//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file InstrRefBasedImpl.cpp /// /// This is a separate implementation of LiveDebugValues, see /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. /// /// This pass propagates variable locations between basic blocks, resolving /// control flow conflicts between them. The problem is much like SSA /// construction, where each DBG_VALUE instruction assigns the *value* that /// a variable has, and every instruction where the variable is in scope uses /// that variable. The resulting map of instruction-to-value is then translated /// into a register (or spill) location for each variable over each instruction. /// /// This pass determines which DBG_VALUE dominates which instructions, or if /// none do, where values must be merged (like PHI nodes). The added /// complication is that because codegen has already finished, a PHI node may /// be needed for a variable location to be correct, but no register or spill /// slot merges the necessary values. In these circumstances, the variable /// location is dropped. /// /// What makes this analysis non-trivial is loops: we cannot tell in advance /// whether a variable location is live throughout a loop, or whether its /// location is clobbered (or redefined by another DBG_VALUE), without /// exploring all the way through. /// /// To make this simpler we perform two kinds of analysis. First, we identify /// every value defined by every instruction (ignoring those that only move /// another value), then compute a map of which values are available for each /// instruction. This is stronger than a reaching-def analysis, as we create /// PHI values where other values merge. /// /// Secondly, for each variable, we effectively re-construct SSA using each /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the /// first analysis from the location they refer to. We can then compute the /// dominance frontiers of where a variable has a value, and create PHI nodes /// where they merge. /// This isn't precisely SSA-construction though, because the function shape /// is pre-defined. If a variable location requires a PHI node, but no /// PHI for the relevant values is present in the function (as computed by the /// first analysis), the location must be dropped. /// /// Once both are complete, we can pass back over all instructions knowing: /// * What _value_ each variable should contain, either defined by an /// instruction or where control flow merges /// * What the location of that value is (if any). /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when /// a value moves location. After this pass runs, all variable locations within /// a block should be specified by DBG_VALUEs within that block, allowing /// DbgEntityHistoryCalculator to focus on individual blocks. /// /// This pass is able to go fast because the size of the first /// reaching-definition analysis is proportional to the working-set size of /// the function, which the compiler tries to keep small. (It's also /// proportional to the number of blocks). Additionally, we repeatedly perform /// the second reaching-definition analysis with only the variables and blocks /// in a single lexical scope, exploiting their locality. /// /// Determining where PHIs happen is trickier with this approach, and it comes /// to a head in the major problem for LiveDebugValues: is a value live-through /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of /// facts about a function, however this analysis needs to generate new value /// numbers at joins. /// /// To do this, consider a lattice of all definition values, from instructions /// and from PHIs. Each PHI is characterised by the RPO number of the block it /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B): /// with non-PHI values at the top, and any PHI value in the last block (by RPO /// order) at the bottom. /// /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below, /// "rank" always refers to the former). /// /// At any join, for each register, we consider: /// * All incoming values, and /// * The PREVIOUS live-in value at this join. /// If all incoming values agree: that's the live-in value. If they do not, the /// incoming values are ranked according to the partial order, and the NEXT /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of /// the same rank are ignored as conflicting). If there are no candidate values, /// or if the rank of the live-in would be lower than the rank of the current /// blocks PHIs, create a new PHI value. /// /// Intuitively: if it's not immediately obvious what value a join should result /// in, we iteratively descend from instruction-definitions down through PHI /// values, getting closer to the current block each time. If the current block /// is a loop head, this ordering is effectively searching outer levels of /// loops, to find a value that's live-through the current loop. /// /// If there is no value that's live-through this loop, a PHI is created for /// this location instead. We can't use a lower-ranked PHI because by definition /// it doesn't dominate the current block. We can't create a PHI value any /// earlier, because we risk creating a PHI value at a location where values do /// not in fact merge, thus misrepresenting the truth, and not making the true /// live-through value for variable locations. /// /// This algorithm applies to both calculating the availability of values in /// the first analysis, and the location of variables in the second. However /// for the second we add an extra dimension of pain: creating a variable /// location PHI is only valid if, for each incoming edge, /// * There is a value for the variable on the incoming edge, and /// * All the edges have that value in the same register. /// Or put another way: we can only create a variable-location PHI if there is /// a matching machine-location PHI, each input to which is the variables value /// in the predecessor block. /// /// To accommodate this difference, each point on the lattice is split in /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately /// have a location determined are "definite" PHIs, and no further work is /// needed. Otherwise, a location that all non-backedge predecessors agree /// on is picked and propagated as a "proposed" PHI value. If that PHI value /// is truly live-through, it'll appear on the loop backedges on the next /// dataflow iteration, after which the block live-in moves to be a "definite" /// PHI. If it's not truly live-through, the variable value will be downgraded /// further as we explore the lattice, or remains "proposed" and is considered /// invalid once dataflow completes. /// /// ### Terminology /// /// A machine location is a register or spill slot, a value is something that's /// defined by an instruction or PHI node, while a variable value is the value /// assigned to a variable. A variable location is a machine location, that must /// contain the appropriate variable value. A value that is a PHI node is /// occasionally called an mphi. /// /// The first dataflow problem is the "machine value location" problem, /// because we're determining which machine locations contain which values. /// The "locations" are constant: what's unknown is what value they contain. /// /// The second dataflow problem (the one for variables) is the "variable value /// problem", because it's determining what values a variable has, rather than /// what location those values are placed in. Unfortunately, it's not that /// simple, because producing a PHI value always involves picking a location. /// This is an imperfection that we just have to accept, at least for now. /// /// TODO: /// Overlapping fragments /// Entry values /// Add back DEBUG statements for debugging this /// Collect statistics /// //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/UniqueVector.h" #include "llvm/CodeGen/LexicalScopes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineInstrBundle.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/IR/Module.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/TypeSize.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" #include #include #include #include #include #include #include #include #include #include #include "LiveDebugValues.h" using namespace llvm; // SSAUpdaterImple sets DEBUG_TYPE, change it. #undef DEBUG_TYPE #define DEBUG_TYPE "livedebugvalues" // Act more like the VarLoc implementation, by propagating some locations too // far and ignoring some transfers. static cl::opt EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, cl::desc("Act like old LiveDebugValues did"), cl::init(false)); namespace { // The location at which a spilled value resides. It consists of a register and // an offset. struct SpillLoc { unsigned SpillBase; StackOffset SpillOffset; bool operator==(const SpillLoc &Other) const { return std::make_pair(SpillBase, SpillOffset) == std::make_pair(Other.SpillBase, Other.SpillOffset); } bool operator<(const SpillLoc &Other) const { return std::make_tuple(SpillBase, SpillOffset.getFixed(), SpillOffset.getScalable()) < std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), Other.SpillOffset.getScalable()); } }; class LocIdx { unsigned Location; // Default constructor is private, initializing to an illegal location number. // Use only for "not an entry" elements in IndexedMaps. LocIdx() : Location(UINT_MAX) { } public: #define NUM_LOC_BITS 24 LocIdx(unsigned L) : Location(L) { assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); } static LocIdx MakeIllegalLoc() { return LocIdx(); } bool isIllegal() const { return Location == UINT_MAX; } uint64_t asU64() const { return Location; } bool operator==(unsigned L) const { return Location == L; } bool operator==(const LocIdx &L) const { return Location == L.Location; } bool operator!=(unsigned L) const { return !(*this == L); } bool operator!=(const LocIdx &L) const { return !(*this == L); } bool operator<(const LocIdx &Other) const { return Location < Other.Location; } }; class LocIdxToIndexFunctor { public: using argument_type = LocIdx; unsigned operator()(const LocIdx &L) const { return L.asU64(); } }; /// Unique identifier for a value defined by an instruction, as a value type. /// Casts back and forth to a uint64_t. Probably replacable with something less /// bit-constrained. Each value identifies the instruction and machine location /// where the value is defined, although there may be no corresponding machine /// operand for it (ex: regmasks clobbering values). The instructions are /// one-based, and definitions that are PHIs have instruction number zero. /// /// The obvious limits of a 1M block function or 1M instruction blocks are /// problematic; but by that point we should probably have bailed out of /// trying to analyse the function. class ValueIDNum { uint64_t BlockNo : 20; /// The block where the def happens. uint64_t InstNo : 20; /// The Instruction where the def happens. /// One based, is distance from start of block. uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens. public: // XXX -- temporarily enabled while the live-in / live-out tables are moved // to something more type-y ValueIDNum() : BlockNo(0xFFFFF), InstNo(0xFFFFF), LocNo(0xFFFFFF) { } ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) : BlockNo(Block), InstNo(Inst), LocNo(Loc) { } ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { } uint64_t getBlock() const { return BlockNo; } uint64_t getInst() const { return InstNo; } uint64_t getLoc() const { return LocNo; } bool isPHI() const { return InstNo == 0; } uint64_t asU64() const { uint64_t TmpBlock = BlockNo; uint64_t TmpInst = InstNo; return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo; } static ValueIDNum fromU64(uint64_t v) { uint64_t L = (v & 0x3FFF); return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L}; } bool operator<(const ValueIDNum &Other) const { return asU64() < Other.asU64(); } bool operator==(const ValueIDNum &Other) const { return std::tie(BlockNo, InstNo, LocNo) == std::tie(Other.BlockNo, Other.InstNo, Other.LocNo); } bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } std::string asString(const std::string &mlocname) const { return Twine("Value{bb: ") .concat(Twine(BlockNo).concat( Twine(", inst: ") .concat((InstNo ? Twine(InstNo) : Twine("live-in")) .concat(Twine(", loc: ").concat(Twine(mlocname))) .concat(Twine("}"))))) .str(); } static ValueIDNum EmptyValue; }; } // end anonymous namespace namespace { /// Meta qualifiers for a value. Pair of whatever expression is used to qualify /// the the value, and Boolean of whether or not it's indirect. class DbgValueProperties { public: DbgValueProperties(const DIExpression *DIExpr, bool Indirect) : DIExpr(DIExpr), Indirect(Indirect) {} /// Extract properties from an existing DBG_VALUE instruction. DbgValueProperties(const MachineInstr &MI) { assert(MI.isDebugValue()); DIExpr = MI.getDebugExpression(); Indirect = MI.getOperand(1).isImm(); } bool operator==(const DbgValueProperties &Other) const { return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect); } bool operator!=(const DbgValueProperties &Other) const { return !(*this == Other); } const DIExpression *DIExpr; bool Indirect; }; /// Tracker for what values are in machine locations. Listens to the Things /// being Done by various instructions, and maintains a table of what machine /// locations have what values (as defined by a ValueIDNum). /// /// There are potentially a much larger number of machine locations on the /// target machine than the actual working-set size of the function. On x86 for /// example, we're extremely unlikely to want to track values through control /// or debug registers. To avoid doing so, MLocTracker has several layers of /// indirection going on, with two kinds of ``location'': /// * A LocID uniquely identifies a register or spill location, with a /// predictable value. /// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum. /// Whenever a location is def'd or used by a MachineInstr, we automagically /// create a new LocIdx for a location, but not otherwise. This ensures we only /// account for locations that are actually used or defined. The cost is another /// vector lookup (of LocID -> LocIdx) over any other implementation. This is /// fairly cheap, and the compiler tries to reduce the working-set at any one /// time in the function anyway. /// /// Register mask operands completely blow this out of the water; I've just /// piled hacks on top of hacks to get around that. class MLocTracker { public: MachineFunction &MF; const TargetInstrInfo &TII; const TargetRegisterInfo &TRI; const TargetLowering &TLI; /// IndexedMap type, mapping from LocIdx to ValueIDNum. using LocToValueType = IndexedMap; /// Map of LocIdxes to the ValueIDNums that they store. This is tightly /// packed, entries only exist for locations that are being tracked. LocToValueType LocIdxToIDNum; /// "Map" of machine location IDs (i.e., raw register or spill number) to the /// LocIdx key / number for that location. There are always at least as many /// as the number of registers on the target -- if the value in the register /// is not being tracked, then the LocIdx value will be zero. New entries are /// appended if a new spill slot begins being tracked. /// This, and the corresponding reverse map persist for the analysis of the /// whole function, and is necessarying for decoding various vectors of /// values. std::vector LocIDToLocIdx; /// Inverse map of LocIDToLocIdx. IndexedMap LocIdxToLocID; /// Unique-ification of spill slots. Used to number them -- their LocID /// number is the index in SpillLocs minus one plus NumRegs. UniqueVector SpillLocs; // If we discover a new machine location, assign it an mphi with this // block number. unsigned CurBB; /// Cached local copy of the number of registers the target has. unsigned NumRegs; /// Collection of register mask operands that have been observed. Second part /// of pair indicates the instruction that they happened in. Used to /// reconstruct where defs happened if we start tracking a location later /// on. SmallVector, 32> Masks; /// Iterator for locations and the values they contain. Dereferencing /// produces a struct/pair containing the LocIdx key for this location, /// and a reference to the value currently stored. Simplifies the process /// of seeking a particular location. class MLocIterator { LocToValueType &ValueMap; LocIdx Idx; public: class value_type { public: value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { } const LocIdx Idx; /// Read-only index of this location. ValueIDNum &Value; /// Reference to the stored value at this location. }; MLocIterator(LocToValueType &ValueMap, LocIdx Idx) : ValueMap(ValueMap), Idx(Idx) { } bool operator==(const MLocIterator &Other) const { assert(&ValueMap == &Other.ValueMap); return Idx == Other.Idx; } bool operator!=(const MLocIterator &Other) const { return !