//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Methods common to all machine instructions. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineInstr.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineInstrBundle.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/Register.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGenTypes/LowLevelType.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSlotTracker.h" #include "llvm/IR/Operator.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include using namespace llvm; static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { if (const MachineBasicBlock *MBB = MI.getParent()) if (const MachineFunction *MF = MBB->getParent()) return MF; return nullptr; } // Try to crawl up to the machine function and get TRI and IntrinsicInfo from // it. static void tryToGetTargetInfo(const MachineInstr &MI, const TargetRegisterInfo *&TRI, const MachineRegisterInfo *&MRI, const TargetIntrinsicInfo *&IntrinsicInfo, const TargetInstrInfo *&TII) { if (const MachineFunction *MF = getMFIfAvailable(MI)) { TRI = MF->getSubtarget().getRegisterInfo(); MRI = &MF->getRegInfo(); IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); TII = MF->getSubtarget().getInstrInfo(); } } void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { for (MCPhysReg ImpDef : MCID->implicit_defs()) addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true)); for (MCPhysReg ImpUse : MCID->implicit_uses()) addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true)); } /// MachineInstr ctor - This constructor creates a MachineInstr and adds the /// implicit operands. It reserves space for the number of operands specified by /// the MCInstrDesc. MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, DebugLoc DL, bool NoImp) : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0), DbgLoc(std::move(DL)), DebugInstrNum(0), Opcode(TID.Opcode) { assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); // Reserve space for the expected number of operands. if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + MCID->implicit_uses().size()) { CapOperands = OperandCapacity::get(NumOps); Operands = MF.allocateOperandArray(CapOperands); } if (!NoImp) addImplicitDefUseOperands(MF); } /// MachineInstr ctor - Copies MachineInstr arg exactly. /// Does not copy the number from debug instruction numbering, to preserve /// uniqueness. MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0), Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0), Opcode(MI.getOpcode()) { assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); CapOperands = OperandCapacity::get(MI.getNumOperands()); Operands = MF.allocateOperandArray(CapOperands); // Copy operands. for (const MachineOperand &MO : MI.operands()) addOperand(MF, MO); // Replicate ties between the operands, which addOperand was not // able to do reliably. for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { MachineOperand &NewMO = getOperand(i); const MachineOperand &OrigMO = MI.getOperand(i); NewMO.TiedTo = OrigMO.TiedTo; } // Copy all the sensible flags. setFlags(MI.Flags); } void MachineInstr::setDesc(const MCInstrDesc &TID) { if (getParent()) getMF()->handleChangeDesc(*this, TID); MCID = &TID; Opcode = TID.Opcode; } void MachineInstr::moveBefore(MachineInstr *MovePos) { MovePos->getParent()->splice(MovePos, getParent(), getIterator()); } /// getRegInfo - If this instruction is embedded into a MachineFunction, /// return the MachineRegisterInfo object for the current function, otherwise /// return null. MachineRegisterInfo *MachineInstr::getRegInfo() { if (MachineBasicBlock *MBB = getParent()) return &MBB->getParent()->getRegInfo(); return nullptr; } const MachineRegisterInfo *MachineInstr::getRegInfo() const { if (const MachineBasicBlock *MBB = getParent()) return &MBB->getParent()->getRegInfo(); return nullptr; } void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { for (MachineOperand &MO : operands()) if (MO.isReg()) MRI.removeRegOperandFromUseList(&MO); } void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { for (MachineOperand &MO : operands()) if (MO.isReg()) MRI.addRegOperandToUseList(&MO); } void MachineInstr::addOperand(const MachineOperand &Op) { MachineBasicBlock *MBB = getParent(); assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); MachineFunction *MF = MBB->getParent(); assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); addOperand(*MF, Op); } /// Move NumOps MachineOperands from Src to Dst, with support for overlapping /// ranges. If MRI is non-null also update use-def chains. static void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps, MachineRegisterInfo *MRI) { if (MRI) return MRI->moveOperands(Dst, Src, NumOps); // MachineOperand is a trivially copyable type so we can just use memmove. assert(Dst && Src && "Unknown operands"); std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); } /// addOperand - Add the specified operand to the instruction. If it is an /// implicit operand, it is added to the end of the operand list. If it is /// an explicit operand it is added at the end of the explicit operand list /// (before the first implicit operand). void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { assert(isUInt(NumOperands + 1) && "Cannot add more operands."); assert(MCID && "Cannot add operands before providing an instr descriptor"); // Check if we're adding one of our existing operands. if (&Op >= Operands && &Op < Operands + NumOperands) { // This is unusual: MI->addOperand(MI->getOperand(i)). // If adding Op requires reallocating or moving existing operands around, // the Op reference could go stale. Support it by copying Op. MachineOperand CopyOp(Op); return addOperand(MF, CopyOp); } // Find the insert location for the new operand. Implicit registers go at // the end, everything else goes before the implicit regs. // // FIXME: Allow mixed explicit and implicit operands on inline asm. // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as // implicit-defs, but they must not be moved around. See the FIXME in // InstrEmitter.cpp. unsigned OpNo = getNumOperands(); bool isImpReg = Op.isReg() && Op.isImplicit(); if (!isImpReg && !isInlineAsm()) { while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { --OpNo; assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); } } // OpNo now points as the desired insertion point. Unless this is a variadic // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). // RegMask operands go between the explicit and implicit operands. MachineRegisterInfo *MRI = getRegInfo(); // Determine if the Operands array needs to be reallocated. // Save the old capacity and operand array. OperandCapacity OldCap = CapOperands; MachineOperand *OldOperands = Operands; if (!OldOperands || OldCap.getSize() == getNumOperands()) { CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); Operands = MF.allocateOperandArray(CapOperands); // Move the operands before the insertion point. if (OpNo) moveOperands(Operands, OldOperands, OpNo, MRI); } // Move the operands following the insertion point. if (OpNo != NumOperands) moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, MRI); ++NumOperands; // Deallocate the old operand array. if (OldOperands != Operands && OldOperands) MF.deallocateOperandArray(OldCap, OldOperands); // Copy Op into place. It still needs to be inserted into the MRI use lists. MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); NewMO->ParentMI = this; // When adding a register operand, tell MRI about it. if (NewMO->isReg()) { // Ensure isOnRegUseList() returns false, regardless of Op's status. NewMO->Contents.Reg.Prev = nullptr; // Ignore existing ties. This is not a property that can be copied. NewMO->TiedTo = 0; // Add the new operand to MRI, but only for instructions in an MBB. if (MRI) MRI->addRegOperandToUseList(NewMO); // The MCID operand information isn't accurate until we start adding // explicit operands. The implicit operands are added first, then the // explicits are inserted before them. if (!isImpReg) { // Tie uses to defs as indicated in MCInstrDesc. if (NewMO->isUse()) { int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); if (DefIdx != -1) tieOperands(DefIdx, OpNo); } // If the register operand is flagged as early, mark the operand as such. if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) NewMO->setIsEarlyClobber(true); } // Ensure debug instructions set debug flag on register uses. if (NewMO->isUse() && isDebugInstr()) NewMO->setIsDebug(); } } void MachineInstr::removeOperand(unsigned OpNo) { assert(OpNo < getNumOperands() && "Invalid operand number"); untieRegOperand(OpNo); #ifndef NDEBUG // Moving tied operands would break the ties. for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) if (Operands[i].isReg()) assert(!Operands[i].isTied() && "Cannot move tied operands"); #endif MachineRegisterInfo *MRI = getRegInfo(); if (MRI && Operands[OpNo].isReg()) MRI->removeRegOperandFromUseList(Operands + OpNo); // Don't call the MachineOperand destructor. A lot of this code depends on // MachineOperand having a trivial destructor anyway, and adding a call here // wouldn't make it 'destructor-correct'. if (unsigned N = NumOperands - 1 - OpNo) moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); --NumOperands; } void