//===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file VarLocBasedImpl.cpp /// /// LiveDebugValues is an optimistic "available expressions" dataflow /// algorithm. The set of expressions is the set of machine locations /// (registers, spill slots, constants, and target indices) that a variable /// fragment might be located, qualified by a DIExpression and indirect-ness /// flag, while each variable is identified by a DebugVariable object. The /// availability of an expression begins when a DBG_VALUE instruction specifies /// the location of a DebugVariable, and continues until that location is /// clobbered or re-specified by a different DBG_VALUE for the same /// DebugVariable. /// /// The output of LiveDebugValues is additional DBG_VALUE instructions, /// placed to extend variable locations as far they're available. This file /// and the VarLocBasedLDV class is an implementation that explicitly tracks /// locations, using the VarLoc class. /// /// The canonical "available expressions" problem doesn't have expression /// clobbering, instead when a variable is re-assigned, any expressions using /// that variable get invalidated. LiveDebugValues can map onto "available /// expressions" by having every register represented by a variable, which is /// used in an expression that becomes available at a DBG_VALUE instruction. /// When the register is clobbered, its variable is effectively reassigned, and /// expressions computed from it become unavailable. A similar construct is /// needed when a DebugVariable has its location re-specified, to invalidate /// all other locations for that DebugVariable. /// /// Using the dataflow analysis to compute the available expressions, we create /// a DBG_VALUE at the beginning of each block where the expression is /// live-in. This propagates variable locations into every basic block where /// the location can be determined, rather than only having DBG_VALUEs in blocks /// where locations are specified due to an assignment or some optimization. /// Movements of values between registers and spill slots are annotated with /// DBG_VALUEs too to track variable values bewteen locations. All this allows /// DbgEntityHistoryCalculator to focus on only the locations within individual /// blocks, facilitating testing and improving modularity. /// /// We follow an optimisic dataflow approach, with this lattice: /// /// \verbatim /// ┬ "Unknown" /// | /// v /// True /// | /// v /// ⊥ False /// \endverbatim With "True" signifying that the expression is available (and /// thus a DebugVariable's location is the corresponding register), while /// "False" signifies that the expression is unavailable. "Unknown"s never /// survive to the end of the analysis (see below). /// /// Formally, all DebugVariable locations that are live-out of a block are /// initialized to \top. A blocks live-in values take the meet of the lattice /// value for every predecessors live-outs, except for the entry block, where /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer /// function for a block assigns an expression for a DebugVariable to be "True" /// if a DBG_VALUE in the block specifies it; "False" if the location is /// clobbered; or the live-in value if it is unaffected by the block. We /// visit each block in reverse post order until a fixedpoint is reached. The /// solution produced is maximal. /// /// Intuitively, we start by assuming that every expression / variable location /// is at least "True", and then propagate "False" from the entry block and any /// clobbers until there are no more changes to make. This gives us an accurate /// solution because all incorrect locations will have a "False" propagated into /// them. It also gives us a solution that copes well with loops by assuming /// that variable locations are live-through every loop, and then removing those /// that are not through dataflow. /// /// Within LiveDebugValues: each variable location is represented by a /// VarLoc object that identifies the source variable, the set of /// machine-locations that currently describe it (a single location for /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that /// specifies the location. Each VarLoc is indexed in the (function-scope) \p /// VarLocMap, giving each VarLoc a set of unique indexes, each of which /// corresponds to one of the VarLoc's machine-locations and can be used to /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine /// locations, the dataflow analysis in this pass identifies locations by their /// indices in the VarLocMap, meaning all the variable locations in a block can /// be described by a sparse vector of VarLocMap indices. /// /// All the storage for the dataflow analysis is local to the ExtendRanges /// method and passed down to helper methods. "OutLocs" and "InLocs" record the /// in and out lattice values for each block. "OpenRanges" maintains a list of /// variable locations and, with the "process" method, evaluates the transfer /// function of each block. "flushPendingLocs" installs debug value instructions /// for each live-in location at the start of blocks, while "Transfers" records /// transfers of values between machine-locations. /// /// We avoid explicitly representing the "Unknown" (\top) lattice value in the /// implementation. Instead, unvisited blocks implicitly have all lattice /// values set as "Unknown". After being visited, there will be path back to /// the entry block where the lattice value is "False", and as the transfer /// function cannot make new "Unknown" locations, there are no scenarios where /// a block can have an "Unknown" location after being visited. Similarly, we /// don't enumerate all possible variable locations before exploring the /// function: when a new location is discovered, all blocks previously explored /// were implicitly "False" but unrecorded, and become explicitly "False" when /// a new VarLoc is created with its bit not set in predecessor InLocs or /// OutLocs. /// //===----------------------------------------------------------------------===// #include "LiveDebugValues.h" #include "llvm/ADT/CoalescingBitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/CodeGen/LexicalScopes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/TypeSize.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "livedebugvalues" STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); /// If \p Op is a stack or frame register return true, otherwise return false. /// This is used to avoid basing the debug entry values on the registers, since /// we do not support it at the moment. static bool isRegOtherThanSPAndFP(const MachineOperand &Op, const MachineInstr &MI, const TargetRegisterInfo *TRI) { if (!Op.isReg()) return false; const MachineFunction *MF = MI.getParent()->getParent(); const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); Register SP = TLI->getStackPointerRegisterToSaveRestore(); Register FP = TRI->getFrameRegister(*MF); Register Reg = Op.getReg(); return Reg && Reg != SP && Reg != FP; } namespace { // Max out the number of statically allocated elements in DefinedRegsSet, as // this prevents fallback to std::set::count() operations. using DefinedRegsSet = SmallSet; // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs // that represent Entry Values; every VarLoc in the set will also appear // exactly once at Location=0. // As a result, each VarLoc may appear more than once in this "set", but each // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a // "true" set (i.e. each VarLoc may appear only once), and the range Location=0 // is the set of all VarLocs. using VarLocSet = CoalescingBitVector; /// A type-checked pair of {Register Location (or 0), Index}, used to index /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int /// for insertion into a \ref VarLocSet, and efficiently converted back. The /// type-checker helps ensure that the conversions aren't lossy. /// /// Why encode a location /into/ the VarLocMap index? This makes it possible /// to find the open VarLocs killed by a register def very quickly. This is a /// performance-critical operation for LiveDebugValues. struct LocIndex { using u32_location_t = uint32_t; using u32_index_t = uint32_t; u32_location_t Location; // Physical registers live in the range [1;2^30) (see // \ref MCRegister), so we have plenty of range left // here to encode non-register locations. u32_index_t Index; /// The location that has an entry for every VarLoc in the map. static constexpr u32_location_t kUniversalLocation = 0; /// The first location that is reserved for VarLocs with locations of kind /// RegisterKind. static constexpr u32_location_t kFirstRegLocation = 1; /// The first location greater than 0 that is not reserved for VarLocs with /// locations of kind RegisterKind. static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; /// A special location reserved for VarLocs with locations of kind /// SpillLocKind. static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; /// A special location reserved for VarLocs of kind EntryValueBackupKind and /// EntryValueCopyBackupKind. static constexpr u32_location_t kEntryValueBackupLocation = kFirstInvalidRegLocation + 1; /// A special location reserved for VarLocs with locations of kind /// WasmLocKind. /// TODO Placing all Wasm target index locations in this single kWasmLocation /// may cause slowdown in compilation time in very large functions. Consider /// giving a each target index/offset pair its own u32_location_t if this /// becomes a problem. static constexpr u32_location_t kWasmLocation = kFirstInvalidRegLocation + 2; LocIndex(u32_location_t Location, u32_index_t Index) : Location(Location), Index(Index) {} uint64_t getAsRawInteger() const { return (static_cast(Location) << 32) | Index; } template static LocIndex fromRawInteger(IntT ID) { static_assert(std::is_unsigned_v && sizeof(ID) == sizeof(uint64_t), "Cannot convert raw integer to