(*this == Other); } void operator++() { Idx = LocIdx(Idx.asU64() + 1); } value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); } }; MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const TargetLowering &TLI) : MF(MF), TII(TII), TRI(TRI), TLI(TLI), LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) { NumRegs = TRI.getNumRegs(); reset(); LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure // Always track SP. This avoids the implicit clobbering caused by regmasks // from affectings its values. (LiveDebugValues disbelieves calls and // regmasks that claim to clobber SP). Register SP = TLI.getStackPointerRegisterToSaveRestore(); if (SP) { unsigned ID = getLocID(SP, false); (void)lookupOrTrackRegister(ID); } } /// Produce location ID number for indexing LocIDToLocIdx. Takes the register /// or spill number, and flag for whether it's a spill or not. unsigned getLocID(Register RegOrSpill, bool isSpill) { return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id(); } /// Accessor for reading the value at Idx. ValueIDNum getNumAtPos(LocIdx Idx) const { assert(Idx.asU64() < LocIdxToIDNum.size()); return LocIdxToIDNum[Idx]; } unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); } /// Reset all locations to contain a PHI value at the designated block. Used /// sometimes for actual PHI values, othertimes to indicate the block entry /// value (before any more information is known). void setMPhis(unsigned NewCurBB) { CurBB = NewCurBB; for (auto Location : locations()) Location.Value = {CurBB, 0, Location.Idx}; } /// Load values for each location from array of ValueIDNums. Take current /// bbnum just in case we read a value from a hitherto untouched register. void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) { CurBB = NewCurBB; // Iterate over all tracked locations, and load each locations live-in // value into our local index. for (auto Location : locations()) Location.Value = Locs[Location.Idx.asU64()]; } /// Wipe any un-necessary location records after traversing a block. void reset(void) { // We could reset all the location values too; however either loadFromArray // or setMPhis should be called before this object is re-used. Just // clear Masks, they're definitely not needed. Masks.clear(); } /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of /// the information in this pass uninterpretable. void clear(void) { reset(); LocIDToLocIdx.clear(); LocIdxToLocID.clear(); LocIdxToIDNum.clear(); //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0 SpillLocs = decltype(SpillLocs)(); LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); } /// Set a locaiton to a certain value. void setMLoc(LocIdx L, ValueIDNum Num) { assert(L.asU64() < LocIdxToIDNum.size()); LocIdxToIDNum[L] = Num; } /// Create a LocIdx for an untracked register ID. Initialize it to either an /// mphi value representing a live-in, or a recent register mask clobber. LocIdx trackRegister(unsigned ID) { assert(ID != 0); LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); LocIdxToIDNum.grow(NewIdx); LocIdxToLocID.grow(NewIdx); // Default: it's an mphi. ValueIDNum ValNum = {CurBB, 0, NewIdx}; // Was this reg ever touched by a regmask? for (const auto &MaskPair : reverse(Masks)) { if (MaskPair.first->clobbersPhysReg(ID)) { // There was an earlier def we skipped. ValNum = {CurBB, MaskPair.second, NewIdx}; break; } } LocIdxToIDNum[NewIdx] = ValNum; LocIdxToLocID[NewIdx] = ID; return NewIdx; } LocIdx lookupOrTrackRegister(unsigned ID) { LocIdx &Index = LocIDToLocIdx[ID]; if (Index.isIllegal()) Index = trackRegister(ID); return Index; } /// Record a definition of the specified register at the given block / inst. /// This doesn't take a ValueIDNum, because the definition and its location /// are synonymous. void defReg(Register R, unsigned BB, unsigned Inst) { unsigned ID = getLocID(R, false); LocIdx Idx = lookupOrTrackRegister(ID); ValueIDNum ValueID = {BB, Inst, Idx}; LocIdxToIDNum[Idx] = ValueID; } /// Set a register to a value number. To be used if the value number is /// known in advance. void setReg(Register R, ValueIDNum ValueID) { unsigned ID = getLocID(R, false); LocIdx Idx = lookupOrTrackRegister(ID); LocIdxToIDNum[Idx] = ValueID; } ValueIDNum readReg(Register R) { unsigned ID = getLocID(R, false); LocIdx Idx = lookupOrTrackRegister(ID); return LocIdxToIDNum[Idx]; } /// Reset a register value to zero / empty. Needed to replicate the /// VarLoc implementation where a copy to/from a register effectively /// clears the contents of the source register. (Values can only have one /// machine location in VarLocBasedImpl). void wipeRegister(Register R) { unsigned ID = getLocID(R, false); LocIdx Idx = LocIDToLocIdx[ID]; LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; } /// Determine the LocIdx of an existing register. LocIdx getRegMLoc(Register R) { unsigned ID = getLocID(R, false); return LocIDToLocIdx[ID]; } /// Record a RegMask operand being executed. Defs any register we currently /// track, stores a pointer to the mask in case we have to account for it /// later. void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) { // Ensure SP exists, so that we don't override it later. Register SP = TLI.getStackPointerRegisterToSaveRestore(); // Def any register we track have that isn't preserved. The regmask // terminates the liveness of a register, meaning its value can't be // relied upon -- we represent this by giving it a new value. for (auto Location : locations()) { unsigned ID = LocIdxToLocID[Location.Idx]; // Don't clobber SP, even if the mask says it's clobbered. if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID)) defReg(ID, CurBB, InstID); } Masks.push_back(std::make_pair(MO, InstID)); } /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. LocIdx getOrTrackSpillLoc(SpillLoc L) { unsigned SpillID = SpillLocs.idFor(L); if (SpillID == 0) { SpillID = SpillLocs.insert(L); unsigned L = getLocID(SpillID, true); LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx LocIdxToIDNum.grow(Idx); LocIdxToLocID.grow(Idx); LocIDToLocIdx.push_back(Idx); LocIdxToLocID[Idx] = L; return Idx; } else { unsigned L = getLocID(SpillID, true); LocIdx Idx = LocIDToLocIdx[L]; return Idx; } } /// Set the value stored in a spill slot. void setSpill(SpillLoc L, ValueIDNum ValueID) { LocIdx Idx = getOrTrackSpillLoc(L); LocIdxToIDNum[Idx] = ValueID; } /// Read whatever value is in a spill slot, or None if it isn't tracked. Optional readSpill(SpillLoc L) { unsigned SpillID = SpillLocs.idFor(L); if (SpillID == 0) return None; unsigned LocID = getLocID(SpillID, true); LocIdx Idx = LocIDToLocIdx[LocID]; return LocIdxToIDNum[Idx]; } /// Determine the LocIdx of a spill slot. Return None if it previously /// hasn't had a value assigned. Optional getSpillMLoc(SpillLoc L) { unsigned SpillID = SpillLocs.idFor(L); if (SpillID == 0) return None; unsigned LocNo = getLocID(SpillID, true); return LocIDToLocIdx[LocNo]; } /// Return true if Idx is a spill machine location. bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; } MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); } MLocIterator end() { return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); } /// Return a range over all locations currently tracked. iterator_range locations() { return llvm::make_range(begin(), end()); } std::string LocIdxToName(LocIdx Idx) const { unsigned ID = LocIdxToLocID[Idx]; if (ID >= NumRegs) return Twine("slot ").concat(Twine(ID - NumRegs)).str(); else return TRI.getRegAsmName(ID).str(); } std::string IDAsString(const ValueIDNum &Num) const { std::string DefName = LocIdxToName(Num.getLoc()); return Num.asString(DefName); } LLVM_DUMP_METHOD void dump() { for (auto Location : locations()) { std::string MLocName = LocIdxToName(Location.Value.getLoc()); std::string DefName = Location.Value.asString(MLocName); dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; } } LLVM_DUMP_METHOD void dump_mloc_map() { for (auto Location : locations()) { std::string foo = LocIdxToName(Location.Idx); dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; } } /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the /// information in \pProperties, for variable Var. Don't insert it anywhere, /// just return the builder for it. MachineInstrBuilder emitLoc(Optional MLoc, const DebugVariable &Var, const DbgValueProperties &Properties) { DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, Var.getVariable()->getScope(), const_cast(Var.getInlinedAt())); auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); const DIExpression *Expr = Properties.DIExpr; if (!MLoc) { // No location -> DBG_VALUE $noreg MIB.addReg(0, RegState::Debug); MIB.addReg(0, RegState::Debug); } else if (LocIdxToLocID[*MLoc] >= NumRegs) { unsigned LocID = LocIdxToLocID[*MLoc]; const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1]; auto *TRI = MF.getSubtarget().getRegisterInfo(); Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset, Spill.SpillOffset); unsigned Base = Spill.SpillBase; MIB.addReg(Base, RegState::Debug); MIB.addImm(0); } else { unsigned LocID = LocIdxToLocID[*MLoc]; MIB.addReg(LocID, RegState::Debug); if (Properties.Indirect) MIB.addImm(0); else MIB.addReg(0, RegState::Debug); } MIB.addMetadata(Var.getVariable()); MIB.addMetadata(Expr); return MIB; } }; /// Class recording the (high level) _value_ of a variable. Identifies either /// the value of the variable as a ValueIDNum, or a constant MachineOperand. /// This class also stores meta-information about how the value is qualified. /// Used to reason about variable values when performing the second /// (DebugVariable specific) dataflow analysis. class DbgValue { public: union { /// If Kind is Def, the value number that this value is based on. ValueIDNum ID; /// If Kind is Const, the MachineOperand defining this value. MachineOperand MO; /// For a NoVal DbgValue, which block it was generated in. unsigned BlockNo; }; /// Qualifiers for the ValueIDNum above. DbgValueProperties Properties; typedef enum { Undef, // Represents a DBG_VALUE $noreg in the transfer function only. Def, // This value is defined by an inst, or is a PHI value. Const, // A constant value contained in the MachineOperand field. Proposed, // This is a tentative PHI value, which may be confirmed or // invalidated later. NoVal // Empty DbgValue, generated during dataflow. BlockNo stores // which block this was generated in. } KindT; /// Discriminator for whether this is a constant or an in-program value. KindT Kind; DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind) : ID(Val), Properties(Prop), Kind(Kind) { assert(Kind == Def || Kind == Proposed); } DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) : BlockNo(BlockNo), Properties(Prop), Kind(Kind) { assert(Kind == NoVal); } DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind) : MO(MO), Properties(Prop), Kind(Kind) { assert(Kind == Const); } DbgValue(const DbgValueProperties &Prop, KindT Kind) : Properties(Prop), Kind(Kind) { assert(Kind == Undef && "Empty DbgValue constructor must pass in Undef kind"); } void dump(const MLocTracker *MTrack) const { if (Kind == Const) { MO.dump(); } else if (Kind == NoVal) { dbgs() << "NoVal(" << BlockNo << ")"; } else if (Kind == Proposed) { dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")"; } else { assert(Kind == Def); dbgs() << MTrack->IDAsString(ID); } if (Properties.Indirect) dbgs() << " indir"; if (Properties.DIExpr) dbgs() << " " << *Properties.DIExpr; } bool operator==(const DbgValue &Other) const { if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) return false; else if (Kind == Proposed && ID != Other.ID) return false; else if (Kind == Def && ID != Other.ID) return false; else if (Kind == NoVal && BlockNo != Other.BlockNo) return false; else if (Kind == Const) return MO.isIdenticalTo(Other.MO); return true; } bool operator!=(const DbgValue &Other) const { return !(*this == Other); } }; /// Types for recording sets of variable fragments that overlap. For a given /// local variable, we record all other fragments of that variable that could /// overlap it, to reduce search time. using FragmentOfVar = std::pair; using OverlapMap = DenseMap>; /// Collection of DBG_VALUEs observed when traversing a block. Records each /// variable and the value the DBG_VALUE refers to. Requires the machine value /// location dataflow algorithm to have run already, so that values can be /// identified. class VLocTracker { public: /// Map DebugVariable to the latest Value it's defined to have. /// Needs to be a MapVector because we determine order-in-the-input-MIR from /// the order in this container. /// We only retain the last DbgValue in each block for each variable, to /// determine the blocks live-out variable value. The Vars container forms the /// transfer function for this block, as part of the dataflow analysis. The /// movement of values between locations inside of a block is handled at a /// much later stage, in the TransferTracker class. MapVector Vars; DenseMap Scopes; MachineBasicBlock *MBB; public: VLocTracker() {} void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, Optional ID) { assert(MI.isDebugValue() || MI.isDebugRef()); DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) : DbgValue(Properties, DbgValue::Undef); // Attempt insertion; overwrite if it's already mapped. auto Result = Vars.insert(std::make_pair(Var, Rec)); if (!Result.second) Result.first->second = Rec; Scopes[Var] = MI.getDebugLoc().get(); } void defVar(const MachineInstr &MI, const MachineOperand &MO) { // Only DBG_VALUEs can define constant-valued variables. assert(MI.isDebugValue()); DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); DbgValueProperties Properties(MI); DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); // Attempt insertion; overwrite if it's already mapped. auto Result = Vars.insert(std::make_pair(Var, Rec)); if (!Result.second) Result.first->second = Rec; Scopes[Var] = MI.getDebugLoc().get(); } }; /// Tracker for converting machine value locations and variable values into /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs /// specifying block live-in locations and transfers within blocks. /// /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker /// and must be initialized with the set of variable values that are live-in to /// the block. The caller then repeatedly calls process(). TransferTracker picks /// out variable locations for the live-in variable values (if there _is_ a /// location) and creates the corresponding DBG_VALUEs. Then, as the block is /// stepped through, transfers of values between machine locations are /// identified and if profitable, a DBG_VALUE created. /// /// This is where debug use-before-defs would be resolved: a variable with an /// unavailable value could materialize in the middle of a block, when the /// value becomes available. Or, we could detect clobbers and re-specify the /// variable in a backup location. (XXX these are unimplemented). class TransferTracker { public: const TargetInstrInfo *TII; const TargetLowering *TLI; /// This machine location tracker is assumed to always contain the up-to-date /// value mapping for all machine locations. TransferTracker only reads /// information from it. (XXX make it const?) MLocTracker *MTracker; MachineFunction &MF; bool ShouldEmitDebugEntryValues; /// Record of all changes in variable locations at a block position. Awkwardly /// we allow inserting either before or after the point: MBB != nullptr /// indicates it's before, otherwise after. struct Transfer { MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes MachineBasicBlock *MBB; /// non-null if we should insert after. SmallVector Insts; /// Vector of DBG_VALUEs to insert. }; struct LocAndProperties { LocIdx Loc; DbgValueProperties Properties; }; /// Collection of transfers (DBG_VALUEs) to be inserted. SmallVector Transfers; /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences /// between TransferTrackers view of variable locations and MLocTrackers. For /// example, MLocTracker observes all clobbers, but TransferTracker lazily /// does not. std::vector VarLocs; /// Map from LocIdxes to which DebugVariables are based that location. /// Mantained while stepping through the block. Not accurate if /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. std::map> ActiveMLocs; /// Map from DebugVariable to it's current location and qualifying meta /// information. To be used in conjunction with ActiveMLocs to construct /// enough information for the DBG_VALUEs for a particular LocIdx. DenseMap ActiveVLocs; /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. SmallVector PendingDbgValues; /// Record of a use-before-def: created when a value that's live-in to the /// current block isn't available in any machine location, but it will be /// defined in this block. struct UseBeforeDef { /// Value of this variable, def'd in block. ValueIDNum