MachineInstr::setExtraInfo(MachineFunction &MF, ArrayRef MMOs, MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, uint32_t CFIType, MDNode *MMRAs) { bool HasPreInstrSymbol = PreInstrSymbol != nullptr; bool HasPostInstrSymbol = PostInstrSymbol != nullptr; bool HasHeapAllocMarker = HeapAllocMarker != nullptr; bool HasPCSections = PCSections != nullptr; bool HasCFIType = CFIType != 0; bool HasMMRAs = MMRAs != nullptr; int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker + HasPCSections + HasCFIType + HasMMRAs; // Drop all extra info if there is none. if (NumPointers <= 0) { Info.clear(); return; } // If more than one pointer, then store out of line. Store heap alloc markers // out of line because PointerSumType cannot hold more than 4 tag types with // 32-bit pointers. // FIXME: Maybe we should make the symbols in the extra info mutable? else if (NumPointers > 1 || HasMMRAs || HasHeapAllocMarker || HasPCSections || HasCFIType) { Info.set( MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker, PCSections, CFIType, MMRAs)); return; } // Otherwise store the single pointer inline. if (HasPreInstrSymbol) Info.set(PreInstrSymbol); else if (HasPostInstrSymbol) Info.set(PostInstrSymbol); else Info.set(MMOs[0]); } void MachineInstr::dropMemRefs(MachineFunction &MF) { if (memoperands_empty()) return; setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), getHeapAllocMarker(), getPCSections(), getCFIType(), getMMRAMetadata()); } void MachineInstr::setMemRefs(MachineFunction &MF, ArrayRef MMOs) { if (MMOs.empty()) { dropMemRefs(MF); return; } setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), getHeapAllocMarker(), getPCSections(), getCFIType(), getMMRAMetadata()); } void MachineInstr::addMemOperand(MachineFunction &MF, MachineMemOperand *MO) { SmallVector MMOs; MMOs.append(memoperands_begin(), memoperands_end()); MMOs.push_back(MO); setMemRefs(MF, MMOs); } void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { if (this == &MI) // Nothing to do for a self-clone! return; assert(&MF == MI.getMF() && "Invalid machine functions when cloning memory refrences!"); // See if we can just steal the extra info already allocated for the // instruction. We can do this whenever the pre- and post-instruction symbols // are the same (including null). if (getPreInstrSymbol() == MI.getPreInstrSymbol() && getPostInstrSymbol() == MI.getPostInstrSymbol() && getHeapAllocMarker() == MI.getHeapAllocMarker() && getPCSections() == MI.getPCSections() && getMMRAMetadata() && MI.getMMRAMetadata()) { Info = MI.Info; return; } // Otherwise, fall back on a copy-based clone. setMemRefs(MF, MI.memoperands()); } /// Check to see if the MMOs pointed to by the two MemRefs arrays are /// identical. static bool hasIdenticalMMOs(ArrayRef LHS, ArrayRef RHS) { if (LHS.size() != RHS.size()) return false; auto LHSPointees = make_pointee_range(LHS); auto RHSPointees = make_pointee_range(RHS); return std::equal(LHSPointees.begin(), LHSPointees.end(), RHSPointees.begin()); } void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, ArrayRef MIs) { // Try handling easy numbers of MIs with simpler mechanisms. if (MIs.empty()) { dropMemRefs(MF); return; } if (MIs.size() == 1) { cloneMemRefs(MF, *MIs[0]); return; } // Because an empty memoperands list provides *no* information and must be // handled conservatively (assuming the instruction can do anything), the only // way to merge with it is to drop all other memoperands. if (MIs[0]->memoperands_empty()) { dropMemRefs(MF); return; } // Handle the general case. SmallVector MergedMMOs; // Start with the first instruction. assert(&MF == MIs[0]->getMF() && "Invalid machine functions when cloning memory references!"); MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); // Now walk all the other instructions and accumulate any different MMOs. for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { assert(&MF == MI.getMF() && "Invalid machine functions when cloning memory references!"); // Skip MIs with identical operands to the first. This is a somewhat // arbitrary hack but will catch common cases without being quadratic. // TODO: We could fully implement merge semantics here if needed. if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) continue; // Because an empty memoperands list provides *no* information and must be // handled conservatively (assuming the instruction can do anything), the // only way to merge with it is to drop all other memoperands. if (MI.memoperands_empty()) { dropMemRefs(MF); return; } // Otherwise accumulate these into our temporary buffer of the merged state. MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); } setMemRefs(MF, MergedMMOs); } void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { // Do nothing if old and new symbols are the same. if (Symbol == getPreInstrSymbol()) return; // If there was only one symbol and we're removing it, just clear info. if (!Symbol && Info.is()) { Info.clear(); return; } setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), getHeapAllocMarker(), getPCSections(), getCFIType(), getMMRAMetadata()); } void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { // Do nothing if old and new symbols are the same. if (Symbol == getPostInstrSymbol()) return; // If there was only one symbol and we're removing it, just clear info. if (!Symbol && Info.is()) { Info.clear(); return; } setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, getHeapAllocMarker(), getPCSections(), getCFIType(), getMMRAMetadata()); } void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { // Do nothing if old and new symbols are the same. if (Marker == getHeapAllocMarker()) return; setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), Marker, getPCSections(), getCFIType(), getMMRAMetadata()); } void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { // Do nothing if old and new symbols are the same. if (PCSections == getPCSections()) return; setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), getHeapAllocMarker(), PCSections, getCFIType(), getMMRAMetadata()); } void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { // Do nothing if old and new types are the same. if (Type == getCFIType()) return; setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), getHeapAllocMarker(), getPCSections(), Type, getMMRAMetadata()); } void MachineInstr::setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs) { // Do nothing if old and new symbols are the same. if (MMRAs == getMMRAMetadata()) return; setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), getHeapAllocMarker(), getPCSections(), getCFIType(), MMRAs); } void MachineInstr::cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI) { if (this == &MI) // Nothing to do for a self-clone! return; assert(&MF == MI.getMF() && "Invalid machine functions when cloning instruction symbols!"); setPreInstrSymbol(MF, MI.getPreInstrSymbol()); setPostInstrSymbol(MF, MI.getPostInstrSymbol()); setHeapAllocMarker(MF, MI.getHeapAllocMarker()); setPCSections(MF, MI.getPCSections()); setMMRAMetadata(MF, MI.getMMRAMetadata()); } uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { // For now, the just return the union of the flags. If the flags get more // complicated over time, we might need more logic here. return getFlags() | Other.getFlags(); } uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { uint32_t MIFlags = 0; // Copy the wrapping flags. if (const OverflowingBinaryOperator *OB = dyn_cast(&I)) { if (OB->hasNoSignedWrap()) MIFlags |= MachineInstr::MIFlag::NoSWrap; if (OB->hasNoUnsignedWrap()) MIFlags |= MachineInstr::MIFlag::NoUWrap; } else if (const TruncInst *TI = dyn_cast(&I)) { if (TI->hasNoSignedWrap()) MIFlags |= MachineInstr::MIFlag::NoSWrap; if (TI->hasNoUnsignedWrap()) MIFlags |= MachineInstr::MIFlag::NoUWrap; } else if (const GetElementPtrInst *GEP = dyn_cast(&I)) { if (GEP->hasNoUnsignedSignedWrap()) MIFlags |= MachineInstr::MIFlag::NoUSWrap; if (GEP->hasNoUnsignedWrap()) MIFlags |= MachineInstr::MIFlag::NoUWrap; } // Copy the nonneg flag. if (const PossiblyNonNegInst *PNI = dyn_cast(&I)) { if (PNI->hasNonNeg()) MIFlags |= MachineInstr::MIFlag::NonNeg; // Copy the disjoint flag. } else if (const PossiblyDisjointInst *PD = dyn_cast(&I)) { if (PD->isDisjoint()) MIFlags |= MachineInstr::MIFlag::Disjoint; } // Copy the exact flag. if (const PossiblyExactOperator *PE = dyn_cast(&I)) if (PE->isExact()) MIFlags |= MachineInstr::MIFlag::IsExact; // Copy the fast-math flags. if (const FPMathOperator *FP = dyn_cast(&I)) { const FastMathFlags Flags = FP->getFastMathFlags(); if (Flags.noNaNs()) MIFlags |= MachineInstr::MIFlag::FmNoNans; if (Flags.noInfs()) MIFlags |= MachineInstr::MIFlag::FmNoInfs; if (Flags.noSignedZeros()) MIFlags |= MachineInstr::MIFlag::FmNsz; if (Flags.allowReciprocal()) MIFlags |= MachineInstr::MIFlag::FmArcp; if (Flags.allowContract()) MIFlags |= MachineInstr::MIFlag::FmContract; if (Flags.approxFunc()) MIFlags |= MachineInstr::MIFlag::FmAfn; if (Flags.allowReassoc()) MIFlags |= MachineInstr::MIFlag::FmReassoc; } if (I.getMetadata(LLVMContext::MD_unpredictable)) MIFlags |= MachineInstr::MIFlag::Unpredictable; return MIFlags; } void MachineInstr::copyIRFlags(const Instruction &I) { Flags = copyFlagsFromInstruction(I); } bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { assert(!isBundledWithPred() && "Must