//===- InterleavedAccessPass.cpp ------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Interleaved Access pass, which identifies // interleaved memory accesses and transforms them into target specific // intrinsics. // // An interleaved load reads data from memory into several vectors, with // DE-interleaving the data on a factor. An interleaved store writes several // vectors to memory with RE-interleaving the data on a factor. // // As interleaved accesses are difficult to identified in CodeGen (mainly // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector // IR), we identify and transform them to intrinsics in this pass so the // intrinsics can be easily matched into target specific instructions later in // CodeGen. // // E.g. An interleaved load (Factor = 2): // %wide.vec = load <8 x i32>, <8 x i32>* %ptr // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> // // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 // intrinsic in ARM backend. // // In X86, this can be further optimized into a set of target // specific loads followed by an optimized sequence of shuffles. // // E.g. An interleaved store (Factor = 3): // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> // store <12 x i32> %i.vec, <12 x i32>* %ptr // // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 // intrinsic in ARM backend. // // Similarly, a set of interleaved stores can be transformed into an optimized // sequence of shuffles followed by a set of target specific stores for X86. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Utils/Local.h" #include #include using namespace llvm; #define DEBUG_TYPE "interleaved-access" static cl::opt LowerInterleavedAccesses( "lower-interleaved-accesses", cl::desc("Enable lowering interleaved accesses to intrinsics"), cl::init(true), cl::Hidden); namespace { class InterleavedAccess : public FunctionPass { public: static char ID; InterleavedAccess() : FunctionPass(ID) { initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "Interleaved Access Pass"; } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.setPreservesCFG(); } private: DominatorTree *DT = nullptr; const TargetLowering *TLI = nullptr; /// The maximum supported interleave factor. unsigned MaxFactor; /// Transform an interleaved load into target specific intrinsics. bool lowerInterleavedLoad(LoadInst *LI, SmallVector &DeadInsts); /// Transform an interleaved store into target specific intrinsics. bool lowerInterleavedStore(StoreInst *SI, SmallVector &DeadInsts); /// Returns true if the uses of an interleaved load by the /// extractelement instructions in \p Extracts can be replaced by uses of the /// shufflevector instructions in \p Shuffles instead. If so, the necessary /// replacements are also performed. bool tryReplaceExtracts(ArrayRef Extracts, ArrayRef Shuffles); /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them /// to binop(shuffle(x), shuffle(y)) to allow the formation of an /// interleaving load. Any newly created shuffles that operate on \p LI will /// be added to \p Shuffles. Returns true, if any changes to the IR have been /// made. bool replaceBinOpShuffles(ArrayRef BinOpShuffles, SmallVectorImpl &Shuffles, LoadInst *LI); }; } // end anonymous namespace. char InterleavedAccess::ID = 0; INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, "Lower interleaved memory accesses to target specific intrinsics", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, "Lower interleaved memory accesses to target specific intrinsics", false, false) FunctionPass *llvm::createInterleavedAccessPass() { return new InterleavedAccess(); } /// Check if the mask is a DE-interleave mask of the given factor /// \p Factor like: /// static bool isDeInterleaveMaskOfFactor(ArrayRef Mask, unsigned Factor, unsigned &Index) { // Check all potential start indices from 0 to (Factor - 1). for (Index = 0; Index < Factor; Index++) { unsigned i = 0; // Check that elements are in ascending order by Factor. Ignore undef // elements. for (; i < Mask.size(); i++) if (Mask[i] >= 0 && static_cast(Mask[i]) != Index + i * Factor) break; if (i == Mask.size()) return true; } return false; } /// Check if the mask is a DE-interleave mask for an interleaved load. /// /// E.g. DE-interleave masks (Factor = 2) could be: /// <0, 2, 4, 6> (mask of index 0 to extract even elements) /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) static bool isDeInterleaveMask(ArrayRef Mask, unsigned &Factor, unsigned &Index, unsigned MaxFactor, unsigned NumLoadElements) { if (Mask.size() < 2) return false; // Check potential Factors. for (Factor = 2; Factor <= MaxFactor; Factor++) { // Make sure we don't produce a load wider than the input load. if (Mask.size() * Factor > NumLoadElements) return false; if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) return true; } return