//===- LiveIntervals.cpp - Live Interval Analysis -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This file implements the LiveInterval analysis pass which is used /// by the Linear Scan Register allocator. This pass linearizes the /// basic blocks of the function in DFS order and computes live intervals for /// each virtual and physical register. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervalCalc.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBundle.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Statepoint.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/CodeGen/StackMaps.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "regalloc" char LiveIntervals::ID = 0; char &llvm::LiveIntervalsID = LiveIntervals::ID; INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_END(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) #ifndef NDEBUG static cl::opt EnablePrecomputePhysRegs( "precompute-phys-liveness", cl::Hidden, cl::desc("Eagerly compute live intervals for all physreg units.")); #else static bool EnablePrecomputePhysRegs = false; #endif // NDEBUG namespace llvm { cl::opt UseSegmentSetForPhysRegs( "use-segment-set-for-physregs", cl::Hidden, cl::init(true), cl::desc( "Use segment set for the computation of the live ranges of physregs.")); } // end namespace llvm void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreservedID(MachineLoopInfoID); AU.addRequiredTransitiveID(MachineDominatorsID); AU.addPreservedID(MachineDominatorsID); AU.addPreserved(); AU.addRequiredTransitive(); MachineFunctionPass::getAnalysisUsage(AU); } LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) { initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); } LiveIntervals::~LiveIntervals() { delete LICalc; } void LiveIntervals::releaseMemory() { // Free the live intervals themselves. for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) delete VirtRegIntervals[Register::index2VirtReg(i)]; VirtRegIntervals.clear(); RegMaskSlots.clear(); RegMaskBits.clear(); RegMaskBlocks.clear(); for (LiveRange *LR : RegUnitRanges) delete LR; RegUnitRanges.clear(); // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. VNInfoAllocator.Reset(); } bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { MF = &fn; MRI = &MF->getRegInfo(); TRI = MF->getSubtarget().getRegisterInfo(); TII = MF->getSubtarget().getInstrInfo(); AA = &getAnalysis().getAAResults(); Indexes = &getAnalysis(); DomTree = &getAnalysis(); if (!LICalc) LICalc = new LiveIntervalCalc(); // Allocate space for all virtual registers. VirtRegIntervals.resize(MRI->getNumVirtRegs()); computeVirtRegs(); computeRegMasks(); computeLiveInRegUnits(); if (EnablePrecomputePhysRegs) { // For stress testing, precompute live ranges of all physical register // units, including reserved registers. for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) getRegUnit(i); } LLVM_DEBUG(dump()); return true; } void LiveIntervals::print(raw_ostream &OS, const Module* ) const { OS << "********** INTERVALS **********\n"; // Dump the regunits. for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit) if (LiveRange *LR = RegUnitRanges[Unit]) OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n'; // Dump the virtregs. for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { Register Reg = Register::index2VirtReg(i); if (hasInterval(Reg)) OS << getInterval(Reg) << '\n'; } OS << "RegMasks:"; for (SlotIndex Idx : RegMaskSlots) OS << ' ' << Idx; OS << '\n'; printInstrs(OS); } void LiveIntervals::printInstrs(raw_ostream &OS) const { OS << "********** MACHINEINSTRS **********\n"; MF->print(OS, Indexes); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const { printInstrs(dbgs()); } #endif LiveInterval *LiveIntervals::createInterval(Register reg) { float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F; return new LiveInterval(reg, Weight); } /// Compute the live interval of a virtual register, based on defs and uses. bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { assert(LICalc && "LICalc not initialized."); assert(LI.empty() && "Should only compute empty intervals."); LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg())); return computeDeadValues(LI, nullptr); } void LiveIntervals::computeVirtRegs() { for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { Register Reg = Register::index2VirtReg(i); if (MRI->reg_nodbg_empty(Reg)) continue; LiveInterval &LI = createEmptyInterval(Reg); bool NeedSplit = computeVirtRegInterval(LI); if (NeedSplit) { SmallVector SplitLIs; splitSeparateComponents(LI, SplitLIs); } } } void LiveIntervals::computeRegMasks() { RegMaskBlocks.resize(MF->getNumBlockIDs()); // Find all instructions with regmask operands. for (const MachineBasicBlock &MBB : *MF) { std::pair &RMB = RegMaskBlocks[MBB.getNumber()]; RMB.first = RegMaskSlots.size(); // Some block starts, such as EH funclets, create masks. if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); RegMaskBits.push_back(Mask); } // Unwinders may clobber additional registers. // FIXME: This functionality can possibly be merged into // MachineBasicBlock::getBeginClobberMask(). if (MBB.isEHPad()) if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) { RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); RegMaskBits.push_back(Mask); } for (const MachineInstr &MI : MBB) { for (const MachineOperand &MO : MI.operands()) { if (!MO.isRegMask()) continue; RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); RegMaskBits.push_back(MO.getRegMask()); } } // Some block ends, such as funclet returns, create masks. Put the mask on // the last instruction of the block, because MBB slot index intervals are // half-open. if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { assert(!MBB.empty() && "empty return block?"); RegMaskSlots.push_back( Indexes->getInstructionIndex(MBB.back()).getRegSlot()); RegMaskBits.push_back(Mask); } // Compute the number of register mask instructions in this block. RMB.second = RegMaskSlots.size() - RMB.first; } } //===----------------------------------------------------------------------===// // Register Unit Liveness //===----------------------------------------------------------------------===// // // Fixed interference typically comes from ABI boundaries: Function arguments // and return values are passed in fixed registers, and so are exception // pointers entering landing pads. Certain instructions require values to be // present in specific registers. That is also represented through fixed // interference. // /// Compute the live range of a register unit, based on the uses and defs of /// aliasing registers. The range should be empty, or contain only dead /// phi-defs from ABI blocks. void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { assert(LICalc && "LICalc not initialized."); LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); // The physregs aliasing Unit are the roots and their super-registers. // Create all values as dead defs before extending to uses. Note that roots // may share super-registers. That's OK because createDeadDefs() is // idempotent. It is very rare for a register unit to have multiple roots, so // uniquing super-registers is probably not worthwhile. bool IsReserved = false; for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { bool IsRootReserved = true; for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); Super.isValid(); ++Super) { MCRegister Reg = *Super; if (!MRI->reg_empty(Reg)) LICalc->createDeadDefs(LR, Reg); // A register unit is considered reserved if all its roots and all their // super registers are reserved. if (!MRI->isReserved(Reg)) IsRootReserved = false; } IsReserved |= IsRootReserved; } assert(IsReserved == MRI->isReservedRegUnit(Unit) && "reserved computation mismatch"); // Now extend LR to reach all uses. // Ignore uses of reserved registers. We only track defs of those. if (!IsReserved) { for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); Super.isValid(); ++Super) { MCRegister Reg = *Super; if (!MRI->reg_empty(Reg)) LICalc->extendToUses(LR, Reg); } } } // Flush the segment set to the segment vector. if (UseSegmentSetForPhysRegs) LR.flushSegmentSet(); } /// Precompute the live ranges of any register units that are live-in to an ABI /// block somewhere. Register values can appear without a corresponding def when /// entering the entry block or a landing pad. void LiveIntervals::computeLiveInRegUnits() { RegUnitRanges.resize(TRI->getNumRegUnits()); LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); // Keep track of the live range sets allocated. SmallVector NewRanges; // Check all basic blocks for live-ins. for (const MachineBasicBlock &MBB : *MF) { // We only care about ABI blocks: Entry + landing pads. if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty()) continue; // Create phi-defs at Begin for all live-in registers. SlotIndex Begin = Indexes->getMBBStartIdx(&MBB); LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB)); for (const auto &LI : MBB.liveins()) { for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) { unsigned Unit = *Units; LiveRange *LR = RegUnitRanges[Unit]; if (!LR) { // Use segment set to speed-up initial computation of the live range. LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); NewRanges.push_back(Unit); } VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator()); (void)VNI; LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id); } } LLVM_DEBUG(dbgs() << '\n'); } LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n"); // Compute the 'normal' part of the ranges. for (unsigned Unit : NewRanges) computeRegUnitRange(*RegUnitRanges[Unit], Unit); } static void createSegmentsForValues(LiveRange &LR, iterator_range VNIs) { for (VNInfo *VNI : VNIs) { if (VNI->isUnused()) continue; SlotIndex Def = VNI->def; LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); } } void LiveIntervals::extendSegmentsToUses(LiveRange &Segments, ShrinkToUsesWorkList &WorkList, Register Reg, LaneBitmask LaneMask) { // Keep track of the PHIs that are in use. SmallPtrSet UsedPHIs; // Blocks that have already been added to WorkList as live-out. SmallPtrSet LiveOut; auto getSubRange = [](const LiveInterval &I, LaneBitmask M) -> const LiveRange& { if (M.none()) return I; for (const LiveInterval::SubRange &SR : I.subranges()) { if ((SR.LaneMask & M).any()) { assert(SR.LaneMask == M && "Expecting lane masks to match exactly"); return SR; } } llvm_unreachable("Subrange for mask not found"); }; const LiveInterval &LI = getInterval(Reg); const LiveRange &OldRange = getSubRange(LI, LaneMask); // Extend intervals to reach all uses in WorkList. while (!WorkList.empty()) { SlotIndex Idx = WorkList.back().first; VNInfo *VNI = WorkList.back().second; WorkList.pop_back(); const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot()); SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB); // Extend the live range for VNI to be live at Idx. if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) { assert(ExtVNI == VNI && "Unexpected existing value number"); (void)ExtVNI; // Is this a PHIDef we haven't seen before? if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI).second) continue; // The PHI is live, make sure the predecessors are live-out. for (const MachineBasicBlock *Pred : MBB->predecessors()) { if (!LiveOut.insert(Pred).second) continue; SlotIndex Stop = Indexes->getMBBEndIdx(Pred); // A predecessor is not required to have a live-out value for a PHI. if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop)) WorkList.push_back(std::make_pair(Stop, PVNI)); } continue; } // VNI is live-in to MBB. LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI)); // Make sure VNI is live-out from the predecessors. for (const MachineBasicBlock *Pred : MBB->predecessors()) { if (!LiveOut.insert(Pred).second) continue; SlotIndex Stop = Indexes->getMBBEndIdx(Pred); if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) { assert(OldVNI == VNI && "Wrong value out of predecessor"); (void)OldVNI; WorkList.push_back(std::make_pair(Stop, VNI)); } else { #ifndef NDEBUG // There was no old VNI. Verify that Stop is jointly dominated // by s for this live range. assert(LaneMask.any() && "Missing value out of predecessor for main range"); SmallVector Undefs; LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) && "Missing value out of predecessor for subrange"); #endif } } } } bool LiveIntervals::shrinkToUses(LiveInterval *li, SmallVectorImpl *dead) { LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n'); assert(Register::isVirtualRegister(li->reg()) && "Can only shrink virtual registers"); // Shrink subregister live ranges. bool NeedsCleanup = false; for (LiveInterval::SubRange &S : li->subranges()) { shrinkToUses(S, li->reg()); if (S.empty()) NeedsCleanup = true; } if (NeedsCleanup) li->removeEmptySubRanges(); // Find all the values used, including PHI kills. ShrinkToUsesWorkList WorkList; // Visit all instructions reading li->reg(). Register Reg = li->reg(); for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) { if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg)) continue; SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); LiveQueryResult LRQ = li->Query(Idx); VNInfo *VNI = LRQ.valueIn(); if (!VNI) { // This shouldn't happen: readsVirtualRegister returns true, but there is // no