//==--- MachineLateInstrsCleanup.cpp - Late Instructions Cleanup Pass -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This simple pass removes any identical and redundant immediate or address // loads to the same register. The immediate loads removed can originally be // the result of rematerialization, while the addresses are redundant frame // addressing anchor points created during Frame Indices elimination. // //===----------------------------------------------------------------------===// #include "llvm/ADT/BitVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "machine-latecleanup" STATISTIC(NumRemoved, "Number of redundant instructions removed."); namespace { class MachineLateInstrsCleanup : public MachineFunctionPass { const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; // Data structures to map regs to their definitions per MBB. using Reg2DefMap = std::map; std::vector RegDefs; // Walk through the instructions in MBB and remove any redundant // instructions. bool processBlock(MachineBasicBlock *MBB); public: static char ID; // Pass identification, replacement for typeid MachineLateInstrsCleanup() : MachineFunctionPass(ID) { initializeMachineLateInstrsCleanupPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } }; } // end anonymous namespace char MachineLateInstrsCleanup::ID = 0; char &llvm::MachineLateInstrsCleanupID = MachineLateInstrsCleanup::ID; INITIALIZE_PASS(MachineLateInstrsCleanup, DEBUG_TYPE, "Machine Late Instructions Cleanup Pass", false, false) bool MachineLateInstrsCleanup::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; TRI = MF.getSubtarget().getRegisterInfo(); TII = MF.getSubtarget().getInstrInfo(); RegDefs.clear(); RegDefs.resize(MF.getNumBlockIDs()); // Visit all MBBs in an order that maximises the reuse from predecessors. bool Changed = false; ReversePostOrderTraversal RPOT(&MF); for (MachineBasicBlock *MBB : RPOT) Changed |= processBlock(MBB); return Changed; } // Clear any previous kill flag on Reg found before I in MBB. Walk backwards // in MBB and if needed continue in predecessors until a use/def of Reg is // encountered. This seems to be faster in practice than tracking kill flags // in a map. static void clearKillsForDef(Register Reg, MachineBasicBlock *MBB, MachineBasicBlock::iterator I, BitVector &VisitedPreds, const TargetRegisterInfo *TRI) { VisitedPreds.set(MBB->getNumber()); while (I != MBB->begin()) { --I; bool Found = false; for (auto &MO : I->operands()) if (MO.isReg() && TRI->regsOverlap(MO.getReg(), Reg)) { if (MO.isDef()) return; if (MO.readsReg()) { MO.setIsKill(false); Found = true; // Keep going for an implicit kill of the super-reg. } } if (Found) return; } // If an earlier def is not in MBB, continue in predecessors. if (!MBB->isLiveIn(Reg)) MBB->addLiveIn(Reg); assert(!MBB->pred_empty() && "Predecessor def not found!"); for (MachineBasicBlock *Pred : MBB->predecessors()) if (!VisitedPreds.test(Pred->getNumber())) clearKillsForDef(Reg, Pred, Pred->end(), VisitedPreds, TRI); } static void removeRedundantDef(MachineInstr *MI, const TargetRegisterInfo *TRI) { Register Reg = MI->getOperand(0).getReg(); BitVector VisitedPreds(MI->getMF()->getNumBlockIDs()); clearKillsForDef(Reg, MI->getParent(), MI->getIterator(), VisitedPreds, TRI); MI->eraseFromParent(); ++NumRemoved; } // Return true if MI is a potential candidate for reuse/removal and if so // also the register it defines in DefedReg. A candidate is a simple // instruction that does not touch memory, has only one register definition // and the only reg it may use is FrameReg. Typically this is an immediate // load or a load-address instruction. static bool isCandidate(const MachineInstr *MI, Register &DefedReg, Register FrameReg) { DefedReg = MCRegister::NoRegister; bool SawStore = true; if (!MI->isSafeToMove(nullptr, SawStore) || MI->isImplicitDef() || MI->isInlineAsm()) return false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg()) { if (MO.isDef()) { if (i == 0 && !MO.isImplicit() && !MO.isDead()) DefedReg = MO.getReg(); else return false; } else if (MO.getReg() && MO.getReg() != FrameReg) return false; } else if (!(MO.isImm() || MO.isCImm() || MO.isFPImm() || MO.isCPI() || MO.isGlobal() || MO.isSymbol())) return false; } return DefedReg.isValid(); } bool MachineLateInstrsCleanup::processBlock(MachineBasicBlock *MBB) { bool Changed = false; Reg2DefMap &MBBDefs = RegDefs[MBB->getNumber()]; // Find reusable definitions in the predecessor(s). if (!MBB->pred_empty() && !MBB->isEHPad() && !MBB->isInlineAsmBrIndirectTarget()) { MachineBasicBlock *FirstPred = *MBB->pred_begin(); for (auto [Reg, DefMI] : RegDefs[FirstPred->getNumber()]) if (llvm::all_of( drop_begin(MBB->predecessors()), [&, &Reg = Reg, &DefMI = DefMI](const MachineBasicBlock *Pred) { auto PredDefI = RegDefs[Pred->getNumber()].find(Reg); return PredDefI != RegDefs[Pred->getNumber()].end() && DefMI->isIdenticalTo(*PredDefI->second); })) { MBBDefs[Reg] = DefMI; LLVM_DEBUG(dbgs() << "Reusable instruction from pred(s): in " << printMBBReference(*MBB) << ": " << *DefMI;); } } // Process MBB. MachineFunction *MF = MBB->getParent(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); Register FrameReg = TRI->getFrameRegister(*MF); for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) { // If FrameReg is modified, no previous load-address instructions (using // it) are valid. if (MI.modifiesRegister(FrameReg, TRI)) { MBBDefs.clear(); continue; } Register DefedReg; bool IsCandidate = isCandidate(&MI, DefedReg, FrameReg); // Check for an earlier identical and reusable instruction. if (IsCandidate) { auto DefI = MBBDefs.find(DefedReg); if (DefI != MBBDefs.end() && MI.isIdenticalTo(*DefI->second)) { LLVM_DEBUG(dbgs() << "Removing redundant instruction in " << printMBBReference(*MBB) << ": " << MI;); removeRedundantDef(&MI, TRI); Changed = true; continue; } } // Clear any entries in map that MI clobbers. for (auto DefI = MBBDefs.begin(); DefI != MBBDefs.end();) { Register Reg = DefI->first; if (MI.modifiesRegister(Reg, TRI)) DefI = MBBDefs.erase(DefI); else ++DefI; } // Record this MI for potential later reuse. if (IsCandidate) { LLVM_DEBUG(dbgs() << "Found interesting instruction in " << printMBBReference(*MBB) << ": " << MI;); MBBDefs[DefedReg] = &MI; } } return Changed; }