ID; /// Identity of this variable. DebugVariable Var; /// Additional variable properties. DbgValueProperties Properties; }; /// Map from instruction index (within the block) to the set of UseBeforeDefs /// that become defined at that instruction. DenseMap> UseBeforeDefs; /// The set of variables that are in UseBeforeDefs and can become a location /// once the relevant value is defined. An element being erased from this /// collection prevents the use-before-def materializing. DenseSet UseBeforeDefVariables; const TargetRegisterInfo &TRI; const BitVector &CalleeSavedRegs; TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, MachineFunction &MF, const TargetRegisterInfo &TRI, const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC) : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), CalleeSavedRegs(CalleeSavedRegs) { TLI = MF.getSubtarget().getTargetLowering(); auto &TM = TPC.getTM(); ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues(); } /// Load object with live-in variable values. \p mlocs contains the live-in /// values in each machine location, while \p vlocs the live-in variable /// values. This method picks variable locations for the live-in variables, /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other /// object fields to track variable locations as we step through the block. /// FIXME: could just examine mloctracker instead of passing in \p mlocs? void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, SmallVectorImpl> &VLocs, unsigned NumLocs) { ActiveMLocs.clear(); ActiveVLocs.clear(); VarLocs.clear(); VarLocs.reserve(NumLocs); UseBeforeDefs.clear(); UseBeforeDefVariables.clear(); auto isCalleeSaved = [&](LocIdx L) { unsigned Reg = MTracker->LocIdxToLocID[L]; if (Reg >= MTracker->NumRegs) return false; for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) if (CalleeSavedRegs.test(*RAI)) return true; return false; }; // Map of the preferred location for each value. std::map ValueToLoc; // Produce a map of value numbers to the current machine locs they live // in. When emulating VarLocBasedImpl, there should only be one // location; when not, we get to pick. for (auto Location : MTracker->locations()) { LocIdx Idx = Location.Idx; ValueIDNum &VNum = MLocs[Idx.asU64()]; VarLocs.push_back(VNum); auto it = ValueToLoc.find(VNum); // In order of preference, pick: // * Callee saved registers, // * Other registers, // * Spill slots. if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { // Insert, or overwrite if insertion failed. auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); if (!PrefLocRes.second) PrefLocRes.first->second = Idx; } } // Now map variables to their picked LocIdxes. for (auto Var : VLocs) { if (Var.second.Kind == DbgValue::Const) { PendingDbgValues.push_back( emitMOLoc(Var.second.MO, Var.first, Var.second.Properties)); continue; } // If the value has no location, we can't make a variable location. const ValueIDNum &Num = Var.second.ID; auto ValuesPreferredLoc = ValueToLoc.find(Num); if (ValuesPreferredLoc == ValueToLoc.end()) { // If it's a def that occurs in this block, register it as a // use-before-def to be resolved as we step through the block. if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) addUseBeforeDef(Var.first, Var.second.Properties, Num); else recoverAsEntryValue(Var.first, Var.second.Properties, Num); continue; } LocIdx M = ValuesPreferredLoc->second; auto NewValue = LocAndProperties{M, Var.second.Properties}; auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); if (!Result.second) Result.first->second = NewValue; ActiveMLocs[M].insert(Var.first); PendingDbgValues.push_back( MTracker->emitLoc(M, Var.first, Var.second.Properties)); } flushDbgValues(MBB.begin(), &MBB); } /// Record that \p Var has value \p ID, a value that becomes available /// later in the function. void addUseBeforeDef(const DebugVariable &Var, const DbgValueProperties &Properties, ValueIDNum ID) { UseBeforeDef UBD = {ID, Var, Properties}; UseBeforeDefs[ID.getInst()].push_back(UBD); UseBeforeDefVariables.insert(Var); } /// After the instruction at index \p Inst and position \p pos has been /// processed, check whether it defines a variable value in a use-before-def. /// If so, and the variable value hasn't changed since the start of the /// block, create a DBG_VALUE. void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { auto MIt = UseBeforeDefs.find(Inst); if (MIt == UseBeforeDefs.end()) return; for (auto &Use : MIt->second) { LocIdx L = Use.ID.getLoc(); // If something goes very wrong, we might end up labelling a COPY // instruction or similar with an instruction number, where it doesn't // actually define a new value, instead it moves a value. In case this // happens, discard. if (MTracker->LocIdxToIDNum[L] != Use.ID) continue; // If a different debug instruction defined the variable value / location // since the start of the block, don't materialize this use-before-def. if (!UseBeforeDefVariables.count(Use.Var)) continue; PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); } flushDbgValues(pos, nullptr); } /// Helper to move created DBG_VALUEs into Transfers collection. void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { if (PendingDbgValues.size() == 0) return; // Pick out the instruction start position. MachineBasicBlock::instr_iterator BundleStart; if (MBB && Pos == MBB->begin()) BundleStart = MBB->instr_begin(); else BundleStart = getBundleStart(Pos->getIterator()); Transfers.push_back({BundleStart, MBB, PendingDbgValues}); PendingDbgValues.clear(); } bool isEntryValueVariable(const DebugVariable &Var, const DIExpression *Expr) const { if (!Var.getVariable()->isParameter()) return false; if (Var.getInlinedAt()) return false; if (Expr->getNumElements() > 0) return false; return true; } bool isEntryValueValue(const ValueIDNum &Val) const { // Must be in entry block (block number zero), and be a PHI / live-in value. if (Val.getBlock() || !Val.isPHI()) return false; // Entry values must enter in a register. if (MTracker->isSpill(Val.getLoc())) return false; Register SP = TLI->getStackPointerRegisterToSaveRestore(); Register FP = TRI.getFrameRegister(MF); Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; return Reg != SP && Reg != FP; } bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop, const ValueIDNum &Num) { // Is this variable location a candidate to be an entry value. First, // should we be trying this at all? if (!ShouldEmitDebugEntryValues) return false; // Is the variable appropriate for entry values (i.e., is a parameter). if (!isEntryValueVariable(Var, Prop.DIExpr)) return false; // Is the value assigned to this variable still the entry value? if (!isEntryValueValue(Num)) return false; // Emit a variable location using an entry value expression. DIExpression *NewExpr = DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue); Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; MachineOperand MO = MachineOperand::CreateReg(Reg, false); MO.setIsDebug(true); PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect})); return true; } /// Change a variable value after encountering a DBG_VALUE inside a block. void redefVar(const MachineInstr &MI) { DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); DbgValueProperties Properties(MI); const MachineOperand &MO = MI.getOperand(0); // Ignore non-register locations, we don't transfer those. if (!MO.isReg() || MO.getReg() == 0) { auto It = ActiveVLocs.find(Var); if (It != ActiveVLocs.end()) { ActiveMLocs[It->second.Loc].erase(Var); ActiveVLocs.erase(It); } // Any use-before-defs no longer apply. UseBeforeDefVariables.erase(Var); return; } Register Reg = MO.getReg(); LocIdx NewLoc = MTracker->getRegMLoc(Reg); redefVar(MI, Properties, NewLoc); } /// Handle a change in variable location within a block. Terminate the /// variables current location, and record the value it now refers to, so /// that we can detect location transfers later on. void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, Optional OptNewLoc) { DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); // Any use-before-defs no longer apply. UseBeforeDefVariables.erase(Var); // Erase any previous location, auto It = ActiveVLocs.find(Var); if (It != ActiveVLocs.end()) ActiveMLocs[It->second.Loc].erase(Var); // If there _is_ no new location, all we had to do was erase. if (!OptNewLoc) return; LocIdx NewLoc = *OptNewLoc; // Check whether our local copy of values-by-location in #VarLocs is out of // date. Wipe old tracking data for the location if it's been clobbered in // the meantime. if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) { for (auto &P : ActiveMLocs[NewLoc]) { ActiveVLocs.erase(P); } ActiveMLocs[NewLoc.asU64()].clear(); VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc); } ActiveMLocs[NewLoc].insert(Var); if (It == ActiveVLocs.end()) { ActiveVLocs.insert( std::make_pair(Var, LocAndProperties{NewLoc, Properties})); } else { It->second.Loc = NewLoc; It->second.Properties = Properties; } } /// Account for a location \p mloc being clobbered. Examine the variable /// locations that will be terminated: and try to recover them by using /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to /// explicitly terminate a location if it can't be recovered. void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, bool MakeUndef = true) { auto ActiveMLocIt = ActiveMLocs.find(MLoc); if (ActiveMLocIt == ActiveMLocs.end()) return; // What was the old variable value? ValueIDNum OldValue = VarLocs[MLoc.asU64()]; VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; // Examine the remaining variable locations: if we can find the same value // again, we can recover the location. Optional NewLoc = None; for (auto Loc : MTracker->locations()) if (Loc.Value == OldValue) NewLoc = Loc.Idx; // If there is no location, and we weren't asked to make the variable // explicitly undef, then stop here. if (!NewLoc && !MakeUndef) { // Try and recover a few more locations with entry values. for (auto &Var : ActiveMLocIt->second) { auto &Prop = ActiveVLocs.find(Var)->second.Properties; recoverAsEntryValue(Var, Prop, OldValue); } flushDbgValues(Pos, nullptr); return; } // Examine all the variables based on this location. DenseSet NewMLocs; for (auto &Var : ActiveMLocIt->second) { auto ActiveVLocIt = ActiveVLocs.find(Var); // Re-state the variable location: if there's no replacement then NewLoc // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE // identifying the alternative location will be emitted. const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; DbgValueProperties Properties(Expr, false); PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties)); // Update machine locations <=> variable locations maps. Defer updating // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator. if (!NewLoc) { ActiveVLocs.erase(ActiveVLocIt); } else { ActiveVLocIt->second.Loc = *NewLoc; NewMLocs.insert(Var); } } // Commit any deferred ActiveMLoc changes. if (!NewMLocs.empty()) for (auto &Var : NewMLocs) ActiveMLocs[*NewLoc].insert(Var); // We lazily track what locations have which values; if we've found a new // location for the clobbered value, remember it. if (NewLoc) VarLocs[NewLoc->asU64()] = OldValue; flushDbgValues(Pos, nullptr); ActiveMLocIt->second.clear(); } /// Transfer variables based on \p Src to be based on \p Dst. This handles /// both register copies as well as spills and restores. Creates DBG_VALUEs /// describing the movement. void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { // Does Src still contain the value num we expect? If not, it's been // clobbered in the meantime, and our variable locations are stale. if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src)) return; // assert(ActiveMLocs[Dst].size() == 0); //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? ActiveMLocs[Dst] = ActiveMLocs[Src]; VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; // For each variable based on Src; create a location at Dst. for (auto &Var : ActiveMLocs[Src]) { auto ActiveVLocIt = ActiveVLocs.find(Var); assert(ActiveVLocIt != ActiveVLocs.end()); ActiveVLocIt->second.Loc = Dst; assert(Dst != 0); MachineInstr *MI = MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); PendingDbgValues.push_back(MI); } ActiveMLocs[Src].clear(); flushDbgValues(Pos, nullptr); // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data // about the old location. if (EmulateOldLDV) VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; } MachineInstrBuilder emitMOLoc(const MachineOperand &MO, const DebugVariable &Var, const DbgValueProperties &Properties) { DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, Var.getVariable()->getScope(), const_cast(Var.getInlinedAt())); auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); MIB.add(MO); if (Properties.Indirect) MIB.addImm(0); else MIB.addReg(0); MIB.addMetadata(Var.getVariable()); MIB.addMetadata(Properties.DIExpr); return MIB; } }; class InstrRefBasedLDV : public LDVImpl { private: using FragmentInfo = DIExpression::FragmentInfo; using OptFragmentInfo = Optional; // Helper while building OverlapMap, a map of all fragments seen for a given // DILocalVariable. using VarToFragments = DenseMap>; /// Machine location/value transfer function, a mapping of which locations /// are assigned which new values. using MLocTransferMap = std::map; /// Live in/out structure for the variable values: a per-block map of /// variables to their values. XXX, better name? using LiveIdxT = DenseMap *>; using VarAndLoc = std::pair; /// Type for a live-in value: the predecessor block, and its value. using InValueT = std::pair; /// Vector (per block) of a collection (inner smallvector) of live-ins. /// Used as the result type for the variable value dataflow problem. using LiveInsT = SmallVector, 8>; const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; const TargetFrameLowering *TFI; const MachineFrameInfo *MFI; BitVector CalleeSavedRegs; LexicalScopes LS; TargetPassConfig *TPC; /// Object to track machine locations as we step through a block. Could /// probably be a field rather than a pointer, as it's always used. MLocTracker *MTracker; /// Number of the current block LiveDebugValues is stepping through. unsigned CurBB; /// Number of the current instruction LiveDebugValues is evaluating. unsigned CurInst; /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl /// steps through a block. Reads the values at each location from the /// MLocTracker object. VLocTracker *VTracker; /// Tracker for transfers, listens to DBG_VALUEs and transfers of values /// between locations during stepping, creates new DBG_VALUEs when values move /// location. TransferTracker *TTracker; /// Blocks which are artificial, i.e. blocks which exclusively contain /// instructions without DebugLocs, or with line 0 locations. SmallPtrSet ArtificialBlocks; // Mapping of blocks to and from their RPOT order. DenseMap OrderToBB; DenseMap BBToOrder; DenseMap BBNumToRPO; /// Pair of MachineInstr, and its 1-based offset into the containing block. using InstAndNum = std::pair; /// Map from debug instruction number to the MachineInstr labelled with that /// number, and its location within the function. Used to transform /// instruction numbers in DBG_INSTR_REFs into machine value numbers. std::map DebugInstrNumToInstr; /// Record of where we observed a DBG_PHI instruction. class DebugPHIRecord { public: uint64_t InstrNum; ///< Instruction number of this DBG_PHI. MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred. ValueIDNum ValueRead; ///< The value number read by the DBG_PHI. LocIdx ReadLoc; ///< Register/Stack location the DBG_PHI reads. operator unsigned() const { return InstrNum; } }; /// Map from instruction numbers defined by DBG_PHIs to a record of what that /// DBG_PHI read and where. Populated and edited during the machine value /// location problem -- we use LLVMs SSA Updater to fix changes by /// optimizations that destroy PHI instructions. SmallVector DebugPHINumToValue; // Map of overlapping variable fragments. OverlapMap OverlapFragments; VarToFragments SeenFragments; /// Tests whether this instruction is a spill to a stack slot. bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); /// Decide if @MI is a spill instruction and return true if it is. We use 2 /// criteria to make this decision: /// - Is this instruction a store to a spill slot? /// - Is there a register operand that is both used and killed? /// TODO: Store optimization can fold spills into other stores (including /// other spills). We do not handle this yet (more than one memory operand). bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg); /// If a given instruction is identified as a spill, return the spill slot /// and set \p Reg to the spilled register. Optional isRestoreInstruction(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg); /// Given a spill instruction, extract the register