live value. It is likely caused by a target getting flags // wrong. LLVM_DEBUG( dbgs() << Idx << '\t' << UseMI << "Warning: Instr claims to read non-existent value in " << *li << '\n'); continue; } // Special case: An early-clobber tied operand reads and writes the // register one slot early. if (VNInfo *DefVNI = LRQ.valueDefined()) Idx = DefVNI->def; WorkList.push_back(std::make_pair(Idx, VNI)); } // Create new live ranges with only minimal live segments per def. LiveRange NewLR; createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end())); extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone()); // Move the trimmed segments back. li->segments.swap(NewLR.segments); // Handle dead values. bool CanSeparate = computeDeadValues(*li, dead); LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n'); return CanSeparate; } bool LiveIntervals::computeDeadValues(LiveInterval &LI, SmallVectorImpl *dead) { bool MayHaveSplitComponents = false; bool HaveDeadDef = false; for (VNInfo *VNI : LI.valnos) { if (VNI->isUnused()) continue; SlotIndex Def = VNI->def; LiveRange::iterator I = LI.FindSegmentContaining(Def); assert(I != LI.end() && "Missing segment for VNI"); // Is the register live before? Otherwise we may have to add a read-undef // flag for subregister defs. Register VReg = LI.reg(); if (MRI->shouldTrackSubRegLiveness(VReg)) { if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) { MachineInstr *MI = getInstructionFromIndex(Def); MI->setRegisterDefReadUndef(VReg); } } if (I->end != Def.getDeadSlot()) continue; if (VNI->isPHIDef()) { // This is a dead PHI. Remove it. VNI->markUnused(); LI.removeSegment(I); LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n"); MayHaveSplitComponents = true; } else { // This is a dead def. Make sure the instruction knows. MachineInstr *MI = getInstructionFromIndex(Def); assert(MI && "No instruction defining live value"); MI->addRegisterDead(LI.reg(), TRI); if (HaveDeadDef) MayHaveSplitComponents = true; HaveDeadDef = true; if (dead && MI->allDefsAreDead()) { LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); dead->push_back(MI); } } } return MayHaveSplitComponents; } void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) { LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n'); assert(Register::isVirtualRegister(Reg) && "Can only shrink virtual registers"); // Find all the values used, including PHI kills. ShrinkToUsesWorkList WorkList; // Visit all instructions reading Reg. SlotIndex LastIdx; for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { // Skip "undef" uses. if (!MO.readsReg()) continue; // Maybe the operand is for a subregister we don't care about. unsigned SubReg = MO.getSubReg(); if (SubReg != 0) { LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg); if ((LaneMask & SR.LaneMask).none()) continue; } // We only need to visit each instruction once. MachineInstr *UseMI = MO.getParent(); SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot(); if (Idx == LastIdx) continue; LastIdx = Idx; LiveQueryResult LRQ = SR.Query(Idx); VNInfo *VNI = LRQ.valueIn(); // For Subranges it is possible that only undef values are left in that // part of the subregister, so there is no real liverange at the use if (!VNI) continue; // Special case: An early-clobber tied operand reads and writes the // register one slot early. if (VNInfo *DefVNI = LRQ.valueDefined()) Idx = DefVNI->def; WorkList.push_back(std::make_pair(Idx, VNI)); } // Create a new live ranges with only minimal live segments per def. LiveRange NewLR; createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end())); extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask); // Move the trimmed ranges back. SR.segments.swap(NewLR.segments); // Remove dead PHI value numbers for (VNInfo *VNI : SR.valnos) { if (VNI->isUnused()) continue; const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def); assert(Segment != nullptr && "Missing segment for VNI"); if (Segment->end != VNI->def.getDeadSlot()) continue; if (VNI->isPHIDef()) { // This is a dead PHI. Remove it. LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); VNI->markUnused(); SR.removeSegment(*Segment); } } LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n'); } void LiveIntervals::extendToIndices(LiveRange &LR, ArrayRef Indices, ArrayRef Undefs) { assert(LICalc && "LICalc not initialized."); LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); for (SlotIndex Idx : Indices) LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs); } void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, SmallVectorImpl *EndPoints) { LiveQueryResult LRQ = LR.Query(Kill); VNInfo *VNI = LRQ.valueOutOrDead(); if (!VNI) return; MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB); // If VNI isn't live out from KillMBB, the value is trivially pruned. if (LRQ.endPoint() < MBBEnd) { LR.removeSegment(Kill, LRQ.endPoint()); if (EndPoints) EndPoints->push_back(LRQ.endPoint()); return; } // VNI is live out of KillMBB. LR.removeSegment(Kill, MBBEnd); if (EndPoints) EndPoints->push_back(MBBEnd); // Find all blocks that are reachable from KillMBB without leaving VNI's live // range. It is possible that KillMBB itself is reachable, so start a DFS // from each successor. using VisitedTy = df_iterator_default_set; VisitedTy Visited; for (MachineBasicBlock *Succ : KillMBB->successors()) { for (df_ext_iterator I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited); I != E;) { MachineBasicBlock *MBB = *I; // Check if VNI is live in to MBB. SlotIndex MBBStart, MBBEnd; std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); LiveQueryResult LRQ = LR.Query(MBBStart); if (LRQ.valueIn() != VNI) { // This block isn't part of the VNI segment. Prune the search. I.skipChildren(); continue; } // Prune the search if VNI is killed in MBB. if (LRQ.endPoint() < MBBEnd) { LR.removeSegment(MBBStart, LRQ.endPoint()); if (EndPoints) EndPoints->push_back(LRQ.endPoint()); I.skipChildren(); continue; } // VNI is live through MBB. LR.removeSegment(MBBStart, MBBEnd); if (EndPoints) EndPoints->push_back(MBBEnd); ++I; } } } //===----------------------------------------------------------------------===// // Register allocator hooks. // void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { // Keep track of regunit ranges. SmallVector, 8> RU; for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { Register Reg = Register::index2VirtReg(i); if (MRI->reg_nodbg_empty(Reg)) continue; const LiveInterval &LI = getInterval(Reg); if (LI.empty()) continue; // Target may have not allocated this yet. Register PhysReg = VRM->getPhys(Reg); if (!PhysReg) continue; // Find the regunit intervals for