTOR index must be an immediate", MI); break; } LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcTy = MRI->getType(SrcOp.getReg()); if (!DstTy.isVector()) { report("Destination type must be a vector", MI); break; } if (!SrcTy.isVector()) { report("First source must be a vector", MI); break; } if (DstTy.getElementType() != SrcTy.getElementType()) { report("Element type of vectors must be the same", MI); break; } if (IndexOp.getImm() != 0 && SrcTy.getElementCount().getKnownMinValue() % IndexOp.getImm() != 0) { report("Index must be a multiple of the source vector's minimum vector " "length", MI); break; } break; } case TargetOpcode::G_SHUFFLE_VECTOR: { const MachineOperand &MaskOp = MI->getOperand(3); if (!MaskOp.isShuffleMask()) { report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); break; } LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); if (Src0Ty != Src1Ty) report("Source operands must be the same type", MI); if (Src0Ty.getScalarType() != DstTy.getScalarType()) report("G_SHUFFLE_VECTOR cannot change element type", MI); // Don't check that all operands are vector because scalars are used in // place of 1 element vectors. int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; ArrayRef MaskIdxes = MaskOp.getShuffleMask(); if (static_cast(MaskIdxes.size()) != DstNumElts) report("Wrong result type for shufflemask", MI); for (int Idx : MaskIdxes) { if (Idx < 0) continue; if (Idx >= 2 * SrcNumElts) report("Out of bounds shuffle index", MI); } break; } case TargetOpcode::G_SPLAT_VECTOR: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); if (!DstTy.isScalableVector()) { report("Destination type must be a scalable vector", MI); break; } if (!SrcTy.isScalar()) { report("Source type must be a scalar", MI); break; } if (TypeSize::isKnownGT(DstTy.getElementType().getSizeInBits(), SrcTy.getSizeInBits())) { report("Element type of the destination must be the same size or smaller " "than the source type", MI); break; } break; } case TargetOpcode::G_EXTRACT_VECTOR_ELT: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); LLT IdxTy = MRI->getType(MI->getOperand(2).getReg()); if (!DstTy.isScalar() && !DstTy.isPointer()) { report("Destination type must be a scalar or pointer", MI); break; } if (!SrcTy.isVector()) { report("First source must be a vector", MI); break; } auto TLI = MF->getSubtarget().getTargetLowering(); if (IdxTy.getSizeInBits() != TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { report("Index type must match VectorIdxTy", MI); break; } break; } case TargetOpcode::G_INSERT_VECTOR_ELT: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT VecTy = MRI->getType(MI->getOperand(1).getReg()); LLT ScaTy = MRI->getType(MI->getOperand(2).getReg()); LLT IdxTy = MRI->getType(MI->getOperand(3).getReg()); if (!DstTy.isVector()) { report("Destination type must be a vector", MI); break; } if (VecTy != DstTy) { report("Destination type and vector type must match", MI); break; } if (!ScaTy.isScalar() && !ScaTy.isPointer()) { report("Inserted element must be a scalar or pointer", MI); break; } auto TLI = MF->getSubtarget().getTargetLowering(); if (IdxTy.getSizeInBits() != TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { report("Index type must match VectorIdxTy", MI); break; } break; } case TargetOpcode::G_DYN_STACKALLOC: { const MachineOperand &DstOp = MI->getOperand(0); const MachineOperand &AllocOp = MI->getOperand(1); const MachineOperand &AlignOp = MI->getOperand(2); if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { report("dst operand 0 must be a pointer type", MI); break; } if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { report("src operand 1 must be a scalar reg type", MI); break; } if (!AlignOp.isImm()) { report("src operand 2 must be an immediate type", MI); break; } break; } case TargetOpcode::G_MEMCPY_INLINE: case TargetOpcode::G_MEMCPY: case TargetOpcode::G_MEMMOVE: { ArrayRef MMOs = MI->memoperands(); if (MMOs.size() != 2) { report("memcpy/memmove must have 2 memory operands", MI); break; } if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { report("wrong memory operand types", MI); break; } if (MMOs[0]->getSize() != MMOs[1]->getSize()) report("inconsistent memory operand sizes", MI); LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { report("memory instruction operand must be a pointer", MI); break; } if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) report("inconsistent store address space", MI); if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) report("inconsistent load address space", MI); if (Opc != TargetOpcode::G_MEMCPY_INLINE) if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); break; } case TargetOpcode::G_BZERO: case TargetOpcode::G_MEMSET: { ArrayRef MMOs = MI->memoperands(); std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; if (MMOs.size() != 1) { report(Twine(Name, " must have 1 memory operand"), MI); break; } if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { report(Twine(Name, " memory operand must be a store"), MI); break; } LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); if (!DstPtrTy.isPointer()) { report(Twine(Name, " operand must be a pointer"), MI); break; } if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) report("inconsistent " + Twine(Name, " address space"), MI); if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) report("'tail' flag (last operand) must be an immediate 0 or 1", MI); break; } case TargetOpcode::G_UBSANTRAP: { const MachineOperand &KindOp = MI->getOperand(0); if (!MI->getOperand(0).isImm()) { report("Crash kind must be an immediate", &KindOp, 0); break; } int64_t Kind = MI->getOperand(0).getImm(); if (!isInt<8>(Kind)) report("Crash kind must be 8 bit wide", &KindOp, 0); break; } case TargetOpcode::G_VECREDUCE_SEQ_FADD: case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); if (!DstTy.isScalar()) report("Vector reduction requires a scalar destination type", MI); if (!Src1Ty.isScalar()) report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); if (!Src2Ty.isVector()) report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); break; } case TargetOpcode::G_VECREDUCE_FADD: case TargetOpcode::G_VECREDUCE_FMUL: case TargetOpcode::G_VECREDUCE_FMAX: case TargetOpcode::G_VECREDUCE_FMIN: case TargetOpcode::G_VECREDUCE_FMAXIMUM: case TargetOpcode::G_VECREDUCE_FMINIMUM: case TargetOpcode::G_VECREDUCE_ADD: case TargetOpcode::G_VECREDUCE_MUL: case TargetOpcode::G_VECREDUCE_AND: case TargetOpcode::G_VECREDUCE_OR: case TargetOpcode::G_VECREDUCE_XOR: case TargetOpcode::G_VECREDUCE_SMAX: case TargetOpcode::G_VECREDUCE_SMIN: case TargetOpcode::G_VECREDUCE_UMAX: case TargetOpcode::G_VECREDUCE_UMIN: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); if (!DstTy.isScalar()) report("Vector reduction requires a scalar destination type", MI); break; } case TargetOpcode::G_SBFX: case TargetOpcode::G_UBFX: { LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); if (DstTy.isVector()) { report("Bitfield extraction is not supported on vectors", MI); break; } break; } case TargetOpcode::G_SHL: case TargetOpcode::G_LSHR: case TargetOpcode::G_ASHR: case TargetOpcode::G_ROTR: case TargetOpcode::G_ROTL: { LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); if (Src1Ty.isVector() != Src2Ty.isVector()) { report("Shifts and rotates require operands to be either all scalars or " "all vectors", MI); break; } break; } case TargetOpcode::G_LLROUND: case TargetOpcode::G_LROUND: { verifyAllRegOpsScalar(*MI, *MRI); break; } case TargetOpcode::G_IS_FPCLASS: { LLT DestTy = MRI->getType(MI->getOperand(0).getReg()); LLT DestEltTy = DestTy.getScalarType(); if (!DestEltTy.isScalar()) { report("Destination must be a scalar or vector of scalars", MI); break; } LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); LLT SrcEltTy = SrcTy.getScalarType(); if (!SrcEltTy.isScalar()) { report("Source must be a scalar or vector of scalars", MI); break; } if (!verifyVectorElementMatch(DestTy, SrcTy, MI)) break; const MachineOperand &TestMO = MI->getOperand(2); if (!TestMO.isImm()) { report("floating-point class set (operand 2) must be an immediate", MI); break; } int64_t Test = TestMO.getImm(); if (Test < 0 || Test > fcAllFlags) { report("Incorrect floating-point class set (operand 2)", MI); break; } break; } case TargetOpcode::G_PREFETCH: { const MachineOperand &AddrOp = MI->getOperand(0); if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) { report("addr operand must be a pointer", &AddrOp, 0); break; } const MachineOperand &RWOp = MI->getOperand(1); if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) { report("rw operand must be an immediate 0-1", &RWOp, 1); break; } const MachineOperand &LocalityOp = MI->getOperand(2); if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) { report("locality operand must be an immediate 0-3", &LocalityOp, 2); break; } const MachineOperand &CacheTypeOp = MI->getOperand(3); if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) { report("cache type operand must be an immediate 0-1", &CacheTypeOp, 3); break; } break; } case TargetOpcode::G_ASSERT_ALIGN: { if (MI->getOperand(2).getImm() < 1) report("alignment immediate must be >= 1", MI); break; } case TargetOpcode::G_CONSTANT_POOL: { if (!MI->getOperand(1).isCPI()) report("Src operand 1 must be a constant pool index", MI); if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) report("Dst operand 0 must be a pointer", MI); break; } case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: { const MachineOperand &AddrOp = MI->getOperand(1); if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) report("addr operand must be a pointer", &AddrOp, 1); break; } default: break; } } void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { const MCInstrDesc &MCID = MI->getDesc(); if (MI->getNumOperands() < MCID.getNumOperands()) { report("Too few operands", MI); errs() << MCID.getNumOperands() << " operands expected, but " << MI->getNumOperands() << " given.\n"; } if (MI->getFlag(MachineInstr::NoConvergent) && !MCID.isConvergent()) report("NoConvergent flag expected only on convergent instructions.", MI); if (MI->isPHI()) { if (MF->getProperties().hasProperty( MachineFunctionProperties::Property::NoPHIs)) report("Found PHI instruction with NoPHIs property set", MI); if (FirstNonPHI) report("Found PHI instruction after non-PHI", MI); } else if (FirstNonPHI == nullptr) FirstNonPHI = MI; // Check the tied operands. if (MI->isInlineAsm()) verifyInlineAsm(MI); // Check that unspillable terminators define a reg and have at most one use. if (TII->isUnspillableTerminator(MI)) { if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) report("Unspillable Terminator does not define a reg", MI); Register Def = MI->getOperand(0).getReg(); if (Def.isVirtual() && !MF->getProperties().hasProperty( MachineFunctionProperties::Property::NoPHIs) && std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) report("Unspillable Terminator expected to have at most one use!", MI); } // A fully-formed DBG_VALUE must have a location. Ignore partially formed // DBG_VALUEs: these are convenient to use in tests, but should never get // generated. if (MI->isDebugValue() && MI->getNumOperands() == 4) if (!MI->getDebugLoc()) report("Missing DebugLoc for debug instruction", MI); // Meta instructions should never be the subject of debug value tracking, // they don't create a value in the output program at all. if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) report("Metadata instruction should not have a value tracking number", MI); // Check the MachineMemOperands for basic consistency. for (MachineMemOperand *Op : MI->memoperands()) { if (Op->isLoad() && !MI->mayLoad()) report("Missing mayLoad flag", MI); if (Op->isStore() && !MI->mayStore()) report("Missing mayStore flag", MI); } // Debug values must not have a slot index. // Other instructions must have one, unless they are inside a bundle. if (LiveInts) { bool mapped = !LiveInts->isNotInMIMap(*MI); if (MI->isDebugOrPseudoInstr()) { if (mapped) report("Debug instruction has a slot index", MI); } else if (MI->isInsideBundle()) { if (mapped) report("Instruction inside bundle has a slot index", MI); } else { if (!mapped) report("Missing slot index", MI); } } unsigned Opc = MCID.getOpcode(); if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { verifyPreISelGenericInstruction(MI); return; } StringRef ErrorInfo; if (!TII->verifyInstruction(*MI, ErrorInfo)) report(ErrorInfo.data(), MI); // Verify properties of various specific instruction types switch (MI->getOpcode()) { case TargetOpcode::COPY: { const MachineOperand &DstOp = MI->getOperand(0); const MachineOperand &SrcOp = MI->getOperand(1); const Register SrcReg = SrcOp.getReg(); const Register DstReg = DstOp.getReg(); LLT DstTy = MRI->getType(DstReg); LLT SrcTy = MRI->getType(SrcReg); if (SrcTy.isValid() && DstTy.isValid()) { // If both types are valid, check that the types are the same. if (SrcTy != DstTy) { report("Copy Instruction is illegal with mismatching types", MI); errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; } break; } if (!SrcTy.isValid() && !DstTy.isValid()) break; // If we have only one valid type, this is likely a copy between a virtual // and physical register. TypeSize SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); TypeSize DstSize = TRI->getRegSizeInBits(DstReg, *MRI); if (SrcReg.isPhysical() && DstTy.isValid()) { const TargetRegisterClass *SrcRC = TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); if (SrcRC) SrcSize = TRI->getRegSizeInBits(*SrcRC); } if (DstReg.isPhysical() && SrcTy.isValid()) { const TargetRegisterClass *DstRC = TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); if (DstRC) DstSize = TRI->getRegSizeInBits(*DstRC); } // The next two checks allow COPY between physical and virtual registers, // when the virtual register has a scalable size and the physical register // has a fixed size. These checks allow COPY between *potentialy* mismatched // sizes. However, once RegisterBankSelection occurs, MachineVerifier should // be able to resolve a fixed size for the scalable vector, and at that // point this function will know for sure whether the sizes are mismatched // and correctly report a size mismatch. if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() && !SrcSize.isScalable()) break; if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() && !DstSize.isScalable()) break; if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) { if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { report("Copy Instruction is illegal with mismatching sizes", MI); errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize << "\n"; } } break; } case TargetOpcode::STATEPOINT: { StatepointOpers SO(MI); if (!MI->getOperand(SO.getIDPos()).isImm() || !MI->getOperand(SO.getNBytesPos()).isImm() || !MI->getOperand(SO.getNCallArgsPos()).isImm()) { report("meta operands to STATEPOINT not constant!", MI); break; } auto VerifyStackMapConstant = [&](unsigned Offset) { if (Offset >= MI->getNumOperands()) { report("stack map constant to STATEPOINT is out of range!", MI); return; } if (!MI->getOperand(Offset - 1).isImm() || MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || !MI->getOperand(Offset).isImm()) report("stack map constant to STATEPOINT not well formed!", MI); }; VerifyStackMapConstant(SO.getCCIdx()); VerifyStackMapConstant(SO.getFlagsIdx()); VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); VerifyStackMapConstant(SO.getNumGCPtrIdx()); VerifyStackMapConstant(SO.getNumAllocaIdx()); VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); // Verify that all explicit statepoint defs are tied to gc operands as // they are expected to be a relocation of gc operands. unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { unsigned UseOpIdx; if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { report("STATEPOINT defs expected to be tied", MI); break; } if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { report("STATEPOINT def tied to non-gc operand", MI); break; } } // TODO: verify we have properly encoded deopt arguments } break; case TargetOpcode::INSERT_SUBREG: { unsigned InsertedSize; if (unsigned SubIdx = MI->getOperand(2).getSubReg()) InsertedSize = TRI->getSubRegIdxSize(SubIdx); else InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); if (SubRegSize < InsertedSize) { report("INSERT_SUBREG expected inserted value to have equal or lesser " "size than the subreg it was inserted into", MI); break; } } break; case TargetOpcode::REG_SEQUENCE: { unsigned NumOps = MI->getNumOperands(); if (!