be called on bundle header"); for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { if (MII->getDesc().getFlags() & Mask) { if (Type == AnyInBundle) return true; } else { if (Type == AllInBundle && !MII->isBundle()) return false; } // This was the last instruction in the bundle. if (!MII->isBundledWithSucc()) return Type == AllInBundle; } } bool MachineInstr::isIdenticalTo(const MachineInstr &Other, MICheckType Check) const { // If opcodes or number of operands are not the same then the two // instructions are obviously not identical. if (Other.getOpcode() != getOpcode() || Other.getNumOperands() != getNumOperands()) return false; if (isBundle()) { // We have passed the test above that both instructions have the same // opcode, so we know that both instructions are bundles here. Let's compare // MIs inside the bundle. assert(Other.isBundle() && "Expected that both instructions are bundles."); MachineBasicBlock::const_instr_iterator I1 = getIterator(); MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); // Loop until we analysed the last intruction inside at least one of the // bundles. while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { ++I1; ++I2; if (!I1->isIdenticalTo(*I2, Check)) return false; } // If we've reached the end of just one of the two bundles, but not both, // the instructions are not identical. if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) return false; } // Check operands to make sure they match. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); const MachineOperand &OMO = Other.getOperand(i); if (!MO.isReg()) { if (!MO.isIdenticalTo(OMO)) return false; continue; } // Clients may or may not want to ignore defs when testing for equality. // For example, machine CSE pass only cares about finding common // subexpressions, so it's safe to ignore virtual register defs. if (MO.isDef()) { if (Check == IgnoreDefs) continue; else if (Check == IgnoreVRegDefs) { if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) if (!MO.isIdenticalTo(OMO)) return false; } else { if (!MO.isIdenticalTo(OMO)) return false; if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) return false; } } else { if (!MO.isIdenticalTo(OMO)) return false; if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) return false; } } // If DebugLoc does not match then two debug instructions are not identical. if (isDebugInstr()) if (getDebugLoc() && Other.getDebugLoc() && getDebugLoc() != Other.getDebugLoc()) return false; // If pre- or post-instruction symbols do not match then the two instructions // are not identical. if (getPreInstrSymbol() != Other.getPreInstrSymbol() || getPostInstrSymbol() != Other.getPostInstrSymbol()) return false; // Call instructions with different CFI types are not identical. if (isCall() && getCFIType() != Other.getCFIType()) return false; return true; } bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { if (!isDebugValueLike() || !Other.isDebugValueLike()) return false; if (getDebugLoc() != Other.getDebugLoc()) return false; if (getDebugVariable() != Other.getDebugVariable()) return false; if (getNumDebugOperands() != Other.getNumDebugOperands()) return false; for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx))) return false; if (!DIExpression::isEqualExpression( getDebugExpression(), isIndirectDebugValue(), Other.getDebugExpression(), Other.isIndirectDebugValue())) return false; return true; } const MachineFunction *MachineInstr::getMF() const { return getParent()->getParent(); } MachineInstr *MachineInstr::removeFromParent() { assert(getParent() && "Not embedded in a basic block!"); return getParent()->remove(this); } MachineInstr *MachineInstr::removeFromBundle() { assert(getParent() && "Not embedded in a basic block!"); return getParent()->remove_instr(this); } void MachineInstr::eraseFromParent() { assert(getParent() && "Not embedded in a basic block!"); getParent()->erase(this); } void MachineInstr::eraseFromBundle() { assert(getParent() && "Not embedded in a basic block!"); getParent()->erase_instr(this); } bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { if (!isCall(Type)) return false; switch (getOpcode()) { case TargetOpcode::PATCHPOINT: case TargetOpcode::STACKMAP: case TargetOpcode::STATEPOINT: case TargetOpcode::FENTRY_CALL: return false; } return true; } bool MachineInstr::shouldUpdateCallSiteInfo() const { if (isBundle()) return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); return isCandidateForCallSiteEntry(); } unsigned MachineInstr::getNumExplicitOperands() const { unsigned NumOperands = MCID->getNumOperands(); if (!MCID->isVariadic()) return NumOperands; for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { const MachineOperand &MO = getOperand(I); // The operands must always be in the following order: // - explicit reg defs, // - other explicit operands (reg uses, immediates, etc.), // - implicit reg defs // - implicit reg uses if (MO.isReg() && MO.isImplicit()) break; ++NumOperands; } return NumOperands; } unsigned MachineInstr::getNumExplicitDefs() const { unsigned NumDefs = MCID->getNumDefs(); if (!MCID->isVariadic()) return NumDefs; for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { const MachineOperand &MO = getOperand(I); if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) break; ++NumDefs; } return NumDefs; } void MachineInstr::bundleWithPred() { assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); setFlag(BundledPred); MachineBasicBlock::instr_iterator Pred = getIterator(); --Pred; assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); Pred->setFlag(BundledSucc); } void MachineInstr::bundleWithSucc() { assert(!isBundledWithSucc() && "MI is already bundled with its successor"); setFlag(BundledSucc); MachineBasicBlock::instr_iterator Succ = getIterator(); ++Succ; assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); Succ->setFlag(BundledPred); } void MachineInstr::unbundleFromPred() { assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); clearFlag(BundledPred); MachineBasicBlock::instr_iterator Pred = getIterator(); --Pred; assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); Pred->clearFlag(BundledSucc); } void MachineInstr::unbundleFromSucc() { assert(isBundledWithSucc() && "MI isn't bundled with its successor"); clearFlag(BundledSucc); MachineBasicBlock::instr_iterator Succ = getIterator(); ++Succ; assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); Succ->clearFlag(BundledPred); } bool MachineInstr::isStackAligningInlineAsm() const { if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_IsAlignStack) return true; } return false; } InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); } int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo) const { assert(isInlineAsm() && "Expected an inline asm instruction"); assert(OpIdx < getNumOperands() && "OpIdx out of range"); // Ignore queries about the initial operands. if (OpIdx < InlineAsm::MIOp_FirstOperand) return -1; unsigned Group = 0; unsigned NumOps; for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; i += NumOps) { const MachineOperand &FlagMO = getOperand(i); // If we reach the implicit register operands, stop looking. if (!FlagMO.isImm()) return -1; const InlineAsm::Flag F(FlagMO.getImm()); NumOps = 1 + F.getNumOperandRegisters(); if (i + NumOps > OpIdx) { if (GroupNo) *GroupNo = Group; return i; } ++Group; } return -1; } const DILabel *MachineInstr::getDebugLabel() const { assert(isDebugLabel() && "not a DBG_LABEL"); return cast(getOperand(0).getMetadata()); } const MachineOperand &MachineInstr::getDebugVariableOp() const { assert((isDebugValueLike()) && "not a DBG_VALUE*"); unsigned VariableOp = isNonListDebugValue() ? 2 : 0; return getOperand(VariableOp); } MachineOperand &MachineInstr::getDebugVariableOp() { assert((isDebugValueLike()) && "not a DBG_VALUE*"); unsigned VariableOp = isNonListDebugValue() ? 2 : 0; return getOperand(VariableOp); } const DILocalVariable *MachineInstr::getDebugVariable() const { return cast(getDebugVariableOp().getMetadata()); } const MachineOperand &MachineInstr::getDebugExpressionOp() const { assert((isDebugValueLike()) && "not a DBG_VALUE*"); unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; return getOperand(ExpressionOp); } MachineOperand &MachineInstr::getDebugExpressionOp() { assert((isDebugValueLike()) && "not a DBG_VALUE*"); unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; return getOperand(ExpressionOp); } const DIExpression *MachineInstr::getDebugExpression() const { return cast(getDebugExpressionOp().getMetadata()); } bool MachineInstr::isDebugEntryValue() const { return isDebugValue() && getDebugExpression()->isEntryValue(); } const TargetRegisterClass* MachineInstr::getRegClassConstraint(unsigned OpIdx, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { assert(getParent() && "Can't have an MBB reference here!"); assert(getMF() && "Can't have an MF reference here!"); const MachineFunction &MF = *getMF(); // Most opcodes have fixed constraints in their MCInstrDesc. if (!isInlineAsm()) return TII->getRegClass(getDesc(), OpIdx, TRI, MF); if (!getOperand(OpIdx).isReg()) return nullptr; // For tied uses on inline asm, get the constraint from the def. unsigned DefIdx; if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) OpIdx = DefIdx; // Inline asm stores register