and offset used to /// address the spill slot in a target independent way. SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); /// Observe a single instruction while stepping through a block. void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr, ValueIDNum **MLiveIns = nullptr); /// Examines whether \p MI is a DBG_VALUE and notifies trackers. /// \returns true if MI was recognized and processed. bool transferDebugValue(const MachineInstr &MI); /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. /// \returns true if MI was recognized and processed. bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts, ValueIDNum **MLiveIns); /// Stores value-information about where this PHI occurred, and what /// instruction number is associated with it. /// \returns true if MI was recognized and processed. bool transferDebugPHI(MachineInstr &MI); /// Examines whether \p MI is copy instruction, and notifies trackers. /// \returns true if MI was recognized and processed. bool transferRegisterCopy(MachineInstr &MI); /// Examines whether \p MI is stack spill or restore instruction, and /// notifies trackers. \returns true if MI was recognized and processed. bool transferSpillOrRestoreInst(MachineInstr &MI); /// Examines \p MI for any registers that it defines, and notifies trackers. void transferRegisterDef(MachineInstr &MI); /// Copy one location to the other, accounting for movement of subregisters /// too. void performCopy(Register Src, Register Dst); void accumulateFragmentMap(MachineInstr &MI); /// Determine the machine value number referred to by (potentially several) /// DBG_PHI instructions. Block duplication and tail folding can duplicate /// DBG_PHIs, shifting the position where values in registers merge, and /// forming another mini-ssa problem to solve. /// \p Here the position of a DBG_INSTR_REF seeking a machine value number /// \p InstrNum Debug instruction number defined by DBG_PHI instructions. /// \returns The machine value number at position Here, or None. Optional resolveDbgPHIs(MachineFunction &MF, ValueIDNum **MLiveOuts, ValueIDNum **MLiveIns, MachineInstr &Here, uint64_t InstrNum); /// Step through the function, recording register definitions and movements /// in an MLocTracker. Convert the observations into a per-block transfer /// function in \p MLocTransfer, suitable for using with the machine value /// location dataflow problem. void produceMLocTransferFunction(MachineFunction &MF, SmallVectorImpl &MLocTransfer, unsigned MaxNumBlocks); /// Solve the machine value location dataflow problem. Takes as input the /// transfer functions in \p MLocTransfer. Writes the output live-in and /// live-out arrays to the (initialized to zero) multidimensional arrays in /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block /// number, the inner by LocIdx. void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs, SmallVectorImpl &MLocTransfer); /// Perform a control flow join (lattice value meet) of the values in machine /// locations at \p MBB. Follows the algorithm described in the file-comment, /// reading live-outs of predecessors from \p OutLocs, the current live ins /// from \p InLocs, and assigning the newly computed live ins back into /// \p InLocs. \returns two bools -- the first indicates whether a change /// was made, the second whether a lattice downgrade occurred. If the latter /// is true, revisiting this block is necessary. std::tuple mlocJoin(MachineBasicBlock &MBB, SmallPtrSet &Visited, ValueIDNum **OutLocs, ValueIDNum *InLocs); /// Solve the variable value dataflow problem, for a single lexical scope. /// Uses the algorithm from the file comment to resolve control flow joins, /// although there are extra hacks, see vlocJoin. Reads the /// locations of values from the \p MInLocs and \p MOutLocs arrays (see /// mlocDataflow) and reads the variable values transfer function from /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally, /// with the live-ins permanently stored to \p Output once the fixedpoint is /// reached. /// \p VarsWeCareAbout contains a collection of the variables in \p Scope /// that we should be tracking. /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations /// through. void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc, const SmallSet &VarsWeCareAbout, SmallPtrSetImpl &AssignBlocks, LiveInsT &Output, ValueIDNum **MOutLocs, ValueIDNum **MInLocs, SmallVectorImpl &AllTheVLocs); /// Compute the live-ins to a block, considering control flow merges according /// to the method in the file comment. Live out and live in variable values /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins /// are modified. /// \p InLocsT Output argument, storage for calculated live-ins. /// \returns two bools -- the first indicates whether a change /// was made, the second whether a lattice downgrade occurred. If the latter /// is true, revisiting this block is necessary. std::tuple vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, SmallPtrSet *VLOCVisited, unsigned BBNum, const SmallSet &AllVars, ValueIDNum **MOutLocs, ValueIDNum **MInLocs, SmallPtrSet &InScopeBlocks, SmallPtrSet &BlocksToExplore, DenseMap &InLocsT); /// Continue exploration of the variable-value lattice, as explained in the /// file-level comment. \p OldLiveInLocation contains the current /// exploration position, from which we need to descend further. \p Values /// contains the set of live-in values, \p CurBlockRPONum the RPO number of /// the current block, and \p CandidateLocations a set of locations that /// should be considered as PHI locations, if we reach the bottom of the /// lattice. \returns true if we should downgrade; the value is the agreeing /// value number in a non-backedge predecessor. bool vlocDowngradeLattice(const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation, const SmallVectorImpl &Values, unsigned CurBlockRPONum); /// For the given block and live-outs feeding into it, try to find a /// machine location where they all join. If a solution for all predecessors /// can't be found, a location where all non-backedge-predecessors join /// will be returned instead. While this method finds a join location, this /// says nothing as to whether it should be used. /// \returns Pair of value ID if found, and true when the correct value /// is available on all predecessor edges, or false if it's only available /// for non-backedge predecessors. std::tuple, bool> pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, ValueIDNum **MInLocs, const SmallVectorImpl &BlockOrders); /// Given the solutions to the two dataflow problems, machine value locations /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the /// TransferTracker class over the function to produce live-in and transfer /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the /// order given by AllVarsNumbering -- this could be any stable order, but /// right now "order of appearence in function, when explored in RPO", so /// that we can compare explictly against VarLocBasedImpl. void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs, ValueIDNum **MInLocs, DenseMap &AllVarsNumbering, const TargetPassConfig &TPC); /// Boilerplate computation of some initial sets, artifical blocks and /// RPOT block ordering. void initialSetup(MachineFunction &MF); bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; public: /// Default construct and initialize the pass. InstrRefBasedLDV(); LLVM_DUMP_METHOD void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; bool isCalleeSaved(LocIdx L) { unsigned Reg = MTracker->LocIdxToLocID[L]; for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) if (CalleeSavedRegs.test(*RAI)) return true; return false; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Implementation //===----------------------------------------------------------------------===// ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; /// Default construct and initialize the pass. InstrRefBasedLDV::InstrRefBasedLDV() {} //===----------------------------------------------------------------------===// // Debug Range Extension Implementation //===----------------------------------------------------------------------===// #ifndef NDEBUG // Something to restore in the future. // void InstrRefBasedLDV::printVarLocInMBB(..) #endif SpillLoc InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { assert(MI.hasOneMemOperand() && "Spill instruction does not have exactly one memory operand?"); auto MMOI = MI.memoperands_begin(); const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); assert(PVal->kind() == PseudoSourceValue::FixedStack && "Inconsistent memory operand in spill instruction"); int FI = cast(PVal)->getFrameIndex(); const MachineBasicBlock *MBB = MI.getParent(); Register Reg; StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); return {Reg, Offset}; } /// End all previous ranges related to @MI and start a new range from @MI /// if it is a DBG_VALUE instr. bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { if (!MI.isDebugValue()) return false; const DILocalVariable *Var = MI.getDebugVariable(); const DIExpression *Expr = MI.getDebugExpression(); const DILocation *DebugLoc = MI.getDebugLoc(); const DILocation *InlinedAt = DebugLoc->getInlinedAt(); assert(Var->isValidLocationForIntrinsic(DebugLoc) && "Expected inlined-at fields to agree"); DebugVariable V(Var, Expr, InlinedAt); DbgValueProperties Properties(MI); // If there are no instructions in this lexical scope, do no location tracking // at all, this variable shouldn't get a legitimate location range. auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); if (Scope == nullptr) return true; // handled it; by doing nothing const MachineOperand &MO = MI.getOperand(0); // MLocTracker needs to know that this register is read, even if it's only // read by a debug inst. if (MO.isReg() && MO.getReg() != 0) (void)MTracker->readReg(MO.getReg()); // If we're preparing for the second analysis (variables), the machine value // locations are already solved, and we report this DBG_VALUE and the value // it refers to to VLocTracker. if (VTracker) { if (MO.isReg()) { // Feed defVar the new variable location, or if this is a // DBG_VALUE $noreg, feed defVar None. if (MO.getReg()) VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); else VTracker->defVar(MI, Properties, None); } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || MI.getOperand(0).isCImm()) { VTracker->defVar(MI, MI.getOperand(0)); } } // If performing final tracking of transfers, report this variable definition // to the TransferTracker too. if (TTracker) TTracker->redefVar(MI); return true; } bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts, ValueIDNum **MLiveIns) { if (!MI.isDebugRef()) return false; // Only handle this instruction when we are building the variable value // transfer function. if (!VTracker) return false; unsigned InstNo = MI.getOperand(0).getImm(); unsigned OpNo = MI.getOperand(1).getImm(); const DILocalVariable *Var = MI.getDebugVariable(); const DIExpression *Expr = MI.getDebugExpression(); const DILocation *DebugLoc = MI.getDebugLoc(); const DILocation *InlinedAt = DebugLoc->getInlinedAt(); assert(Var->isValidLocationForIntrinsic(DebugLoc) && "Expected inlined-at fields to agree"); DebugVariable V(Var, Expr, InlinedAt); auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); if (Scope == nullptr) return true; // Handled by doing nothing. This variable is never in scope. const MachineFunction &MF = *MI.getParent()->getParent(); // Various optimizations may have happened to the value during codegen, // recorded in the value substitution table. Apply any substitutions to // the instruction / operand number in this DBG_INSTR_REF, and collect // any subregister extractions performed during optimization. // Create dummy substitution with Src set, for lookup. auto SoughtSub = MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); SmallVector SeenSubregs; auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); while (LowerBoundIt != MF.DebugValueSubstitutions.end() && LowerBoundIt->Src == SoughtSub.Src) { std::tie(InstNo, OpNo) = LowerBoundIt->Dest; SoughtSub.Src = LowerBoundIt->Dest; if (unsigned Subreg = LowerBoundIt->Subreg) SeenSubregs.push_back(Subreg); LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); } // Default machine value number is -- if no instruction defines // the corresponding value, it must have been optimized out. Optional NewID = None; // Try to lookup the instruction number, and find the machine value number // that it defines. It could be an instruction, or a PHI. auto InstrIt = DebugInstrNumToInstr.find(InstNo); auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(), DebugPHINumToValue.end(), InstNo); if (InstrIt != DebugInstrNumToInstr.end()) { const MachineInstr &TargetInstr = *InstrIt->second.first; uint64_t BlockNo = TargetInstr.getParent()->getNumber(); // Pick out the designated operand. assert(OpNo < TargetInstr.getNumOperands()); const MachineOperand &MO = TargetInstr.getOperand(OpNo); // Today, this can only be a register. assert(MO.isReg() && MO.isDef()); unsigned LocID = MTracker->getLocID(MO.getReg(), false); LocIdx L = MTracker->LocIDToLocIdx[LocID]; NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { // It's actually a PHI value. Which value it is might not be obvious, use // the resolver helper to find out. NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns, MI, InstNo); } // Apply any subregister extractions, in reverse. We might have seen code // like this: // CALL64 @foo, implicit-def $rax // %0:gr64 = COPY $rax // %1:gr32 = COPY %0.sub_32bit // %2:gr16 = COPY %1.sub_16bit // %3:gr8 = COPY %2.sub_8bit // In which case each copy would have been recorded as a substitution with // a subregister qualifier. Apply those qualifiers now. if (NewID && !SeenSubregs.empty()) { unsigned Offset = 0; unsigned Size = 0; // Look at each subregister that we passed through, and progressively // narrow in, accumulating any offsets that occur. Substitutions should // only ever be the same or narrower width than what they read from; // iterate in reverse order so that we go from wide to small. for (unsigned Subreg : reverse(SeenSubregs)) { unsigned ThisSize = TRI->getSubRegIdxSize(Subreg); unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg); Offset += ThisOffset; Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize); } // If that worked, look for an appropriate subregister with the register // where the define happens. Don't look at values that were defined during // a stack write: we can't currently express register locations within // spills. LocIdx L = NewID->getLoc(); if (NewID && !MTracker->isSpill(L)) { // Find the register class for the register where this def happened. // FIXME: no index for this? Register Reg = MTracker->LocIdxToLocID[L]; const TargetRegisterClass *TRC = nullptr; for (auto *TRCI : TRI->regclasses()) if (TRCI->contains(Reg)) TRC = TRCI; assert(TRC && "Couldn't find target register class?"); // If the register we have isn't the right size or in the right place, // Try to find a subregister inside it. unsigned MainRegSize = TRI->getRegSizeInBits(*TRC); if (Size != MainRegSize || Offset) { // Enumerate all subregisters, searching. Register NewReg = 0; for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); unsigned SubregSize = TRI->getSubRegIdxSize(Subreg); unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg); if (SubregSize == Size && SubregOffset == Offset) { NewReg = *SRI; break; } } // If we didn't find anything: there's no way to express our value. if (!NewReg) { NewID = None; } else { // Re-state the value as being defined within the subregister // that we found. LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg); NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); } } } else { // If we can't handle subregisters, unset the new value. NewID = None; } } // We, we have a value number or None. Tell the variable value tracker about // it. The rest of this LiveDebugValues implementation acts exactly the same // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that // aren't immediately available). DbgValueProperties Properties(Expr, false); VTracker->defVar(MI, Properties, NewID); // If we're on the final pass through the function, decompose this INSTR_REF // into a plain DBG_VALUE. if (!TTracker) return true; // Pick a location for the machine value number, if such a location exists. // (This information could be stored in TransferTracker to make it faster). Optional FoundLoc = None; for (auto Location : MTracker->locations()) { LocIdx CurL = Location.Idx; ValueIDNum ID = MTracker->LocIdxToIDNum[CurL]; if (NewID && ID == NewID) { // If this is the first location with that value, pick it. Otherwise, // consider whether it's a "longer term" location. if (!FoundLoc) { FoundLoc = CurL; continue; } if (MTracker->isSpill(CurL)) FoundLoc = CurL; // Spills are a longer term location. else if (!MTracker->isSpill(*FoundLoc) && !MTracker->isSpill(CurL) && !isCalleeSaved(*FoundLoc) && isCalleeSaved(CurL)) FoundLoc = CurL; // Callee saved regs are longer term than normal. } } // Tell transfer tracker that the variable value has changed. TTracker->redefVar(MI, Properties, FoundLoc); // If there was a value with no location; but the value is defined in a // later instruction in this block, this is a block-local use-before-def. if (!FoundLoc && NewID && NewID->getBlock() == CurBB && NewID->getInst() > CurInst) TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. // This DBG_VALUE is potentially a $noreg / undefined location, if // FoundLoc is None. // (XXX -- could morph the DBG_INSTR_REF in the future). MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); TTracker->PendingDbgValues.push_back(DbgMI); TTracker->flushDbgValues(MI.getIterator(), nullptr); return true; } bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { if (!MI.isDebugPHI()) return false; // Analyse these only when solving the machine value location problem. if (VTracker || TTracker) return true; // First operand is the value location, either a stack slot or register. // Second is the debug instruction number of the original PHI. const MachineOperand &MO = MI.getOperand(0); unsigned InstrNum = MI.getOperand(1).getImm(); if (MO.isReg()) { // The value is whatever's currently in the register. Read and record it, // to be analysed later. Register Reg = MO.getReg(); ValueIDNum Num = MTracker->readReg(Reg); auto PHIRec = DebugPHIRecord( {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)}); DebugPHINumToValue.push_back(PHIRec); } else { // The value is whatever's in this stack slot. assert(MO.isFI()); unsigned FI = MO.getIndex(); // If the stack slot is dead, then this was optimized away. // FIXME: stack slot colouring should account for slots that get merged. if (MFI->isDeadObjectIndex(FI)) return true; // Identify this spill slot. Register Base; StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base); SpillLoc SL = {Base, Offs}; Optional Num = MTracker->readSpill(SL); if (!Num) // Nothing ever writes to this slot. Curious, but nothing we can do. return true; // Record this DBG_PHI for later analysis. auto DbgPHI = DebugPHIRecord( {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)}); DebugPHINumToValue.push_back(DbgPHI); } return true; } void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { // Meta Instructions do not affect the debug liveness of any register they // define. if (MI.isImplicitDef()) { // Except when there's an implicit def, and the location it's defining has // no value number. The whole point of an implicit def is to announce that // the register is live, without be specific about it's value. So define // a value if there isn't one already. ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); // Has a legitimate value -> ignore the implicit def. if (Num.getLoc() != 0) return; // Otherwise, def it here. } else if (MI.isMetaInstruction()) return; MachineFunction *MF = MI.getMF(); const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); Register SP = TLI->getStackPointerRegisterToSaveRestore(); // Find the regs killed by MI, and find regmasks of preserved regs. // Max out the number of statically allocated elements in `DeadRegs`, as this // prevents fallback to std::set::count() operations. SmallSet DeadRegs; SmallVector RegMasks; SmallVector RegMaskPtrs; for (const MachineOperand &MO : MI.operands()) { // Determine whether the operand is a register def. if (MO.isReg() && MO.isDef() && MO.getReg() && Register::isPhysicalRegister(MO.getReg()) && !(MI.isCall() && MO.getReg() == SP)) { // Remove ranges of all aliased registers. for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) // FIXME: Can we break out of this loop early if no insertion occurs? DeadRegs.insert(*RAI); } else if (MO.isRegMask()) { RegMasks.push_back(MO.getRegMask()); RegMaskPtrs.push_back(&MO); } } // Tell MLocTracker about all definitions, of regmasks and otherwise. for (uint32_t DeadReg : DeadRegs) MTracker->defReg(DeadReg, CurBB, CurInst); for (auto *MO : RegMaskPtrs) MTracker->writeRegMask(MO, CurBB, CurInst); if (!TTracker) return; // When committing variable values to locations: tell transfer tracker that // we've clobbered things. It may be able to recover the variable from a // different location. // Inform TTracker about any direct clobbers. for (uint32_t DeadReg : DeadRegs) { LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg); TTracker->clobberMloc(Loc, MI.getIterator(), false); } // Look for any clobbers performed by a register mask. Only test locations // that are actually being tracked. for (auto L : MTracker->locations()) { // Stack locations can't be clobbered by regmasks. if (MTracker->isSpill(L.Idx)) continue; Register Reg = MTracker->LocIdxToLocID[L.Idx]; for (auto *MO : RegMaskPtrs) if (MO->clobbersPhysReg(Reg)) TTracker->clobberMloc(L.Idx, MI.getIterator(), false); } } void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); MTracker->setReg(DstRegNum, SrcValue); // In all circumstances, re-def the super registers. It's definitely a new // value now. This doesn't uniquely identify the composition of subregs, for // example, two identical values in subregisters composed in different // places would not get equal value numbers. for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI) MTracker->defReg(*SRI, CurBB, CurInst); // If we're emulating VarLocBasedImpl, just define all the subregisters. // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not // through prior copies. if (EmulateOldLDV) { for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI) MTracker->defReg(DRI.getSubReg(), CurBB, CurInst); return; } // Otherwise, actually copy subregisters from one location to another. // XXX: in addition, any subregisters of DstRegNum that don't line up with // the source register should be def'd. for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { unsigned SrcSubReg = SRI.getSubReg(); unsigned SubRegIdx = SRI.getSubRegIndex(); unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); if (!DstSubReg) continue; // Do copy. There are two matching subregisters, the source value should // have been def'd when the super-reg was, the latter might not be tracked // yet. // This will force SrcSubReg to be tracked, if it isn't yet. (void)MTracker->readReg(SrcSubReg); LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg); assert(SrcL.asU64()); (void)MTracker->readReg(DstSubReg); LocIdx DstL = MTracker->getRegMLoc(DstSubReg); assert(DstL.asU64()); (void)DstL; ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL}; MTracker->setReg(DstSubReg, CpyValue); } } bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, MachineFunction *MF) { // TODO: Handle multiple stores folded into one. if (!MI.hasOneMemOperand()) return false; if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) return false; // This is not a spill instruction, since no valid size was // returned from either function. return true; } bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg) { if (!isSpillInstruction(MI, MF)) return false; int FI; Reg = TII->isStoreToStackSlotPostFE(MI, FI); return Reg != 0; } Optional InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg) { if (!MI.hasOneMemOperand()) return None; // FIXME: Handle folded restore instructions with more than one memory // operand. if (MI.getRestoreSize(TII)) { Reg = MI.getOperand(0).getReg(); return extractSpillBaseRegAndOffset(MI); } return None; } bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { // XXX -- it's too difficult to implement VarLocBasedImpl's stack location // limitations under the new model. Therefore, when comparing them, compare // versions that don't attempt spills or restores at all. if (EmulateOldLDV) return false; MachineFunction *MF = MI.getMF(); unsigned Reg; Optional Loc; LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); // First, if there are any DBG_VALUEs pointing at a spill slot that is // written to, terminate that variable location. The value in memory // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. if (isSpillInstruction(MI, MF)) { Loc = extractSpillBaseRegAndOffset(MI); if (TTracker) { Optional MLoc = MTracker->getSpillMLoc(*Loc); if (MLoc) { // Un-set this location before clobbering, so that we don't salvage // the variable location back to the same place. MTracker->setMLoc(*MLoc, ValueIDNum::EmptyValue); TTracker->clobberMloc(*MLoc, MI.getIterator()); } } } // Try to recognise spill and restore instructions that may transfer a value. if (isLocationSpill(MI, MF, Reg)) { Loc = extractSpillBaseRegAndOffset(MI); auto ValueID = MTracker->readReg(Reg); // If the location is empty, produce a phi, signify it's the live-in value. if (ValueID.getLoc() == 0) ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)}; MTracker->setSpill(*Loc, ValueID); auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc); assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?"); LocIdx SpillLocIdx = *OptSpillLocIdx; // Tell TransferTracker about this spill, produce DBG_VALUEs for it. if (TTracker) TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx, MI.getIterator()); } else { if (!(Loc = isRestoreInstruction(MI, MF, Reg))) return false; // Is there a value to be restored? auto OptValueID = MTracker->readSpill(*Loc); if (OptValueID) { ValueIDNum ValueID = *OptValueID; LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc); // XXX -- can we recover sub-registers of this value? Until we can, first // overwrite all defs of the register being restored to. for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) MTracker->defReg(*RAI, CurBB, CurInst); // Now override the reg we're restoring to. MTracker->setReg(Reg, ValueID); // Report this restore to the transfer tracker too. if (TTracker) TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg), MI.getIterator()); } else { // There isn't anything in the location; not clear if this is a code path // that still runs. Def this register anyway just in case. for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) MTracker->defReg(*RAI, CurBB, CurInst); // Force the spill slot to be tracked. LocIdx L = MTracker->getOrTrackSpillLoc(*Loc); // Set the restored value to be a machine phi number, signifying that it's // whatever the spills live-in value is in this block. Definitely has // a LocIdx due to the setSpill above. ValueIDNum ValueID = {CurBB, 0, L}; MTracker->setReg(Reg, ValueID); MTracker->setSpill(*Loc, ValueID); } } return true; } bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { auto DestSrc = TII->isCopyInstr(MI); if (!DestSrc) return false; const MachineOperand *DestRegOp = DestSrc->Destination; const MachineOperand *SrcRegOp = DestSrc->Source; auto isCalleeSavedReg = [&](unsigned Reg) { for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) if (CalleeSavedRegs.test(*RAI)) return true; return false; }; Register SrcReg = SrcRegOp->getReg(); Register DestReg = DestRegOp->getReg(); // Ignore identity copies. Yep, these make it as far as LiveDebugValues. if (SrcReg == DestReg) return true; // For emulating VarLocBasedImpl: // We want to recognize instructions where destination register is callee // saved register. If register that could be clobbered by the call is // included, there would be a great chance that it is going to be clobbered // soon. It is more likely that previous register, which is callee saved, is // going to stay unclobbered longer, even if it is killed. // // For InstrRefBasedImpl, we can track multiple locations per value, so // ignore this condition. if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) return false; // InstrRefBasedImpl only followed killing copies. if (EmulateOldLDV && !SrcRegOp->isKill()) return false; // Copy MTracker info, including subregs if available. InstrRefBasedLDV::performCopy(SrcReg, DestReg); // Only produce a transfer of DBG_VALUE within a block where old LDV // would have. We might make use of the additional value tracking in some // other way, later. if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), MTracker->getRegMLoc(DestReg), MI.getIterator()); // VarLocBasedImpl would quit tracking the old location after copying. if (EmulateOldLDV && SrcReg != DestReg) MTracker->defReg(SrcReg, CurBB, CurInst); // Finally, the copy might have clobbered variables based on the destination // register. Tell TTracker about it, in case a backup location exists. if (TTracker) { for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI); TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false); } } return true; } /// Accumulate a mapping between each DILocalVariable fragment and other /// fragments of that DILocalVariable which overlap. This reduces work during /// the data-flow stage from "Find any overlapping fragments" to "Check if the /// known-to-overlap fragments are present". /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for /// fragment usage. void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); // If this is the first sighting of this variable, then we are guaranteed // there are currently no overlapping fragments either. Initialize the set // of seen fragments, record no overlaps for the current one, and return. auto SeenIt = SeenFragments.find(MIVar.getVariable()); if (SeenIt == SeenFragments.end()) { SmallSet OneFragment; OneFragment.insert(ThisFragment); SeenFragments.insert({MIVar.getVariable(), OneFragment}); OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); return; } // If this particular Variable/Fragment pair already exists in the overlap // map, it has already been accounted for. auto IsInOLapMap = OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); if (!IsInOLapMap.second) return; auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; auto &AllSeenFragments = SeenIt->second; // Otherwise, examine all other seen fragments for this variable, with "this" // fragment being a previously unseen fragment. Record any pair of // overlapping fragments. for (auto &ASeenFragment : AllSeenFragments) { // Does this previously seen fragment overlap? if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { // Yes: Mark the current fragment as being overlapped. ThisFragmentsOverlaps.push_back(ASeenFragment); // Mark the previously seen fragment as being overlapped by the current // one. auto ASeenFragmentsOverlaps = OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); assert(ASeenFragmentsOverlaps != OverlapFragments.end() && "Previously seen var fragment has no vector of overlaps"); ASeenFragmentsOverlaps->second.push_back(ThisFragment); } } AllSeenFragments.insert(ThisFragment); } void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts, ValueIDNum **MLiveIns) { // Try to interpret an MI as a debug or transfer instruction. Only if it's // none of these should we interpret it's register defs as new value // definitions. if (transferDebugValue(MI)) return; if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) return; if (transferDebugPHI(MI)) return; if (transferRegisterCopy(MI)) return; if (transferSpillOrRestoreInst(MI)) return; transferRegisterDef(MI); } void InstrRefBasedLDV::produceMLocTransferFunction( MachineFunction &MF, SmallVectorImpl &MLocTransfer, unsigned MaxNumBlocks) { // Because we try to optimize around register mask operands by ignoring regs // that aren't currently tracked, we set up something ugly for later: RegMask // operands that are seen earlier than the first use of a register, still need // to clobber that register in the transfer function. But this information // isn't actively recorded. Instead, we track each RegMask used in each block, // and accumulated the clobbered but untracked registers in each block into // the following bitvector. Later, if new values are tracked, we can add // appropriate clobbers. SmallVector BlockMasks; BlockMasks.resize(MaxNumBlocks); // Reserve one bit per register for the masks described above. unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); for (auto &BV : BlockMasks) BV.resize(TRI->getNumRegs(), true); // Step through all instructions and inhale the transfer function. for (auto &MBB : MF) { // Object fields that are read by trackers to know where we are in the // function. CurBB = MBB.getNumber(); CurInst = 1; // Set all machine locations to a PHI value. For transfer function // production only, this signifies the live-in value to the block. MTracker->reset(); MTracker->setMPhis(CurBB); // Step through each instruction in this block. for (auto &MI : MBB) { process(MI); // Also accumulate fragment map. if (MI.isDebugValue()) accumulateFragmentMap(MI); // Create a map from the instruction number (if present) to the // MachineInstr and its position. if (uint64_t InstrNo = MI.peekDebugInstrNum()) { auto InstrAndPos = std::make_pair(&MI, CurInst); auto InsertResult = DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); // There should never be duplicate instruction numbers. assert(InsertResult.second); (void)InsertResult; } ++CurInst; } // Produce the transfer function, a map of machine location to new value. If // any machine location has the live-in phi value from the start of the // block, it's live-through and doesn't need recording in the transfer // function. for (auto Location : MTracker->locations()) { LocIdx Idx = Location.Idx; ValueIDNum &P = Location.Value; if (P.isPHI() && P.getLoc() == Idx.asU64()) continue; // Insert-or-update. auto &TransferMap = MLocTransfer[CurBB]; auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); if (!Result.second) Result.first->second = P; } // Accumulate any bitmask operands into the clobberred reg mask for this // block. for (auto &P : MTracker->Masks) { BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); } } // Compute a bitvector of all the registers that are tracked in this block. const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); Register SP = TLI->getStackPointerRegisterToSaveRestore(); BitVector UsedRegs(TRI->getNumRegs()); for (auto Location : MTracker->locations()) { unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; if (ID >= TRI->getNumRegs() || ID == SP) continue; UsedRegs.set(ID); } // Check that any regmask-clobber of a register that gets tracked, is not // live-through in the transfer function. It needs to be clobbered at the // very least. for (unsigned int I = 0; I < MaxNumBlocks; ++I) { BitVector &BV = BlockMasks[I]; BV.flip(); BV &= UsedRegs; // This produces all the bits that we clobber, but also use. Check that // they're all clobbered or at least set in the designated transfer // elem. for (unsigned Bit : BV.set_bits()) { unsigned ID = MTracker->getLocID(Bit, false); LocIdx Idx = MTracker->LocIDToLocIdx[ID]; auto &TransferMap = MLocTransfer[I]; // Install a value representing the fact that this location is effectively // written to in this block. As there's no reserved value, instead use // a value number that is never generated. Pick the value number for the // first instruction in the block, def'ing this location, which we know // this block never used anyway. ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); if (!Result.second) { ValueIDNum &ValueID = Result.first->second; if (ValueID.getBlock() == I && ValueID.isPHI()) // It was left as live-through. Set it to clobbered. ValueID = NotGeneratedNum; } } } } std::tuple InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB, SmallPtrSet &Visited, ValueIDNum **OutLocs, ValueIDNum *InLocs) { LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); bool Changed = false; bool DowngradeOccurred = false; // Collect predecessors that have been visited. Anything that hasn't been // visited yet is a backedge on the first iteration, and the meet of it's // lattice value for all locations will be unaffected. SmallVector BlockOrders; for (auto Pred : MBB.predecessors()) { if (Visited.count(Pred)) { BlockOrders.push_back(Pred); } } // Visit predecessors in RPOT order. auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { return BBToOrder.find(A)->second < BBToOrder.find(B)->second; }; llvm::sort(BlockOrders, Cmp); // Skip entry block. if (BlockOrders.size() == 0) return std::tuple(false, false); // Step through all machine locations, then look at each predecessor and // detect disagreements. unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second; for (auto Location : MTracker->locations()) { LocIdx Idx = Location.Idx; // Pick out the first predecessors live-out value for this location. It's // guaranteed to be not a backedge, as we order by RPO. ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; // Some flags for whether there's a disagreement, and whether it's a // disagreement with a backedge or not. bool Disagree = false; bool NonBackEdgeDisagree = false; // Loop around everything that wasn't 'base'. for (unsigned int I = 1; I < BlockOrders.size(); ++I) { auto *MBB = BlockOrders[I]; if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) { // Live-out of a predecessor disagrees with the first predecessor. Disagree = true; // Test whether it's a disagreemnt in the backedges or not. if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e NonBackEdgeDisagree = true; } } bool OverRide = false; if (Disagree && !NonBackEdgeDisagree) { // Only the backedges disagree. Consider demoting the livein // lattice value, as per the file level comment. The value we consider // demoting to is the value that the non-backedge predecessors agree on. // The order of values is that non-PHIs are \top, a PHI at this block // \bot, and phis between the two are ordered by their RPO number. // If there's no agreement, or we've already demoted to this PHI value // before, replace with a PHI value at this block. // Calculate order numbers: zero means normal def, nonzero means RPO // number. unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1; if (!BaseVal.isPHI()) BaseBlockRPONum = 0; ValueIDNum &InLocID = InLocs[Idx.asU64()]; unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1; if (!InLocID.isPHI()) InLocRPONum = 0; // Should we ignore the disagreeing backedges, and override with the // value the other predecessors agree on (in "base")? unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1; if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) { // Override. OverRide = true; DowngradeOccurred = true; } } // else: if we disagree in the non-backedges, then this is definitely // a control flow merge where different values merge. Make it a PHI. // Generate a phi... ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx}; ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal; if (InLocs[Idx.asU64()] != NewVal) { Changed |= true; InLocs[Idx.asU64()] = NewVal; } } // TODO: Reimplement NumInserted and NumRemoved. return std::tuple(Changed, DowngradeOccurred); } void InstrRefBasedLDV::mlocDataflow( ValueIDNum **MInLocs, ValueIDNum **MOutLocs, SmallVectorImpl &MLocTransfer) { std::priority_queue, std::greater> Worklist, Pending; // We track what is on the current and pending worklist to avoid inserting // the same thing twice. We could avoid this with a custom priority queue, // but this is probably not worth it. SmallPtrSet OnPending, OnWorklist; // Initialize worklist with every block to be visited. for (unsigned int I = 0; I < BBToOrder.size(); ++I) { Worklist.push(I); OnWorklist.insert(OrderToBB[I]); } MTracker->reset(); // Set inlocs for entry block -- each as a PHI at the entry block. Represents // the incoming value to the function. MTracker->setMPhis(0); for (auto Location : MTracker->locations()) MInLocs[0][Location.Idx.asU64()] = Location.Value; SmallPtrSet Visited; while (!Worklist.empty() || !Pending.empty()) { // Vector for storing the evaluated block transfer function. SmallVector, 32> ToRemap; while (!Worklist.empty()) { MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; CurBB = MBB->getNumber(); Worklist.pop(); // Join the values in all predecessor blocks. bool InLocsChanged, DowngradeOccurred; std::tie(InLocsChanged, DowngradeOccurred) = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); InLocsChanged |= Visited.insert(MBB).second; // If a downgrade occurred, book us in for re-examination on the next // iteration. if (DowngradeOccurred && OnPending.insert(MBB).second) Pending.push(BBToOrder[MBB]); // Don't examine transfer function if we've visited this loc at least // once, and inlocs haven't changed. if (!InLocsChanged) continue; // Load the current set of live-ins into MLocTracker. MTracker->loadFromArray(MInLocs[CurBB], CurBB); // Each element of the transfer function can be a new def, or a read of // a live-in value. Evaluate each element, and store to "ToRemap". ToRemap.clear(); for (auto &P : MLocTransfer[CurBB]) { if (P.second.getBlock() == CurBB && P.second.isPHI()) { // This is a movement of whatever was live in. Read it. ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc()); ToRemap.push_back(std::make_pair(P.first, NewID)); } else { // It's a def. Just set it. assert(P.second.getBlock() == CurBB); ToRemap.push_back(std::make_pair(P.first, P.second)); } } // Commit the transfer function changes into mloc tracker, which // transforms the contents of the MLocTracker into the live-outs. for (auto &P : ToRemap) MTracker->setMLoc(P.first, P.second); // Now copy out-locs from mloc tracker into out-loc vector, checking // whether changes have occurred. These changes can have come from both // the transfer function, and mlocJoin. bool OLChanged = false; for (auto Location : MTracker->locations()) { OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; } MTracker->reset(); // No need to examine successors again if out-locs didn't change. if (!OLChanged) continue; // All successors should be visited: put any back-edges on the pending // list for the next dataflow iteration, and any other successors to be // visited this iteration, if they're not going to be already. for (auto s : MBB->successors()) { // Does branching to this successor represent a back-edge? if (BBToOrder[s] > BBToOrder[MBB]) { // No: visit it during this dataflow iteration. if (OnWorklist.insert(s).second) Worklist.push(BBToOrder[s]); } else { // Yes: visit it on the next iteration. if (OnPending.insert(s).second) Pending.push(BBToOrder[s]); } } } Worklist.swap(Pending); std::swap(OnPending, OnWorklist); OnPending.clear(); // At this point, pending must be empty, since it was just the empty // worklist assert(Pending.empty() && "Pending should be empty"); } // Once all the live-ins don't change on mlocJoin(), we've reached a // fixedpoint. } bool InstrRefBasedLDV::vlocDowngradeLattice( const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation, const SmallVectorImpl &Values, unsigned CurBlockRPONum) { // Ranking value preference: see file level comment, the highest rank is // a plain def, followed by PHI values in reverse post-order. Numerically, // we assign all defs the rank '0', all PHIs their blocks RPO number plus // one, and consider the lowest value the highest ranked. int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1; if (!OldLiveInLocation.ID.isPHI()) OldLiveInRank = 0; // Allow any unresolvable conflict to be over-ridden. if (OldLiveInLocation.Kind == DbgValue::NoVal) { // Although if it was an unresolvable conflict from _this_ block, then // all other seeking of downgrades and PHIs must have failed before hand. if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber()) return false; OldLiveInRank = INT_MIN; } auto &InValue = *Values[0].second; if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal) return false; unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()]; int ThisRank = ThisRPO + 1; if (!InValue.ID.isPHI()) ThisRank = 0; // Too far down the lattice? if (ThisRPO >= CurBlockRPONum) return false; // Higher in the lattice than what we've already explored? if (ThisRank <= OldLiveInRank) return false; return true; } std::tuple, bool> InstrRefBasedLDV::pickVPHILoc( MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, ValueIDNum **MInLocs, const SmallVectorImpl &BlockOrders) { // Collect a set of locations from predecessor where its live-out value can // be found. SmallVector, 8> Locs; unsigned NumLocs = MTracker->getNumLocs(); unsigned BackEdgesStart = 0; for (auto p : BlockOrders) { // Pick out where backedges start in the list of predecessors. Relies on // BlockOrders being sorted by RPO. if (BBToOrder[p] < BBToOrder[&MBB]) ++BackEdgesStart; // For each predecessor, create a new set of locations. Locs.resize(Locs.size() + 1); unsigned ThisBBNum = p->getNumber(); auto LiveOutMap = LiveOuts.find(p); if (LiveOutMap == LiveOuts.end()) // This predecessor isn't in scope, it must have no live-in/live-out // locations. continue; auto It = LiveOutMap->second->find(Var); if (It == LiveOutMap->second->end()) // There's no value recorded for this variable in this predecessor, // leave an empty set of locations. continue; const DbgValue &OutVal = It->second; if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) // Consts and no-values cannot have locations we can join on. continue; assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def); ValueIDNum ValToLookFor = OutVal.ID; // Search the live-outs of the predecessor for the specified value. for (unsigned int I = 0; I < NumLocs; ++I) { if (MOutLocs[ThisBBNum][I] == ValToLookFor) Locs.back().push_back(LocIdx(I)); } } // If there were no locations at all, return an empty result. if (Locs.empty()) return std::tuple, bool>(None, false); // Lambda for seeking a common location within a range of location-sets. using LocsIt = SmallVector, 8>::iterator; auto SeekLocation = [&Locs](llvm::iterator_range SearchRange) -> Optional { // Starting with the first set of locations, take the intersection with // subsequent sets. SmallVector base = Locs[0]; for (auto &S : SearchRange) { SmallVector new_base; std::set_intersection(base.begin(), base.end(), S.begin(), S.end(), std::inserter(new_base, new_base.begin())); base = new_base; } if (base.empty()) return None; // We now have a set of LocIdxes that contain the right output value in // each of the predecessors. Pick the lowest; if there's a register loc, // that'll be it. return *base.begin(); }; // Search for a common location for all predecessors. If we can't, then fall // back to only finding a common location between non-backedge predecessors. bool ValidForAllLocs = true; auto TheLoc = SeekLocation(Locs); if (!TheLoc) { ValidForAllLocs = false; TheLoc = SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart)); } if (!TheLoc) return std::tuple, bool>(None, false); // Return a PHI-value-number for the found location. LocIdx L = *TheLoc; ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; return std::tuple, bool>(PHIVal, ValidForAllLocs); } std::tuple InstrRefBasedLDV::vlocJoin( MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, SmallPtrSet *VLOCVisited, unsigned BBNum, const SmallSet &AllVars, ValueIDNum **MOutLocs, ValueIDNum **MInLocs, SmallPtrSet &InScopeBlocks, SmallPtrSet &BlocksToExplore, DenseMap &InLocsT) { bool DowngradeOccurred = false; // To emulate VarLocBasedImpl, process this block if it's not in scope but // _does_ assign a variable value. No live-ins for this scope are transferred // in though, so we can return immediately. if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) { if (VLOCVisited) return std::tuple(true, false); return std::tuple(false, false); } LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); bool Changed = false; // Find any live-ins computed in a prior iteration. auto ILSIt = VLOCInLocs.find(&MBB); assert(ILSIt != VLOCInLocs.end()); auto &ILS = *ILSIt->second; // Order predecessors by RPOT order, for exploring them in that order. SmallVector BlockOrders(MBB.predecessors()); auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { return BBToOrder[A] < BBToOrder[B]; }; llvm::sort(BlockOrders, Cmp); unsigned CurBlockRPONum = BBToOrder[&MBB]; // Force a re-visit to loop heads in the first dataflow iteration. // FIXME: if we could "propose" Const values this wouldn't be needed, // because they'd need to be confirmed before being emitted. if (!BlockOrders.empty() && BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum && VLOCVisited) DowngradeOccurred = true; auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) { auto Result = InLocsT.insert(std::make_pair(DV, VR)); (void)Result; assert(Result.second); }; auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) { DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal); ConfirmValue(Var, NoLocPHIVal); }; // Attempt to join the values for each variable. for (auto &Var : AllVars) { // Collect all the DbgValues for this variable. SmallVector Values; bool Bail = false; unsigned BackEdgesStart = 0; for (auto p : BlockOrders) { // If the predecessor isn't in scope / to be explored, we'll never be // able to join any locations. if (!BlocksToExplore.contains(p)) { Bail = true; break; } // Don't attempt to handle unvisited predecessors: they're implicitly // "unknown"s in the lattice. if (VLOCVisited && !VLOCVisited->count(p)) continue; // If the predecessors OutLocs is absent, there's not much we can do. auto OL = VLOCOutLocs.find(p); if (OL == VLOCOutLocs.end()) { Bail = true; break; } // No live-out value for this predecessor also means we can't produce // a joined value. auto VIt = OL->second->find(Var); if (VIt == OL->second->end()) { Bail = true; break; } // Keep track of where back-edges begin in the Values vector. Relies on // BlockOrders being sorted by RPO. unsigned ThisBBRPONum = BBToOrder[p]; if (ThisBBRPONum < CurBlockRPONum) ++BackEdgesStart; Values.push_back(std::make_pair(p, &VIt->second)); } // If there were no values, or one of the predecessors couldn't