//===-- lib/CodeGen/MachineInstrBundle.cpp --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineInstrBundle.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/PassRegistry.h" #include using namespace llvm; namespace { class UnpackMachineBundles : public MachineFunctionPass { public: static char ID; // Pass identification UnpackMachineBundles( std::function Ftor = nullptr) : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { initializeUnpackMachineBundlesPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; private: std::function PredicateFtor; }; } // end anonymous namespace char UnpackMachineBundles::ID = 0; char &llvm::UnpackMachineBundlesID = UnpackMachineBundles::ID; INITIALIZE_PASS(UnpackMachineBundles, "unpack-mi-bundles", "Unpack machine instruction bundles", false, false) bool UnpackMachineBundles::runOnMachineFunction(MachineFunction &MF) { if (PredicateFtor && !PredicateFtor(MF)) return false; bool Changed = false; for (MachineBasicBlock &MBB : MF) { for (MachineBasicBlock::instr_iterator MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE; ) { MachineInstr *MI = &*MII; // Remove BUNDLE instruction and the InsideBundle flags from bundled // instructions. if (MI->isBundle()) { while (++MII != MIE && MII->isBundledWithPred()) { MII->unbundleFromPred(); for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) { MachineOperand &MO = MII->getOperand(i); if (MO.isReg() && MO.isInternalRead()) MO.setIsInternalRead(false); } } MI->eraseFromParent(); Changed = true; continue; } ++MII; } } return Changed; } FunctionPass * llvm::createUnpackMachineBundles( std::function Ftor) { return new UnpackMachineBundles(std::move(Ftor)); } namespace { class FinalizeMachineBundles : public MachineFunctionPass { public: static char ID; // Pass identification FinalizeMachineBundles() : MachineFunctionPass(ID) { initializeFinalizeMachineBundlesPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; }; } // end anonymous namespace char FinalizeMachineBundles::ID = 0; char &llvm::FinalizeMachineBundlesID = FinalizeMachineBundles::ID; INITIALIZE_PASS(FinalizeMachineBundles, "finalize-mi-bundles", "Finalize machine instruction bundles", false, false) bool FinalizeMachineBundles::runOnMachineFunction(MachineFunction &MF) { return llvm::finalizeBundles(MF); } /// Return the first found DebugLoc that has a DILocation, given a range of /// instructions. The search range is from FirstMI to LastMI (exclusive). If no /// DILocation is found, then an empty location is returned. static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI) { for (auto MII = FirstMI; MII != LastMI; ++MII) if (MII->getDebugLoc()) return MII->getDebugLoc(); return DebugLoc(); } /// finalizeBundle - Finalize a machine instruction bundle which includes /// a sequence of instructions starting from FirstMI to LastMI (exclusive). /// This routine adds a BUNDLE instruction to represent the bundle, it adds /// IsInternalRead markers to MachineOperands which are defined inside the /// bundle, and it copies externally visible defs and uses to the BUNDLE /// instruction. void llvm::finalizeBundle(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI) { assert(FirstMI != LastMI && "Empty bundle?"); MIBundleBuilder Bundle(MBB, FirstMI, LastMI); MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); MachineInstrBuilder MIB = BuildMI(MF, getDebugLoc(FirstMI, LastMI), TII->get(TargetOpcode::BUNDLE)); Bundle.prepend(MIB); SmallVector LocalDefs; SmallSet LocalDefSet; SmallSet DeadDefSet; SmallSet KilledDefSet; SmallVector ExternUses; SmallSet ExternUseSet; SmallSet KilledUseSet; SmallSet UndefUseSet; SmallVector Defs; for (auto MII = FirstMI; MII != LastMI; ++MII) { // Debug instructions have no effects to track. if (MII->isDebugInstr()) continue; for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) { MachineOperand &MO = MII->getOperand(i); if (!MO.isReg()) continue; if (MO.isDef()) { Defs.push_back(&MO); continue; } Register Reg = MO.getReg(); if (!Reg) continue; if (LocalDefSet.count(Reg)) { MO.setIsInternalRead(); if (MO.isKill()) // Internal def is now killed. KilledDefSet.insert(Reg); } else { if (ExternUseSet.insert(Reg).second) { ExternUses.push_back(Reg); if (MO.isUndef()) UndefUseSet.insert(Reg); } if (MO.isKill()) // External def is now killed. KilledUseSet.insert(Reg); } } for (unsigned i = 0, e = Defs.size(); i != e; ++i) { MachineOperand &MO = *Defs[i]; Register Reg = MO.getReg(); if (!Reg) continue; if (LocalDefSet.insert(Reg).second) { LocalDefs.push_back(Reg); if (MO.isDead()) { DeadDefSet.insert(Reg); } } else { // Re-defined inside the bundle, it's no longer killed. KilledDefSet.erase(Reg); if (!MO.isDead()) // Previously defined but dead. DeadDefSet.erase(Reg); } if (!MO.isDead() && Reg.isPhysical()) { for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; if (LocalDefSet.insert(SubReg).second) LocalDefs.push_back(SubReg); } } } Defs.clear(); } SmallSet Added; for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) { Register Reg = LocalDefs[i]; if (Added.insert(Reg).second) { // If it's not live beyond end of the bundle, mark it dead. bool isDead = DeadDefSet.count(Reg) || KilledDefSet.count(Reg); MIB.addReg(Reg, getDefRegState(true) | getDeadRegState(isDead) | getImplRegState(true)); } } for (unsigned i = 0, e = ExternUses.size(); i != e; ++i) { Register Reg = ExternUses[i]; bool isKill = KilledUseSet.count(Reg); bool isUndef = UndefUseSet.count(Reg); MIB.addReg(Reg, getKillRegState(isKill) | getUndefRegState(isUndef) | getImplRegState(true)); } // Set FrameSetup/FrameDestroy for the bundle. If any of the instructions got // the property, then also set it on the bundle. for (auto MII = FirstMI; MII != LastMI; ++MII) { if (MII->getFlag(MachineInstr::FrameSetup)) MIB.setMIFlag(MachineInstr::FrameSetup); if (MII->getFlag(MachineInstr::FrameDestroy)) MIB.setMIFlag(MachineInstr::FrameDestroy); } } /// finalizeBundle - Same functionality as the previous finalizeBundle except /// the last instruction in the bundle is not provided as an input. This is /// used in cases where bundles are pre-determined by marking instructions /// with 'InsideBundle' marker. It returns the MBB instruction iterator that /// points to the end of the bundle. MachineBasicBlock::instr_iterator llvm::finalizeBundle(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator FirstMI) { MachineBasicBlock::instr_iterator E = MBB.instr_end(); MachineBasicBlock::instr_iterator LastMI = std::next(FirstMI); while (LastMI != E && LastMI->isInsideBundle()) ++LastMI; finalizeBundle(MBB, FirstMI, LastMI); return LastMI; } /// finalizeBundles - Finalize instruction bundles in the specified /// MachineFunction. Return true if any bundles are finalized. bool llvm::finalizeBundles(MachineFunction &MF) { bool Changed = false; for (MachineBasicBlock &MBB : MF) { MachineBasicBlock::instr_iterator MII = MBB.instr_begin(); MachineBasicBlock::instr_iterator MIE = MBB.instr_end(); if (MII == MIE) continue; assert(!MII->isInsideBundle() && "First instr cannot be inside bundle before finalization!"); for (++MII; MII != MIE; ) { if (!MII->isInsideBundle()) ++MII; else { MII = finalizeBundle(MBB, std::prev(MII)); Changed = true; } } } return Changed; } VirtRegInfo llvm::AnalyzeVirtRegInBundle( MachineInstr &MI, Register Reg, SmallVectorImpl> *Ops) { VirtRegInfo RI = {false, false, false}; for (MIBundleOperands O(MI); O.isValid(); ++O) { MachineOperand &MO = *O; if (!MO.isReg() || MO.getReg() != Reg) continue; // Remember each (MI, OpNo) that refers to Reg. if (Ops) Ops->push_back(std::make_pair(MO.getParent(), O.getOperandNo())); // Both defs and uses can read virtual registers. if (MO.readsReg()) { RI.Reads = true; if (MO.isDef()) RI.Tied = true; } // Only defs can write. if (MO.isDef()) RI.Writes = true; else if (!RI.Tied && MO.getParent()->isRegTiedToDefOperand(O.getOperandNo())) RI.Tied = true; } return RI; } PhysRegInfo llvm::AnalyzePhysRegInBundle(const MachineInstr &MI, Register Reg, const TargetRegisterInfo *TRI) { bool AllDefsDead = true; PhysRegInfo PRI = {false, false, false, false, false, false, false, false}; assert(Reg.isPhysical() && "analyzePhysReg not given a physical register!"); for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { const MachineOperand &MO = *O; if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) { PRI.Clobbered = true; continue; } if (!MO.isReg()) continue; Register MOReg = MO.getReg(); if (!MOReg || !MOReg.isPhysical()) continue; if (!TRI->regsOverlap(MOReg, Reg)) continue; bool Covered = TRI->isSuperRegisterEq(Reg, MOReg); if (MO.readsReg()) { PRI.Read = true; if (Covered) { PRI.FullyRead = true; if (MO.isKill()) PRI.Killed = true; } } else if (MO.isDef()) { PRI.Defined = true; if (Covered) PRI.FullyDefined = true; if (!MO.isDead()) AllDefsDead = false; } } if (AllDefsDead) { if (PRI.FullyDefined || PRI.Clobbered) PRI.DeadDef = true; else if (PRI.Defined) PRI.PartialDeadDef = true; } return PRI; }