class constraints in the flag word. int FlagIdx = findInlineAsmFlagIdx(OpIdx); if (FlagIdx < 0) return nullptr; const InlineAsm::Flag F(getOperand(FlagIdx).getImm()); unsigned RCID; if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) && F.hasRegClassConstraint(RCID)) return TRI->getRegClass(RCID); // Assume that all registers in a memory operand are pointers. if (F.isMemKind()) return TRI->getPointerRegClass(MF); return nullptr; } const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, bool ExploreBundle) const { // Check every operands inside the bundle if we have // been asked to. if (ExploreBundle) for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; ++OpndIt) CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); else // Otherwise, just check the current operands. for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); return CurRC; } const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { assert(CurRC && "Invalid initial register class"); // Check if Reg is constrained by some of its use/def from MI. const MachineOperand &MO = getOperand(OpIdx); if (!MO.isReg() || MO.getReg() != Reg) return CurRC; // If yes, accumulate the constraints through the operand. return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); } const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( unsigned OpIdx, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); const MachineOperand &MO = getOperand(OpIdx); assert(MO.isReg() && "Cannot get register constraints for non-register operand"); assert(CurRC && "Invalid initial register class"); if (unsigned SubIdx = MO.getSubReg()) { if (OpRC) CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); else CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); } else if (OpRC) CurRC = TRI->getCommonSubClass(CurRC, OpRC); return CurRC; } /// Return the number of instructions inside the MI bundle, not counting the /// header instruction. unsigned MachineInstr::getBundleSize() const { MachineBasicBlock::const_instr_iterator I = getIterator(); unsigned Size = 0; while (I->isBundledWithSucc()) { ++Size; ++I; } return Size; } /// Returns true if the MachineInstr has an implicit-use operand of exactly /// the given register (not considering sub/super-registers). bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { for (const MachineOperand &MO : operands()) { if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) return true; } return false; } /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of /// the specific register or -1 if it is not found. It further tightens /// the search criteria to a use that kills the register if isKill is true. int MachineInstr::findRegisterUseOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isKill) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; Register MOReg = MO.getReg(); if (!MOReg) continue; if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) if (!isKill || MO.isKill()) return i; } return -1; } /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) /// indicating if this instruction reads or writes Reg. This also considers /// partial defines. std::pair MachineInstr::readsWritesVirtualRegister(Register Reg, SmallVectorImpl *Ops) const { bool PartDef = false; // Partial redefine. bool FullDef = false; // Full define. bool Use = false; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (!MO.isReg() || MO.getReg() != Reg) continue; if (Ops) Ops->push_back(i); if (MO.isUse()) Use |= !MO.isUndef(); else if (MO.getSubReg() && !MO.isUndef()) // A partial def undef doesn't count as reading the register. PartDef = true; else FullDef = true; } // A partial redefine uses Reg unless there is also a full define. return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); } /// findRegisterDefOperandIdx() - Returns the operand index that is a def of /// the specified register or -1 if it is not found. If isDead is true, defs /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it /// also checks if there is a def of a super-register. int MachineInstr::findRegisterDefOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isDead, bool Overlap) const { bool isPhys = Reg.isPhysical(); for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); // Accept regmask operands when Overlap is set. // Ignore them when looking for a specific def operand (Overlap == false). if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) return i; if (!MO.isReg() || !MO.isDef()) continue; Register MOReg = MO.getReg(); bool Found = (MOReg == Reg); if (!Found && TRI && isPhys && MOReg.isPhysical()) { if (Overlap) Found = TRI->regsOverlap(MOReg, Reg); else Found = TRI->isSubRegister(MOReg, Reg); } if (Found && (!isDead || MO.isDead())) return i; } return -1; } /// findFirstPredOperandIdx() - Find the index of the first operand in the /// operand list that is used to represent the predicate. It returns -1 if /// none is found. int MachineInstr::findFirstPredOperandIdx() const { // Don't call MCID.findFirstPredOperandIdx() because this variant // is sometimes called on an instruction that's not yet complete, and // so the number of operands is less than the MCID indicates. In // particular, the PTX target does this. const MCInstrDesc &MCID = getDesc(); if (MCID.isPredicable()) { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (MCID.operands()[i].isPredicate()) return i; } return -1; } // MachineOperand::TiedTo is 4 bits wide. const unsigned TiedMax = 15; /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. /// /// Use and def operands can be tied together, indicated by a non-zero TiedTo /// field. TiedTo can have these values: /// /// 0: Operand is not tied to anything. /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). /// TiedMax: Tied to an operand >= TiedMax-1. /// /// The tied def must be one of the first TiedMax operands on a normal /// instruction. INLINEASM instructions allow more tied defs. /// void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { MachineOperand &DefMO = getOperand(DefIdx); MachineOperand &UseMO = getOperand(UseIdx); assert(DefMO.isDef() && "DefIdx must be a def operand"); assert(UseMO.isUse() && "UseIdx must be a use operand"); assert(!DefMO.isTied() && "Def is already tied to another use"); assert(!UseMO.isTied() && "Use is already tied to another def"); if (DefIdx < TiedMax) UseMO.TiedTo = DefIdx + 1; else { // Inline asm can use the group descriptors to find tied operands, // statepoint tied operands are trivial to match (1-1 reg def with reg use), // but on normal instruction, the tied def must be within the first TiedMax // operands. assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && "DefIdx out of range"); UseMO.TiedTo = TiedMax; } // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); } /// Given the index of a tied register operand, find the operand it is tied to. /// Defs are tied to uses and vice versa. Returns the index of the tied operand /// which must exist. unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { const MachineOperand &MO = getOperand(OpIdx); assert(MO.isTied() && "Operand isn't tied"); // Normally TiedTo is in range. if (MO.TiedTo < TiedMax) return MO.TiedTo - 1; // Uses on normal instructions can be out of range. if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { // Normal tied defs must be in the 0..TiedMax-1 range. if (MO.isUse()) return TiedMax - 1; // MO is a def. Search for the tied use. for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { const MachineOperand &UseMO = getOperand(i); if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) return i; } llvm_unreachable("Can't find tied use"); } if (getOpcode() == TargetOpcode::STATEPOINT) { // In STATEPOINT defs correspond 1-1 to GC pointer operands passed // on registers. StatepointOpers SO(this); unsigned CurUseIdx = SO.getFirstGCPtrIdx(); assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); unsigned NumDefs = getNumDefs(); for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { while (!getOperand(CurUseIdx).isReg()) CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); if (OpIdx == CurDefIdx) return CurUseIdx; if (OpIdx == CurUseIdx) return CurDefIdx; CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); } llvm_unreachable("Can't find tied use"); } // Now deal with inline asm by parsing the operand group descriptor flags. // Find the beginning of each operand group. SmallVector GroupIdx; unsigned OpIdxGroup = ~0u; unsigned NumOps; for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; i += NumOps) { const MachineOperand &FlagMO = getOperand(i); assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); unsigned CurGroup = GroupIdx.size(); GroupIdx.push_back(i); const InlineAsm::Flag F(FlagMO.getImm()); NumOps = 1 + F.getNumOperandRegisters(); // OpIdx belongs to this operand group. if (OpIdx > i && OpIdx < i + NumOps) OpIdxGroup = CurGroup; unsigned TiedGroup; if (!F.isUseOperandTiedToDef(TiedGroup)) continue; // Operands in this group are tied to operands in TiedGroup which must be // earlier. Find the number of operands between the two groups. unsigned Delta = i - GroupIdx[TiedGroup]; // OpIdx is a use tied to TiedGroup. if (OpIdxGroup == CurGroup) return OpIdx - Delta; // OpIdx is a def tied to this use group. if (OpIdxGroup == TiedGroup) return OpIdx + Delta; } llvm_unreachable("Invalid tied operand