//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // The machine combiner pass uses machine trace metrics to ensure the combined // instructions do not lengthen the critical path or the resource depth. //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineSizeOpts.h" #include "llvm/CodeGen/MachineTraceMetrics.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "machine-combiner" STATISTIC(NumInstCombined, "Number of machineinst combined"); static cl::opt inc_threshold("machine-combiner-inc-threshold", cl::Hidden, cl::desc("Incremental depth computation will be used for basic " "blocks with more instructions."), cl::init(500)); static cl::opt dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden, cl::desc("Dump all substituted intrs"), cl::init(false)); #ifdef EXPENSIVE_CHECKS static cl::opt VerifyPatternOrder( "machine-combiner-verify-pattern-order", cl::Hidden, cl::desc( "Verify that the generated patterns are ordered by increasing latency"), cl::init(true)); #else static cl::opt VerifyPatternOrder( "machine-combiner-verify-pattern-order", cl::Hidden, cl::desc( "Verify that the generated patterns are ordered by increasing latency"), cl::init(false)); #endif namespace { class MachineCombiner : public MachineFunctionPass { const TargetSubtargetInfo *STI; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MCSchedModel SchedModel; MachineRegisterInfo *MRI; MachineLoopInfo *MLI; // Current MachineLoopInfo MachineTraceMetrics *Traces; MachineTraceMetrics::Ensemble *MinInstr; MachineBlockFrequencyInfo *MBFI; ProfileSummaryInfo *PSI; TargetSchedModel TSchedModel; /// True if optimizing for code size. bool OptSize; public: static char ID; MachineCombiner() : MachineFunctionPass(ID) { initializeMachineCombinerPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override; bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "Machine InstCombiner"; } private: bool doSubstitute(unsigned NewSize, unsigned OldSize, bool OptForSize); bool combineInstructions(MachineBasicBlock *); MachineInstr *getOperandDef(const MachineOperand &MO); unsigned getDepth(SmallVectorImpl &InsInstrs, DenseMap &InstrIdxForVirtReg, MachineTraceMetrics::Trace BlockTrace); unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot, MachineTraceMetrics::Trace BlockTrace); bool improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root, MachineTraceMetrics::Trace BlockTrace, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs, DenseMap &InstrIdxForVirtReg, MachineCombinerPattern Pattern, bool SlackIsAccurate); bool preservesResourceLen(MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs); void instr2instrSC(SmallVectorImpl &Instrs, SmallVectorImpl &InstrsSC); std::pair getLatenciesForInstrSequences(MachineInstr &MI, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs, MachineTraceMetrics::Trace BlockTrace); void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root, SmallVector &Patterns); }; } char MachineCombiner::ID = 0; char &llvm::MachineCombinerID = MachineCombiner::ID; INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner", false, false) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics) INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner", false, false) void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) { MachineInstr *DefInstr = nullptr; // We need a virtual register definition. if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) DefInstr = MRI->getUniqueVRegDef(MO.getReg()); // PHI's have no depth etc. if (DefInstr && DefInstr->isPHI()) DefInstr = nullptr; return DefInstr; } /// Computes depth of instructions in vector \InsInstr. /// /// \param InsInstrs is a vector of machine instructions /// \param InstrIdxForVirtReg is a dense map of virtual register to index /// of defining machine instruction in \p InsInstrs /// \param BlockTrace is a trace of machine instructions /// /// \returns Depth of last instruction in \InsInstrs ("NewRoot") unsigned MachineCombiner::getDepth(SmallVectorImpl &InsInstrs, DenseMap &InstrIdxForVirtReg, MachineTraceMetrics::Trace BlockTrace) { SmallVector InstrDepth; assert(TSchedModel.hasInstrSchedModelOrItineraries() && "Missing machine model\n"); // For each instruction in the new sequence compute the depth based on the // operands. Use the trace information when possible. For new operands which // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth for (auto *InstrPtr : InsInstrs) { // for each Use unsigned IDepth = 0; for (const MachineOperand &MO : InstrPtr->operands()) { // Check for virtual register operand. if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) continue; if (!MO.isUse()) continue; unsigned DepthOp = 0; unsigned LatencyOp = 0; DenseMap::iterator II = InstrIdxForVirtReg.find(MO.getReg()); if (II != InstrIdxForVirtReg.end()) { // Operand is new virtual register not in trace assert(II->second < InstrDepth.size() && "Bad Index"); MachineInstr *DefInstr = InsInstrs[II->second]; assert(DefInstr && "There must be a definition for a new virtual register"); DepthOp = InstrDepth[II->second]; int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg()); int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg()); LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx, InstrPtr, UseIdx); } else { MachineInstr *DefInstr = getOperandDef(MO); if (DefInstr) { DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth; LatencyOp = TSchedModel.computeOperandLatency( DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()), InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg())); } } IDepth = std::max(IDepth, DepthOp + LatencyOp); } InstrDepth.push_back(IDepth); } unsigned NewRootIdx = InsInstrs.size() - 1; return InstrDepth[NewRootIdx]; } /// Computes instruction latency as max of latency of defined operands. /// /// \param Root is a machine instruction that could be replaced by NewRoot. /// It is used to compute a more accurate latency information for NewRoot in /// case there is a dependent instruction in the same trace (\p BlockTrace) /// \param NewRoot is the instruction for which the latency is computed /// \param BlockTrace is a trace of machine instructions /// /// \returns Latency of \p NewRoot unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot, MachineTraceMetrics::Trace BlockTrace) { assert(TSchedModel.hasInstrSchedModelOrItineraries() && "Missing machine model\n"); // Check each definition in NewRoot and compute the latency unsigned NewRootLatency = 0; for (const MachineOperand &MO : NewRoot->operands()) { // Check for virtual register operand. if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg()))) continue; if (!MO.isDef()) continue; // Get the first instruction that uses MO MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg()); RI++; if (RI == MRI->reg_end()) continue; MachineInstr *UseMO = RI->getParent(); unsigned LatencyOp = 0; if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) { LatencyOp = TSchedModel.computeOperandLatency( NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO, UseMO->findRegisterUseOperandIdx(MO.getReg())); } else { LatencyOp = TSchedModel.computeInstrLatency(NewRoot); } NewRootLatency = std::max(NewRootLatency, LatencyOp); } return NewRootLatency; } /// The combiner's goal may differ based on which pattern it is attempting /// to optimize. enum class CombinerObjective { MustReduceDepth, // The data dependency chain must be improved. Default // The critical path must not be lengthened. }; static CombinerObjective getCombinerObjective(MachineCombinerPattern P) { // TODO: If C++ ever gets a real enum class, make this part of the // MachineCombinerPattern class. switch (P) { case MachineCombinerPattern::REASSOC_AX_BY: case MachineCombinerPattern::REASSOC_AX_YB: case MachineCombinerPattern::REASSOC_XA_BY: case MachineCombinerPattern::REASSOC_XA_YB: return CombinerObjective::MustReduceDepth; default: return CombinerObjective::Default; } } /// Estimate the latency of the new and original instruction sequence by summing /// up the latencies of the inserted and deleted instructions. This assumes /// that the inserted and deleted instructions are dependent instruction chains, /// which might not hold in all cases. std::pair MachineCombiner::getLatenciesForInstrSequences( MachineInstr &MI, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs, MachineTraceMetrics::Trace BlockTrace) { assert(!InsInstrs.empty() && "Only support sequences that insert instrs."); unsigned NewRootLatency = 0; // NewRoot is the last instruction in the \p InsInstrs vector. MachineInstr *NewRoot = InsInstrs.back(); for (unsigned i = 0; i < InsInstrs.size() - 1; i++) NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]); NewRootLatency += getLatency(&MI, NewRoot, BlockTrace); unsigned RootLatency = 0; for (auto I : DelInstrs) RootLatency += TSchedModel.computeInstrLatency(I); return {NewRootLatency, RootLatency}; } /// The DAGCombine code sequence ends in MI (Machine Instruction) Root. /// The new code sequence ends in MI NewRoot. A necessary condition for the new /// sequence to replace the old sequence is that it cannot lengthen the critical /// path. The definition of "improve" may be restricted by specifying that the /// new path improves the data dependency chain (MustReduceDepth). bool MachineCombiner::improvesCriticalPathLen( MachineBasicBlock *MBB, MachineInstr *Root, MachineTraceMetrics::Trace BlockTrace, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs, DenseMap &InstrIdxForVirtReg, MachineCombinerPattern Pattern, bool SlackIsAccurate) { assert(TSchedModel.hasInstrSchedModelOrItineraries() && "Missing machine model\n"); // Get depth and latency of NewRoot and Root. unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace); unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth; LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: " << NewRootDepth << "\tRootDepth: " << RootDepth); // For a transform such as reassociation, the cost equation is // conservatively calculated so that we must improve the depth (data // dependency cycles) in the critical path to proceed with the transform. // Being conservative also protects against inaccuracies in the underlying // machine trace metrics and CPU models. if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) { LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth "); LLVM_DEBUG(NewRootDepth < RootDepth ? dbgs() << "\t and it does it\n" : dbgs() << "\t but it does NOT do it\n"); return NewRootDepth < RootDepth; } // A more flexible cost calculation for the critical path includes the slack // of the original code sequence. This may allow the transform to proceed // even if the instruction depths (data dependency cycles) become worse. // Account for the latency of the inserted and deleted instructions by unsigned NewRootLatency, RootLatency; std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace); unsigned RootSlack = BlockTrace.getInstrSlack(*Root); unsigned NewCycleCount = NewRootDepth + NewRootLatency; unsigned OldCycleCount = RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0); LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency << "\tRootLatency: " << RootLatency << "\n\tRootSlack: " << RootSlack << " SlackIsAccurate=" << SlackIsAccurate << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount << "\n\tRootDepth + RootLatency + RootSlack = " << OldCycleCount;); LLVM_DEBUG(NewCycleCount <= OldCycleCount ? dbgs() << "\n\t It IMPROVES PathLen because" : dbgs() << "\n\t It DOES NOT improve PathLen because"); LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount << ", OldCycleCount = " << OldCycleCount << "\n"); return NewCycleCount <= OldCycleCount; } /// helper routine to convert instructions into SC void MachineCombiner::instr2instrSC( SmallVectorImpl &Instrs, SmallVectorImpl &InstrsSC) { for (auto *InstrPtr : Instrs) { unsigned Opc = InstrPtr->getOpcode(); unsigned Idx = TII->get(Opc).getSchedClass(); const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx); InstrsSC.push_back(SC); } } /// True when the new instructions do not increase resource length bool MachineCombiner::preservesResourceLen( MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs) { if (!TSchedModel.hasInstrSchedModel()) return true; // Compute current resource length //ArrayRef MBBarr(MBB); SmallVector MBBarr; MBBarr.push_back(MBB); unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr); // Deal with SC rather than Instructions. SmallVector InsInstrsSC; SmallVector DelInstrsSC; instr2instrSC(InsInstrs, InsInstrsSC); instr2instrSC(DelInstrs, DelInstrsSC); ArrayRef MSCInsArr = makeArrayRef(InsInstrsSC); ArrayRef MSCDelArr = makeArrayRef(DelInstrsSC); // Compute new resource length. unsigned ResLenAfterCombine = BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr); LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: " << ResLenBeforeCombine << " and after: " << ResLenAfterCombine << "\n";); LLVM_DEBUG( ResLenAfterCombine <= ResLenBeforeCombine ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n" : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource " "Length\n"); return ResLenAfterCombine <= ResLenBeforeCombine; } /// \returns true when new instruction sequence should be generated /// independent if it lengthens critical path or not bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize, bool OptForSize) { if (OptForSize && (NewSize < OldSize)) return true; if (!TSchedModel.hasInstrSchedModelOrItineraries()) return true; return false; } /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction /// depths if requested. /// /// \param MBB basic block to insert instructions in /// \param MI current machine instruction /// \param InsInstrs new instructions to insert in \p MBB /// \param DelInstrs instruction to delete from \p MBB /// \param MinInstr is a pointer to the machine trace information /// \param RegUnits set of live registers, needed to compute instruction depths /// \param IncrementalUpdate if true, compute instruction depths incrementally, /// otherwise invalidate the trace static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI, SmallVector InsInstrs, SmallVector DelInstrs, MachineTraceMetrics::Ensemble *MinInstr, SparseSet &RegUnits, bool IncrementalUpdate) { for (auto *InstrPtr : InsInstrs) MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr); for (auto *InstrPtr : DelInstrs) { InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval(); // Erase all LiveRegs defined by the removed instruction for (auto I = RegUnits.begin(); I != RegUnits.end(); ) { if (I->MI == InstrPtr) I = RegUnits.erase(I); else I++; } } if (IncrementalUpdate) for (auto *InstrPtr : InsInstrs) MinInstr->updateDepth(MBB, *InstrPtr, RegUnits); else MinInstr->invalidate(MBB); NumInstCombined++; } // Check that the difference between original and new latency is decreasing for // later patterns. This helps to discover sub-optimal pattern orderings. void MachineCombiner::verifyPatternOrder( MachineBasicBlock *MBB, MachineInstr &Root, SmallVector &Patterns) { long PrevLatencyDiff = std::numeric_limits::max(); (void)PrevLatencyDiff; // Variable is used in assert only. for (auto P : Patterns) { SmallVector InsInstrs; SmallVector DelInstrs; DenseMap InstrIdxForVirtReg; TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs, InstrIdxForVirtReg); // Found pattern, but did not generate alternative sequence. // This can happen e.g. when an immediate could not be materialized // in a single instruction. if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries()) continue; unsigned NewRootLatency, RootLatency; std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences( Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB)); long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency); assert(CurrentLatencyDiff <= PrevLatencyDiff && "Current pattern is better than previous pattern."); PrevLatencyDiff = CurrentLatencyDiff; } } /// Substitute a slow code sequence with a faster one by /// evaluating instruction combining pattern. /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction /// combining based on machine trace metrics. Only combine a sequence of /// instructions when this neither lengthens the critical path nor increases /// resource pressure. When optimizing for codesize always combine when the new /// sequence is shorter. bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) { bool