the assigned register. They may overlap // the virtual register live range, cancelling any kills. RU.clear(); for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) { const LiveRange &RURange = getRegUnit(*Unit); if (RURange.empty()) continue; RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end))); } // Every instruction that kills Reg corresponds to a segment range end // point. for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; ++RI) { // A block index indicates an MBB edge. if (RI->end.isBlock()) continue; MachineInstr *MI = getInstructionFromIndex(RI->end); if (!MI) continue; // Check if any of the regunits are live beyond the end of RI. That could // happen when a physreg is defined as a copy of a virtreg: // // %eax = COPY %5 // FOO %5 <--- MI, cancel kill because %eax is live. // BAR killed %eax // // There should be no kill flag on FOO when %5 is rewritten as %eax. for (auto &RUP : RU) { const LiveRange &RURange = *RUP.first; LiveRange::const_iterator &I = RUP.second; if (I == RURange.end()) continue; I = RURange.advanceTo(I, RI->end); if (I == RURange.end() || I->start >= RI->end) continue; // I is overlapping RI. goto CancelKill; } if (MRI->subRegLivenessEnabled()) { // When reading a partial undefined value we must not add a kill flag. // The regalloc might have used the undef lane for something else. // Example: // %1 = ... ; R32: %1 // %2:high16 = ... ; R64: %2 // = read killed %2 ; R64: %2 // = read %1 ; R32: %1 // The flag is correct for %2, but the register allocator may // assign R0L to %1, and R0 to %2 because the low 32bits of R0 // are actually never written by %2. After assignment the // flag at the read instruction is invalid. LaneBitmask DefinedLanesMask; if (LI.hasSubRanges()) { // Compute a mask of lanes that are defined. DefinedLanesMask = LaneBitmask::getNone(); for (const LiveInterval::SubRange &SR : LI.subranges()) for (const LiveRange::Segment &Segment : SR.segments) { if (Segment.start >= RI->end) break; if (Segment.end == RI->end) { DefinedLanesMask |= SR.LaneMask; break; } } } else DefinedLanesMask = LaneBitmask::getAll(); bool IsFullWrite = false; for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg() || MO.getReg() != Reg) continue; if (MO.isUse()) { // Reading any undefined lanes? unsigned SubReg = MO.getSubReg(); LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg) : MRI->getMaxLaneMaskForVReg(Reg); if ((UseMask & ~DefinedLanesMask).any()) goto CancelKill; } else if (MO.getSubReg() == 0) { // Writing to the full register? assert(MO.isDef()); IsFullWrite = true; } } // If an instruction writes to a subregister, a new segment starts in // the LiveInterval. But as this is only overriding part of the register // adding kill-flags is not correct here after registers have been // assigned. if (!IsFullWrite) { // Next segment has to be adjacent in the subregister write case. LiveRange::const_iterator N = std::next(RI); if (N != LI.end() && N->start == RI->end) goto CancelKill; } } MI->addRegisterKilled(Reg, nullptr); continue; CancelKill: MI->clearRegisterKills(Reg, nullptr); } } } MachineBasicBlock* LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { // A local live range must be fully contained inside the block, meaning it is // defined and killed at instructions, not at block boundaries. It is not // live in or out of any block. // // It is technically possible to have a PHI-defined live range identical to a // single block, but we are going to return false in that case. SlotIndex Start = LI.beginIndex(); if (Start.isBlock()) return nullptr; SlotIndex Stop = LI.endIndex(); if (Stop.isBlock()) return nullptr; // getMBBFromIndex doesn't need to search the MBB table when both indexes // belong to proper instructions. MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); return MBB1 == MBB2 ? MBB1 : nullptr; } bool LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { for (const VNInfo *PHI : LI.valnos) { if (PHI->isUnused() || !PHI->isPHIDef()) continue; const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); // Conservatively return true instead of scanning huge predecessor lists. if (PHIMBB->pred_size() > 100) return true; for (const MachineBasicBlock *Pred : PHIMBB->predecessors()) if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred))) return true; } return false; } float LiveIntervals::getSpillWeight(bool isDef, bool isUse, const MachineBlockFrequencyInfo *MBFI, const MachineInstr &MI) { return getSpillWeight(isDef, isUse, MBFI, MI.getParent()); } float LiveIntervals::getSpillWeight(bool isDef, bool isUse, const MachineBlockFrequencyInfo *MBFI, const MachineBasicBlock *MBB) { return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB); } LiveRange::Segment LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) { LiveInterval &Interval = createEmptyInterval(Reg); VNInfo *VN = Interval.getNextValue( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getVNInfoAllocator()); LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()), getMBBEndIdx(startInst.getParent()), VN); Interval.addSegment(S); return S; } //===----------------------------------------------------------------------===// // Register mask functions //===----------------------------------------------------------------------===// /// Check whether use of reg in MI is live-through. Live-through means that /// the value is alive on exit from Machine instruction. The example of such /// use is a deopt value in statepoint instruction. static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) { if (MI->getOpcode() != TargetOpcode::STATEPOINT) return false; StatepointOpers SO(MI); if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn) return false; for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E; ++Idx) { const MachineOperand &MO = MI->getOperand(Idx); if (MO.isReg() && MO.getReg() == Reg) return true; } return false; } bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, BitVector &UsableRegs) { if (LI.empty()) return false; LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); // Use a smaller arrays for local live ranges. ArrayRef Slots; ArrayRef Bits; if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { Slots = getRegMaskSlotsInBlock(MBB->getNumber()); Bits = getRegMaskBitsInBlock(MBB->getNumber()); } else { Slots = getRegMaskSlots(); Bits = getRegMaskBits(); } // We are going to enumerate all the register mask slots contained in LI. // Start with a binary search of RegMaskSlots to find a starting point. ArrayRef::iterator SlotI = llvm::lower_bound(Slots, LiveI->start); ArrayRef::iterator SlotE = Slots.end(); // No slots in range, LI begins after the last call. if (SlotI == SlotE) return false; bool Found = false; // Utility to union regmasks. auto unionBitMask = [&](unsigned Idx) { if (!Found) { // This is the first overlap. Initialize UsableRegs to all ones. UsableRegs.clear(); UsableRegs.resize(TRI->getNumRegs(), true); Found = true; } // Remove usable registers clobbered by this mask. UsableRegs.clearBitsNotInMask(Bits[Idx]); }; while (true) { assert(*SlotI >= LiveI->start); // Loop over all slots overlapping this segment. while (*SlotI < LiveI->end) { // *SlotI overlaps LI. Collect mask bits. unionBitMask(SlotI - Slots.begin()); if (++SlotI == SlotE) return Found; } // If segment ends with live-through use we need to collect its regmask. if (*SlotI == LiveI->end) if (MachineInstr *MI = getInstructionFromIndex(*SlotI)) if (hasLiveThroughUse(MI, LI.reg())) unionBitMask(SlotI++ - Slots.begin()); // *SlotI is beyond the current LI segment. // Special advance implementation to not miss next LiveI->end. if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex()) return Found; while (LiveI->end < *SlotI) ++LiveI; // Advance SlotI until it overlaps. while (*SlotI < LiveI->start) if (++SlotI == SlotE) return Found; } } //===----------------------------------------------------------------------===// // IntervalUpdate class. //===----------------------------------------------------------------------===// /// Toolkit used by handleMove to trim or extend live intervals. class LiveIntervals::HMEditor { private: LiveIntervals& LIS; const MachineRegisterInfo& MRI; const TargetRegisterInfo& TRI; SlotIndex OldIdx; SlotIndex NewIdx; SmallPtrSet Updated; bool UpdateFlags; public: HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, const TargetRegisterInfo& TRI, SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), UpdateFlags(UpdateFlags) {} // FIXME: UpdateFlags is a workaround that creates live intervals for all // physregs, even those that aren't needed for regalloc, in order to update // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill // flags, and postRA passes will use a live register utility instead. LiveRange *getRegUnitLI(unsigned Unit) { if (UpdateFlags && !MRI.isReservedRegUnit(Unit)) return &LIS.getRegUnit(Unit); return LIS.getCachedRegUnit(Unit); } /// Update all live ranges touched by MI, assuming a move from OldIdx to /// NewIdx. void updateAllRanges(MachineInstr *MI) { LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI); bool hasRegMask = false; for (MachineOperand &MO : MI->operands()) { if (MO.isRegMask()) hasRegMask = true; if (!MO.isReg()) continue; if (MO.isUse()) { if (!MO.readsReg()) continue; // Aggressively clear all kill flags. // They are reinserted by VirtRegRewriter. MO.setIsKill(false); } Register Reg = MO.getReg(); if (!Reg) continue; if (Register::isVirtualRegister(Reg)) { LiveInterval &LI = LIS.getInterval(Reg); if (LI.hasSubRanges()) { unsigned SubReg = MO.getSubReg(); LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg) : MRI.getMaxLaneMaskForVReg(Reg); for (LiveInterval::SubRange &S : LI.subranges()) { if ((S.LaneMask & LaneMask).none()) continue; updateRange(S, Reg, S.LaneMask); } } updateRange(LI, Reg, LaneBitmask::getNone()); // If main range has a hole and we are moving a subrange use across // the hole updateRange() cannot properly handle it since it only // gets the LiveRange and not the whole LiveInterval. As a result // we may end up with a main range not covering all subranges. // This is extremely rare case, so let's check and reconstruct the // main range. for (LiveInterval::SubRange &S : LI.subranges()) { if (LI.covers(S)) continue; LI.clear(); LIS.constructMainRangeFromSubranges(LI); break; } continue; } // For physregs, only update the regunits that actually have a // precomputed live range. for (MCRegUnitIterator Units(Reg.asMCReg(), &TRI); Units.isValid(); ++Units) if (LiveRange *LR = getRegUnitLI(*Units)) updateRange(*LR, *Units, LaneBitmask::getNone()); } if (hasRegMask) updateRegMaskSlots(); } private: /// Update a single live range, assuming an instruction has been moved from /// OldIdx to NewIdx. void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) { if (!Updated.insert(&LR).second) return; LLVM_DEBUG({ dbgs() << " "; if (Register::isVirtualRegister(Reg)) { dbgs() << printReg(Reg); if (LaneMask.any()) dbgs() << " L" << PrintLaneMask(LaneMask); } else { dbgs() << printRegUnit(Reg, &TRI); } dbgs() << ":\t" << LR << '\n'; }); if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) handleMoveDown(LR); else handleMoveUp(LR, Reg, LaneMask); LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n'); LR.verify(); } /// Update LR to reflect an instruction has been moved downwards from OldIdx /// to NewIdx (OldIdx < NewIdx). void handleMoveDown(LiveRange &LR) { LiveRange::iterator E = LR.end(); // Segment going into OldIdx. LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); // No value live before or after OldIdx? Nothing to do. if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) return; LiveRange::iterator OldIdxOut; // Do we have a value live-in to OldIdx? if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { // If the live-in value already extends to NewIdx, there is nothing to do. if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end)) return; // Aggressively remove all kill flags from the old kill point. // Kill flags shouldn't be used while live intervals exist, they will be // reinserted by VirtRegRewriter. if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end)) for (MachineOperand &MOP : mi_bundle_ops(*KillMI)) if (MOP.isReg() && MOP.isUse()) MOP.setIsKill(false); // Is there a def before NewIdx which is not OldIdx? LiveRange::iterator Next = std::next(OldIdxIn); if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) && SlotIndex::isEarlierInstr(Next->start, NewIdx)) { // If we are here then OldIdx was just a use but not a def. We only have // to ensure liveness extends to NewIdx. LiveRange::iterator NewIdxIn = LR.advanceTo(Next, NewIdx.getBaseIndex()); // Extend the segment before NewIdx if necessary. if (NewIdxIn == E || !