(NumOps & 1)) { report("Invalid number of operands for REG_SEQUENCE", MI); break; } for (unsigned I = 1; I != NumOps; I += 2) { const MachineOperand &RegOp = MI->getOperand(I); const MachineOperand &SubRegOp = MI->getOperand(I + 1); if (!RegOp.isReg()) report("Invalid register operand for REG_SEQUENCE", &RegOp, I); if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 || SubRegOp.getImm() >= TRI->getNumSubRegIndices()) { report("Invalid subregister index operand for REG_SEQUENCE", &SubRegOp, I + 1); } } Register DstReg = MI->getOperand(0).getReg(); if (DstReg.isPhysical()) report("REG_SEQUENCE does not support physical register results", MI); if (MI->getOperand(0).getSubReg()) report("Invalid subreg result for REG_SEQUENCE", MI); break; } } } void MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { const MachineInstr *MI = MO->getParent(); const MCInstrDesc &MCID = MI->getDesc(); unsigned NumDefs = MCID.getNumDefs(); if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; // The first MCID.NumDefs operands must be explicit register defines if (MONum < NumDefs) { const MCOperandInfo &MCOI = MCID.operands()[MONum]; if (!MO->isReg()) report("Explicit definition must be a register", MO, MONum); else if (!MO->isDef() && !MCOI.isOptionalDef()) report("Explicit definition marked as use", MO, MONum); else if (MO->isImplicit()) report("Explicit definition marked as implicit", MO, MONum); } else if (MONum < MCID.getNumOperands()) { const MCOperandInfo &MCOI = MCID.operands()[MONum]; // Don't check if it's the last operand in a variadic instruction. See, // e.g., LDM_RET in the arm back end. Check non-variadic operands only. bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; if (!IsOptional) { if (MO->isReg()) { if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) report("Explicit operand marked as def", MO, MONum); if (MO->isImplicit()) report("Explicit operand marked as implicit", MO, MONum); } // Check that an instruction has register operands only as expected. if (MCOI.OperandType == MCOI::OPERAND_REGISTER && !MO->isReg() && !MO->isFI()) report("Expected a register operand.", MO, MONum); if (MO->isReg()) { if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || (MCOI.OperandType == MCOI::OPERAND_PCREL && !TII->isPCRelRegisterOperandLegal(*MO))) report("Expected a non-register operand.", MO, MONum); } } int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); if (TiedTo != -1) { if (!MO->isReg()) report("Tied use must be a register", MO, MONum); else if (!MO->isTied()) report("Operand should be tied", MO, MONum); else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) report("Tied def doesn't match MCInstrDesc", MO, MONum); else if (MO->getReg().isPhysical()) { const MachineOperand &MOTied = MI->getOperand(TiedTo); if (!MOTied.isReg()) report("Tied counterpart must be a register", &MOTied, TiedTo); else if (MOTied.getReg().isPhysical() && MO->getReg() != MOTied.getReg()) report("Tied physical registers must match.", &MOTied, TiedTo); } } else if (MO->isReg() && MO->isTied()) report("Explicit operand should not be tied", MO, MONum); } else if (!MI->isVariadic()) { // ARM adds %reg0 operands to indicate predicates. We'll allow that. if (!MO->isValidExcessOperand()) report("Extra explicit operand on non-variadic instruction", MO, MONum); } switch (MO->getType()) { case MachineOperand::MO_Register: { // Verify debug flag on debug instructions. Check this first because reg0 // indicates an undefined debug value. if (MI->isDebugInstr() && MO->isUse()) { if (!MO->isDebug()) report("Register operand must be marked debug", MO, MONum); } else if (MO->isDebug()) { report("Register operand must not be marked debug", MO, MONum); } const Register Reg = MO->getReg(); if (!Reg) return; if (MRI->tracksLiveness() && !MI->isDebugInstr()) checkLiveness(MO, MONum); if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && MO->getReg().isVirtual()) // TODO: Apply to physregs too report("Undef virtual register def operands require a subregister", MO, MONum); // Verify the consistency of tied operands. if (MO->isTied()) { unsigned OtherIdx = MI->findTiedOperandIdx(MONum); const MachineOperand &OtherMO = MI->getOperand(OtherIdx); if (!OtherMO.isReg()) report("Must be tied to a register", MO, MONum); if (!OtherMO.isTied()) report("Missing tie flags on tied operand", MO, MONum); if (MI->findTiedOperandIdx(OtherIdx) != MONum) report("Inconsistent tie links", MO, MONum); if (MONum < MCID.getNumDefs()) { if (OtherIdx < MCID.getNumOperands()) { if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) report("Explicit def tied to explicit use without tie constraint", MO, MONum); } else { if (!OtherMO.isImplicit()) report("Explicit def should be tied to implicit use", MO, MONum); } } } // Verify two-address constraints after the twoaddressinstruction pass. // Both twoaddressinstruction pass and phi-node-elimination pass call // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification // after twoaddressinstruction pass not after phi-node-elimination pass. So // we shouldn't use the IsSSA as the condition, we should based on // TiedOpsRewritten property to verify two-address constraints, this // property will be set in twoaddressinstruction pass. unsigned DefIdx; if (MF->getProperties().hasProperty( MachineFunctionProperties::Property::TiedOpsRewritten) && MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && Reg != MI->getOperand(DefIdx).getReg()) report("Two-address instruction operands must be identical", MO, MONum); // Check register classes. unsigned SubIdx = MO->getSubReg(); if (Reg.isPhysical()) { if (SubIdx) { report("Illegal subregister index for physical register", MO, MONum); return; } if (MONum < MCID.getNumOperands()) { if (const TargetRegisterClass *DRC = TII->getRegClass(MCID, MONum, TRI, *MF)) { if (!DRC->contains(Reg)) { report("Illegal physical register for instruction", MO, MONum); errs() << printReg(Reg, TRI) << " is not a " << TRI->getRegClassName(DRC) << " register.\n"; } } } if (MO->isRenamable()) { if (MRI->isReserved(Reg)) { report("isRenamable set on reserved register", MO, MONum); return; } } } else { // Virtual register. const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); if (!RC) { // This is a generic virtual register. // Do not allow undef uses for generic virtual registers. This ensures // getVRegDef can never fail and return null on a generic register. // // FIXME: This restriction should probably be broadened to all SSA // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still // run on the SSA function just before phi elimination. if (MO->isUndef()) report("Generic virtual register use cannot be undef", MO, MONum); // Debug value instruction is permitted to use undefined vregs. // This is a performance measure to skip the overhead of immediately // pruning unused debug operands. The final undef substitution occurs // when debug values are allocated in LDVImpl::handleDebugValue, so // these verifications always apply after this pass. if (isFunctionTracksDebugUserValues || !MO->isUse() || !MI->isDebugValue() || !MRI->def_empty(Reg)) { // If we're post-Select, we can't have gvregs anymore. if (isFunctionSelected) { report("Generic virtual register invalid in a Selected function", MO, MONum); return; } // The gvreg must have a type and it must not have a SubIdx. LLT Ty = MRI->getType(Reg); if (!Ty.isValid()) { report("Generic virtual register must have a valid type", MO, MONum); return; } const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo(); // If we're post-RegBankSelect, the