LocIndex"); return {static_cast(ID >> 32), static_cast(ID)}; } /// Get the start of the interval reserved for VarLocs of kind RegisterKind /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. static uint64_t rawIndexForReg(Register Reg) { return LocIndex(Reg, 0).getAsRawInteger(); } /// Return a range covering all set indices in the interval reserved for /// \p Location in \p Set. static auto indexRangeForLocation(const VarLocSet &Set, u32_location_t Location) { uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); return Set.half_open_range(Start, End); } }; // Simple Set for storing all the VarLoc Indices at a Location bucket. using VarLocsInRange = SmallSet; // Vector of all `LocIndex`s for a given VarLoc; the same Location should not // appear in any two of these, as each VarLoc appears at most once in any // Location bucket. using LocIndices = SmallVector; class VarLocBasedLDV : public LDVImpl { private: const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; const TargetFrameLowering *TFI; TargetPassConfig *TPC; BitVector CalleeSavedRegs; LexicalScopes LS; VarLocSet::Allocator Alloc; const MachineInstr *LastNonDbgMI; enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; using FragmentInfo = DIExpression::FragmentInfo; using OptFragmentInfo = std::optional; /// A pair of debug variable and value location. struct VarLoc { // The location at which a spilled variable resides. It consists of a // register and an offset. struct SpillLoc { unsigned SpillBase; StackOffset SpillOffset; bool operator==(const SpillLoc &Other) const { return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; } bool operator!=(const SpillLoc &Other) const { return !(*this == Other); } }; // Target indices used for wasm-specific locations. struct WasmLoc { // One of TargetIndex values defined in WebAssembly.h. We deal with // local-related TargetIndex in this analysis (TI_LOCAL and // TI_LOCAL_INDIRECT). Stack operands (TI_OPERAND_STACK) will be handled // separately WebAssemblyDebugFixup pass, and we don't associate debug // info with values in global operands (TI_GLOBAL_RELOC) at the moment. int Index; int64_t Offset; bool operator==(const WasmLoc &Other) const { return Index == Other.Index && Offset == Other.Offset; } bool operator!=(const WasmLoc &Other) const { return !(*this == Other); } }; /// Identity of the variable at this location. const DebugVariable Var; /// The expression applied to this location. const DIExpression *Expr; /// DBG_VALUE to clone var/expr information from if this location /// is moved. const MachineInstr &MI; enum class MachineLocKind { InvalidKind = 0, RegisterKind, SpillLocKind, ImmediateKind, WasmLocKind }; enum class EntryValueLocKind { NonEntryValueKind = 0, EntryValueKind, EntryValueBackupKind, EntryValueCopyBackupKind } EVKind = EntryValueLocKind::NonEntryValueKind; /// The value location. Stored separately to avoid repeatedly /// extracting it from MI. union MachineLocValue { uint64_t RegNo; SpillLoc SpillLocation; uint64_t Hash; int64_t Immediate; const ConstantFP *FPImm; const ConstantInt *CImm; WasmLoc WasmLocation; MachineLocValue() : Hash(0) {} }; /// A single machine location; its Kind is either a register, spill /// location, or immediate value. /// If the VarLoc is not a NonEntryValueKind, then it will use only a /// single MachineLoc of RegisterKind. struct MachineLoc { MachineLocKind Kind; MachineLocValue Value; bool operator==(const MachineLoc &Other) const { if (Kind != Other.Kind) return false; switch (Kind) { case MachineLocKind::SpillLocKind: return Value.SpillLocation == Other.Value.SpillLocation; case MachineLocKind::WasmLocKind: return Value.WasmLocation == Other.Value.WasmLocation; case MachineLocKind::RegisterKind: case MachineLocKind::ImmediateKind: return Value.Hash == Other.Value.Hash; default: llvm_unreachable("Invalid kind"); } } bool operator<(const MachineLoc &Other) const { switch (Kind) { case MachineLocKind::SpillLocKind: return std::make_tuple( Kind, Value.SpillLocation.SpillBase, Value.SpillLocation.SpillOffset.getFixed(), Value.SpillLocation.SpillOffset.getScalable()) < std::make_tuple( Other.Kind, Other.Value.SpillLocation.SpillBase, Other.Value.SpillLocation.SpillOffset.getFixed(), Other.Value.SpillLocation.SpillOffset.getScalable()); case MachineLocKind::WasmLocKind: return std::make_tuple(Kind, Value.WasmLocation.Index, Value.WasmLocation.Offset) < std::make_tuple(Other.Kind, Other.Value.WasmLocation.Index, Other.Value.WasmLocation.Offset); case MachineLocKind::RegisterKind: case MachineLocKind::ImmediateKind: return std::tie(Kind, Value.Hash) < std::tie(Other.Kind, Other.Value.Hash); default: llvm_unreachable("Invalid kind"); } } }; /// The set of machine locations used to determine the variable's value, in /// conjunction with Expr. Initially populated with MI's debug operands, /// but may be transformed independently afterwards. SmallVector Locs; /// Used to map the index of each location in Locs back to the index of its /// original debug operand in MI. Used when multiple location operands are /// coalesced and the original MI's operands need to be accessed while /// emitting a debug value. SmallVector OrigLocMap; VarLoc(const MachineInstr &MI) : Var(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()), Expr(MI.getDebugExpression()), MI(MI) { assert(MI.isDebugValue() && "not a DBG_VALUE"); assert((MI.isDebugValueList() || MI.getNumOperands() == 4) && "malformed DBG_VALUE"); for (const MachineOperand &Op : MI.debug_operands()) { MachineLoc ML = GetLocForOp(Op); auto It = find(Locs, ML); if (It == Locs.end()) { Locs.push_back(ML); OrigLocMap.push_back(MI.getDebugOperandIndex(&Op)); } else { // ML duplicates an element in Locs; replace references to Op // with references to the duplicating element. unsigned OpIdx = Locs.size(); unsigned DuplicatingIdx = std::distance(Locs.begin(), It); Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx); } } // We create the debug entry values from the factory functions rather // than from this ctor. assert(EVKind != EntryValueLocKind::EntryValueKind && !isEntryBackupLoc()); } static MachineLoc GetLocForOp(const MachineOperand &Op) { MachineLocKind Kind; MachineLocValue Loc; if (Op.isReg()) { Kind = MachineLocKind::RegisterKind; Loc.RegNo = Op.getReg(); } else if (Op.isImm()) { Kind = MachineLocKind::ImmediateKind; Loc.Immediate = Op.getImm(); } else if (Op.isFPImm()) { Kind = MachineLocKind::ImmediateKind; Loc.FPImm = Op.getFPImm(); } else if (Op.isCImm()) { Kind = MachineLocKind::ImmediateKind; Loc.CImm = Op.getCImm(); } else if (Op.isTargetIndex()) { Kind = MachineLocKind::WasmLocKind; Loc.WasmLocation = {Op.getIndex(), Op.getOffset()}; } else llvm_unreachable("Invalid Op kind for MachineLoc."); return {Kind, Loc}; } /// Take the variable and machine-location in DBG_VALUE MI, and build an /// entry location using the given expression. static VarLoc CreateEntryLoc(const MachineInstr &MI, const DIExpression *EntryExpr, Register Reg) { VarLoc VL(MI); assert(VL.Locs.size() == 1 && VL.Locs[0].Kind == MachineLocKind::RegisterKind); VL.EVKind = EntryValueLocKind::EntryValueKind; VL.Expr = EntryExpr; VL.Locs[0].Value.RegNo = Reg; return VL; } /// Take the variable and machine-location from the DBG_VALUE (from the /// function entry), and build an entry value backup location. The backup /// location will turn into the normal location if the backup is valid at /// the time of the primary location clobbering. static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, const DIExpression *EntryExpr) { VarLoc VL(MI); assert(VL.Locs.size() == 1 && VL.Locs[0].Kind == MachineLocKind::RegisterKind); VL.EVKind = EntryValueLocKind::EntryValueBackupKind; VL.Expr = EntryExpr; return VL; } /// Take the variable and machine-location from the DBG_VALUE (from the /// function entry), and build a copy of an entry value backup location by /// setting the register location to NewReg. static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, const DIExpression *EntryExpr, Register NewReg) { VarLoc VL(MI); assert(VL.Locs.size() == 1 && VL.Locs[0].Kind == MachineLocKind::RegisterKind); VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind; VL.Expr = EntryExpr; VL.Locs[0].Value.RegNo = NewReg; return VL; } /// Copy the register location in DBG_VALUE MI, updating the register to /// be NewReg. static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML, Register NewReg) { VarLoc VL = OldVL; for (MachineLoc &ML : VL.Locs) if (ML == OldML) { ML.Kind = MachineLocKind::RegisterKind; ML.Value.RegNo = NewReg; return VL; } llvm_unreachable("Should have found OldML in new VarLoc."); } /// Take the variable described by DBG_VALUE* MI, and create a VarLoc /// locating it in the specified spill location. static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML, unsigned SpillBase, StackOffset SpillOffset) { VarLoc VL = OldVL; for (MachineLoc &ML : VL.Locs) if (ML == OldML) { ML.Kind = MachineLocKind::SpillLocKind; ML.Value.SpillLocation = {SpillBase, SpillOffset}; return VL; } llvm_unreachable("Should have found OldML in new VarLoc."); } /// Create a DBG_VALUE representing this VarLoc in the given function. /// Copies variable-specific information such as DILocalVariable and /// inlining information from the original DBG_VALUE instruction, which may /// have been several transfers ago. MachineInstr *BuildDbgValue(MachineFunction &MF) const { assert(!isEntryBackupLoc() && "Tried to produce DBG_VALUE for backup VarLoc"); const DebugLoc &DbgLoc = MI.getDebugLoc(); bool Indirect = MI.isIndirectDebugValue(); const auto &IID = MI.getDesc(); const DILocalVariable *Var = MI.getDebugVariable(); NumInserted++; const DIExpression *DIExpr = Expr; SmallVector MOs; for (unsigned I = 0, E = Locs.size(); I < E; ++I) { MachineLocKind LocKind = Locs[I].Kind; MachineLocValue Loc = Locs[I].Value; const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]); switch (LocKind) { case