have a // value, then give up immediately. It's not safe to produce a live-in // value. if (Bail || Values.size() == 0) continue; // Enumeration identifying the current state of the predecessors values. enum { Unset = 0, Agreed, // All preds agree on the variable value. PropDisagree, // All preds agree, but the value kind is Proposed in some. BEDisagree, // Only back-edges disagree on variable value. PHINeeded, // Non-back-edge predecessors have conflicing values. NoSolution // Conflicting Value metadata makes solution impossible. } OurState = Unset; // All (non-entry) blocks have at least one non-backedge predecessor. // Pick the variable value from the first of these, to compare against // all others. const DbgValue &FirstVal = *Values[0].second; const ValueIDNum &FirstID = FirstVal.ID; // Scan for variable values that can't be resolved: if they have different // DIExpressions, different indirectness, or are mixed constants / // non-constants. for (auto &V : Values) { if (V.second->Properties != FirstVal.Properties) OurState = NoSolution; if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) OurState = NoSolution; } // Flags diagnosing _how_ the values disagree. bool NonBackEdgeDisagree = false; bool DisagreeOnPHINess = false; bool IDDisagree = false; bool Disagree = false; if (OurState == Unset) { for (auto &V : Values) { if (*V.second == FirstVal) continue; // No disagreement. Disagree = true; // Flag whether the value number actually diagrees. if (V.second->ID != FirstID) IDDisagree = true; // Distinguish whether disagreement happens in backedges or not. // Relies on Values (and BlockOrders) being sorted by RPO. unsigned ThisBBRPONum = BBToOrder[V.first]; if (ThisBBRPONum < CurBlockRPONum) NonBackEdgeDisagree = true; // Is there a difference in whether the value is definite or only // proposed? if (V.second->Kind != FirstVal.Kind && (V.second->Kind == DbgValue::Proposed || V.second->Kind == DbgValue::Def) && (FirstVal.Kind == DbgValue::Proposed || FirstVal.Kind == DbgValue::Def)) DisagreeOnPHINess = true; } // Collect those flags together and determine an overall state for // what extend the predecessors agree on a live-in value. if (!Disagree) OurState = Agreed; else if (!IDDisagree && DisagreeOnPHINess) OurState = PropDisagree; else if (!NonBackEdgeDisagree) OurState = BEDisagree; else OurState = PHINeeded; } // An extra indicator: if we only disagree on whether the value is a // Def, or proposed, then also flag whether that disagreement happens // in backedges only. bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess && !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def; const auto &Properties = FirstVal.Properties; auto OldLiveInIt = ILS.find(Var); const DbgValue *OldLiveInLocation = (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr; bool OverRide = false; if (OurState == BEDisagree && OldLiveInLocation) { // Only backedges disagree: we can consider downgrading. If there was a // previous live-in value, use it to work out whether the current // incoming value represents a lattice downgrade or not. OverRide = vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum); } // Use the current state of predecessor agreement and other flags to work // out what to do next. Possibilities include: // * Accept a value all predecessors agree on, or accept one that // represents a step down the exploration lattice, // * Use a PHI value number, if one can be found, // * Propose a PHI value number, and see if it gets confirmed later, // * Emit a 'NoVal' value, indicating we couldn't resolve anything. if (OurState == Agreed) { // Easiest solution: all predecessors agree on the variable value. ConfirmValue(Var, FirstVal); } else if (OurState == BEDisagree && OverRide) { // Only backedges disagree, and the other predecessors have produced // a new live-in value further down the exploration lattice. DowngradeOccurred = true; ConfirmValue(Var, FirstVal); } else if (OurState == PropDisagree) { // Predecessors agree on value, but some say it's only a proposed value. // Propagate it as proposed: unless it was proposed in this block, in // which case we're able to confirm the value. if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) { ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); } else if (PropOnlyInBEs) { // If only backedges disagree, a higher (in RPO) block confirmed this // location, and we need to propagate it into this loop. ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); } else { // Otherwise; a Def meeting a Proposed is still a Proposed. ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed)); } } else if ((OurState == PHINeeded || OurState == BEDisagree)) { // Predecessors disagree and can't be downgraded: this can only be // solved with a PHI. Use pickVPHILoc to go look for one. Optional VPHI; bool AllEdgesVPHI = false; std::tie(VPHI, AllEdgesVPHI) = pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders); if (VPHI && AllEdgesVPHI) { // There's a PHI value that's valid for all predecessors -- we can use // it. If any of the non-backedge predecessors have proposed values // though, this PHI is also only proposed, until the predecessors are // confirmed. DbgValue::KindT K = DbgValue::Def; for (unsigned int I = 0; I < BackEdgesStart; ++I) if (Values[I].second->Kind == DbgValue::Proposed) K = DbgValue::Proposed; ConfirmValue(Var, DbgValue(*VPHI, Properties, K)); } else if (VPHI) { // There's a PHI value, but it's only legal for backedges. Leave this // as a proposed PHI value: it might come back on the backedges, // and allow us to confirm it in the future. DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed); ConfirmValue(Var, NoBEValue); } else { ConfirmNoVal(Var, Properties); } } else { // Otherwise: we don't know. Emit a "phi but no real loc" phi. ConfirmNoVal(Var, Properties); } } // Store newly calculated in-locs into VLOCInLocs, if they've changed. Changed = ILS != InLocsT; if (Changed) ILS = InLocsT; return std::tuple(Changed, DowngradeOccurred); } void InstrRefBasedLDV::vlocDataflow( const LexicalScope *Scope, const DILocation *DILoc, const SmallSet &VarsWeCareAbout, SmallPtrSetImpl &AssignBlocks, LiveInsT &Output, ValueIDNum **MOutLocs, ValueIDNum **MInLocs, SmallVectorImpl &AllTheVLocs) { // This method is much like mlocDataflow: but focuses on a single // LexicalScope at a time. Pick out a set of blocks and variables that are // to have their value assignments solved, then run our dataflow algorithm // until a fixedpoint is reached. std::priority_queue, std::greater> Worklist, Pending; SmallPtrSet OnWorklist, OnPending; // The set of blocks we'll be examining. SmallPtrSet BlocksToExplore; // The order in which to examine them (RPO). SmallVector BlockOrders; // RPO ordering function. auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { return BBToOrder[A] < BBToOrder[B]; }; LS.getMachineBasicBlocks(DILoc, BlocksToExplore); // A separate container to distinguish "blocks we're exploring" versus // "blocks that are potentially in scope. See comment at start of vlocJoin. SmallPtrSet InScopeBlocks = BlocksToExplore; // Old LiveDebugValues tracks variable locations that come out of blocks // not in scope, where DBG_VALUEs occur. This is something we could // legitimately ignore, but lets allow it for now. if (EmulateOldLDV) BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); // We also need to propagate variable values through any artificial blocks // that immediately follow blocks in scope. DenseSet ToAdd; // Helper lambda: For a given block in scope, perform a depth first search // of all the artificial successors, adding them to the ToAdd collection. auto AccumulateArtificialBlocks = [this, &ToAdd, &BlocksToExplore, &InScopeBlocks](const MachineBasicBlock *MBB) { // Depth-first-search state: each node is a block and which successor // we're currently exploring. SmallVector, 8> DFS; // Find any artificial successors not already tracked. for (auto *succ : MBB->successors()) { if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) continue; if (!ArtificialBlocks.count(succ)) continue; DFS.push_back(std::make_pair(succ, succ->succ_begin())); ToAdd.insert(succ); } // Search all those blocks, depth first. while (!DFS.empty()) { const MachineBasicBlock *CurBB = DFS.back().first; MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; // Walk back if we've explored this blocks successors to the end. if (CurSucc == CurBB->succ_end()) { DFS.pop_back(); continue; } // If the current successor is artificial and unexplored, descend into // it. if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); ToAdd.insert(*CurSucc); continue; } ++CurSucc; } }; // Search in-scope blocks and those containing a DBG_VALUE from this scope // for artificial successors. for (auto *MBB : BlocksToExplore) AccumulateArtificialBlocks(MBB); for (auto *MBB : InScopeBlocks) AccumulateArtificialBlocks(MBB); BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); // Single block scope: not interesting! No propagation at all. Note that // this could probably go above ArtificialBlocks without damage, but // that then produces output differences from original-live-debug-values, // which propagates from a single block into many artificial ones. if (BlocksToExplore.size() == 1) return; // Picks out relevants blocks RPO order and sort them. for (auto *MBB : BlocksToExplore) BlockOrders.push_back(const_cast(MBB)); llvm::sort(BlockOrders, Cmp); unsigned NumBlocks = BlockOrders.size(); // Allocate some vectors for storing the live ins and live outs. Large. SmallVector, 32> LiveIns, LiveOuts; LiveIns.resize(NumBlocks); LiveOuts.resize(NumBlocks); // Produce by-MBB indexes of live-in/live-outs, to ease lookup within // vlocJoin. LiveIdxT LiveOutIdx, LiveInIdx; LiveOutIdx.reserve(NumBlocks); LiveInIdx.reserve(NumBlocks); for (unsigned I = 0; I < NumBlocks; ++I) { LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; LiveInIdx[BlockOrders[I]] = &LiveIns[I]; } for (auto *MBB : BlockOrders) { Worklist.push(BBToOrder[MBB]); OnWorklist.insert(MBB); } // Iterate over all the blocks we selected, propagating variable values. bool FirstTrip = true; SmallPtrSet VLOCVisited; while (!Worklist.empty() || !Pending.empty()) { while (!Worklist.empty()) { auto *MBB = OrderToBB[Worklist.top()]; CurBB = MBB->getNumber(); Worklist.pop(); DenseMap JoinedInLocs; // Join values from predecessors. Updates LiveInIdx, and writes output // into JoinedInLocs. bool InLocsChanged, DowngradeOccurred; std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin( *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr, CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks, BlocksToExplore, JoinedInLocs); bool FirstVisit = VLOCVisited.insert(MBB).second; // Always explore transfer function if inlocs changed, or if we've not // visited this block before. InLocsChanged |= FirstVisit; // If a downgrade occurred, book us in for re-examination on the next // iteration. if (DowngradeOccurred && OnPending.insert(MBB).second) Pending.push(BBToOrder[MBB]); if (!InLocsChanged) continue; // Do transfer function. auto &VTracker = AllTheVLocs[MBB->getNumber()]; for (auto &Transfer : VTracker.Vars) { // Is this var we're mangling in this scope? if (VarsWeCareAbout.count(Transfer.first)) { // Erase on empty transfer (DBG_VALUE $noreg). if (Transfer.second.Kind == DbgValue::Undef) { JoinedInLocs.erase(Transfer.first); } else { // Insert new variable value; or overwrite. auto NewValuePair = std::make_pair(Transfer.first, Transfer.second); auto Result = JoinedInLocs.insert(NewValuePair); if (!Result.second) Result.first->second = Transfer.second; } } } // Did the live-out locations change? bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB]; // If they haven't changed, there's no need to explore further. if (!OLChanged) continue; // Commit to the live-out record. *LiveOutIdx[MBB] = JoinedInLocs; // We should visit all successors. Ensure we'll visit any non-backedge // successors during this dataflow iteration; book backedge successors // to be visited next time around. for (auto s : MBB->successors()) { // Ignore out of scope / not-to-be-explored successors. if (LiveInIdx.find(s) == LiveInIdx.end()) continue; if (BBToOrder[s] > BBToOrder[MBB]) { if (OnWorklist.insert(s).second) Worklist.push(BBToOrder[s]); } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { Pending.push(BBToOrder[s]); } } } Worklist.swap(Pending); std::swap(OnWorklist, OnPending); OnPending.clear(); assert(Pending.empty()); FirstTrip = false; } // Dataflow done. Now what? Save live-ins. Ignore any that are still marked // as being variable-PHIs, because those did not have their machine-PHI // value confirmed. Such variable values are places that could have been // PHIs, but are not. for (auto *MBB : BlockOrders) { auto &VarMap = *LiveInIdx[MBB]; for (auto &P : VarMap) { if (P.second.Kind == DbgValue::Proposed || P.second.Kind == DbgValue::NoVal) continue; Output[MBB->getNumber()].push_back(P); } } BlockOrders.clear(); BlocksToExplore.clear(); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void InstrRefBasedLDV::dump_mloc_transfer( const MLocTransferMap &mloc_transfer) const { for (auto &P : mloc_transfer) { std::string foo = MTracker->LocIdxToName(P.first); std::string bar = MTracker->IDAsString(P.second); dbgs() << "Loc " << foo << " --> " << bar << "\n"; } } #endif void InstrRefBasedLDV::emitLocations( MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs, ValueIDNum **MInLocs, DenseMap &AllVarsNumbering, const TargetPassConfig &TPC) { TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC); unsigned NumLocs = MTracker->getNumLocs(); // For each block, load in the machine value locations and variable value // live-ins, then step through each instruction in the block. New DBG_VALUEs // to be inserted will be created along the way. for (MachineBasicBlock &MBB : MF) { unsigned bbnum = MBB.getNumber(); MTracker->reset(); MTracker->loadFromArray(MInLocs[bbnum], bbnum); TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], NumLocs); CurBB = bbnum; CurInst = 1; for (auto &MI : MBB) { process(MI, MOutLocs, MInLocs); TTracker->checkInstForNewValues(CurInst, MI.getIterator()); ++CurInst; } } // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer // in DWARF in different orders. Use the order that they appear when walking // through each block / each instruction, stored in AllVarsNumbering. auto OrderDbgValues = [&](const MachineInstr *A, const MachineInstr *B) -> bool { DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), A->getDebugLoc()->getInlinedAt()); DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), B->getDebugLoc()->getInlinedAt()); return AllVarsNumbering.find(VarA)->second < AllVarsNumbering.find(VarB)->second; }; // Go through all the transfers recorded in the TransferTracker -- this is // both the live-ins to a block, and any movements of values that happen // in the middle. for (auto &P : TTracker->Transfers) { // Sort them according to appearance order. llvm::sort(P.Insts, OrderDbgValues); // Insert either before or after the designated point... if (P.MBB) { MachineBasicBlock &MBB = *P.MBB; for (auto *MI : P.Insts) { MBB.insert(P.Pos, MI); } } else { // Terminators, like tail calls, can clobber things. Don't try and place // transfers after them. if (P.Pos->isTerminator()) continue; MachineBasicBlock &MBB = *P.Pos->getParent(); for (auto *MI : P.Insts) { MBB.insertAfterBundle(P.Pos, MI); } } } } void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { // Build some useful data structures. auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { if (const DebugLoc &DL = MI.getDebugLoc()) return DL.getLine() != 0; return false; }; // Collect a set of all the artificial blocks. for (auto &MBB : MF) if (none_of(MBB.instrs(), hasNonArtificialLocation)) ArtificialBlocks.insert(&MBB); // Compute mappings of block <=> RPO order. ReversePostOrderTraversal RPOT(&MF); unsigned int RPONumber = 0; for (MachineBasicBlock *MBB : RPOT) { OrderToBB[RPONumber] = MBB; BBToOrder[MBB] = RPONumber; BBNumToRPO[MBB->getNumber()] = RPONumber; ++RPONumber; } // Order value substitutions by their "source" operand pair, for quick lookup. llvm::sort(MF.DebugValueSubstitutions); #ifdef EXPENSIVE_CHECKS // As an expensive check, test whether there are any duplicate substitution // sources in the collection. if (MF.DebugValueSubstitutions.size() > 2) { for (auto It = MF.DebugValueSubstitutions.begin(); It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { assert(It->Src != std::next(It)->Src && "Duplicate variable location " "substitution seen"); } } #endif } /// Calculate the liveness information for the given machine function and /// extend ranges across basic blocks. bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) { // No subprogram means this function contains no debuginfo. if (!MF.getFunction().getSubprogram()) return false; LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); this->TPC = TPC; TRI = MF.getSubtarget().getRegisterInfo(); TII = MF.getSubtarget().getInstrInfo(); TFI = MF.getSubtarget().getFrameLowering(); TFI->getCalleeSaves(MF, CalleeSavedRegs); MFI = &MF.getFrameInfo(); LS.initialize(MF); MTracker = new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); VTracker = nullptr; TTracker = nullptr; SmallVector MLocTransfer; SmallVector vlocs; LiveInsT SavedLiveIns; int MaxNumBlocks = -1; for (auto &MBB : MF) MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); assert(MaxNumBlocks >= 0); ++MaxNumBlocks; MLocTransfer.resize(MaxNumBlocks); vlocs.resize(MaxNumBlocks); SavedLiveIns.resize(MaxNumBlocks); initialSetup(MF); produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); // Allocate and initialize two array-of-arrays for the live-in and live-out // machine values. The outer dimension is the block number; while the inner // dimension is a LocIdx from MLocTracker. ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; unsigned NumLocs = MTracker->getNumLocs(); for (int i = 0; i < MaxNumBlocks; ++i) { MOutLocs[i] = new ValueIDNum[NumLocs]; MInLocs[i] = new ValueIDNum[NumLocs]; } // Solve the machine value dataflow problem using the MLocTransfer function, // storing the computed live-ins / live-outs into the array-of-arrays. We use // both live-ins and live-outs for decision making in the variable value // dataflow problem. mlocDataflow(MInLocs, MOutLocs, MLocTransfer); // Patch up debug phi numbers, turning unknown block-live-in values into // either live-through machine values, or PHIs. for (auto &DBG_PHI : DebugPHINumToValue) { // Identify unresolved block-live-ins. ValueIDNum &Num = DBG_PHI.ValueRead; if (!Num.isPHI()) continue; unsigned BlockNo = Num.getBlock(); LocIdx LocNo = Num.getLoc(); Num = MInLocs[BlockNo][LocNo.asU64()]; } // Later, we'll be looking up ranges of instruction numbers. llvm::sort(DebugPHINumToValue); // Walk back through each block / instruction, collecting DBG_VALUE // instructions and recording what machine value their operands refer to. for (auto &OrderPair : OrderToBB) { MachineBasicBlock &MBB = *OrderPair.second; CurBB = MBB.getNumber(); VTracker = &vlocs[CurBB]; VTracker->MBB = &MBB; MTracker->loadFromArray(MInLocs[CurBB], CurBB); CurInst = 1; for (auto &MI : MBB) { process(MI, MOutLocs, MInLocs); ++CurInst; } MTracker->reset(); } // Number all variables in the order that they appear, to be used as a stable // insertion order later. DenseMap AllVarsNumbering; // Map from one LexicalScope to all the variables in that scope. DenseMap> ScopeToVars; // Map from One lexical scope to all blocks in that scope. DenseMap> ScopeToBlocks; // Store a DILocation that describes a scope. DenseMap ScopeToDILocation; // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise // the order is unimportant, it just has to be stable. for (unsigned int I = 0; I < OrderToBB.size(); ++I) { auto *MBB = OrderToBB[I]; auto *VTracker = &vlocs[MBB->getNumber()]; // Collect each variable with a DBG_VALUE in this block. for (auto &idx : VTracker->Vars) { const auto &Var = idx.first; const DILocation *ScopeLoc = VTracker->Scopes[Var]; assert(ScopeLoc != nullptr); auto *Scope = LS.findLexicalScope(ScopeLoc); // No insts in scope -> shouldn't have been recorded. assert(Scope != nullptr); AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); ScopeToVars[Scope].insert(Var); ScopeToBlocks[Scope].insert(VTracker->MBB); ScopeToDILocation[Scope] = ScopeLoc; } } // OK. Iterate over scopes: there might be something to be said for // ordering them by size/locality, but that's for the future. For each scope, // solve the variable value problem, producing a map of variables to values // in SavedLiveIns. for (auto &P : ScopeToVars) { vlocDataflow(P.first, ScopeToDILocation[P.first], P.second, ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, vlocs); } // Using the computed value locations and variable values for each block, // create the DBG_VALUE instructions representing the extended variable // locations. emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC); for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { delete[] MOutLocs[Idx]; delete[] MInLocs[Idx]; } delete[] MOutLocs; delete[] MInLocs; // Did we actually make any changes? If we created any DBG_VALUEs, then yes. bool Changed = TTracker->Transfers.size() != 0; delete MTracker; delete TTracker; MTracker = nullptr; VTracker = nullptr; TTracker = nullptr; ArtificialBlocks.clear(); OrderToBB.clear(); BBToOrder.clear(); BBNumToRPO.clear(); DebugInstrNumToInstr.clear(); DebugPHINumToValue.clear(); return Changed; } LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { return new InstrRefBasedLDV(); } namespace { class LDVSSABlock; class LDVSSAUpdater; // Pick a type to identify incoming block values as we construct SSA. We // can't use anything more robust than an integer unfortunately, as SSAUpdater // expects to zero-initialize the type. typedef uint64_t BlockValueNum; /// Represents an SSA PHI node for the SSA updater class. Contains the block /// this PHI is in, the value number it would have, and the expected incoming /// values from parent blocks. class LDVSSAPhi { public: SmallVector, 4> IncomingValues; LDVSSABlock *ParentBlock; BlockValueNum PHIValNum; LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} LDVSSABlock *getParent() { return ParentBlock; } }; /// Thin wrapper around a block predecessor iterator. Only difference from a /// normal block iterator is that it dereferences to an LDVSSABlock. class LDVSSABlockIterator { public: MachineBasicBlock::pred_iterator PredIt; LDVSSAUpdater &Updater; LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, LDVSSAUpdater &Updater) : PredIt(PredIt), Updater(Updater) {} bool operator!=(const LDVSSABlockIterator &OtherIt) const { return OtherIt.PredIt != PredIt; } LDVSSABlockIterator &operator++() { ++PredIt; return *this; } LDVSSABlock *operator*(); }; /// Thin wrapper around a block for SSA Updater interface. Necessary because /// we need to track the PHI value(s) that we may have observed as necessary /// in this block. class LDVSSABlock { public: MachineBasicBlock &BB; LDVSSAUpdater &Updater; using PHIListT = SmallVector; /// List of PHIs in this block. There should only ever be one. PHIListT PHIList; LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) : BB(BB), Updater(Updater) {} LDVSSABlockIterator succ_begin() { return LDVSSABlockIterator(BB.succ_begin(), Updater); } LDVSSABlockIterator succ_end() { return LDVSSABlockIterator(BB.succ_end(), Updater); } /// SSAUpdater has requested a PHI: create that within this block record. LDVSSAPhi *newPHI(BlockValueNum Value) { PHIList.emplace_back(Value, this); return &PHIList.back(); } /// SSAUpdater wishes to know what PHIs already exist in this block. PHIListT &phis() { return PHIList; } }; /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to // SSAUpdaterTraits. class LDVSSAUpdater { public: /// Map of value numbers to PHI records. DenseMap PHIs; /// Map of which blocks generate Undef values -- blocks that are not /// dominated by any Def. DenseMap UndefMap; /// Map of machine blocks to our own records of them. DenseMap BlockMap; /// Machine location where any PHI must occur. LocIdx Loc; /// Table of live-in machine value numbers for blocks / locations. ValueIDNum **MLiveIns; LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {} void reset() { for (auto &Block : BlockMap) delete Block.second; PHIs.clear(); UndefMap.clear(); BlockMap.clear(); } ~LDVSSAUpdater() { reset(); } /// For a given MBB, create a wrapper block for it. Stores it in the /// LDVSSAUpdater block map. LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { auto it = BlockMap.find(BB); if (it == BlockMap.end()) { BlockMap[BB] = new LDVSSABlock(*BB, *this); it = BlockMap.find(BB); } return it->second; } /// Find the live-in value number for the given block. Looks up the value at /// the PHI location on entry. BlockValueNum getValue(LDVSSABlock *LDVBB) { return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64(); } }; LDVSSABlock *LDVSSABlockIterator::operator*() { return Updater.getSSALDVBlock(*PredIt); } #ifndef NDEBUG raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { out << "SSALDVPHI " << PHI.PHIValNum; return out; } #endif } // namespace namespace llvm { /// Template specialization to give SSAUpdater access to CFG and value /// information. SSAUpdater calls methods in these traits, passing in the /// LDVSSAUpdater object, to learn about blocks and the values they define. /// It also provides methods to create PHI nodes and track them. template <> class SSAUpdaterTraits { public: using BlkT = LDVSSABlock; using ValT = BlockValueNum; using PhiT = LDVSSAPhi; using BlkSucc_iterator = LDVSSABlockIterator; // Methods to access block successors -- dereferencing to our wrapper class. static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } /// Iterator for PHI operands. class PHI_iterator { private: LDVSSAPhi *PHI; unsigned Idx; public: explicit PHI_iterator(LDVSSAPhi *P) // begin iterator : PHI(P), Idx(0) {} PHI_iterator(LDVSSAPhi *P, bool) // end iterator : PHI(P), Idx(PHI->IncomingValues.size()) {} PHI_iterator &operator++() { Idx++; return *this; } bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } bool operator!=(const PHI_iterator &X) const { return !operator==(X); } BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } }; static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } static inline PHI_iterator PHI_end(PhiT *PHI) { return PHI_iterator(PHI, true); } /// FindPredecessorBlocks - Put the predecessors of BB into the Preds /// vector. static void FindPredecessorBlocks(LDVSSABlock *BB, SmallVectorImpl *Preds) { for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(), E = BB->BB.pred_end(); PI != E; ++PI) Preds->push_back(BB->Updater.getSSALDVBlock(*PI)); } /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new /// register. For LiveDebugValues, represents a block identified as not having /// any DBG_PHI predecessors. static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { // Create a value number for this block -- it needs to be unique and in the // "undef" collection, so that we know it's not real. Use a number // representing a PHI into this block. BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); Updater->UndefMap[&BB->BB] = Num; return Num; } /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. /// SSAUpdater will populate it with information about incoming values. The /// value number of this PHI is whatever the machine value number problem /// solution determined it to be. This includes non-phi values if SSAUpdater /// tries to create a PHI where the incoming values are identical. static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, LDVSSAUpdater *Updater) { BlockValueNum PHIValNum = Updater->getValue(BB); LDVSSAPhi *PHI = BB->newPHI(PHIValNum); Updater->PHIs[PHIValNum] = PHI; return PHIValNum; } /// AddPHIOperand - Add the specified value as an operand of the PHI for /// the specified predecessor block. static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { PHI->IncomingValues.push_back(std::make_pair(Pred, Val)); } /// ValueIsPHI - Check if the instruction that defines the specified value /// is a PHI instruction. static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { auto PHIIt = Updater->PHIs.find(Val); if (PHIIt == Updater->PHIs.end()) return nullptr; return PHIIt->second; } /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source /// operands, i.e., it was just added. static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); if (PHI && PHI->IncomingValues.size() == 0) return PHI; return nullptr; } /// GetPHIValue - For the specified PHI instruction, return the value /// that it defines. static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } }; } // end namespace llvm Optional InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF, ValueIDNum **MLiveOuts, ValueIDNum **MLiveIns, MachineInstr &Here, uint64_t InstrNum) { // Pick out records of DBG_PHI instructions that have been observed. If there // are none, then we cannot compute a value number. auto RangePair = std::equal_range(DebugPHINumToValue.begin(), DebugPHINumToValue.end(), InstrNum); auto LowerIt = RangePair.first; auto UpperIt = RangePair.second; // No DBG_PHI means there can be no location. if (LowerIt == UpperIt) return None; // If there's only one DBG_PHI, then that is our value number. if (std::distance(LowerIt, UpperIt) == 1) return LowerIt->ValueRead; auto DBGPHIRange = make_range(LowerIt, UpperIt); // Pick out the location (physreg, slot) where any PHIs must occur. It's // technically possible for us to merge values in different registers in each // block, but highly unlikely that LLVM will generate such code after register // allocation. LocIdx Loc = LowerIt->ReadLoc; // We have several DBG_PHIs, and a use position (the Here inst). All each // DBG_PHI does is identify a value at a program position. We can treat each // DBG_PHI like it's a Def of a value, and the use position is a Use of a // value, just like SSA. We use the bulk-standard LLVM SSA updater class to // determine which Def is used at the Use, and any PHIs that happen along // the way. // Adapted LLVM SSA Updater: LDVSSAUpdater Updater(Loc, MLiveIns); // Map of which Def or PHI is the current value in each block. DenseMap AvailableValues; // Set of PHIs that we have created along the way. SmallVector CreatedPHIs; // Each existing DBG_PHI is a Def'd value under this model. Record these Defs // for the SSAUpdater. for (const auto &DBG_PHI : DBGPHIRange) { LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); const ValueIDNum &Num = DBG_PHI.ValueRead; AvailableValues.insert(std::make_pair(Block, Num.asU64())); } LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent()); const auto &AvailIt = AvailableValues.find(HereBlock); if (AvailIt != AvailableValues.end()) { // Actually, we already know what the value is -- the Use is in the same // block as the Def. return ValueIDNum::fromU64(AvailIt->second); } // Otherwise, we must use the SSA Updater. It will identify the value number // that we are to use, and the PHIs that must happen along the way. SSAUpdaterImpl Impl(&Updater, &AvailableValues, &CreatedPHIs); BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent())); ValueIDNum Result = ValueIDNum::fromU64(ResultInt); // We have the number for a PHI, or possibly live-through value, to be used // at this Use. There are a number of things we have to check about it though: // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this // Use was not completely dominated by DBG_PHIs and we should abort. // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that // we've left SSA form. Validate that the inputs to each PHI are the // expected values. // * Is a PHI we've created actually a merging of values, or are all the // predecessor values the same, leading to a non-PHI machine value number? // (SSAUpdater doesn't know that either). Remap validated PHIs into the // the ValidatedValues collection below to sort this out. DenseMap ValidatedValues; // Define all the input DBG_PHI values in ValidatedValues. for (const auto &DBG_PHI : DBGPHIRange) { LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); const ValueIDNum &Num = DBG_PHI.ValueRead; ValidatedValues.insert(std::make_pair(Block, Num)); } // Sort PHIs to validate into RPO-order. SmallVector SortedPHIs; for (auto &PHI : CreatedPHIs) SortedPHIs.push_back(PHI); std::sort( SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) { return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; }); for (auto &PHI : SortedPHIs) { ValueIDNum ThisBlockValueNum = MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()]; // Are all these things actually defined? for (auto &PHIIt : PHI->IncomingValues) { // Any undef input means DBG_PHIs didn't dominate the use point. if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end()) return None; ValueIDNum ValueToCheck; ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()]; auto VVal = ValidatedValues.find(PHIIt.first); if (VVal == ValidatedValues.end()) { // We cross a loop, and this is a backedge. LLVMs tail duplication // happens so late that DBG_PHI instructions should not be able to // migrate into loops -- meaning we can only be live-through this // loop. ValueToCheck = ThisBlockValueNum; } else { // Does the block have as a live-out, in the location we're examining, // the value that we expect? If not, it's been moved or clobbered. ValueToCheck = VVal->second; } if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) return None; } // Record this value as validated. ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum}); } // All the PHIs are valid: we can return what the SSAUpdater said our value // number was. return Result; }