gvreg must have a bank. if (!RegBank && isFunctionRegBankSelected) { report("Generic virtual register must have a bank in a " "RegBankSelected function", MO, MONum); return; } // Make sure the register fits into its register bank if any. if (RegBank && Ty.isValid() && !Ty.isScalableVector() && RBI->getMaximumSize(RegBank->getID()) < Ty.getSizeInBits()) { report("Register bank is too small for virtual register", MO, MONum); errs() << "Register bank " << RegBank->getName() << " too small(" << RBI->getMaximumSize(RegBank->getID()) << ") to fit " << Ty.getSizeInBits() << "-bits\n"; return; } } if (SubIdx) { report("Generic virtual register does not allow subregister index", MO, MONum); return; } // If this is a target specific instruction and this operand // has register class constraint, the virtual register must // comply to it. if (!isPreISelGenericOpcode(MCID.getOpcode()) && MONum < MCID.getNumOperands() && TII->getRegClass(MCID, MONum, TRI, *MF)) { report("Virtual register does not match instruction constraint", MO, MONum); errs() << "Expect register class " << TRI->getRegClassName( TII->getRegClass(MCID, MONum, TRI, *MF)) << " but got nothing\n"; return; } break; } if (SubIdx) { const TargetRegisterClass *SRC = TRI->getSubClassWithSubReg(RC, SubIdx); if (!SRC) { report("Invalid subregister index for virtual register", MO, MONum); errs() << "Register class " << TRI->getRegClassName(RC) << " does not support subreg index " << SubIdx << "\n"; return; } if (RC != SRC) { report("Invalid register class for subregister index", MO, MONum); errs() << "Register class " << TRI->getRegClassName(RC) << " does not fully support subreg index " << SubIdx << "\n"; return; } } if (MONum < MCID.getNumOperands()) { if (const TargetRegisterClass *DRC = TII->getRegClass(MCID, MONum, TRI, *MF)) { if (SubIdx) { const TargetRegisterClass *SuperRC = TRI->getLargestLegalSuperClass(RC, *MF); if (!SuperRC) { report("No largest legal super class exists.", MO, MONum); return; } DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); if (!DRC) { report("No matching super-reg register class.", MO, MONum); return; } } if (!RC->hasSuperClassEq(DRC)) { report("Illegal virtual register for instruction", MO, MONum); errs() << "Expected a " << TRI->getRegClassName(DRC) << " register, but got a " << TRI->getRegClassName(RC) << " register\n"; } } } } break; } case MachineOperand::MO_RegisterMask: regMasks.push_back(MO->getRegMask()); break; case MachineOperand::MO_MachineBasicBlock: if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) report("PHI operand is not in the CFG", MO, MONum); break; case MachineOperand::MO_FrameIndex: if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && LiveInts && !LiveInts->isNotInMIMap(*MI)) { int FI = MO->getIndex(); LiveInterval &LI = LiveStks->getInterval(FI); SlotIndex Idx = LiveInts->getInstructionIndex(*MI); bool stores = MI->mayStore(); bool loads = MI->mayLoad(); // For a memory-to-memory move, we need to check if the frame // index is used for storing or loading, by inspecting the // memory operands. if (stores && loads) { for (auto *MMO : MI->memoperands()) { const PseudoSourceValue *PSV = MMO->getPseudoValue(); if (PSV == nullptr) continue; const FixedStackPseudoSourceValue *Value = dyn_cast(PSV); if (Value == nullptr) continue; if (Value->getFrameIndex() != FI) continue; if (MMO->isStore()) loads = false; else stores = false; break; } if (loads == stores) report("Missing fixed stack memoperand.", MI); } if (loads && !LI.liveAt(Idx.getRegSlot(true))) { report("Instruction loads from dead spill slot", MO, MONum); errs() << "Live stack: " << LI << '\n'; } if (stores && !LI.liveAt(Idx.getRegSlot())) { report("Instruction stores to dead spill slot", MO, MONum); errs() << "Live stack: " << LI << '\n'; } } break; case MachineOperand::MO_CFIIndex: if (MO->getCFIIndex() >= MF->getFrameInstructions().size()) report("CFI instruction has invalid index", MO, MONum); break; default: break; } } void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, Register VRegOrUnit, LaneBitmask LaneMask) { const MachineInstr *MI = MO->getParent(); LiveQueryResult LRQ = LR.Query(UseIdx); bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()); // Check if we have a segment at the use, note however that we only need one // live subregister range, the others may be dead. if (!HasValue && LaneMask.none()) { report("No live segment at use", MO, MONum); report_context_liverange(LR); report_context_vreg_regunit(VRegOrUnit); report_context(UseIdx); } if (MO->isKill() && !LRQ.isKill()) { report("Live range continues after kill flag", MO, MONum); report_context_liverange(LR); report_context_vreg_regunit(VRegOrUnit); if (LaneMask.any()) report_context_lanemask(LaneMask); report_context(UseIdx); } } void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, Register VRegOrUnit, bool SubRangeCheck, LaneBitmask LaneMask) { if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { // The LR can correspond to the whole reg and its def slot is not obliged // to be the same as the MO' def slot. E.g. when we check here "normal" // subreg MO but there is other EC subreg MO in the same instruction so the // whole reg has EC def slot and differs from the currently checked MO' def // slot. For example: // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r // Check that there is an early-clobber def of the same superregister // somewhere is performed in visitMachineFunctionAfter() if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) || !SlotIndex::isSameInstr(VNI->def, DefIdx) || (VNI->def != DefIdx && (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) { report("Inconsistent valno->def", MO, MONum); report_context_liverange(LR); report_context_vreg_regunit(VRegOrUnit); if (LaneMask.any()) report_context_lanemask(LaneMask); report_context(*VNI); report_context(DefIdx); } } else { report("No live segment at def", MO, MONum); report_context_liverange(LR); report_context_vreg_regunit(VRegOrUnit); if (LaneMask.any()) report_context_lanemask(LaneMask); report_context(DefIdx); } // Check that, if the dead def flag is present, LiveInts agree. if (MO->isDead()) { LiveQueryResult LRQ = LR.Query(DefIdx); if (!LRQ.isDeadDef()) { assert(VRegOrUnit.isVirtual() && "Expecting a virtual register."); // A dead subreg def only tells us that the specific subreg is dead. There // could be other non-dead defs of other subregs, or we could have other // parts of the register being live through the instruction. So unless we // are checking liveness for a subrange it is ok for the live range to // continue, given that we have a dead def of a subregister. if (SubRangeCheck || MO->getSubReg() == 0) { report("Live range continues after dead def flag", MO, MONum); report_context_liverange(LR); report_context_vreg_regunit(VRegOrUnit); if (LaneMask.any()) report_context_lanemask(LaneMask); } } } } void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { const MachineInstr *MI = MO->getParent(); const Register Reg = MO->getReg(); const unsigned SubRegIdx = MO->getSubReg(); const LiveInterval *LI = nullptr; if (LiveInts && Reg.isVirtual()) { if (LiveInts->hasInterval(Reg)) { LI = &LiveInts->getInterval(Reg); if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg)) report("Live interval for subreg operand has no subranges", MO, MONum); } else { report("Virtual register has no live interval", MO, MONum); } } // Both use and def operands can read a register. if (MO->readsReg()) { if (MO->isKill()) addRegWithSubRegs(regsKilled, Reg); // Check that LiveVars knows this kill (unless we are inside a bundle, in // which case we have already checked that LiveVars knows any kills on the // bundle header instead). if (LiveVars && Reg.isVirtual() && MO->isKill() && !MI->isBundledWithPred()) { LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); if (!is_contained(VI.Kills, MI)) report("Kill missing from LiveVariables", MO, MONum); } // Check LiveInts liveness and kill. if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { SlotIndex UseIdx; if (MI->isPHI()) { // PHI use occurs on the edge, so check for live out here instead. UseIdx = LiveInts->getMBBEndIdx( MI->getOperand(MONum + 1).getMBB()).getPrevSlot(); } else { UseIdx = LiveInts->getInstructionIndex(*MI); } // Check the cached regunit intervals. if (Reg.isPhysical() && !isReserved(Reg)) { for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { if (MRI->isReservedRegUnit(Unit)) continue; if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit)) checkLivenessAtUse(MO, MONum, UseIdx, *LR, Unit); } } if (Reg.isVirtual()) { // This is a virtual register interval. checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); if (LI->hasSubRanges() && !MO->isDef()) { LaneBitmask MOMask = SubRegIdx != 0 ? TRI->getSubRegIndexLaneMask(SubRegIdx) : MRI->getMaxLaneMaskForVReg(Reg); LaneBitmask LiveInMask; for (const LiveInterval::SubRange &SR : LI->subranges()) { if ((MOMask & SR.LaneMask).none()) continue; checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); LiveQueryResult LRQ = SR.Query(UseIdx); if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut())) LiveInMask |= SR.LaneMask; } // At least parts of the register has to be live at the use. if ((LiveInMask & MOMask).none()) { report("No live subrange at use", MO, MONum); report_context(*LI); report_context(UseIdx); } // For PHIs all lanes should be live if (MI->isPHI() && LiveInMask != MOMask) { report("Not all lanes of PHI source live at use", MO, MONum); report_context(*LI); report_context(UseIdx); } } } } // Use of a dead register. if (!regsLive.count(Reg)) { if (Reg.isPhysical()) { // Reserved registers may be used even when 'dead'. bool Bad = !isReserved(Reg); // We are fine if just any subregister has a defined value. if (Bad) { for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { if (regsLive.count(SubReg)) { Bad = false; break; } } } // If there is an additional implicit-use of a super register we stop // here. By definition we are fine if the super register is not // (completely) dead, if the complete super register is dead we will // get a report for its operand. if (Bad) { for (const MachineOperand &MOP : MI->uses()) { if (!MOP.isReg() || !MOP.isImplicit()) continue; if (!MOP.getReg().isPhysical()) continue; if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) Bad = false; } } if (Bad) report("Using an undefined physical register", MO, MONum); } else if (MRI->def_empty(Reg)) { report("Reading virtual register without a def", MO, MONum); } else { BBInfo &MInfo = MBBInfoMap[MI->getParent()]; // We don't know which virtual registers are live in, so only complain // if vreg was killed in this MBB. Otherwise keep track of vregs that // must be live in. PHI instructions are handled separately. if (MInfo.regsKilled.count(Reg)) report("Using a killed virtual register", MO, MONum); else if (!MI->isPHI()) MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); } } } if (MO->isDef()) { // Register defined. // TODO: verify that earlyclobber ops are not used. if (MO->isDead()) addRegWithSubRegs(regsDead, Reg); else addRegWithSubRegs(regsDefined, Reg); // Verify SSA form. if (MRI->isSSA() && Reg.isVirtual() && std::next(MRI->def_begin(Reg)) != MRI->def_end()) report("Multiple virtual register defs in SSA form", MO, MONum); // Check LiveInts for a live segment, but only for virtual registers. if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); if (Reg.isVirtual()) { checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); if (LI->hasSubRanges()) { LaneBitmask MOMask = SubRegIdx != 0 ? TRI->getSubRegIndexLaneMask(SubRegIdx) : MRI->getMaxLaneMaskForVReg(Reg); for (const LiveInterval::SubRange &SR : LI->subranges()) { if ((SR.LaneMask & MOMask).none()) continue; checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); } } } } } } // This function gets called after visiting all instructions in a bundle. The // argument points to the bundle header. // Normal stand-alone instructions are also considered 'bundles', and this // function is called for all of them. void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { BBInfo &MInfo = MBBInfoMap[MI->getParent()]; set_union(MInfo.regsKilled, regsKilled); set_subtract(regsLive, regsKilled); regsKilled.clear(); // Kill any masked registers. while (!regMasks.empty()) { const uint32_t *Mask = regMasks.pop_back_val(); for (Register Reg : regsLive) if (Reg.isPhysical() && MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) regsDead.push_back(Reg); } set_subtract(regsLive, regsDead); regsDead.clear(); set_union(regsLive, regsDefined); regsDefined.clear(); } void MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { MBBInfoMap[MBB].regsLiveOut = regsLive; regsLive.clear(); if (Indexes) { SlotIndex stop = Indexes->getMBBEndIdx(MBB); if (!(stop > lastIndex)) { report("Block ends before last instruction index", MBB); errs() << "Block ends at " << stop << " last instruction was at " << lastIndex << '\n'; } lastIndex = stop; } } namespace { // This implements a set of registers that serves as a filter: can filter other // sets by passing through elements not in the filter and blocking those that // are. Any filter implicitly includes the full set of physical registers upon // creation, thus filtering them all out. The filter itself as a set only grows, // and needs to be as efficient as possible. struct VRegFilter { // Add elements to the filter itself. \pre Input set \p FromRegSet must have // no duplicates. Both virtual and physical registers are fine. template void add(const RegSetT &FromRegSet) { SmallVector VRegsBuffer; filterAndAdd(FromRegSet, VRegsBuffer); } // Filter \p FromRegSet through the filter and append passed elements into \p // ToVRegs. All elements appended are then added to the filter itself. // \returns true if anything changed. template bool filterAndAdd(const RegSetT &FromRegSet, SmallVectorImpl &ToVRegs) { unsigned SparseUniverse = Sparse.size(); unsigned NewSparseUniverse = SparseUniverse; unsigned NewDenseSize = Dense.size(); size_t Begin = ToVRegs.size(); for (Register Reg : FromRegSet) { if (!Reg.isVirtual()) continue; unsigned Index = Register::virtReg2Index(Reg); if (Index < SparseUniverseMax) { if (Index < SparseUniverse && Sparse.test(Index)) continue; NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); } else { if (Dense.count(Reg)) continue; ++NewDenseSize; } ToVRegs.push_back(Reg); } size_t End = ToVRegs.size(); if (Begin == End) return false; // Reserving space in sets once performs better than doing so continuously // and pays easily for double look-ups (even in Dense with SparseUniverseMax // tuned all the way down) and double iteration (the second one is over a // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). Sparse.resize(NewSparseUniverse); Dense.reserve(NewDenseSize); for (unsigned I = Begin; I < End; ++I) { Register Reg = ToVRegs[I]; unsigned Index = Register::virtReg2Index(Reg); if (Index < SparseUniverseMax) Sparse.set(Index); else Dense.insert(Reg); } return true; } private: static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound // are tracked by Dense. The only purpose of the threashold and the Dense set // is to have a reasonably growing memory usage in pathological cases (large // number of very sparse VRegFilter instances live at the same time). In // practice even in the worst-by-execution time cases having all elements // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more // space efficient than if tracked by Dense. The threashold is set to keep the // worst-case memory usage within 2x of figures determined empirically for // "all Dense" scenario in such worst-by-execution-time cases. BitVector Sparse; DenseSet Dense; }; // Implements both a transfer function and a (binary, in-place) join operator // for a dataflow over register sets with set union join and filtering transfer // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. // Maintains out_b as its state, allowing for O(n) iteration over it at any // time, where n is the size of the set (as opposed to O(U) where U is the // universe). filter_b