on inline asm"); } /// clearKillInfo - Clears kill flags on all operands. /// void MachineInstr::clearKillInfo() { for (MachineOperand &MO : operands()) { if (MO.isReg() && MO.isUse()) MO.setIsKill(false); } } void MachineInstr::substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo) { if (ToReg.isPhysical()) { if (SubIdx) ToReg = RegInfo.getSubReg(ToReg, SubIdx); for (MachineOperand &MO : operands()) { if (!MO.isReg() || MO.getReg() != FromReg) continue; MO.substPhysReg(ToReg, RegInfo); } } else { for (MachineOperand &MO : operands()) { if (!MO.isReg() || MO.getReg() != FromReg) continue; MO.substVirtReg(ToReg, SubIdx, RegInfo); } } } /// isSafeToMove - Return true if it is safe to move this instruction. If /// SawStore is set to true, it means that there is a store (or call) between /// the instruction's location and its intended destination. bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { // Ignore stuff that we obviously can't move. // // Treat volatile loads as stores. This is not strictly necessary for // volatiles, but it is required for atomic loads. It is not allowed to move // a load across an atomic load with Ordering > Monotonic. if (mayStore() || isCall() || isPHI() || (mayLoad() && hasOrderedMemoryRef())) { SawStore = true; return false; } if (isPosition() || isDebugInstr() || isTerminator() || mayRaiseFPException() || hasUnmodeledSideEffects() || isJumpTableDebugInfo()) return false; // See if this instruction does a load. If so, we have to guarantee that the // loaded value doesn't change between the load and the its intended // destination. The check for isInvariantLoad gives the target the chance to // classify the load as always returning a constant, e.g. a constant pool // load. if (mayLoad() && !isDereferenceableInvariantLoad()) // Otherwise, this is a real load. If there is a store between the load and // end of block, we can't move it. return !SawStore; return true; } static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, bool UseTBAA, const MachineMemOperand *MMOa, const MachineMemOperand *MMOb) { // The following interface to AA is fashioned after DAGCombiner::isAlias and // operates with MachineMemOperand offset with some important assumptions: // - LLVM fundamentally assumes flat address spaces. // - MachineOperand offset can *only* result from legalization and cannot // affect queries other than the trivial case of overlap checking. // - These offsets never wrap and never step outside of allocated objects. // - There should never be any negative offsets here. // // FIXME: Modify API to hide this math from "user" // Even before we go to AA we can reason locally about some memory objects. It // can save compile time, and possibly catch some corner cases not currently // covered. int64_t OffsetA = MMOa->getOffset(); int64_t OffsetB = MMOb->getOffset(); int64_t MinOffset = std::min(OffsetA, OffsetB); LocationSize WidthA = MMOa->getSize(); LocationSize WidthB = MMOb->getSize(); bool KnownWidthA = WidthA.hasValue(); bool KnownWidthB = WidthB.hasValue(); bool BothMMONonScalable = !WidthA.isScalable() && !WidthB.isScalable(); const Value *ValA = MMOa->getValue(); const Value *ValB = MMOb->getValue(); bool SameVal = (ValA && ValB && (ValA == ValB)); if (!SameVal) { const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); if (PSVa && ValB && !PSVa->mayAlias(&MFI)) return false; if (PSVb && ValA && !PSVb->mayAlias(&MFI)) return false; if (PSVa && PSVb && (PSVa == PSVb)) SameVal = true; } if (SameVal && BothMMONonScalable) { if (!KnownWidthA || !KnownWidthB) return true; int64_t MaxOffset = std::max(OffsetA, OffsetB); int64_t LowWidth = (MinOffset == OffsetA) ? WidthA.getValue().getKnownMinValue() : WidthB.getValue().getKnownMinValue(); return (MinOffset + LowWidth > MaxOffset); } if (!AA) return true; if (!ValA || !ValB) return true; assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); // If Scalable Location Size has non-zero offset, Width + Offset does not work // at the moment if ((WidthA.isScalable() && OffsetA > 0) || (WidthB.isScalable() && OffsetB > 0)) return true; int64_t OverlapA = KnownWidthA ? WidthA.getValue().getKnownMinValue() + OffsetA - MinOffset : MemoryLocation::UnknownSize; int64_t OverlapB = KnownWidthB ? WidthB.getValue().getKnownMinValue() + OffsetB - MinOffset : MemoryLocation::UnknownSize; LocationSize LocA = (WidthA.isScalable() || !KnownWidthA) ? WidthA : LocationSize::precise(OverlapA); LocationSize LocB = (WidthB.isScalable() || !KnownWidthB) ? WidthB : LocationSize::precise(OverlapB); return !AA->isNoAlias( MemoryLocation(ValA, LocA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), MemoryLocation(ValB, LocB, UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); } bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const { const MachineFunction *MF = getMF(); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); const MachineFrameInfo &MFI = MF->getFrameInfo(); // Exclude call instruction which may alter the memory but can not be handled // by this function. if (isCall() || Other.isCall()) return true; // If neither instruction stores to memory, they can't alias in any // meaningful way, even if they read from the same address. if (!mayStore() && !Other.mayStore()) return false; // Both instructions must be memory operations to be able to alias. if (!mayLoadOrStore() || !Other.mayLoadOrStore()) return false; // Let the target decide if memory accesses cannot possibly overlap. if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) return false; // Memory operations without memory operands may access anything. Be // conservative and assume `MayAlias`. if (memoperands_empty() || Other.memoperands_empty()) return true; // Skip if there are too many memory operands. auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); if (NumChecks > TII->getMemOperandAACheckLimit()) return true; // Check each pair of memory operands from both instructions, which can't // alias only if all pairs won't alias. for (auto *MMOa : memoperands()) for (auto *MMOb : Other.memoperands()) if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) return true; return false; } /// hasOrderedMemoryRef - Return true if this instruction may have an ordered /// or volatile memory reference, or if the information describing the memory /// reference is not available. Return false if it is known to have no ordered /// memory references. bool MachineInstr::hasOrderedMemoryRef() const { // An instruction known never to access memory won't have a volatile access. if (!mayStore() && !mayLoad() && !isCall() && !hasUnmodeledSideEffects()) return false; // Otherwise, if the instruction has no memory reference information, // conservatively assume it wasn't preserved. if (memoperands_empty()) return true; // Check if any of our memory operands are ordered. return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { return !MMO->isUnordered(); }); } /// isDereferenceableInvariantLoad - Return true if this instruction will never /// trap and is loading from a location whose value is invariant across a run of /// this function. bool MachineInstr::isDereferenceableInvariantLoad() const { // If the instruction doesn't load at all, it isn't an invariant load. if (!mayLoad()) return false; // If the instruction has lost its memoperands, conservatively assume that // it may not be an invariant load. if (memoperands_empty()) return false; const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); for (MachineMemOperand *MMO : memoperands()) { if (!MMO->isUnordered()) // If the memory operand has ordering side effects, we can't move the // instruction. Such an instruction is technically an invariant load, // but the caller code would need updated to expect that. return false; if (MMO->isStore()) return false; if (MMO->isInvariant() && MMO->isDereferenceable()) continue; // A load from a constant PseudoSourceValue is invariant. if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { if (PSV->isConstant(&MFI)) continue; } // Otherwise assume conservatively. return false; } // Everything checks out. return true; } /// isConstantValuePHI - If the specified instruction is a PHI that always /// merges together the same virtual register, return the register, otherwise /// return 0. unsigned MachineInstr::isConstantValuePHI() const { if (!isPHI()) return 0; assert(getNumOperands() >= 3 && "It's illegal to have a PHI without source operands"); Register Reg = getOperand(1).getReg(); for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) if (getOperand(i).getReg() != Reg) return 0; return Reg; } bool MachineInstr::hasUnmodeledSideEffects() const { if (hasProperty(MCID::UnmodeledSideEffects)) return true; if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_HasSideEffects) return true; } return false; } bool MachineInstr::isLoadFoldBarrier() const { return mayStore() || isCall() || (hasUnmodeledSideEffects() && !isPseudoProbe()); } /// allDefsAreDead - Return true if all the defs of this instruction are dead. /// bool MachineInstr::allDefsAreDead() const { for (const MachineOperand &MO : operands()) { if (!MO.isReg() || MO.isUse()) continue; if (!MO.isDead()) return false; } return true; } bool MachineInstr::allImplicitDefsAreDead() const { for (const MachineOperand &MO : implicit_operands()) { if (!MO.isReg() || MO.isUse()) continue; if (!MO.isDead()) return false; } return true; } /// copyImplicitOps - Copy implicit register operands from specified /// instruction to this instruction. void MachineInstr::copyImplicitOps(MachineFunction &MF, const MachineInstr &MI) { for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) addOperand(MF, MO); } bool MachineInstr::hasComplexRegisterTies() const { const MCInstrDesc &MCID = getDesc(); if (MCID.Opcode == TargetOpcode::STATEPOINT) return true; for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { const auto &Operand = getOperand(I); if (!Operand.isReg() || Operand.isDef()) // Ignore the defined registers as MCID marks only the uses as tied. continue; int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; if (ExpectedTiedIdx != TiedIdx) return true; } return false; } LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, const MachineRegisterInfo &MRI) const { const MachineOperand &Op = getOperand(OpIdx); if (!Op.isReg()) return LLT{}; if (isVariadic() || OpIdx >= getNumExplicitOperands()) return MRI.getType(Op.getReg()); auto &OpInfo = getDesc().operands()[OpIdx]; if (!OpInfo.isGenericType()) return MRI.getType(Op.getReg()); if (PrintedTypes[OpInfo.getGenericTypeIndex()]) return LLT{}; LLT TypeToPrint = MRI.getType(Op.getReg()); // Don't mark the type index printed if it wasn't actually printed: maybe // another operand with the same type index has an actual type attached: if (TypeToPrint.isValid()) PrintedTypes.set(OpInfo.getGenericTypeIndex()); return TypeToPrint; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void MachineInstr::dump() const { dbgs() << " "; print(dbgs()); } LLVM_DUMP_METHOD void MachineInstr::dumprImpl( const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, SmallPtrSetImpl &AlreadySeenInstrs) const { if (Depth >= MaxDepth) return; if (!AlreadySeenInstrs.insert(this).second) return; // PadToColumn always inserts at least one space. // Don't mess up the alignment if we don't want any space. if (Depth) fdbgs().PadToColumn(Depth * 2); print(fdbgs()); for (const MachineOperand &MO : operands()) { if (!MO.isReg() || MO.isDef()) continue; Register Reg = MO.getReg(); if (Reg.isPhysical()) continue; const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); if (NewMI == nullptr) continue; NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); } } LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, unsigned MaxDepth) const { SmallPtrSet AlreadySeenInstrs; dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); } #endif void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, bool AddNewLine, const TargetInstrInfo *TII) const { const Module *M = nullptr; const Function *F = nullptr; if (const MachineFunction *MF = getMFIfAvailable(*this)) { F = &MF->getFunction(); M = F->getParent(); if (!TII) TII = MF->getSubtarget().getInstrInfo(); } ModuleSlotTracker MST(M); if (F) MST.incorporateFunction(*F); print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); } void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, bool AddNewLine, const TargetInstrInfo *TII) const { // We can be a bit tidier if we know the MachineFunction. const TargetRegisterInfo *TRI = nullptr; const MachineRegisterInfo *MRI = nullptr; const TargetIntrinsicInfo *IntrinsicInfo = nullptr; tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); if (isCFIInstruction()) assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); SmallBitVector PrintedTypes(8); bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); auto getTiedOperandIdx = [&](unsigned OpIdx) { if (!ShouldPrintRegisterTies) return 0U; const MachineOperand &MO = getOperand(OpIdx); if (MO.isReg() && MO.isTied() && !MO.isDef()) return findTiedOperandIdx(OpIdx); return 0U; }; unsigned StartOp = 0; unsigned e = getNumOperands(); // Print explicitly defined operands on the left of an assignment syntax. while (StartOp < e) { const MachineOperand &MO = getOperand(StartOp); if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) break; if (StartOp != 0) OS << ", "; LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); ++StartOp; } if (StartOp != 0) OS << " = "; if (getFlag(MachineInstr::FrameSetup)) OS << "frame-setup "; if (getFlag(MachineInstr::FrameDestroy)) OS << "frame-destroy "; if (getFlag(MachineInstr::FmNoNans)) OS << "nnan "; if (getFlag(MachineInstr::FmNoInfs)) OS << "ninf "; if (getFlag(MachineInstr::FmNsz)) OS << "nsz "; if (getFlag(MachineInstr::FmArcp)) OS << "arcp "; if (getFlag(MachineInstr::FmContract)) OS << "contract "; if (getFlag(MachineInstr::FmAfn)) OS << "afn "; if (getFlag(MachineInstr::FmReassoc)) OS << "reassoc "; if (getFlag(MachineInstr::NoUWrap)) OS << "nuw "; if (getFlag(MachineInstr::NoSWrap)) OS << "nsw "; if (getFlag(MachineInstr::IsExact)) OS << "exact "; if (getFlag(MachineInstr::NoFPExcept)) OS << "nofpexcept "; if (getFlag(MachineInstr::NoMerge)) OS << "nomerge "; if (getFlag(MachineInstr::NonNeg)) OS << "nneg "; if (getFlag(MachineInstr::Disjoint)) OS << "disjoint "; // Print the opcode name. if (TII) OS << TII->getName(getOpcode()); else OS << "UNKNOWN"; if (SkipOpers) return; // Print the rest of the operands. bool FirstOp = true; unsigned AsmDescOp = ~0u; unsigned AsmOpCount = 0; if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { // Print asm string. OS << " "; const unsigned OpIdx = InlineAsm::MIOp_AsmString; LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); // Print HasSideEffects, MayLoad, MayStore, IsAlignStack unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_HasSideEffects) OS << " [sideeffect]"; if (ExtraInfo & InlineAsm::Extra_MayLoad) OS << " [mayload]"; if (ExtraInfo & InlineAsm::Extra_MayStore) OS << " [maystore]"; if (ExtraInfo & InlineAsm::Extra_IsConvergent) OS << " [isconvergent]"; if (ExtraInfo & InlineAsm::Extra_IsAlignStack) OS << " [alignstack]"; if (getInlineAsmDialect() == InlineAsm::AD_ATT) OS << " [attdialect]"; if (getInlineAsmDialect() == InlineAsm::AD_Intel) OS << " [inteldialect]"; StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; FirstOp = false; } for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (FirstOp) FirstOp = false; else OS << ","; OS << " "; if (isDebugValueLike() && MO.isMetadata()) { // Pretty print DBG_VALUE* instructions. auto *DIV = dyn_cast(MO.getMetadata()); if (DIV && !DIV->getName().empty()) OS << "!\"" << DIV->getName() << '\"'; else { LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; unsigned TiedOperandIdx = getTiedOperandIdx(i); MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); } } else if (isDebugLabel() && MO.isMetadata()) { // Pretty print DBG_LABEL instructions. auto *DIL = dyn_cast(MO.getMetadata()); if (DIL && !DIL->getName().empty()) OS << "\"" << DIL->getName() << '\"'; else { LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; unsigned TiedOperandIdx = getTiedOperandIdx(i); MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); } } else if (i == AsmDescOp && MO.isImm()) { // Pretty print the inline asm operand descriptor. OS << '$' << AsmOpCount++; unsigned Flag = MO.getImm(); const InlineAsm::Flag F(Flag); OS << ":["; OS << F.getKindName(); unsigned RCID; if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { if (TRI) { OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); } else OS << ":RC" << RCID; } if (F.isMemKind()) { const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); OS << ":" << InlineAsm::getMemConstraintName(MCID); } unsigned TiedTo; if (F.isUseOperandTiedToDef(TiedTo)) OS << " tiedto:$" << TiedTo; if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isRegUseKind()) && F.getRegMayBeFolded()) { OS << " foldable"; } OS << ']'; // Compute the index of the next operand descriptor. AsmDescOp += 1 + F.getNumOperandRegisters(); } else { LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; unsigned TiedOperandIdx = getTiedOperandIdx(i); if (MO.isImm() && isOperandSubregIdx(i)) MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); else MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); } } // Print any optional symbols attached to this instruction as-if they were // operands. if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { if (!FirstOp) { FirstOp = false; OS << ','; } OS << " pre-instr-symbol "; MachineOperand::printSymbol(OS, *PreInstrSymbol); } if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { if (!FirstOp) { FirstOp = false; OS << ','; } OS << " post-instr-symbol "; MachineOperand::printSymbol(OS, *PostInstrSymbol); } if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { if (!FirstOp) { FirstOp = false; OS << ','; } OS << " heap-alloc-marker "; HeapAllocMarker->printAsOperand(OS, MST); } if (MDNode *PCSections = getPCSections()) { if (!FirstOp) { FirstOp = false; OS << ','; } OS << " pcsections "; PCSections->printAsOperand(OS, MST); } if (MDNode *MMRA = getMMRAMetadata()) { if (!FirstOp) { FirstOp = false; OS << ','; } OS << " mmra "; MMRA->printAsOperand(OS, MST); } if (uint32_t CFIType = getCFIType()) { if (!FirstOp) OS << ','; OS << " cfi-type " << CFIType; } if (DebugInstrNum) { if (!FirstOp) OS << ","; OS << " debug-instr-number " << DebugInstrNum; } if (!SkipDebugLoc) { if (const DebugLoc &DL = getDebugLoc()) { if (!FirstOp) OS << ','; OS << " debug-location "; DL->printAsOperand(OS, MST); } } if (!memoperands_empty()) { SmallVector