MachineLocKind::RegisterKind: // An entry value is a register location -- but with an updated // expression. The register location of such DBG_VALUE is always the // one from the entry DBG_VALUE, it does not matter if the entry value // was copied in to another register due to some optimizations. // Non-entry value register locations are like the source // DBG_VALUE, but with the register number from this VarLoc. MOs.push_back(MachineOperand::CreateReg( EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg() : Register(Loc.RegNo), false)); break; case MachineLocKind::SpillLocKind: { // Spills are indirect DBG_VALUEs, with a base register and offset. // Use the original DBG_VALUEs expression to build the spilt location // on top of. FIXME: spill locations created before this pass runs // are not recognized, and not handled here. unsigned Base = Loc.SpillLocation.SpillBase; auto *TRI = MF.getSubtarget().getRegisterInfo(); if (MI.isNonListDebugValue()) { auto Deref = Indirect ? DIExpression::DerefAfter : 0; DIExpr = TRI->prependOffsetExpression( DIExpr, DIExpression::ApplyOffset | Deref, Loc.SpillLocation.SpillOffset); Indirect = true; } else { SmallVector Ops; TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops); Ops.push_back(dwarf::DW_OP_deref); DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I); } MOs.push_back(MachineOperand::CreateReg(Base, false)); break; } case MachineLocKind::ImmediateKind: { MOs.push_back(Orig); break; } case MachineLocKind::WasmLocKind: { MOs.push_back(Orig); break; } case MachineLocKind::InvalidKind: llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc"); } } return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr); } /// Is the Loc field a constant or constant object? bool isConstant(MachineLocKind Kind) const { return Kind == MachineLocKind::ImmediateKind; } /// Check if the Loc field is an entry backup location. bool isEntryBackupLoc() const { return EVKind == EntryValueLocKind::EntryValueBackupKind || EVKind == EntryValueLocKind::EntryValueCopyBackupKind; } /// If this variable is described by register \p Reg holding the entry /// value, return true. bool isEntryValueBackupReg(Register Reg) const { return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg); } /// If this variable is described by register \p Reg holding a copy of the /// entry value, return true. bool isEntryValueCopyBackupReg(Register Reg) const { return EVKind == EntryValueLocKind::EntryValueCopyBackupKind && usesReg(Reg); } /// If this variable is described in whole or part by \p Reg, return true. bool usesReg(Register Reg) const { MachineLoc RegML; RegML.Kind = MachineLocKind::RegisterKind; RegML.Value.RegNo = Reg; return is_contained(Locs, RegML); } /// If this variable is described in whole or part by \p Reg, return true. unsigned getRegIdx(Register Reg) const { for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) if (Locs[Idx].Kind == MachineLocKind::RegisterKind && Register{static_cast(Locs[Idx].Value.RegNo)} == Reg) return Idx; llvm_unreachable("Could not find given Reg in Locs"); } /// If this variable is described in whole or part by 1 or more registers, /// add each of them to \p Regs and return true. bool getDescribingRegs(SmallVectorImpl &Regs) const { bool AnyRegs = false; for (const auto &Loc : Locs) if (Loc.Kind == MachineLocKind::RegisterKind) { Regs.push_back(Loc.Value.RegNo); AnyRegs = true; } return AnyRegs; } bool containsSpillLocs() const { return any_of(Locs, [](VarLoc::MachineLoc ML) { return ML.Kind == VarLoc::MachineLocKind::SpillLocKind; }); } /// If this variable is described in whole or part by \p SpillLocation, /// return true. bool usesSpillLoc(SpillLoc SpillLocation) const { MachineLoc SpillML; SpillML.Kind = MachineLocKind::SpillLocKind; SpillML.Value.SpillLocation = SpillLocation; return is_contained(Locs, SpillML); } /// If this variable is described in whole or part by \p SpillLocation, /// return the index . unsigned getSpillLocIdx(SpillLoc SpillLocation) const { for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) if (Locs[Idx].Kind == MachineLocKind::SpillLocKind && Locs[Idx].Value.SpillLocation == SpillLocation) return Idx; llvm_unreachable("Could not find given SpillLoc in Locs"); } bool containsWasmLocs() const { return any_of(Locs, [](VarLoc::MachineLoc ML) { return ML.Kind == VarLoc::MachineLocKind::WasmLocKind; }); } /// If this variable is described in whole or part by \p WasmLocation, /// return true. bool usesWasmLoc(WasmLoc WasmLocation) const { MachineLoc WasmML; WasmML.Kind = MachineLocKind::WasmLocKind; WasmML.Value.WasmLocation = WasmLocation; return is_contained(Locs, WasmML); } /// Determine whether the lexical scope of this value's debug location /// dominates MBB. bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { return LS.dominates(MI.getDebugLoc().get(), &MBB); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) // TRI and TII can be null. void dump(const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, raw_ostream &Out = dbgs()) const { Out << "VarLoc("; for (const MachineLoc &MLoc : Locs) { if (Locs.begin() != &MLoc) Out << ", "; switch (MLoc.Kind) { case MachineLocKind::RegisterKind: Out << printReg(MLoc.Value.RegNo, TRI); break; case MachineLocKind::SpillLocKind: Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI); Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + " << MLoc.Value.SpillLocation.SpillOffset.getScalable() << "x vscale" << "]"; break; case MachineLocKind::ImmediateKind: Out << MLoc.Value.Immediate; break; case MachineLocKind::WasmLocKind: { if (TII) { auto Indices = TII->getSerializableTargetIndices(); auto Found = find_if(Indices, [&](const std::pair &I) { return I.first == MLoc.Value.WasmLocation.Index; }); assert(Found != Indices.end()); Out << Found->second; if (MLoc.Value.WasmLocation.Offset > 0) Out << " + " << MLoc.Value.WasmLocation.Offset; } else { Out << "WasmLoc"; } break; } case MachineLocKind::InvalidKind: llvm_unreachable("Invalid VarLoc in dump method"); } } Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; if (Var.getInlinedAt()) Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; else Out << "(null))"; if (isEntryBackupLoc()) Out << " (backup loc)\n"; else Out << "\n"; } #endif bool operator==(const VarLoc &Other) const { return std::tie(EVKind, Var, Expr, Locs) == std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs); } /// This operator guarantees that VarLocs are sorted by Variable first. bool operator<(const VarLoc &Other) const { return std::tie(Var, EVKind, Locs, Expr) < std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr); } }; #ifndef NDEBUG using VarVec = SmallVector; #endif /// VarLocMap is used for two things: /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to /// virtually insert a VarLoc into a VarLocSet. /// 2) Given a LocIndex, look up the unique associated VarLoc. class VarLocMap { /// Map a VarLoc to an index within the vector reserved for its location /// within Loc2Vars. std::map Var2Indices; /// Map a location to a vector which holds VarLocs which live in that /// location. SmallDenseMap> Loc2Vars; public: /// Retrieve LocIndices for \p VL. LocIndices insert(const VarLoc &VL) { LocIndices &Indices = Var2Indices[VL]; // If Indices is not empty, VL is already in the map. if (!Indices.empty()) return Indices; SmallVector Locations; // LocIndices are determined by EVKind and MLs; each Register has a // unique location, while all SpillLocs use a single bucket, and any EV // VarLocs use only the Backup bucket or none at all (except the // compulsory entry at the universal location index). LocIndices will // always have an index at the universal location index as the last index. if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) { VL.getDescribingRegs(Locations); assert(all_of(Locations, [](auto RegNo) { return RegNo < LocIndex::kFirstInvalidRegLocation; }) && "Physreg out of range?"); if (VL.containsSpillLocs()) Locations.push_back(LocIndex::kSpillLocation); if (VL.containsWasmLocs()) Locations.push_back(LocIndex::kWasmLocation); } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) { LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation; Locations.push_back(Loc); } Locations.push_back(LocIndex::kUniversalLocation); for (LocIndex::u32_location_t Location : Locations) { auto &Vars = Loc2Vars[Location]; Indices.push_back( {Location, static_cast(Vars.size())}); Vars.push_back(VL); } return Indices; } LocIndices getAllIndices(const VarLoc &VL) const { auto IndIt = Var2Indices.find(VL); assert(IndIt != Var2Indices.end() && "VarLoc not tracked"); return IndIt->second; } /// Retrieve the unique VarLoc associated with \p ID. const VarLoc &operator[](LocIndex ID) const { auto LocIt = Loc2Vars.find(ID.Location); assert(LocIt != Loc2Vars.end() && "Location not tracked"); return LocIt->second[ID.Index]; } }; using VarLocInMBB = SmallDenseMap>; struct TransferDebugPair { MachineInstr *TransferInst; ///< Instruction where this transfer occurs. LocIndex LocationID; ///< Location number for the transfer dest. }; using TransferMap = SmallVector; // Types for recording Entry Var Locations emitted by a single MachineInstr, // as well as recording MachineInstr which last defined a register. using InstToEntryLocMap = std::multimap; using RegDefToInstMap = DenseMap; // Types for recording sets of variable fragments that overlap. For a given // local variable, we record all other fragments of that variable that could // overlap it, to reduce search time. using FragmentOfVar = std::pair; using OverlapMap = DenseMap>; // Helper while building OverlapMap, a map of all fragments seen for a given // DILocalVariable. using VarToFragments = DenseMap>; /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added /// to \p Collected once, in order of insertion into \p VarLocIDs. static void collectAllVarLocs(SmallVectorImpl &Collected, const VarLocSet &CollectFrom, const VarLocMap &VarLocIDs); /// Get