implicitly contains all physical registers at all times. class FilteringVRegSet { VRegFilter Filter; SmallVector VRegs; public: // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. // Both virtual and physical registers are fine. template void addToFilter(const RegSetT &RS) { Filter.add(RS); } // Passes \p RS through the filter_b (transfer function) and adds what's left // to itself (out_b). template bool add(const RegSetT &RS) { // Double-duty the Filter: to maintain VRegs a set (and the join operation // a set union) just add everything being added here to the Filter as well. return Filter.filterAndAdd(RS, VRegs); } using const_iterator = decltype(VRegs)::const_iterator; const_iterator begin() const { return VRegs.begin(); } const_iterator end() const { return VRegs.end(); } size_t size() const { return VRegs.size(); } }; } // namespace // Calculate the largest possible vregsPassed sets. These are the registers that // can pass through an MBB live, but may not be live every time. It is assumed // that all vregsPassed sets are empty before the call. void MachineVerifier::calcRegsPassed() { if (MF->empty()) // ReversePostOrderTraversal doesn't handle empty functions. return; for (const MachineBasicBlock *MB : ReversePostOrderTraversal(MF)) { FilteringVRegSet VRegs; BBInfo &Info = MBBInfoMap[MB]; assert(Info.reachable); VRegs.addToFilter(Info.regsKilled); VRegs.addToFilter(Info.regsLiveOut); for (const MachineBasicBlock *Pred : MB->predecessors()) { const BBInfo &PredInfo = MBBInfoMap[Pred]; if (!PredInfo.reachable) continue; VRegs.add(PredInfo.regsLiveOut); VRegs.add(PredInfo.vregsPassed); } Info.vregsPassed.reserve(VRegs.size()); Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); } } // Calculate the set of virtual registers that must be passed through each basic // block in order to satisfy the requirements of successor blocks. This is very // similar to calcRegsPassed, only backwards. void MachineVerifier::calcRegsRequired() { // First push live-in regs to predecessors' vregsRequired. SmallPtrSet todo; for (const auto &MBB : *MF) { BBInfo &MInfo = MBBInfoMap[&MBB]; for (const MachineBasicBlock *Pred : MBB.predecessors()) { BBInfo &PInfo = MBBInfoMap[Pred]; if (PInfo.addRequired(MInfo.vregsLiveIn)) todo.insert(Pred); } // Handle the PHI node. for (const MachineInstr &MI : MBB.phis()) { for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { // Skip those Operands which are undef regs or not regs. if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) continue; // Get register and predecessor for one PHI edge. Register Reg = MI.getOperand(i).getReg(); const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); BBInfo &PInfo = MBBInfoMap[Pred]; if (PInfo.addRequired(Reg)) todo.insert(Pred); } } } // Iteratively push vregsRequired to predecessors. This will converge to the // same final state regardless of DenseSet iteration order. while (!todo.empty()) { const MachineBasicBlock *MBB = *todo.begin(); todo.erase(MBB); BBInfo &MInfo = MBBInfoMap[MBB]; for (const MachineBasicBlock *Pred : MBB->predecessors()) { if (Pred == MBB) continue; BBInfo &SInfo = MBBInfoMap[Pred]; if (SInfo.addRequired(MInfo.vregsRequired)) todo.insert(Pred); } } } // Check PHI instructions at the beginning of MBB. It is assumed that // calcRegsPassed has been run so BBInfo::isLiveOut is valid. void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { BBInfo &MInfo = MBBInfoMap[&MBB]; SmallPtrSet seen; for (const MachineInstr &Phi : MBB) { if (!Phi.isPHI()) break; seen.clear(); const MachineOperand &MODef = Phi.getOperand(0); if (!MODef.isReg() || !MODef.isDef()) { report("Expected first PHI operand to be a register def", &MODef, 0); continue; } if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || MODef.isEarlyClobber() || MODef.isDebug()) report("Unexpected flag on PHI operand", &MODef, 0); Register DefReg = MODef.getReg(); if (!DefReg.isVirtual()) report("Expected first PHI operand to be a virtual register", &MODef, 0); for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { const MachineOperand &MO0 = Phi.getOperand(I); if (!MO0.isReg()) { report("Expected PHI operand to be a register", &MO0, I); continue; } if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || MO0.isDebug() || MO0.isTied()) report("Unexpected flag on PHI operand", &MO0, I); const MachineOperand &MO1 = Phi.getOperand(I + 1); if (!MO1.isMBB()) { report("Expected PHI operand to be a basic block", &MO1, I + 1); continue; } const MachineBasicBlock &Pre = *MO1.getMBB(); if (!Pre.isSuccessor(&MBB)) { report("PHI input is not a predecessor block", &MO1, I + 1); continue; } if (MInfo.reachable) { seen.insert(&Pre); BBInfo &PrInfo = MBBInfoMap[&Pre]; if (!MO0.isUndef() && PrInfo.reachable && !PrInfo.isLiveOut(MO0.getReg())) report("PHI operand is not live-out from predecessor", &MO0, I); } } // Did we see all predecessors? if (MInfo.reachable) { for (MachineBasicBlock *Pred : MBB.predecessors()) { if (!seen.count(Pred)) { report("Missing PHI operand", &Phi); errs() << printMBBReference(*Pred) << " is a predecessor according to the CFG.\n"; } } } } } static void verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT, std::function FailureCB) { MachineConvergenceVerifier CV; CV.initialize(&errs(), FailureCB, MF); for (const auto &MBB : MF) { CV.visit(MBB); for (const auto &MI : MBB.instrs()) CV.visit(MI); } if (CV.sawTokens()) { DT.recalculate(const_cast(MF)); CV.verify(DT); } } void MachineVerifier::visitMachineFunctionAfter() { auto FailureCB = [this](const Twine &Message) { report(Message.str().c_str(), MF); }; verifyConvergenceControl(*MF, DT, FailureCB); calcRegsPassed(); for (const MachineBasicBlock &MBB : *MF) checkPHIOps(MBB); // Now check liveness info if available calcRegsRequired(); // Check for killed virtual registers that should be live out. for (const auto &MBB : *MF) { BBInfo &MInfo = MBBInfoMap[&MBB]; for (Register VReg : MInfo.vregsRequired) if (MInfo.regsKilled.count(VReg)) { report("Virtual register killed in block, but needed live out.", &MBB); errs() << "Virtual register " << printReg(VReg) << " is used after the block.\n"; } } if (!MF->empty()) { BBInfo &MInfo = MBBInfoMap[&MF->front()]; for (Register VReg : MInfo.vregsRequired) { report("Virtual register defs don't dominate all uses.", MF); report_context_vreg(VReg); } } if (LiveVars) verifyLiveVariables(); if (LiveInts) verifyLiveIntervals(); // Check live-in list of each MBB. If a register is live into MBB, check // that the register is in regsLiveOut of each predecessor block. Since // this must come from a definition in the predecesssor or its live-in // list, this will catch a live-through case where the predecessor does not // have the register in its live-in list. This currently only checks // registers that have no aliases, are not allocatable and are not // reserved, which could mean a condition code register for instance. if (MRI->tracksLiveness()) for (const auto &MBB : *MF) for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { MCPhysReg LiveInReg = P.PhysReg; bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) continue; for (const MachineBasicBlock *Pred : MBB.predecessors()) { BBInfo &PInfo = MBBInfoMap[Pred]; if (!PInfo.regsLiveOut.count(LiveInReg)) { report("Live in register not found to be live out from predecessor.", &MBB); errs() << TRI->getName(LiveInReg) << " not found to be live out from " << printMBBReference(*Pred) << "\n"; } } } for (auto CSInfo : MF->getCallSitesInfo()) if (!CSInfo.first->isCall()) report("Call site info referencing instruction that is not call", MF); // If there's debug-info, check that we don't have any duplicate value // tracking numbers. if (MF->getFunction().getSubprogram()) { DenseSet SeenNumbers; for (const auto &MBB : *MF) { for (const auto &MI : MBB) { if (auto Num = MI.peekDebugInstrNum()) { auto Result = SeenNumbers.insert((unsigned)Num); if (!Result.second) report("Instruction has a duplicated value tracking number", &MI); } } } } } void MachineVerifier::verifyLiveVariables() { assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { Register Reg = Register::index2VirtReg(I); LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); for (const auto &MBB : *MF) { BBInfo &MInfo = MBBInfoMap[&MBB]; // Our vregsRequired should be identical to LiveVariables' AliveBlocks if (MInfo.vregsRequired.count(Reg)) { if (!VI.AliveBlocks.test(MBB.getNumber())) { report("LiveVariables: Block missing from AliveBlocks", &MBB); errs() << "Virtual register " << printReg(Reg) << " must be live through the block.