Changed = false; LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n"); bool IncrementalUpdate = false; auto BlockIter = MBB->begin(); decltype(BlockIter) LastUpdate; // Check if the block is in a loop. const MachineLoop *ML = MLI->getLoopFor(MBB); if (!MinInstr) MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount); SparseSet RegUnits; RegUnits.setUniverse(TRI->getNumRegUnits()); bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI); while (BlockIter != MBB->end()) { auto &MI = *BlockIter++; SmallVector Patterns; // The motivating example is: // // MUL Other MUL_op1 MUL_op2 Other // \ / \ | / // ADD/SUB => MADD/MSUB // (=Root) (=NewRoot) // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is // usually beneficial for code size it unfortunately can hurt performance // when the ADD is on the critical path, but the MUL is not. With the // substitution the MUL becomes part of the critical path (in form of the // MADD) and can lengthen it on architectures where the MADD latency is // longer than the ADD latency. // // For each instruction we check if it can be the root of a combiner // pattern. Then for each pattern the new code sequence in form of MI is // generated and evaluated. When the efficiency criteria (don't lengthen // critical path, don't use more resources) is met the new sequence gets // hooked up into the basic block before the old sequence is removed. // // The algorithm does not try to evaluate all patterns and pick the best. // This is only an artificial restriction though. In practice there is // mostly one pattern, and getMachineCombinerPatterns() can order patterns // based on an internal cost heuristic. If // machine-combiner-verify-pattern-order is enabled, all patterns are // checked to ensure later patterns do not provide better latency savings. if (!TII->getMachineCombinerPatterns(MI, Patterns)) continue; if (VerifyPatternOrder) verifyPatternOrder(MBB, MI, Patterns); for (auto P : Patterns) { SmallVector InsInstrs; SmallVector DelInstrs; DenseMap InstrIdxForVirtReg; TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs, InstrIdxForVirtReg); unsigned NewInstCount = InsInstrs.size(); unsigned OldInstCount = DelInstrs.size(); // Found pattern, but did not generate alternative sequence. // This can happen e.g. when an immediate could not be materialized // in a single instruction. if (!NewInstCount) continue; LLVM_DEBUG(if (dump_intrs) { dbgs() << "\tFor the Pattern (" << (int)P << ") these instructions could be removed\n"; for (auto const *InstrPtr : DelInstrs) InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); dbgs() << "\tThese instructions could replace the removed ones\n"; for (auto const *InstrPtr : InsInstrs) InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, /*SkipDebugLoc*/false, /*AddNewLine*/true, TII); }); bool SubstituteAlways = false; if (ML && TII->isThroughputPattern(P)) SubstituteAlways = true; if (IncrementalUpdate) { // Update depths since the last incremental update. MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits); LastUpdate = BlockIter; } // Substitute when we optimize for codesize and the new sequence has // fewer instructions OR // the new sequence neither lengthens the critical path nor increases // resource pressure. if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount, OptForSize)) { insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr, RegUnits, IncrementalUpdate); // Eagerly stop after the first pattern fires. Changed = true; break; } else { // For big basic blocks, we only compute the full trace the first time // we hit this. We do not invalidate the trace, but instead update the // instruction depths incrementally. // NOTE: Only the instruction depths up to MI are accurate. All other // trace information is not updated. MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB); Traces->verifyAnalysis(); if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs, InstrIdxForVirtReg, P, !IncrementalUpdate) && preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) { if (MBB->size() > inc_threshold) { // Use incremental depth updates for basic blocks above treshold IncrementalUpdate = true; LastUpdate = BlockIter; } insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr, RegUnits, IncrementalUpdate); // Eagerly stop after the first pattern fires. Changed = true; break; } // Cleanup instructions of the alternative code sequence. There is no // use for them. MachineFunction *MF = MBB->getParent(); for (auto *InstrPtr : InsInstrs) MF->DeleteMachineInstr(InstrPtr); } InstrIdxForVirtReg.clear(); } } if (Changed && IncrementalUpdate) Traces->invalidate(MBB); return Changed; } bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) { STI = &MF.getSubtarget(); TII = STI->getInstrInfo(); TRI = STI->getRegisterInfo(); SchedModel = STI->getSchedModel(); TSchedModel.init(STI); MRI = &MF.getRegInfo(); MLI = &getAnalysis(); Traces = &getAnalysis(); PSI = &getAnalysis().getPSI(); MBFI = (PSI && PSI->hasProfileSummary()) ? &getAnalysis().getBFI() : nullptr; MinInstr = nullptr; OptSize = MF.getFunction().hasOptSize(); LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n'); if (!TII->useMachineCombiner()) { LLVM_DEBUG( dbgs() << " Skipping pass: Target does not support machine combiner\n"); return false; } bool Changed = false; // Try to combine instructions. for (auto &MBB : MF) Changed |= combineInstructions(&MBB); return Changed; }