the registers which are used by VarLocs of kind RegisterKind tracked /// by \p CollectFrom. void getUsedRegs(const VarLocSet &CollectFrom, SmallVectorImpl &UsedRegs) const; /// This holds the working set of currently open ranges. For fast /// access, this is done both as a set of VarLocIDs, and a map of /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all /// previous open ranges for the same variable. In addition, we keep /// two different maps (Vars/EntryValuesBackupVars), so erase/insert /// methods act differently depending on whether a VarLoc is primary /// location or backup one. In the case the VarLoc is backup location /// we will erase/insert from the EntryValuesBackupVars map, otherwise /// we perform the operation on the Vars. class OpenRangesSet { VarLocSet::Allocator &Alloc; VarLocSet VarLocs; // Map the DebugVariable to recent primary location ID. SmallDenseMap Vars; // Map the DebugVariable to recent backup location ID. SmallDenseMap EntryValuesBackupVars; OverlapMap &OverlappingFragments; public: OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {} const VarLocSet &getVarLocs() const { return VarLocs; } // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected. // This method is needed to get every VarLoc once, as each VarLoc may have // multiple indices in a VarLocMap (corresponding to each applicable // location), but all VarLocs appear exactly once at the universal location // index. void getUniqueVarLocs(SmallVectorImpl &Collected, const VarLocMap &VarLocIDs) const { collectAllVarLocs(Collected, VarLocs, VarLocIDs); } /// Terminate all open ranges for VL.Var by removing it from the set. void erase(const VarLoc &VL); /// Terminate all open ranges listed as indices in \c KillSet with /// \c Location by removing them from the set. void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs, LocIndex::u32_location_t Location); /// Insert a new range into the set. void insert(LocIndices VarLocIDs, const VarLoc &VL); /// Insert a set of ranges. void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map); std::optional getEntryValueBackup(DebugVariable Var); /// Empty the set. void clear() { VarLocs.clear(); Vars.clear(); EntryValuesBackupVars.clear(); } /// Return whether the set is empty or not. bool empty() const { assert(Vars.empty() == EntryValuesBackupVars.empty() && Vars.empty() == VarLocs.empty() && "open ranges are inconsistent"); return VarLocs.empty(); } /// Get an empty range of VarLoc IDs. auto getEmptyVarLocRange() const { return iterator_range(getVarLocs().end(), getVarLocs().end()); } /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg. auto getRegisterVarLocs(Register Reg) const { return LocIndex::indexRangeForLocation(getVarLocs(), Reg); } /// Get all set IDs for VarLocs with MLs of kind SpillLocKind. auto getSpillVarLocs() const { return LocIndex::indexRangeForLocation(getVarLocs(), LocIndex::kSpillLocation); } /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or /// EntryValueCopyBackupKind. auto getEntryValueBackupVarLocs() const { return LocIndex::indexRangeForLocation( getVarLocs(), LocIndex::kEntryValueBackupLocation); } /// Get all set IDs for VarLocs with MLs of kind WasmLocKind. auto getWasmVarLocs() const { return LocIndex::indexRangeForLocation(getVarLocs(), LocIndex::kWasmLocation); } }; /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind /// RegisterKind which are located in any reg in \p Regs. The IDs for each /// VarLoc correspond to entries in the universal location bucket, which every /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected. static void collectIDsForRegs(VarLocsInRange &Collected, const DefinedRegsSet &Regs, const VarLocSet &CollectFrom, const VarLocMap &VarLocIDs); VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { std::unique_ptr &VLS = Locs[MBB]; if (!VLS) VLS = std::make_unique(Alloc); return *VLS; } const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, const VarLocInMBB &Locs) const { auto It = Locs.find(MBB); assert(It != Locs.end() && "MBB not in map"); return *It->second; } /// Tests whether this instruction is a spill to a stack location. bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); /// Decide if @MI is a spill instruction and return true if it is. We use 2 /// criteria to make this decision: /// - Is this instruction a store to a spill slot? /// - Is there a register operand that is both used and killed? /// TODO: Store optimization can fold spills into other stores (including /// other spills). We do not handle this yet (more than one memory operand). bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, Register &Reg); /// Returns true if the given machine instruction is a debug value which we /// can emit entry values for. /// /// Currently, we generate debug entry values only for parameters that are /// unmodified throughout the function and located in a register. bool isEntryValueCandidate(const MachineInstr &MI, const DefinedRegsSet &Regs) const; /// If a given instruction is identified as a spill, return the spill location /// and set \p Reg to the spilled register. std::optional isRestoreInstruction(const MachineInstr &MI, MachineFunction *MF, Register &Reg); /// Given a spill instruction, extract the register and offset used to /// address the spill location in a target independent way. VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, const VarLoc::MachineLoc &OldLoc, Register NewReg = Register()); void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, InstToEntryLocMap &EntryValTransfers, RegDefToInstMap &RegSetInstrs); void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); void cleanupEntryValueTransfers(const MachineInstr *MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers); void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers, RegDefToInstMap &RegSetInstrs); void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, InstToEntryLocMap &EntryValTransfers, VarLocsInRange &KillSet); void recordEntryValue(const MachineInstr &MI, const DefinedRegsSet &DefinedRegs, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, InstToEntryLocMap &EntryValTransfers, RegDefToInstMap &RegSetInstrs); void transferWasmDef(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); void process(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers, InstToEntryLocMap &EntryValTransfers, RegDefToInstMap &RegSetInstrs); void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, OverlapMap &OLapMap); bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, const VarLocMap &VarLocIDs, SmallPtrSet &Visited, SmallPtrSetImpl &ArtificialBlocks); /// Create DBG_VALUE insts for inlocs that have been propagated but /// had their instruction creation deferred. void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, TargetPassConfig *TPC, unsigned InputBBLimit, unsigned InputDbgValLimit) override; public: /// Default construct and initialize the pass. VarLocBasedLDV(); ~VarLocBasedLDV(); /// Print to ostream with a message. void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, const VarLocMap &VarLocIDs, const char *msg, raw_ostream &Out) const; }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Implementation //===----------------------------------------------------------------------===// VarLocBasedLDV::VarLocBasedLDV() = default; VarLocBasedLDV::~VarLocBasedLDV() = default; /// Erase a variable from the set of open ranges, and additionally erase any /// fragments that may overlap it. If the VarLoc is a backup location, erase /// the variable from the EntryValuesBackupVars set, indicating we should stop /// tracking its backup entry location. Otherwise, if the VarLoc is primary /// location, erase the variable from the Vars set. void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { // Erasure helper. auto DoErase = [&VL, this](DebugVariable VarToErase) { auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; auto It = EraseFrom->find(VarToErase); if (It != EraseFrom->end()) { LocIndices IDs = It->second; for (LocIndex ID : IDs) VarLocs.reset(ID.getAsRawInteger()); EraseFrom->erase(It); } }; DebugVariable Var = VL.Var; // Erase the variable/fragment that ends here. DoErase(Var); // Extract the fragment. Interpret an empty fragment as one that covers all // possible bits. FragmentInfo ThisFragment = Var.getFragmentOrDefault(); // There may be fragments that overlap the designated fragment. Look them up // in the pre-computed overlap map, and erase them too. auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); if (MapIt != OverlappingFragments.end()) { for (auto Fragment : MapIt->second) { VarLocBasedLDV::OptFragmentInfo FragmentHolder; if (!DebugVariable::isDefaultFragment(Fragment)) FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); } } } void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs, LocIndex::u32_location_t Location) { VarLocSet RemoveSet(Alloc); for (LocIndex::u32_index_t ID : KillSet) { const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)]; auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; EraseFrom->erase(VL.Var); LocIndices VLI = VarLocIDs.getAllIndices(VL); for (LocIndex ID : VLI) RemoveSet.set(ID.getAsRawInteger()); } VarLocs.intersectWithComplement(RemoveSet); } void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) { VarLocsInRange UniqueVarLocIDs; DefinedRegsSet Regs; Regs.insert(LocIndex::kUniversalLocation); collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map); for (uint64_t ID : UniqueVarLocIDs) { LocIndex Idx = LocIndex::fromRawInteger(ID); const VarLoc &VarL = Map[Idx]; const LocIndices Indices = Map.getAllIndices(VarL); insert(Indices, VarL); } } void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs, const VarLoc &VL) { auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; for (LocIndex ID : VarLocIDs) VarLocs.set(ID.getAsRawInteger()); InsertInto->insert({VL.Var, VarLocIDs}); } /// Return the Loc ID of an entry value