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) { LiveRange::iterator Prev = std::prev(NewIdxIn); Prev->end = NewIdx.getRegSlot(); } // Extend OldIdxIn. OldIdxIn->end = Next->start; return; } // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR // invalid by overlapping ranges. bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()); // If this was not a kill, then there was no def and we're done. if (!isKill) return; // Did we have a Def at OldIdx? OldIdxOut = Next; if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) return; } else { OldIdxOut = OldIdxIn; } // If we are here then there is a Definition at OldIdx. OldIdxOut points // to the segment starting there. assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && "No def?"); VNInfo *OldIdxVNI = OldIdxOut->valno; assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); // If the defined value extends beyond NewIdx, just move the beginning // of the segment to NewIdx. SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) { OldIdxVNI->def = NewIdxDef; OldIdxOut->start = OldIdxVNI->def; return; } // If we are here then we have a Definition at OldIdx which ends before // NewIdx. // Is there an existing Def at NewIdx? LiveRange::iterator AfterNewIdx = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot()); bool OldIdxDefIsDead = OldIdxOut->end.isDead(); if (!OldIdxDefIsDead && SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) { // OldIdx is not a dead def, and NewIdxDef is inside a new interval. VNInfo *DefVNI; if (OldIdxOut != LR.begin() && !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end, OldIdxOut->start)) { // There is no gap between OldIdxOut and its predecessor anymore, // merge them. LiveRange::iterator IPrev = std::prev(OldIdxOut); DefVNI = OldIdxVNI; IPrev->end = OldIdxOut->end; } else { // The value is live in to OldIdx LiveRange::iterator INext = std::next(OldIdxOut); assert(INext != E && "Must have following segment"); // We merge OldIdxOut and its successor. As we're dealing with subreg // reordering, there is always a successor to OldIdxOut in the same BB // We don't need INext->valno anymore and will reuse for the new segment // we create later. DefVNI = OldIdxVNI; INext->start = OldIdxOut->end; INext->valno->def = INext->start; } // If NewIdx is behind the last segment, extend that and append a new one. if (AfterNewIdx == E) { // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up // one position. // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end std::copy(std::next(OldIdxOut), E, OldIdxOut); // The last segment is undefined now, reuse it for a dead def. LiveRange::iterator NewSegment = std::prev(E); *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), DefVNI); DefVNI->def = NewIdxDef; LiveRange::iterator Prev = std::prev(NewSegment); Prev->end = NewIdxDef; } else { // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up // one position. // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -| // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -| std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut); LiveRange::iterator Prev = std::prev(AfterNewIdx); // We have two cases: if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) { // Case 1: NewIdx is inside a liverange. Split this liverange at // NewIdxDef into the segment "Prev" followed by "NewSegment". LiveRange::iterator NewSegment = AfterNewIdx; *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno); Prev->valno->def = NewIdxDef; *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI); DefVNI->def = Prev->start; } else { // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and // turn Prev into a segment from NewIdx to AfterNewIdx->start. *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI); DefVNI->def = NewIdxDef; assert(DefVNI != AfterNewIdx->valno); } } return; } if (AfterNewIdx != E && SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) { // There is an existing def at NewIdx. The def at OldIdx is coalesced into // that value. assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?"); LR.removeValNo(OldIdxVNI); } else { // There was no existing def at NewIdx. We need to create a dead def // at NewIdx. Shift segments over the old OldIdxOut segment, this frees // a new segment at the place where we want to construct the dead def. // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -| // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -| assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators"); std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut); // We can reuse OldIdxVNI now. LiveRange::iterator NewSegment = std::prev(AfterNewIdx); VNInfo *NewSegmentVNI = OldIdxVNI; NewSegmentVNI->def = NewIdxDef; *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), NewSegmentVNI); } } /// Update LR to reflect an instruction has been moved upwards from OldIdx /// to NewIdx (NewIdx < OldIdx). void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) { LiveRange::iterator E = LR.end(); // Segment going into OldIdx. LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); // No value live before or after OldIdx? Nothing to do. if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) return; LiveRange::iterator OldIdxOut; // Do we have a value live-in to OldIdx? if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { // If the live-in value isn't killed here, then we have no Def at // OldIdx, moreover the value must be live at NewIdx so there is nothing // to do. bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); if (!isKill) return; // At this point we have to move OldIdxIn->end back to the nearest // previous use or (dead-)def but no further than NewIdx. SlotIndex DefBeforeOldIdx = std::max(OldIdxIn->start.getDeadSlot(), NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber())); OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask); // Did we have a Def at OldIdx? If not we are done now. OldIdxOut = std::next(OldIdxIn); if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) return; } else { OldIdxOut = OldIdxIn; OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E; } // If we are here then there is a Definition at OldIdx. OldIdxOut points // to the segment starting there. assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && "No def?"); VNInfo *OldIdxVNI = OldIdxOut->valno; assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); bool OldIdxDefIsDead = OldIdxOut->end.isDead(); // Is there an existing def at NewIdx? SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot()); if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) { assert(NewIdxOut->valno != OldIdxVNI && "Same value defined more than once?"); // If OldIdx was a dead def remove it. if (!OldIdxDefIsDead) { // Remove segment starting at NewIdx and move begin of OldIdxOut to // NewIdx so it can take its place. OldIdxVNI->def = NewIdxDef; OldIdxOut->start = NewIdxDef; LR.removeValNo(NewIdxOut->valno); } else { // Simply remove the dead def at OldIdx. LR.removeValNo(OldIdxVNI); } } else { // Previously nothing was live after NewIdx, so all we have to do now is // move the begin of OldIdxOut to NewIdx. if (!OldIdxDefIsDead) { // Do we have any intermediate Defs between OldIdx and