\n"; } } else { if (VI.AliveBlocks.test(MBB.getNumber())) { report("LiveVariables: Block should not be in AliveBlocks", &MBB); errs() << "Virtual register " << printReg(Reg) << " is not needed live through the block.\n"; } } } } } void MachineVerifier::verifyLiveIntervals() { assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { Register Reg = Register::index2VirtReg(I); // Spilling and splitting may leave unused registers around. Skip them. if (MRI->reg_nodbg_empty(Reg)) continue; if (!LiveInts->hasInterval(Reg)) { report("Missing live interval for virtual register", MF); errs() << printReg(Reg, TRI) << " still has defs or uses\n"; continue; } const LiveInterval &LI = LiveInts->getInterval(Reg); assert(Reg == LI.reg() && "Invalid reg to interval mapping"); verifyLiveInterval(LI); } // Verify all the cached regunit intervals. for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) verifyLiveRange(*LR, i); } void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, const VNInfo *VNI, Register Reg, LaneBitmask LaneMask) { if (VNI->isUnused()) return; const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); if (!DefVNI) { report("Value not live at VNInfo def and not marked unused", MF); report_context(LR, Reg, LaneMask); report_context(*VNI); return; } if (DefVNI != VNI) { report("Live segment at def has different VNInfo", MF); report_context(LR, Reg, LaneMask); report_context(*VNI); return; } const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); if (!MBB) { report("Invalid VNInfo definition index", MF); report_context(LR, Reg, LaneMask); report_context(*VNI); return; } if (VNI->isPHIDef()) { if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { report("PHIDef VNInfo is not defined at MBB start", MBB); report_context(LR, Reg, LaneMask); report_context(*VNI); } return; } // Non-PHI def. const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); if (!MI) { report("No instruction at VNInfo def index", MBB); report_context(LR, Reg, LaneMask); report_context(*VNI); return; } if (Reg != 0) { bool hasDef = false; bool isEarlyClobber = false; for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { if (!MOI->isReg() || !MOI->isDef()) continue; if (Reg.isVirtual()) { if (MOI->getReg() != Reg) continue; } else { if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg)) continue; } if (LaneMask.any() && (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) continue; hasDef = true; if (MOI->isEarlyClobber()) isEarlyClobber = true; } if (!hasDef) { report("Defining instruction does not modify register", MI); report_context(LR, Reg, LaneMask); report_context(*VNI); } // Early clobber defs begin at USE slots, but other defs must begin at // DEF slots. if (isEarlyClobber) { if (!VNI->def.isEarlyClobber()) { report("Early clobber def must be at an early-clobber slot", MBB); report_context(LR, Reg, LaneMask); report_context(*VNI); } } else if (!VNI->def.isRegister()) { report("Non-PHI, non-early clobber def must be at a register slot", MBB); report_context(LR, Reg, LaneMask); report_context(*VNI); } } } void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, const LiveRange::const_iterator I, Register Reg, LaneBitmask LaneMask) { const LiveRange::Segment &S = *I; const VNInfo *VNI = S.valno; assert(VNI && "Live segment has no valno"); if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { report("Foreign valno in live segment", MF); report_context(LR, Reg, LaneMask); report_context(S); report_context(*VNI); } if (VNI->isUnused()) { report("Live segment valno is marked unused", MF); report_context(LR, Reg, LaneMask); report_context(S); } const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); if (!MBB) { report("Bad start of live segment, no basic block", MF); report_context(LR, Reg, LaneMask); report_context(S); return; } SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); if (S.start != MBBStartIdx && S.start != VNI->def) { report("Live segment must begin at MBB entry or valno def", MBB); report_context(LR, Reg, LaneMask); report_context(S); } const MachineBasicBlock *EndMBB = LiveInts->getMBBFromIndex(S.end.getPrevSlot()); if (!EndMBB) { report("Bad end of live segment, no basic block", MF); report_context(LR, Reg, LaneMask); report_context(S); return; } // Checks for non-live-out segments. if (S.end != LiveInts->getMBBEndIdx(EndMBB)) { // RegUnit intervals are allowed dead phis. if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def && S.end == VNI->def.getDeadSlot()) return; // The live segment is ending inside EndMBB const MachineInstr *MI = LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); if (!MI) { report("Live segment doesn't end at a valid instruction", EndMBB); report_context(LR, Reg, LaneMask); report_context(S); return; } // The block slot must refer to a basic block boundary. if (S.end.isBlock()) { report("Live segment ends at B slot of an instruction", EndMBB); report_context(LR, Reg, LaneMask); report_context(S); } if (S.end.isDead()) { // Segment ends on the dead slot. // That means there must be a dead def. if (!SlotIndex::isSameInstr(S.start, S.end)) { report("Live segment ending at dead slot spans instructions", EndMBB); report_context(LR, Reg, LaneMask); report_context(S); } } // After tied operands are rewritten, a live segment can only end at an // early-clobber slot if it is being redefined by an early-clobber def. // TODO: Before tied operands are rewritten, a live segment can only end at // an early-clobber slot if the last use is tied to an early-clobber def. if (MF->getProperties().hasProperty( MachineFunctionProperties::Property::TiedOpsRewritten) && S.end.isEarlyClobber()) { if (I + 1 == LR.end() || (I + 1)->start != S.end) { report("Live segment ending at early clobber slot must be " "redefined by an EC def in the same instruction", EndMBB); report_context(LR, Reg, LaneMask); report_context(S); } } // The following checks only apply to virtual registers. Physreg liveness // is too weird to check. if (Reg.isVirtual()) { // A live segment can end with either a redefinition, a kill flag on a // use, or a dead flag on a def. bool hasRead = false; bool hasSubRegDef = false; bool hasDeadDef = false; for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { if (!MOI->isReg() || MOI->getReg() != Reg) continue; unsigned Sub = MOI->getSubReg(); LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : LaneBitmask::getAll(); if (MOI->isDef()) { if (Sub != 0) { hasSubRegDef = true; // An operand %0:sub0 reads %0:sub1..n. Invert the lane // mask for subregister defs. Read-undef defs will be handled by // readsReg below. SLM = ~SLM; } if (MOI->isDead()) hasDeadDef = true; } if (LaneMask.any() && (LaneMask & SLM).none()) continue; if (MOI->readsReg()) hasRead = true; } if (S.end.isDead()) { // Make sure that the corresponding machine operand for a "dead" live // range has the dead flag. We cannot perform this check for subregister // liveranges as partially dead values are allowed. if (LaneMask.none() && !hasDeadDef) { report( "Instruction ending live segment on dead slot has no dead flag", MI); report_context(LR, Reg, LaneMask); report_context(S); } } else { if (!hasRead) { // When tracking subregister liveness, the main range must start new // values on partial register writes, even if there is no read. if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || !hasSubRegDef) { report("Instruction ending live segment doesn't read the register", MI); report_context(LR, Reg, LaneMask); report_context(S); } } } } } // Now check all the basic blocks in this live