backup location, if it exists for the /// variable. std::optional VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { auto It = EntryValuesBackupVars.find(Var); if (It != EntryValuesBackupVars.end()) return It->second; return std::nullopt; } void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected, const DefinedRegsSet &Regs, const VarLocSet &CollectFrom, const VarLocMap &VarLocIDs) { assert(!Regs.empty() && "Nothing to collect"); SmallVector SortedRegs; append_range(SortedRegs, Regs); array_pod_sort(SortedRegs.begin(), SortedRegs.end()); auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); auto End = CollectFrom.end(); for (Register Reg : SortedRegs) { // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which // live in Reg. uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); It.advanceToLowerBound(FirstIndexForReg); // Iterate through that half-open interval and collect all the set IDs. for (; It != End && *It < FirstInvalidIndex; ++It) { LocIndex ItIdx = LocIndex::fromRawInteger(*It); const VarLoc &VL = VarLocIDs[ItIdx]; LocIndices LI = VarLocIDs.getAllIndices(VL); // For now, the back index is always the universal location index. assert(LI.back().Location == LocIndex::kUniversalLocation && "Unexpected order of LocIndices for VarLoc; was it inserted into " "the VarLocMap correctly?"); Collected.insert(LI.back().Index); } if (It == End) return; } } void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, SmallVectorImpl &UsedRegs) const { // All register-based VarLocs are assigned indices greater than or equal to // FirstRegIndex. uint64_t FirstRegIndex = LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation); uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); for (auto It = CollectFrom.find(FirstRegIndex), End = CollectFrom.find(FirstInvalidIndex); It != End;) { // We found a VarLoc ID for a VarLoc that lives in a register. Figure out // which register and add it to UsedRegs. uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && "Duplicate used reg"); UsedRegs.push_back(FoundReg); // Skip to the next /set/ register. Note that this finds a lower bound, so // even if there aren't any VarLocs living in `FoundReg+1`, we're still // guaranteed to move on to the next register (or to end()). uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); It.advanceToLowerBound(NextRegIndex); } } //===----------------------------------------------------------------------===// // Debug Range Extension Implementation //===----------------------------------------------------------------------===// #ifndef NDEBUG void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, const VarLocMap &VarLocIDs, const char *msg, raw_ostream &Out) const { Out << '\n' << msg << '\n'; for (const MachineBasicBlock &BB : MF) { if (!V.count(&BB)) continue; const VarLocSet &L = getVarLocsInMBB(&BB, V); if (L.empty()) continue; SmallVector VarLocs; collectAllVarLocs(VarLocs, L, VarLocIDs); Out << "MBB: " << BB.getNumber() << ":\n"; for (const VarLoc &VL : VarLocs) { Out << " Var: " << VL.Var.getVariable()->getName(); Out << " MI: "; VL.dump(TRI, TII, Out); } } Out << "\n"; } #endif VarLocBasedLDV::VarLoc::SpillLoc VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { assert(MI.hasOneMemOperand() && "Spill instruction does not have exactly one memory operand?"); auto MMOI = MI.memoperands_begin(); const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); assert(PVal->kind() == PseudoSourceValue::FixedStack && "Inconsistent memory operand in spill instruction"); int FI = cast(PVal)->getFrameIndex(); const MachineBasicBlock *MBB = MI.getParent(); Register Reg; StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); return {Reg, Offset}; } /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the /// Transfer, which uses the to-be-deleted \p EntryVL. void VarLocBasedLDV::cleanupEntryValueTransfers( const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) { if (EntryValTransfers.empty() || TRInst == nullptr) return; auto TransRange = EntryValTransfers.equal_range(TRInst); for (auto &TDPair : llvm::make_range(TransRange.first, TransRange.second)) { const VarLoc &EmittedEV = VarLocIDs[TDPair.second]; if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) == std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo, EmittedEV.Expr)) { OpenRanges.erase(EmittedEV); EntryValTransfers.erase(TRInst); break; } } } /// Try to salvage the debug entry value if we encounter a new debug value /// describing the same parameter, otherwise stop tracking the value. Return /// true if we should stop tracking the entry value and do the cleanup of /// emitted Entry Value Transfers, otherwise return false. void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers, RegDefToInstMap &RegSetInstrs) { // Skip the DBG_VALUE which is the debug entry value itself. if (&MI == &EntryVL.MI) return; // If the parameter's location is not register location, we can not track // the entry value any more. It doesn't have the TransferInst which defines // register, so no Entry Value Transfers have been emitted already. if (!MI.getDebugOperand(0).isReg()) return; // Try to get non-debug instruction responsible for the DBG_VALUE. const MachineInstr *TransferInst = nullptr; Register Reg = MI.getDebugOperand(0).getReg(); if (Reg.isValid() && RegSetInstrs.contains(Reg)) TransferInst = RegSetInstrs.find(Reg)->second; // Case of the parameter's DBG_VALUE at the start of entry MBB. if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock()) return; // If the debug expression from the DBG_VALUE is not empty, we can assume the // parameter's value has changed indicating that we should stop tracking its // entry value as well. if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) { // If the DBG_VALUE comes from a copy instruction that copies the entry // value, it means the parameter's value has not changed and we should be // able to use its entry value. // TODO: Try to keep tracking of an entry value if we encounter a propagated // DBG_VALUE describing the copy of the entry value. (Propagated entry value // does not indicate the parameter modification.) auto DestSrc = TII->isCopyLikeInstr(*TransferInst); if (DestSrc) { const MachineOperand *SrcRegOp, *DestRegOp; SrcRegOp = DestSrc->Source; DestRegOp = DestSrc->Destination; if (Reg == DestRegOp->getReg()) { for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; if (VL.isEntryValueCopyBackupReg(Reg) && // Entry Values should not be variadic. VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) return; } } } } LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; MI.print(dbgs(), /*IsStandalone*/ false, /*SkipOpers*/ false, /*SkipDebugLoc*/ false, /*AddNewLine*/ true, TII)); cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers); OpenRanges.erase(EntryVL); } /// End all previous ranges related to @MI and start a new range from @MI /// if it is a DBG_VALUE instr. void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, InstToEntryLocMap &EntryValTransfers, RegDefToInstMap &RegSetInstrs) { if (!MI.isDebugValue()) return; const DILocalVariable *Var = MI.getDebugVariable(); const DIExpression *Expr = MI.getDebugExpression(); const DILocation *DebugLoc = MI.getDebugLoc(); const DILocation *InlinedAt = DebugLoc->getInlinedAt(); assert(Var->isValidLocationForIntrinsic(DebugLoc) && "Expected inlined-at fields to agree"); DebugVariable V(Var, Expr, InlinedAt); // Check if this DBG_VALUE indicates a parameter's value changing. // If that is the case, we should stop tracking its entry value. auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); if (Var->isParameter() && EntryValBackupID) { const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()]; removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers, RegSetInstrs); } if (all_of(MI.debug_operands(), [](const MachineOperand &MO) { return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() || MO.isCImm() || MO.isTargetIndex(); })) { // Use normal VarLoc constructor for registers and immediates. VarLoc VL(MI); // End all previous ranges of VL.Var. OpenRanges.erase(VL); LocIndices IDs = VarLocIDs.insert(VL); // Add the VarLoc to OpenRanges from this DBG_VALUE. OpenRanges.insert(IDs, VL); } else if (MI.memoperands().size() > 0) { llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); } else { // This must be an undefined location. If it has an open range, erase it. assert(MI.isUndefDebugValue() && "Unexpected non-undef DBG_VALUE encountered"); VarLoc VL(MI); OpenRanges.erase(VL); } } // This should be removed later, doesn't fit the new design. void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl &Collected, const VarLocSet &CollectFrom, const VarLocMap &VarLocIDs) { // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live // in Reg. uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation); uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1); // Iterate through that half-open interval and collect all the set IDs. for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end(); It != End && *It < FirstInvalidIndex; ++It) { LocIndex RegIdx = LocIndex::fromRawInteger(*It); Collected.push_back(VarLocIDs[RegIdx]); } } /// Turn the entry value backup locations into primary locations. void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, InstToEntryLocMap &EntryValTransfers, VarLocsInRange &KillSet) { // Do not insert entry value locations after a terminator. if (MI.isTerminator()) return; for (uint32_t ID : KillSet) { // The KillSet IDs are indices for the universal location bucket. LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID); const VarLoc &VL = VarLocIDs[Idx]; if (!VL.Var.getVariable()->isParameter()) continue; auto DebugVar = VL.Var; std::optional EntryValBackupIDs = OpenRanges.getEntryValueBackup(DebugVar); // If the parameter has the entry value backup, it means we should // be able to use its entry value. if (!EntryValBackupIDs) continue; const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()]; VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, EntryVL.Expr, EntryVL.Locs[0].Value.RegNo); LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc); assert(EntryValueIDs.size() == 1 && "EntryValue loc should not be variadic"); EntryValTransfers.insert({&MI, EntryValueIDs.back()}); OpenRanges.insert(EntryValueIDs, EntryLoc); } } /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc /// with \p OldVarID should be deleted form \p OpenRanges and replaced with /// new VarLoc. If \p NewReg is different than default zero value then the /// new location will be register location created by the copy like instruction, /// otherwise it is variable's location on the stack. void VarLocBasedLDV::insertTransferDebugPair( MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, const VarLoc::MachineLoc &OldLoc, Register NewReg) { const VarLoc &OldVarLoc = VarLocIDs[OldVarID]; auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { LocIndices LocIds = VarLocIDs.insert(VL); // Close this variable's previous location range. OpenRanges.erase(VL); // Record the new location as an open range, and a postponed transfer // inserting a DBG_VALUE for this location. OpenRanges.insert(LocIds, VL); assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); TransferDebugPair MIP = {&MI, LocIds.back()}; Transfers.push_back(MIP); }; // End all previous ranges of VL.Var. OpenRanges.erase(VarLocIDs[OldVarID]); switch (Kind) { case TransferKind::TransferCopy: { assert(NewReg && "No register supplied when handling a copy of a debug value"); // Create a DBG_VALUE instruction to describe the Var in its new // register location. VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); ProcessVarLoc(VL); LLVM_DEBUG({ dbgs() << "Creating VarLoc for register copy:"; VL.dump(TRI, TII); }); return; } case TransferKind::TransferSpill: { // Create a DBG_VALUE instruction to describe the Var in its spilled // location. VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); VarLoc VL = VarLoc::CreateSpillLoc( OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset); ProcessVarLoc(VL); LLVM_DEBUG({ dbgs() << "Creating VarLoc for spill:"; VL.dump(TRI, TII); }); return; } case TransferKind::TransferRestore: { assert(NewReg && "No register supplied when handling a restore of a debug value"); // DebugInstr refers to the pre-spill location, therefore we can reuse // its expression. VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); ProcessVarLoc(VL); LLVM_DEBUG({ dbgs() << "Creating VarLoc for restore:"; VL.dump(TRI, TII); }); return; } } llvm_unreachable("Invalid transfer kind"); } /// A definition of a register may mark the end of a range. void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, InstToEntryLocMap &EntryValTransfers, RegDefToInstMap &RegSetInstrs) { // Meta Instructions do not affect the debug liveness of any register they // define. if (MI.isMetaInstruction()) return; MachineFunction *MF = MI.getMF(); const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); Register SP = TLI->getStackPointerRegisterToSaveRestore(); // Find the regs killed by MI, and find regmasks of preserved regs. DefinedRegsSet DeadRegs; SmallVector RegMasks; for (const MachineOperand &MO : MI.operands()) { // Determine whether the operand is a register def. if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() && !(MI.isCall() && MO.getReg() == SP)) { // Remove ranges of all aliased registers. for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) // FIXME: Can we break out of this loop early if no insertion occurs? DeadRegs.insert(*RAI); RegSetInstrs.erase(MO.getReg()); RegSetInstrs.insert({MO.getReg(), &MI}); } else if (MO.isRegMask()) { RegMasks.push_back(MO.getRegMask()); } } // Erase VarLocs which reside in one of the dead registers. For performance // reasons, it's critical to not iterate over the full set of open VarLocs. // Iterate over the set of dying/used regs instead. if (!RegMasks.empty()) { SmallVector UsedRegs; getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); for (Register Reg : UsedRegs) { // Remove ranges of all clobbered registers. Register masks don't usually // list SP as preserved. Assume that call instructions never clobber SP, // because some backends (e.g., AArch64) never list SP in the regmask. // While the debug info may be off for an instruction or two around // callee-cleanup calls, transferring the DEBUG_VALUE across the call is // still a better user experience. if (Reg == SP) continue; bool AnyRegMaskKillsReg = any_of(RegMasks, [Reg](const uint32_t *RegMask) { return MachineOperand::clobbersPhysReg(RegMask, Reg); }); if (AnyRegMaskKillsReg) DeadRegs.insert(Reg); if (AnyRegMaskKillsReg) { RegSetInstrs.erase(Reg); RegSetInstrs.insert({Reg, &MI}); } } } if (DeadRegs.empty()) return; VarLocsInRange KillSet; collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs); OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation); if (TPC) { auto &TM = TPC->getTM(); if (TM.Options.ShouldEmitDebugEntryValues()) emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet); } } void VarLocBasedLDV::transferWasmDef(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs) { // If this is not a Wasm local.set or local.tee, which sets local values, // return. int Index; int64_t Offset; if (!TII->isExplicitTargetIndexDef(MI, Index, Offset)) return; // Find the target indices killed by MI, and delete those variable locations // from the open range. VarLocsInRange KillSet; VarLoc::WasmLoc Loc{Index, Offset}; for (uint64_t ID : OpenRanges.getWasmVarLocs()) { LocIndex Idx = LocIndex::fromRawInteger(ID); const VarLoc &VL = VarLocIDs[Idx]; assert(VL.containsWasmLocs() && "Broken VarLocSet?"); if (VL.usesWasmLoc(Loc)) KillSet.insert(ID); } OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kWasmLocation); } bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, MachineFunction *MF) { // TODO: Handle multiple stores folded into one. if (!MI.hasOneMemOperand()) return false; if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) return false; // This is not a spill instruction, since no valid size was // returned from either function. return true; } bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, MachineFunction *MF, Register &Reg) { if (!isSpillInstruction(MI, MF)) return false; auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { if (!MO.isReg() || !MO.isUse()) { Reg = 0; return false; } Reg = MO.getReg(); return MO.isKill(); }; for (const MachineOperand &MO : MI.operands()) { // In a spill instruction generated by the InlineSpiller the spilled // register has its kill flag set. if (isKilledReg(MO, Reg)) return true; if (Reg != 0) { // Check whether next instruction kills the spilled register. // FIXME: Current solution does not cover search for killed register in // bundles and instructions further down the chain. auto NextI = std::next(MI.getIterator()); // Skip next instruction that points to basic block end iterator. if (MI.getParent()->end() == NextI) continue; Register RegNext; for (const MachineOperand &MONext : NextI->operands()) { // Return true if we came across the register from the // previous spill instruction that is killed in NextI. if (isKilledReg(MONext, RegNext) && RegNext == Reg) return true; } } } // Return false if we didn't find spilled register. return false; } std::optional VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, MachineFunction *MF, Register &Reg) { if (!MI.hasOneMemOperand()) return std::nullopt; // FIXME: Handle folded restore instructions with more than one memory // operand. if (MI.getRestoreSize(TII)) { Reg = MI.getOperand(0).getReg(); return extractSpillBaseRegAndOffset(MI); } return std::nullopt; } /// A spilled register may indicate that we have to end the current range of /// a variable and create a new one for the spill location. /// A restored register may indicate the reverse situation. /// We don't want to insert any instructions in process(), so we just create /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. /// It will be inserted into the BB when we're done iterating over the /// instructions. void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { MachineFunction *MF = MI.getMF(); TransferKind TKind; Register Reg; std::optional Loc; LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); // First, if there are any DBG_VALUEs pointing at a spill slot that is // written to, then close the variable location. The value in memory // will have changed. VarLocsInRange KillSet; if (isSpillInstruction(MI, MF)) { Loc = extractSpillBaseRegAndOffset(MI); for (uint64_t ID : OpenRanges.getSpillVarLocs()) { LocIndex Idx = LocIndex::fromRawInteger(ID); const VarLoc &VL = VarLocIDs[Idx]; assert(VL.containsSpillLocs() && "Broken VarLocSet?"); if (VL.usesSpillLoc(*Loc)) { // This location is overwritten by the current instruction -- terminate // the open range, and insert an explicit DBG_VALUE $noreg. // // Doing this at a later stage would require re-interpreting all // DBG_VALUes and DIExpressions to identify whether they point at // memory, and then analysing all memory writes to see if they // overwrite that memory, which is expensive. // // At this stage, we already know which DBG_VALUEs are for spills and // where they are located; it's best to fix handle overwrites now. KillSet.insert(ID); unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc); VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx]; VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0); LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL); Transfers.push_back({&MI, UndefLocIDs.back()}); } } OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation); } // Try to recognise spill and restore instructions that may create a new // variable location. if (isLocationSpill(MI, MF, Reg)) { TKind = TransferKind::TransferSpill; LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) << "\n"); } else { if (!