SSNs; const LLVMContext *Context = nullptr; std::unique_ptr CtxPtr; const MachineFrameInfo *MFI = nullptr; if (const MachineFunction *MF = getMFIfAvailable(*this)) { MFI = &MF->getFrameInfo(); Context = &MF->getFunction().getContext(); } else { CtxPtr = std::make_unique(); Context = CtxPtr.get(); } OS << " :: "; bool NeedComma = false; for (const MachineMemOperand *Op : memoperands()) { if (NeedComma) OS << ", "; Op->print(OS, MST, SSNs, *Context, MFI, TII); NeedComma = true; } } if (SkipDebugLoc) return; bool HaveSemi = false; // Print debug location information. if (const DebugLoc &DL = getDebugLoc()) { if (!HaveSemi) { OS << ';'; HaveSemi = true; } OS << ' '; DL.print(OS); } // Print extra comments for DEBUG_VALUE and friends if they are well-formed. if ((isNonListDebugValue() && getNumOperands() >= 4) || (isDebugValueList() && getNumOperands() >= 2) || (isDebugRef() && getNumOperands() >= 3)) { if (getDebugVariableOp().isMetadata()) { if (!HaveSemi) { OS << ";"; HaveSemi = true; } auto *DV = getDebugVariable(); OS << " line no:" << DV->getLine(); if (isIndirectDebugValue()) OS << " indirect"; } } // TODO: DBG_LABEL if (AddNewLine) OS << '\n'; } bool MachineInstr::addRegisterKilled(Register IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound) { bool isPhysReg = IncomingReg.isPhysical(); bool hasAliases = isPhysReg && MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); bool Found = false; SmallVector DeadOps; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { MachineOperand &MO = getOperand(i); if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; // DEBUG_VALUE nodes do not contribute to code generation and should // always be ignored. Failure to do so may result in trying to modify // KILL flags on DEBUG_VALUE nodes. if (MO.isDebug()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (Reg == IncomingReg) { if (!Found) { if (MO.isKill()) // The register is already marked kill. return true; if (isPhysReg && isRegTiedToDefOperand(i)) // Two-address uses of physregs must not be marked kill. return true; MO.setIsKill(); Found = true; } } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { // A super-register kill already exists. if (RegInfo->isSuperRegister(IncomingReg, Reg)) return true; if (RegInfo->isSubRegister(IncomingReg, Reg)) DeadOps.push_back(i); } } // Trim unneeded kill operands. while (!DeadOps.empty()) { unsigned OpIdx = DeadOps.back(); if (getOperand(OpIdx).isImplicit() && (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) removeOperand(OpIdx); else getOperand(OpIdx).setIsKill(false); DeadOps.pop_back(); } // If not found, this means an alias of one of the operands is killed. Add a // new implicit operand if required. if (!Found && AddIfNotFound) { addOperand(MachineOperand::CreateReg(IncomingReg, false /*IsDef*/, true /*IsImp*/, true /*IsKill*/)); return true; } return Found; } void MachineInstr::clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo) { if (!Reg.isPhysical()) RegInfo = nullptr; for (MachineOperand &MO : operands()) { if (!MO.isReg() || !MO.isUse() || !MO.isKill()) continue; Register OpReg = MO.getReg(); if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) MO.setIsKill(false); } } bool MachineInstr::addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound) { bool isPhysReg = Reg.isPhysical(); bool hasAliases = isPhysReg && MCRegAliasIterator(Reg, RegInfo, false).isValid(); bool Found = false; SmallVector DeadOps; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { MachineOperand &MO = getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; Register MOReg = MO.getReg(); if (!MOReg) continue; if (MOReg == Reg) { MO.setIsDead(); Found = true; } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { // There exists a super-register that's marked dead. if (RegInfo->isSuperRegister(Reg, MOReg)) return true; if (RegInfo->isSubRegister(Reg, MOReg)) DeadOps.push_back(i); } } // Trim unneeded dead operands. while (!DeadOps.empty()) { unsigned OpIdx = DeadOps.back(); if (getOperand(OpIdx).isImplicit() && (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) removeOperand(OpIdx); else getOperand(OpIdx).setIsDead(false); DeadOps.pop_back(); } // If not found, this means an alias of one of the operands is dead. Add a // new implicit operand if required. if (Found || !AddIfNotFound) return Found; addOperand(MachineOperand::CreateReg(Reg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/, true /*IsDead*/)); return true; } void MachineInstr::clearRegisterDeads(Register Reg) { for (MachineOperand &MO : operands()) { if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) continue; MO.setIsDead(false); } } void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { for (MachineOperand &MO : operands()) { if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) continue; MO.setIsUndef(IsUndef); } } void MachineInstr::addRegisterDefined(Register Reg, const TargetRegisterInfo *RegInfo) { if (Reg.isPhysical()) { MachineOperand *MO = findRegisterDefOperand(Reg, RegInfo, false, false); if (MO) return; } else { for (const MachineOperand &MO : operands()) { if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && MO.getSubReg() == 0) return; } } addOperand(MachineOperand::CreateReg(Reg, true /*IsDef*/, true /*IsImp*/)); } void MachineInstr::setPhysRegsDeadExcept(ArrayRef UsedRegs, const TargetRegisterInfo &TRI) { bool HasRegMask = false; for (MachineOperand &MO : operands()) { if (MO.isRegMask()) { HasRegMask = true; continue; } if (!MO.isReg() || !MO.isDef()) continue; Register Reg = MO.getReg(); if (!Reg.isPhysical()) continue; // If there are no uses, including partial uses, the def is dead. if (llvm::none_of(UsedRegs, [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) MO.setIsDead(); } // This is a call with a register mask operand. // Mask clobbers are always dead, so add defs for the non-dead defines. if (HasRegMask) for (const Register &UsedReg : UsedRegs) addRegisterDefined(UsedReg, &TRI); } unsigned MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { // Build up a buffer of hash code components. SmallVector HashComponents; HashComponents.reserve(MI->getNumOperands() + 1); HashComponents.push_back(MI->getOpcode()); for (const MachineOperand &MO : MI->operands()) { if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) continue; // Skip virtual register defs. HashComponents.push_back(hash_value(MO)); } return hash_combine_range(HashComponents.begin(), HashComponents.end()); } void MachineInstr::emitError(StringRef Msg) const { // Find the source location cookie. uint64_t LocCookie = 0; const MDNode *LocMD = nullptr; for (unsigned i = getNumOperands(); i != 0; --i) { if (getOperand(i-1).isMetadata() && (LocMD = getOperand(i-1).getMetadata()) && LocMD->getNumOperands() != 0) { if (const ConstantInt *CI = mdconst::dyn_extract(LocMD->getOperand(0))) { LocCookie = CI->getZExtValue(); break; } } } if (const MachineBasicBlock *MBB = getParent()) if (const MachineFunction *MF = MBB->getParent()) return MF->getFunction().getContext().emitError(LocCookie, Msg); report_fatal_error(Msg); } MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID, bool IsIndirect, Register Reg, const MDNode *Variable, const MDNode *Expr) { assert(isa(Variable) && "not a variable"); assert(cast(Expr)->isValid() && "not an expression"); assert(cast(Variable)->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"); auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); if (IsIndirect) MIB.addImm(0U); else MIB.addReg(0U); return MIB.addMetadata(Variable).addMetadata(Expr); } MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID, bool IsIndirect, ArrayRef DebugOps, const MDNode *Variable, const MDNode *Expr) { assert(isa(Variable) && "not a variable"); assert(cast(Expr)->isValid() && "not an expression"); assert(cast(Variable)->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"); if (MCID.Opcode == TargetOpcode::DBG_VALUE) { assert(DebugOps.size() == 1 && "DBG_VALUE must contain exactly one debug operand"); MachineOperand DebugOp = DebugOps[0]; if (DebugOp.isReg()) return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable, Expr); auto MIB = BuildMI(MF, DL, MCID).add(DebugOp); if (IsIndirect) MIB.addImm(0U); else MIB.addReg(0U); return MIB.addMetadata(Variable).addMetadata(Expr); } auto MIB = BuildMI(MF, DL, MCID); MIB.addMetadata(Variable).addMetadata(Expr); for (const MachineOperand &DebugOp : DebugOps) if (DebugOp.isReg()) MIB.addReg(DebugOp.getReg()); else MIB.add(DebugOp); return MIB; } MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, MachineBasicBlock::iterator I, const DebugLoc &DL, const MCInstrDesc &MCID, bool IsIndirect, Register Reg, const MDNode *Variable, const MDNode *Expr) { MachineFunction &MF = *BB.getParent(); MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); BB.insert(I, MI); return MachineInstrBuilder(MF, MI); } MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, MachineBasicBlock::iterator I, const DebugLoc &DL, const MCInstrDesc &MCID, bool IsIndirect, ArrayRef DebugOps, const MDNode *Variable, const MDNode *Expr) { MachineFunction &MF = *BB.getParent(); MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); BB.insert(I, MI); return MachineInstrBuilder(MF, *MI); } /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. static const DIExpression * computeExprForSpill(const