segment. MachineFunction::const_iterator MFI = MBB->getIterator(); // Is this live segment the beginning of a non-PHIDef VN? if (S.start == VNI->def && !VNI->isPHIDef()) { // Not live-in to any blocks. if (MBB == EndMBB) return; // Skip this block. ++MFI; } SmallVector Undefs; if (LaneMask.any()) { LiveInterval &OwnerLI = LiveInts->getInterval(Reg); OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); } while (true) { assert(LiveInts->isLiveInToMBB(LR, &*MFI)); // We don't know how to track physregs into a landing pad. if (!Reg.isVirtual() && MFI->isEHPad()) { if (&*MFI == EndMBB) break; ++MFI; continue; } // Is VNI a PHI-def in the current block? bool IsPHI = VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(&*MFI); // Check that VNI is live-out of all predecessors. for (const MachineBasicBlock *Pred : MFI->predecessors()) { SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); // Predecessor of landing pad live-out on last call. if (MFI->isEHPad()) { for (const MachineInstr &MI : llvm::reverse(*Pred)) { if (MI.isCall()) { PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); break; } } } const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); // All predecessors must have a live-out value. However for a phi // instruction with subregister intervals // only one of the subregisters (not necessarily the current one) needs to // be defined. if (!PVNI && (LaneMask.none() || !IsPHI)) { if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) continue; report("Register not marked live out of predecessor", Pred); report_context(LR, Reg, LaneMask); report_context(*VNI); errs() << " live into " << printMBBReference(*MFI) << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " << PEnd << '\n'; continue; } // Only PHI-defs can take different predecessor values. if (!IsPHI && PVNI != VNI) { report("Different value live out of predecessor", Pred); report_context(LR, Reg, LaneMask); errs() << "Valno #" << PVNI->id << " live out of " << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" << VNI->id << " live into " << printMBBReference(*MFI) << '@' << LiveInts->getMBBStartIdx(&*MFI) << '\n'; } } if (&*MFI == EndMBB) break; ++MFI; } } void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, LaneBitmask LaneMask) { for (const VNInfo *VNI : LR.valnos) verifyLiveRangeValue(LR, VNI, Reg, LaneMask); for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) verifyLiveRangeSegment(LR, I, Reg, LaneMask); } void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { Register Reg = LI.reg(); assert(Reg.isVirtual()); verifyLiveRange(LI, Reg); if (LI.hasSubRanges()) { LaneBitmask Mask; LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); for (const LiveInterval::SubRange &SR : LI.subranges()) { if ((Mask & SR.LaneMask).any()) { report("Lane masks of sub ranges overlap in live interval", MF); report_context(LI); } if ((SR.LaneMask & ~MaxMask).any()) { report("Subrange lanemask is invalid", MF); report_context(LI); } if (SR.empty()) { report("Subrange must not be empty", MF); report_context(SR, LI.reg(), SR.LaneMask); } Mask |= SR.LaneMask; verifyLiveRange(SR, LI.reg(), SR.LaneMask); if (!LI.covers(SR)) { report("A Subrange is not covered by the main range", MF); report_context(LI); } } } // Check the LI only has one connected component. ConnectedVNInfoEqClasses ConEQ(*LiveInts); unsigned NumComp = ConEQ.Classify(LI); if (NumComp > 1) { report("Multiple connected components in live interval", MF); report_context(LI); for (unsigned comp = 0; comp != NumComp; ++comp) { errs() << comp << ": valnos"; for (const VNInfo *I : LI.valnos) if (comp == ConEQ.getEqClass(I)) errs() << ' ' << I->id; errs() << '\n'; } } } namespace { // FrameSetup and FrameDestroy can have zero adjustment, so using a single // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the // value is zero. // We use a bool plus an integer to capture the stack state. struct StackStateOfBB { StackStateOfBB() = default; StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), ExitIsSetup(ExitSetup) {} // Can be negative, which means we are setting up a frame. int EntryValue = 0; int ExitValue = 0; bool EntryIsSetup = false; bool ExitIsSetup = false; }; } // end anonymous namespace /// Make sure on every path through the CFG, a FrameSetup is always followed /// by a FrameDestroy , stack adjustments are identical on all /// CFG edges to a merge point, and frame is destroyed at end of a return block. void MachineVerifier::verifyStackFrame() { unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) return; SmallVector SPState; SPState.resize(MF->getNumBlockIDs()); df_iterator_default_set Reachable; // Visit the MBBs in DFS order. for (df_ext_iterator> DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); DFI != DFE; ++DFI) { const MachineBasicBlock *MBB = *DFI; StackStateOfBB BBState; // Check the exit state of the DFS stack predecessor. if (DFI.getPathLength() >= 2) { const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); assert(Reachable.count(StackPred) && "DFS stack predecessor is already visited.\n"); BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; BBState.ExitValue = BBState.EntryValue; BBState.ExitIsSetup = BBState.EntryIsSetup; } if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) { report("Call frame size on entry does not match value computed from " "predecessor", MBB); errs() << "Call frame size on entry " << MBB->getCallFrameSize() << " does not match value computed from predecessor " << -BBState.EntryValue << '\n'; } // Update stack state by checking contents of MBB. for (const auto &I : *MBB) { if (I.getOpcode() == FrameSetupOpcode) { if (BBState.ExitIsSetup) report("FrameSetup is after another FrameSetup", &I); if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) report("AdjustsStack not set in presence of a frame pseudo " "instruction.", &I); BBState.ExitValue -= TII->getFrameTotalSize(I); BBState.ExitIsSetup = true; } if (I.getOpcode() == FrameDestroyOpcode) { int Size = TII->getFrameTotalSize(I); if (!BBState.ExitIsSetup) report("FrameDestroy is not after a FrameSetup", &I); int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : BBState.ExitValue; if (BBState.ExitIsSetup && AbsSPAdj != Size) { report("FrameDestroy is after FrameSetup ", &I); errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" << AbsSPAdj << ">.\n"; } if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) report("AdjustsStack not set in presence of a frame pseudo " "instruction.", &I); BBState.ExitValue += Size; BBState.ExitIsSetup = false; } } SPState[MBB->getNumber()] = BBState; // Make sure the exit state of any predecessor is consistent with the entry // state. for (const MachineBasicBlock *Pred : MBB->predecessors()) { if (Reachable.count(Pred) && (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { report("The exit stack state of a predecessor is inconsistent.", MBB); errs() << "Predecessor " << printMBBReference(*Pred) << " has exit state (" << SPState[Pred->getNumber()].ExitValue << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " << printMBBReference(*MBB) << " has entry state (" << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; } } // Make sure the entry state of any successor is consistent with the exit // state. for (const MachineBasicBlock *Succ : MBB->successors()) { if (Reachable.count(Succ) && (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { report("The entry stack state of a successor is inconsistent.", MBB); errs() << "Successor " << printMBBReference(*Succ) << " has entry state (" << SPState[Succ->getNumber()].EntryValue << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " << printMBBReference(*MBB) << " has exit state (" << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; } } // Make sure a basic block with return ends with zero stack adjustment. if (!MBB->empty() && MBB->back().isReturn()) { if (BBState.ExitIsSetup) report("A return block ends with a FrameSetup.", MBB); if (BBState.ExitValue) report("A return block ends with a nonzero stack adjustment.", MBB); } } }