(Loc = isRestoreInstruction(MI, MF, Reg))) return; TKind = TransferKind::TransferRestore; LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) << "\n"); } // Check if the register or spill location is the location of a debug value. auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); if (TKind == TransferKind::TransferSpill) TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); else if (TKind == TransferKind::TransferRestore) TransferCandidates = OpenRanges.getSpillVarLocs(); for (uint64_t ID : TransferCandidates) { LocIndex Idx = LocIndex::fromRawInteger(ID); const VarLoc &VL = VarLocIDs[Idx]; unsigned LocIdx; if (TKind == TransferKind::TransferSpill) { assert(VL.usesReg(Reg) && "Broken VarLocSet?"); LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' << VL.Var.getVariable()->getName() << ")\n"); LocIdx = VL.getRegIdx(Reg); } else { assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() && "Broken VarLocSet?"); if (!VL.usesSpillLoc(*Loc)) // The spill location is not the location of a debug value. continue; LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' << VL.Var.getVariable()->getName() << ")\n"); LocIdx = VL.getSpillLocIdx(*Loc); } VarLoc::MachineLoc MLoc = VL.Locs[LocIdx]; insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, MLoc, Reg); // FIXME: A comment should explain why it's correct to return early here, // if that is in fact correct. return; } } /// If \p MI is a register copy instruction, that copies a previously tracked /// value from one register to another register that is callee saved, we /// create new DBG_VALUE instruction described with copy destination register. void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { auto DestSrc = TII->isCopyLikeInstr(MI); if (!DestSrc) return; const MachineOperand *DestRegOp = DestSrc->Destination; const MachineOperand *SrcRegOp = DestSrc->Source; if (!DestRegOp->isDef()) return; auto isCalleeSavedReg = [&](Register Reg) { for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) if (CalleeSavedRegs.test(*RAI)) return true; return false; }; Register SrcReg = SrcRegOp->getReg(); Register DestReg = DestRegOp->getReg(); // We want to recognize instructions where destination register is callee // saved register. If register that could be clobbered by the call is // included, there would be a great chance that it is going to be clobbered // soon. It is more likely that previous register location, which is callee // saved, is going to stay unclobbered longer, even if it is killed. if (!isCalleeSavedReg(DestReg)) return; // Remember an entry value movement. If we encounter a new debug value of // a parameter describing only a moving of the value around, rather then // modifying it, we are still able to use the entry value if needed. if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { LocIndex Idx = LocIndex::fromRawInteger(ID); const VarLoc &VL = VarLocIDs[Idx]; if (VL.isEntryValueBackupReg(SrcReg)) { LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); VarLoc EntryValLocCopyBackup = VarLoc::CreateEntryCopyBackupLoc(VL.MI, VL.Expr, DestReg); // Stop tracking the original entry value. OpenRanges.erase(VL); // Start tracking the entry value copy. LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup); OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup); break; } } } if (!SrcRegOp->isKill()) return; for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { LocIndex Idx = LocIndex::fromRawInteger(ID); assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?"); VarLoc::MachineLocValue Loc; Loc.RegNo = SrcReg; VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc}; insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TransferKind::TransferCopy, MLoc, DestReg); // FIXME: A comment should explain why it's correct to return early here, // if that is in fact correct. return; } } /// Terminate all open ranges at the end of the current basic block. bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, OpenRangesSet &OpenRanges, VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs) { bool Changed = false; LLVM_DEBUG({ VarVec VarLocs; OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs); for (VarLoc &VL : VarLocs) { // Copy OpenRanges to OutLocs, if not already present. dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; VL.dump(TRI, TII); } }); VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); Changed = VLS != OpenRanges.getVarLocs(); // New OutLocs set may be different due to spill, restore or register // copy instruction processing. if (Changed) VLS = OpenRanges.getVarLocs(); OpenRanges.clear(); return Changed; } /// Accumulate a mapping between each DILocalVariable fragment and other /// fragments of that DILocalVariable which overlap. This reduces work during /// the data-flow stage from "Find any overlapping fragments" to "Check if the /// known-to-overlap fragments are present". /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for /// fragment usage. /// \param SeenFragments Map from DILocalVariable to all fragments of that /// Variable which are known to exist. /// \param OverlappingFragments The overlap map being constructed, from one /// Var/Fragment pair to a vector of fragments known to overlap. void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, OverlapMap &OverlappingFragments) { DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); // If this is the first sighting of this variable, then we are guaranteed // there are currently no overlapping fragments either. Initialize the set // of seen fragments, record no overlaps for the current one, and return. auto SeenIt = SeenFragments.find(MIVar.getVariable()); if (SeenIt == SeenFragments.end()) { SmallSet OneFragment; OneFragment.insert(ThisFragment); SeenFragments.insert({MIVar.getVariable(), OneFragment}); OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); return; } // If this particular Variable/Fragment pair already exists in the overlap // map, it has already been accounted for. auto IsInOLapMap = OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); if (!IsInOLapMap.second) return; auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; auto &AllSeenFragments = SeenIt->second; // Otherwise, examine all other seen fragments for this variable, with "this" // fragment being a previously unseen fragment. Record any pair of // overlapping fragments. for (const auto &ASeenFragment : AllSeenFragments) { // Does this previously seen fragment overlap? if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { // Yes: Mark the current fragment as being overlapped. ThisFragmentsOverlaps.push_back(ASeenFragment); // Mark the previously seen fragment as being overlapped by the current // one. auto ASeenFragmentsOverlaps = OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && "Previously seen var fragment has no vector of overlaps"); ASeenFragmentsOverlaps->second.push_back(ThisFragment); } } AllSeenFragments.insert(ThisFragment); } /// This routine creates OpenRanges. void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers, InstToEntryLocMap &EntryValTransfers, RegDefToInstMap &RegSetInstrs) { if (!MI.isDebugInstr()) LastNonDbgMI = &MI; transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers, RegSetInstrs); transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers, RegSetInstrs); transferWasmDef(MI, OpenRanges, VarLocIDs); transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); } /// This routine joins the analysis results of all incoming edges in @MBB by /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same /// source variable in all the predecessors of @MBB reside in the same location. bool VarLocBasedLDV::join( MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, const VarLocMap &VarLocIDs, SmallPtrSet &Visited, SmallPtrSetImpl &ArtificialBlocks) { LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); VarLocSet InLocsT(Alloc); // Temporary incoming locations. // For all predecessors of this MBB, find the set of VarLocs that // can be joined. int NumVisited = 0; for (auto *p : MBB.predecessors()) { // Ignore backedges if we have not visited the predecessor yet. As the // predecessor hasn't yet had locations propagated into it, most locations // will not yet be valid, so treat them as all being uninitialized and // potentially valid. If a location guessed to be correct here is // invalidated later, we will remove it when we revisit this block. if (!Visited.count(p)) { LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() << "\n"); continue; } auto OL = OutLocs.find(p); // Join is null in case of empty OutLocs from any of the pred. if (OL == OutLocs.end()) return false; // Just copy over the Out locs to incoming locs for the first visited // predecessor, and for all other predecessors join the Out locs. VarLocSet &OutLocVLS = *OL->second; if (!NumVisited) InLocsT = OutLocVLS; else InLocsT &= OutLocVLS; LLVM_DEBUG({ if (!InLocsT.empty()) { VarVec VarLocs; collectAllVarLocs(VarLocs, InLocsT, VarLocIDs); for (const VarLoc &VL : VarLocs) dbgs() << " gathered candidate incoming var: " << VL.Var.getVariable()->getName() << "\n"; } }); NumVisited++; } // Filter out DBG_VALUES that are out of scope. VarLocSet KillSet(Alloc); bool IsArtificial = ArtificialBlocks.count(&MBB); if (!IsArtificial) { for (uint64_t ID : InLocsT) { LocIndex Idx = LocIndex::fromRawInteger(ID); if (!VarLocIDs[Idx].dominates(LS, MBB)) { KillSet.set(ID); LLVM_DEBUG({ auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; }); } } } InLocsT.intersectWithComplement(KillSet); // As we are processing blocks in reverse post-order we // should have processed at least one predecessor, unless it // is the entry block which has no predecessor. assert((NumVisited || MBB.pred_empty()) && "Should have processed at least one predecessor"); VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); bool Changed = false; if (ILS != InLocsT) { ILS = InLocsT; Changed = true; } return Changed; } void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs) { // PendingInLocs records all locations propagated into blocks, which have // not had DBG_VALUE insts created. Go through and create those insts now. for (auto &Iter : PendingInLocs) { // Map is keyed on a constant pointer, unwrap it so we can insert insts. auto &MBB = const_cast(*Iter.first); VarLocSet &Pending = *Iter.second; SmallVector VarLocs; collectAllVarLocs(VarLocs, Pending, VarLocIDs); for (VarLoc DiffIt : VarLocs) { // The ID location is live-in to MBB -- work out what kind of machine // location it is and create a DBG_VALUE. if (DiffIt.isEntryBackupLoc()) continue; MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); MBB.insert(MBB.instr_begin(), MI); (void)MI; LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); } } } bool VarLocBasedLDV::isEntryValueCandidate( const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { assert(MI.isDebugValue() && "This must be DBG_VALUE."); // TODO: Add support for local variables that are expressed in terms of // parameters entry values. // TODO: Add support for modified arguments that can be expressed // by using its entry value. auto *DIVar = MI.getDebugVariable(); if (!DIVar->isParameter()) return false; // Do not consider parameters that belong to an inlined function. if (MI.getDebugLoc()->getInlinedAt()) return false; // Only consider parameters that are described using registers. Parameters // that are passed on the stack are not yet supported, so ignore debug // values that are described by the frame or stack pointer. if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) return false; // If a parameter's value has been propagated from the caller, then the // parameter's DBG_VALUE may be described using a register defined by some // instruction in the entry block, in which case we shouldn't create an // entry value. if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) return false; // TODO: Add support for parameters that have a pre-existing debug expressions // (e.g. fragments). // A simple deref expression is equivalent to an indirect debug value. const DIExpression *Expr = MI.getDebugExpression(); if (Expr->getNumElements() > 0 && !Expr->isDeref()) return false; return true; } /// Collect all register defines (including aliases) for the given instruction. static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, const TargetRegisterInfo *TRI) { for (const MachineOperand &MO : MI.all_defs()) { if (MO.getReg() && MO.getReg().isPhysical()) { Regs.insert(MO.getReg()); for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) Regs.insert(*AI); } } } /// This routine records the entry values of function parameters. The values /// could be used as backup values. If we loose the track of some unmodified /// parameters, the backup values will be used as a primary locations. void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, const DefinedRegsSet &DefinedRegs, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs) { if (TPC) { auto &TM = TPC->getTM(); if (!TM.Options.ShouldEmitDebugEntryValues()) return; } DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); if (!isEntryValueCandidate(MI, DefinedRegs) || OpenRanges.getEntryValueBackup(V)) return; LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); // Create the entry value and use it as a backup location until it is // valid. It is valid until a parameter is not changed. DIExpression *NewExpr = DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, NewExpr); LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup); OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup); } /// Calculate the liveness information for the given machine function and /// extend ranges across basic blocks. bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, TargetPassConfig *TPC, unsigned InputBBLimit, unsigned InputDbgValLimit) { (void)DomTree; LLVM_DEBUG(dbgs() << "\nDebug Range Extension: " << MF.getName() << "\n"); if (!MF.getFunction().getSubprogram()) // VarLocBaseLDV will already have removed all DBG_VALUEs. return false; // Skip functions from NoDebug compilation units. if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) return false; TRI = MF.getSubtarget().getRegisterInfo(); TII = MF.getSubtarget().getInstrInfo(); TFI = MF.getSubtarget().getFrameLowering(); TFI->getCalleeSaves(MF, CalleeSavedRegs); this->TPC = TPC; LS.initialize(MF); bool Changed = false; bool OLChanged = false; bool MBBJoined = false; VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. OverlapMap OverlapFragments; // Map of overlapping variable fragments. OpenRangesSet OpenRanges(Alloc, OverlapFragments); // Ranges that are open until end of bb. VarLocInMBB OutLocs; // Ranges that exist beyond bb. VarLocInMBB InLocs; // Ranges that are incoming after joining. TransferMap Transfers; // DBG_VALUEs associated with transfers (such as // spills, copies and restores). // Map responsible MI to attached Transfer emitted from Backup Entry Value. InstToEntryLocMap EntryValTransfers; // Map a Register to the last MI which clobbered it. RegDefToInstMap RegSetInstrs; VarToFragments SeenFragments; // Blocks which are artificial, i.e. blocks which exclusively contain // instructions without locations, or with line 0 locations. SmallPtrSet ArtificialBlocks; DenseMap OrderToBB; DenseMap BBToOrder; std::priority_queue, std::greater> Worklist; std::priority_queue, std::greater> Pending; // Set of register defines that are seen when traversing the entry block // looking for debug entry value candidates. DefinedRegsSet DefinedRegs; // Only in the case of entry MBB collect DBG_VALUEs representing // function parameters in order to generate debug entry values for them. MachineBasicBlock &First_MBB = *(MF.begin()); for (auto &MI : First_MBB) { collectRegDefs(MI, DefinedRegs, TRI); if (MI.isDebugValue()) recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); } // Initialize per-block structures and scan for fragment overlaps. for (auto &MBB : MF) for (auto &MI : MBB) if (MI.isDebugValue()) accumulateFragmentMap(MI, SeenFragments, OverlapFragments); auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { if (const DebugLoc &DL = MI.getDebugLoc()) return DL.getLine() != 0; return false; }; for (auto &MBB : MF) if (none_of(MBB.instrs(), hasNonArtificialLocation)) ArtificialBlocks.insert(&MBB); LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "OutLocs after initialization", dbgs())); ReversePostOrderTraversal RPOT(&MF); unsigned int RPONumber = 0; for (MachineBasicBlock *MBB : RPOT) { OrderToBB[RPONumber] = MBB; BBToOrder[MBB] = RPONumber; Worklist.push(RPONumber); ++RPONumber; } if (RPONumber > InputBBLimit) { unsigned NumInputDbgValues = 0; for (auto &MBB : MF) for (auto &MI : MBB) if (MI.isDebugValue()) ++NumInputDbgValues; if (NumInputDbgValues > InputDbgValLimit) { LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() << " has " << RPONumber << " basic blocks and " << NumInputDbgValues << " input DBG_VALUEs, exceeding limits.\n"); return false; } } // This is a standard "union of predecessor outs" dataflow problem. // To solve it, we perform join() and process() using the two worklist method // until the ranges converge. // Ranges have converged when both worklists are empty. SmallPtrSet Visited; while (!Worklist.empty() || !Pending.empty()) { // We track what is on the pending worklist to avoid inserting the same // thing twice. We could avoid this with a custom priority queue, but this // is probably not worth it. SmallPtrSet OnPending; LLVM_DEBUG(dbgs() << "Processing Worklist\n"); while (!Worklist.empty()) { MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; Worklist.pop(); MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, ArtificialBlocks); MBBJoined |= Visited.insert(MBB).second; if (MBBJoined) { MBBJoined = false; Changed = true; // Now that we have started to extend ranges across BBs we need to // examine spill, copy and restore instructions to see whether they // operate with registers that correspond to user variables. // First load any pending inlocs. OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); LastNonDbgMI = nullptr; RegSetInstrs.clear(); for (auto &MI : *MBB) process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers, RegSetInstrs); OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "OutLocs after propagating", dbgs())); LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "InLocs after propagating", dbgs())); if (OLChanged) { OLChanged = false; for (auto *s : MBB->successors()) if (OnPending.insert(s).second) { Pending.push(BBToOrder[s]); } } } } Worklist.swap(Pending); // At this point, pending must be empty, since it was just the empty // worklist assert(Pending.empty() && "Pending should be empty"); } // Add any DBG_VALUE instructions created by location transfers. for (auto &TR : Transfers) { assert(!TR.TransferInst->isTerminator() && "Cannot insert DBG_VALUE after terminator"); MachineBasicBlock *MBB = TR.TransferInst->getParent(); const VarLoc &VL = VarLocIDs[TR.LocationID]; MachineInstr *MI = VL.BuildDbgValue(MF); MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); } Transfers.clear(); // Add DBG_VALUEs created using Backup Entry Value location. for (auto &TR : EntryValTransfers) { MachineInstr *TRInst = const_cast(TR.first); assert(!TRInst->isTerminator() && "Cannot insert DBG_VALUE after terminator"); MachineBasicBlock *MBB = TRInst->getParent(); const VarLoc &VL = VarLocIDs[TR.second]; MachineInstr *MI = VL.BuildDbgValue(MF); MBB->insertAfterBundle(TRInst->getIterator(), MI); } EntryValTransfers.clear(); // Deferred inlocs will not have had any DBG_VALUE insts created; do // that now. flushPendingLocs(InLocs, VarLocIDs); LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); return Changed; } LDVImpl * llvm::makeVarLocBasedLiveDebugValues() { return new VarLocBasedLDV(); }