MachineInstr &MI, SmallVectorImpl &SpilledOperands) { assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && "Expected inlined-at fields to agree"); const DIExpression *Expr = MI.getDebugExpression(); if (MI.isIndirectDebugValue()) { assert(MI.getDebugOffset().getImm() == 0 && "DBG_VALUE with nonzero offset"); Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); } else if (MI.isDebugValueList()) { // We will replace the spilled register with a frame index, so // immediately deref all references to the spilled register. std::array Ops{{dwarf::DW_OP_deref}}; for (const MachineOperand *Op : SpilledOperands) { unsigned OpIdx = MI.getDebugOperandIndex(Op); Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); } } return Expr; } static const DIExpression *computeExprForSpill(const MachineInstr &MI, Register SpillReg) { assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); SmallVector SpillOperands; for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) SpillOperands.push_back(&Op); return computeExprForSpill(MI, SpillOperands); } MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, MachineBasicBlock::iterator I, const MachineInstr &Orig, int FrameIndex, Register SpillReg) { assert(!Orig.isDebugRef() && "DBG_INSTR_REF should not reference a virtual register."); const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); MachineInstrBuilder NewMI = BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); // Non-Variadic Operands: Location, Offset, Variable, Expression // Variadic Operands: Variable, Expression, Locations... if (Orig.isNonListDebugValue()) NewMI.addFrameIndex(FrameIndex).addImm(0U); NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); if (Orig.isDebugValueList()) { for (const MachineOperand &Op : Orig.debug_operands()) if (Op.isReg() && Op.getReg() == SpillReg) NewMI.addFrameIndex(FrameIndex); else NewMI.add(MachineOperand(Op)); } return NewMI; } MachineInstr *llvm::buildDbgValueForSpill( MachineBasicBlock &BB, MachineBasicBlock::iterator I, const MachineInstr &Orig, int FrameIndex, SmallVectorImpl &SpilledOperands) { const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); MachineInstrBuilder NewMI = BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); // Non-Variadic Operands: Location, Offset, Variable, Expression // Variadic Operands: Variable, Expression, Locations... if (Orig.isNonListDebugValue()) NewMI.addFrameIndex(FrameIndex).addImm(0U); NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); if (Orig.isDebugValueList()) { for (const MachineOperand &Op : Orig.debug_operands()) if (is_contained(SpilledOperands, &Op)) NewMI.addFrameIndex(FrameIndex); else NewMI.add(MachineOperand(Op)); } return NewMI; } void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, Register Reg) { const DIExpression *Expr = computeExprForSpill(Orig, Reg); if (Orig.isNonListDebugValue()) Orig.getDebugOffset().ChangeToImmediate(0U); for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) Op.ChangeToFrameIndex(FrameIndex); Orig.getDebugExpressionOp().setMetadata(Expr); } void MachineInstr::collectDebugValues( SmallVectorImpl &DbgValues) { MachineInstr &MI = *this; if (!MI.getOperand(0).isReg()) return; MachineBasicBlock::iterator DI = MI; ++DI; for (MachineBasicBlock::iterator DE = MI.getParent()->end(); DI != DE; ++DI) { if (!DI->isDebugValue()) return; if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) DbgValues.push_back(&*DI); } } void MachineInstr::changeDebugValuesDefReg(Register Reg) { // Collect matching debug values. SmallVector DbgValues; if (!getOperand(0).isReg()) return; Register DefReg = getOperand(0).getReg(); auto *MRI = getRegInfo(); for (auto &MO : MRI->use_operands(DefReg)) { auto *DI = MO.getParent(); if (!DI->isDebugValue()) continue; if (DI->hasDebugOperandForReg(DefReg)) { DbgValues.push_back(DI); } } // Propagate Reg to debug value instructions. for (auto *DBI : DbgValues) for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) Op.setReg(Reg); } using MMOList = SmallVector; static LocationSize getSpillSlotSize(const MMOList &Accesses, const MachineFrameInfo &MFI) { uint64_t Size = 0; for (const auto *A : Accesses) { if (MFI.isSpillSlotObjectIndex( cast(A->getPseudoValue()) ->getFrameIndex())) { LocationSize S = A->getSize(); if (!S.hasValue()) return LocationSize::beforeOrAfterPointer(); Size += S.getValue(); } } return Size; } std::optional MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { int FI; if (TII->isStoreToStackSlotPostFE(*this, FI)) { const MachineFrameInfo &MFI = getMF()->getFrameInfo(); if (MFI.isSpillSlotObjectIndex(FI)) return (*memoperands_begin())->getSize(); } return std::nullopt; } std::optional MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { MMOList Accesses; if (TII->hasStoreToStackSlot(*this, Accesses)) return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); return std::nullopt; } std::optional MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { int FI; if (TII->isLoadFromStackSlotPostFE(*this, FI)) { const MachineFrameInfo &MFI = getMF()->getFrameInfo(); if (MFI.isSpillSlotObjectIndex(FI)) return (*memoperands_begin())->getSize(); } return std::nullopt; } std::optional MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { MMOList Accesses; if (TII->hasLoadFromStackSlot(*this, Accesses)) return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); return std::nullopt; } unsigned MachineInstr::getDebugInstrNum() { if (DebugInstrNum == 0) DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); return DebugInstrNum; } unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { if (DebugInstrNum == 0) DebugInstrNum = MF.getNewDebugInstrNum(); return DebugInstrNum; } std::tuple MachineInstr::getFirst2LLTs() const { return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), getRegInfo()->getType(getOperand(1).getReg())); } std::tuple MachineInstr::getFirst3LLTs() const { return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), getRegInfo()->getType(getOperand(1).getReg()), getRegInfo()->getType(getOperand(2).getReg())); } std::tuple MachineInstr::getFirst4LLTs() const { return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), getRegInfo()->getType(getOperand(1).getReg()), getRegInfo()->getType(getOperand(2).getReg()), getRegInfo()->getType(getOperand(3).getReg())); } std::tuple MachineInstr::getFirst5LLTs() const { return std::tuple(getRegInfo()->getType(getOperand(0).getReg()), getRegInfo()->getType(getOperand(1).getReg()), getRegInfo()->getType(getOperand(2).getReg()), getRegInfo()->getType(getOperand(3).getReg()), getRegInfo()->getType(getOperand(4).getReg())); } std::tuple MachineInstr::getFirst2RegLLTs() const { Register Reg0 = getOperand(0).getReg(); Register Reg1 = getOperand(1).getReg(); return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1)); } std::tuple MachineInstr::getFirst3RegLLTs() const { Register Reg0 = getOperand(0).getReg(); Register Reg1 = getOperand(1).getReg(); Register Reg2 = getOperand(2).getReg(); return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), Reg2, getRegInfo()->getType(Reg2)); } std::tuple MachineInstr::getFirst4RegLLTs() const { Register Reg0 = getOperand(0).getReg(); Register Reg1 = getOperand(1).getReg(); Register Reg2 = getOperand(2).getReg(); Register Reg3 = getOperand(3).getReg(); return std::tuple( Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3)); } std::tuple MachineInstr::getFirst5RegLLTs() const { Register Reg0 = getOperand(0).getReg(); Register Reg1 = getOperand(1).getReg(); Register Reg2 = getOperand(2).getReg(); Register Reg3 = getOperand(3).getReg(); Register Reg4 = getOperand(4).getReg(); return std::tuple( Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1), Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3), Reg4, getRegInfo()->getType(Reg4)); } void MachineInstr::insert(mop_iterator InsertBefore, ArrayRef Ops) { assert(InsertBefore != nullptr && "invalid iterator"); assert(InsertBefore->getParent() == this && "iterator points to operand of other inst"); if (Ops.empty()) return; // Do one pass to untie operands. SmallDenseMap TiedOpIndices; for (const MachineOperand &MO : operands()) { if (MO.isReg() && MO.isTied()) { unsigned OpNo = getOperandNo(&MO); unsigned TiedTo = findTiedOperandIdx(OpNo); TiedOpIndices[OpNo] = TiedTo; untieRegOperand(OpNo); } } unsigned OpIdx = getOperandNo(InsertBefore); unsigned NumOperands = getNumOperands(); unsigned OpsToMove = NumOperands - OpIdx; SmallVector MovingOps; MovingOps.reserve(OpsToMove); for (unsigned I = 0; I < OpsToMove; ++I) { MovingOps.emplace_back(getOperand(OpIdx)); removeOperand(OpIdx); } for (const MachineOperand &MO : Ops) addOperand(MO); for (const MachineOperand &OpMoved : MovingOps) addOperand(OpMoved); // Re-tie operands. for (auto [Tie1, Tie2] : TiedOpIndices) { if (Tie1 >= OpIdx) Tie1 += Ops.size(); if (Tie2 >= OpIdx) Tie2 += Ops.size(); tieOperands(Tie1, Tie2); } } bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const { assert(OpId && "expected non-zero operand id"); assert(isInlineAsm() && "should only be used on inline asm"); if (!getOperand(OpId).isReg()) return false; const MachineOperand &MD = getOperand(OpId - 1); if (!MD.isImm()) return false; InlineAsm::Flag F(MD.getImm()); if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) return F.getRegMayBeFolded(); return false; }