NewIdx? if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) { // OldIdx is not a dead def and NewIdx is before predecessor start. LiveRange::iterator NewIdxIn = NewIdxOut; assert(NewIdxIn == LR.find(NewIdx.getBaseIndex())); const SlotIndex SplitPos = NewIdxDef; OldIdxVNI = OldIdxIn->valno; SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end; LiveRange::iterator Prev = std::prev(OldIdxIn); if (OldIdxIn != LR.begin() && SlotIndex::isEarlierInstr(NewIdx, Prev->end)) { // If the segment before OldIdx read a value defined earlier than // NewIdx, the moved instruction also reads and forwards that // value. Extend the lifetime of the new def point. // Extend to where the previous range started, unless there is // another redef first. NewDefEndPoint = std::min(OldIdxIn->start, std::next(NewIdxOut)->start); } // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut. OldIdxOut->valno->def = OldIdxIn->start; *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end, OldIdxOut->valno); // OldIdxIn and OldIdxVNI are now undef and can be overridden. // We Slide [NewIdxIn, OldIdxIn) down one position. // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -| // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -| std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut); // NewIdxIn is now considered undef so we can reuse it for the moved // value. LiveRange::iterator NewSegment = NewIdxIn; LiveRange::iterator Next = std::next(NewSegment); if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) { // There is no gap between NewSegment and its predecessor. *NewSegment = LiveRange::Segment(Next->start, SplitPos, Next->valno); *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI); Next->valno->def = SplitPos; } else { // There is a gap between NewSegment and its predecessor // Value becomes live in. *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI); NewSegment->valno->def = SplitPos; } } else { // Leave the end point of a live def. OldIdxOut->start = NewIdxDef; OldIdxVNI->def = NewIdxDef; if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end)) OldIdxIn->end = NewIdxDef; } } else if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx) && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) { // OldIdxVNI is a dead def that has been moved into the middle of // another value in LR. That can happen when LR is a whole register, // but the dead def is a write to a subreg that is dead at NewIdx. // The dead def may have been moved across other values // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) // down one position. // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); // Modify the segment at NewIdxOut and the following segment to meet at // the point of the dead def, with the following segment getting // OldIdxVNI as its value number. *NewIdxOut = LiveRange::Segment( NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno); *(NewIdxOut + 1) = LiveRange::Segment( NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI); OldIdxVNI->def = NewIdxDef; // Modify subsequent segments to be defined by the moved def OldIdxVNI. for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx) Idx->valno = OldIdxVNI; // Aggressively remove all dead flags from the former dead definition. // Kill/dead flags shouldn't be used while live intervals exist; they // will be reinserted by VirtRegRewriter. if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx)) for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) if (MO->isReg() && !MO->isUse()) MO->setIsDead(false); } else { // OldIdxVNI is a dead def. It may have been moved across other values // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) // down one position. // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); // OldIdxVNI can be reused now to build a new dead def segment. LiveRange::iterator NewSegment = NewIdxOut; VNInfo *NewSegmentVNI = OldIdxVNI; *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), NewSegmentVNI); NewSegmentVNI->def = NewIdxDef; } } } void updateRegMaskSlots() { SmallVectorImpl::iterator RI = llvm::lower_bound(LIS.RegMaskSlots, OldIdx); assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && "No RegMask at OldIdx."); *RI = NewIdx.getRegSlot(); assert((RI == LIS.RegMaskSlots.begin() || SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && "Cannot move regmask instruction above another call"); assert((std::next(RI) == LIS.RegMaskSlots.end() || SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && "Cannot move regmask instruction below another call"); } // Return the last use of reg between NewIdx and OldIdx. SlotIndex findLastUseBefore(SlotIndex Before, Register Reg, LaneBitmask LaneMask) { if (Register::isVirtualRegister(Reg)) { SlotIndex LastUse = Before; for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) { if (MO.isUndef()) continue; unsigned SubReg = MO.getSubReg(); if (SubReg != 0 && LaneMask.any() && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none()) continue; const MachineInstr &MI = *MO.getParent(); SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); if (InstSlot > LastUse && InstSlot < OldIdx) LastUse = InstSlot.getRegSlot(); } return LastUse; } // This is a regunit interval, so scanning the use list could be very // expensive. Scan upwards from OldIdx instead. assert(Before < OldIdx && "Expected upwards move"); SlotIndexes *Indexes = LIS.getSlotIndexes(); MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before); // OldIdx may not correspond to an instruction any longer, so set MII to // point to the next instruction after OldIdx, or MBB->end(). MachineBasicBlock::iterator MII = MBB->end(); if (MachineInstr *MI = Indexes->getInstructionFromIndex( Indexes->getNextNonNullIndex(OldIdx))) if (MI->getParent() == MBB) MII = MI; MachineBasicBlock::iterator Begin = MBB->begin(); while (MII != Begin) { if ((--MII)->isDebugOrPseudoInstr()) continue; SlotIndex Idx = Indexes->getInstructionIndex(*MII); // Stop searching when Before is reached. if (!SlotIndex::isEarlierInstr(Before, Idx)) return Before; // Check if MII uses Reg. for (MIBundleOperands MO(*MII); MO.isValid(); ++MO) if (MO->isReg() && !MO->isUndef() && Register::isPhysicalRegister(MO->getReg()) && TRI.hasRegUnit(MO->getReg(), Reg)) return Idx.getRegSlot(); } // Didn't reach Before. It must be the first instruction in the block. return Before; } }; void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) { // It is fine to move a bundle as a whole, but not an individual instruction // inside it. assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) && "Cannot move instruction in bundle"); SlotIndex OldIndex = Indexes->getInstructionIndex(MI); Indexes->removeMachineInstrFromMaps(MI); SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); assert(getMBBStartIdx(MI.getParent()) <= OldIndex && OldIndex < getMBBEndIdx(MI.getParent()) && "Cannot handle moves across basic block boundaries."); HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); HME.updateAllRanges(&MI); } void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart, bool UpdateFlags) { assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) && "Bundle start is not a bundle"); SmallVector ToProcess; const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart); auto BundleEnd = getBundleEnd(BundleStart.getIterator()); auto I = BundleStart.getIterator(); I++; while (I != BundleEnd) { if (!Indexes->hasIndex(*I)) continue; SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true); ToProcess.push_back(OldIndex); Indexes->removeMachineInstrFromMaps(*I, true); I++; } for (SlotIndex OldIndex : ToProcess) { HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); HME.updateAllRanges(&BundleStart); } // Fix up dead defs const SlotIndex Index = getInstructionIndex(BundleStart); for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) { MachineOperand &MO = BundleStart.getOperand(Idx); if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) { LiveInterval &LI = getInterval(Reg); LiveQueryResult LRQ = LI.Query(Index); if (LRQ.isDeadDef()) MO.setIsDead(); } } } void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, const MachineBasicBlock::iterator End, const SlotIndex EndIdx, LiveRange &LR, const Register Reg, LaneBitmask LaneMask) { LiveInterval::iterator LII = LR.find(EndIdx); SlotIndex lastUseIdx; if (LII == LR.begin()) { // This happens when the function is called for a subregister that only // occurs _after_ the range that is to be repaired. return; } if (LII != LR.end() && LII->start < EndIdx) lastUseIdx = LII->end; else --LII; for (MachineBasicBlock::iterator I = End; I != Begin;) { --I; MachineInstr &MI = *I; if (MI.isDebugOrPseudoInstr()) continue; SlotIndex instrIdx = getInstructionIndex(MI); bool isStartValid = getInstructionFromIndex(LII->start); bool isEndValid = getInstructionFromIndex(LII->end); // FIXME: This doesn't currently handle early-clobber or multiple removed // defs inside of the region to repair. for (MachineInstr::mop_iterator OI = MI.operands_begin(), OE = MI.operands_end(); OI != OE; ++OI) { const MachineOperand &MO = *OI; if (!MO.isReg() || MO.getReg() != Reg) continue; unsigned SubReg = MO.getSubReg(); LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg); if ((Mask & LaneMask).none()) continue; if (MO.isDef()) { if (!isStartValid) { if (LII->end.isDead()) { SlotIndex prevStart; if (LII != LR.begin()) prevStart = std::prev(LII)->start; // FIXME: This could be more efficient if there was a // removeSegment method that returned an iterator. LR.removeSegment(*LII, true); if (prevStart.isValid()) LII = LR.find(prevStart); else LII = LR.begin(); } else { LII->start = instrIdx.getRegSlot(); LII->valno->def = instrIdx.getRegSlot(); if (MO.getSubReg() && !MO.isUndef()) lastUseIdx = instrIdx.getRegSlot(); else lastUseIdx = SlotIndex(); continue; } } if (!lastUseIdx.isValid()) { VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); LiveRange::Segment S(instrIdx.getRegSlot(), instrIdx.getDeadSlot(), VNI); LII = LR.addSegment(S); } else if (LII->start != instrIdx.getRegSlot()) { VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); LII = LR.addSegment(S); } if (MO.getSubReg() && !MO.isUndef()) lastUseIdx = instrIdx.getRegSlot(); else lastUseIdx = SlotIndex(); } else if (MO.isUse()) { // FIXME: This should probably be handled outside of this branch, // either as part of the def case (for defs inside of the region) or // after the loop over the region. if (!isEndValid && !LII->end.isBlock()) LII->end = instrIdx.getRegSlot(); if (!lastUseIdx.isValid()) lastUseIdx = instrIdx.getRegSlot(); } } } } void LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, ArrayRef OrigRegs) { // Find anchor points, which are at the beginning/end of blocks or at // instructions that already have indexes. while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin)) --Begin; while (End != MBB->end() && !Indexes->hasIndex(*End)) ++End; SlotIndex EndIdx; if (End == MBB->end()) EndIdx = getMBBEndIdx(MBB).getPrevSlot(); else EndIdx = getInstructionIndex(*End); Indexes->repairIndexesInRange(MBB, Begin, End); for (MachineBasicBlock::iterator I = End; I != Begin;) { --I; MachineInstr &MI = *I; if (MI.isDebugOrPseudoInstr()) continue; for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), MOE = MI.operands_end(); MOI != MOE; ++MOI) { if (MOI->isReg() && Register::isVirtualRegister(MOI->getReg()) && !hasInterval(MOI->getReg())) { createAndComputeVirtRegInterval(MOI->getReg()); } } } for (Register Reg : OrigRegs) { if (!Reg.isVirtual()) continue; LiveInterval &LI = getInterval(Reg); // FIXME: Should we support undefs that gain defs? if (!LI.hasAtLeastOneValue()) continue; for (LiveInterval::SubRange &S : LI.subranges()) repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask); repairOldRegInRange(Begin, End, EndIdx, LI, Reg); } } void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) { for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) { if (LiveRange *LR = getCachedRegUnit(*Unit)) if (VNInfo *VNI = LR->getVNInfoAt(Pos)) LR->removeValNo(VNI); } } void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { // LI may not have the main range computed yet, but its subranges may // be present. VNInfo *VNI = LI.getVNInfoAt(Pos); if (VNI != nullptr) { assert(VNI->def.getBaseIndex() == Pos.getBaseIndex()); LI.removeValNo(VNI); } // Also remove the value defined in subranges. for (LiveInterval::SubRange &S : LI.subranges()) { if (VNInfo *SVNI = S.getVNInfoAt(Pos)) if (SVNI->def.getBaseIndex() == Pos.getBaseIndex()) S.removeValNo(SVNI); } LI.removeEmptySubRanges(); } void LiveIntervals::splitSeparateComponents(LiveInterval &LI, SmallVectorImpl &SplitLIs) { ConnectedVNInfoEqClasses ConEQ(*this); unsigned NumComp = ConEQ.Classify(LI); if (NumComp <= 1) return; LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n'); Register Reg = LI.reg(); const TargetRegisterClass *RegClass = MRI->getRegClass(Reg); for (unsigned I = 1; I < NumComp; ++I) { Register NewVReg = MRI->createVirtualRegister(RegClass); LiveInterval &NewLI = createEmptyInterval(NewVReg); SplitLIs.push_back(&NewLI); } ConEQ.Distribute(LI, SplitLIs.data(), *MRI); } void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) { assert(LICalc && "LICalc not initialized."); LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); LICalc->constructMainRangeFromSubranges(LI); }