false; } /// Check if the mask can be used in an interleaved store. // /// It checks for a more general pattern than the RE-interleave mask. /// I.e. /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> /// /// The particular case of an RE-interleave mask is: /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> static bool isReInterleaveMask(ArrayRef Mask, unsigned &Factor, unsigned MaxFactor, unsigned OpNumElts) { unsigned NumElts = Mask.size(); if (NumElts < 4) return false; // Check potential Factors. for (Factor = 2; Factor <= MaxFactor; Factor++) { if (NumElts % Factor) continue; unsigned LaneLen = NumElts / Factor; if (!isPowerOf2_32(LaneLen)) continue; // Check whether each element matches the general interleaved rule. // Ignore undef elements, as long as the defined elements match the rule. // Outer loop processes all factors (x, y, z in the above example) unsigned I = 0, J; for (; I < Factor; I++) { unsigned SavedLaneValue; unsigned SavedNoUndefs = 0; // Inner loop processes consecutive accesses (x, x+1... in the example) for (J = 0; J < LaneLen - 1; J++) { // Lane computes x's position in the Mask unsigned Lane = J * Factor + I; unsigned NextLane = Lane + Factor; int LaneValue = Mask[Lane]; int NextLaneValue = Mask[NextLane]; // If both are defined, values must be sequential if (LaneValue >= 0 && NextLaneValue >= 0 && LaneValue + 1 != NextLaneValue) break; // If the next value is undef, save the current one as reference if (LaneValue >= 0 && NextLaneValue < 0) { SavedLaneValue = LaneValue; SavedNoUndefs = 1; } // Undefs are allowed, but defined elements must still be consecutive: // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... // Verify this by storing the last non-undef followed by an undef // Check that following non-undef masks are incremented with the // corresponding distance. if (SavedNoUndefs > 0 && LaneValue < 0) { SavedNoUndefs++; if (NextLaneValue >= 0 && SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) break; } } if (J < LaneLen - 1) break; int StartMask = 0; if (Mask[I] >= 0) { // Check that the start of the I range (J=0) is greater than 0 StartMask = Mask[I]; } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { // StartMask defined by the last value in lane StartMask = Mask[(LaneLen - 1) * Factor + I] - J; } else if (SavedNoUndefs > 0) { // StartMask defined by some non-zero value in the j loop StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); } // else StartMask remains set to 0, i.e. all elements are undefs if (StartMask < 0) break; // We must stay within the vectors; This case can happen with undefs. if (StartMask + LaneLen > OpNumElts*2) break; } // Found an interleaved mask of current factor. if (I == Factor) return true; } return false; } bool InterleavedAccess::lowerInterleavedLoad( LoadInst *LI, SmallVector &DeadInsts) { if (!LI->isSimple() || isa(LI->getType())) return false; // Check if all users of this load are shufflevectors. If we encounter any // users that are extractelement instructions or binary operators, we save // them to later check if they can be modified to extract from one of the // shufflevectors instead of the load. SmallVector Shuffles; SmallVector Extracts; // BinOpShuffles need to be handled a single time in case both operands of the // binop are the same load. SmallSetVector BinOpShuffles; for (auto *User : LI->users()) { auto *Extract = dyn_cast(User); if (Extract && isa(Extract->getIndexOperand())) { Extracts.push_back(Extract); continue; } if (auto *BI = dyn_cast(User)) { if (all_of(BI->users(), [](auto *U) { return isa(U); })) { for (auto *SVI : BI->users()) BinOpShuffles.insert(cast(SVI)); continue; } } auto *SVI = dyn_cast(User); if (!SVI || !isa(SVI->getOperand(1))) return false; Shuffles.push_back(SVI); } if (Shuffles.empty() && BinOpShuffles.empty()) return false; unsigned Factor, Index; unsigned NumLoadElements = cast(LI->getType())->getNumElements(); auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0]; // Check if the first shufflevector is DE-interleave shuffle. if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor, NumLoadElements)) return false; // Holds the corresponding index for each DE-interleave shuffle. SmallVector Indices; Type *VecTy = FirstSVI->getType(); // Check if other shufflevectors are also DE-interleaved of the same type // and factor as the first shufflevector. for (auto *Shuffle : Shuffles) { if (Shuffle->getType() != VecTy) return false; if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor, Index)) return false; assert(Shuffle->getShuffleMask().size() <= NumLoadElements); Indices.push_back(Index); } for (auto *Shuffle : BinOpShuffles) { if (Shuffle->getType() != VecTy) return false; if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor, Index)) return false; assert(Shuffle->getShuffleMask().size() <= NumLoadElements); if (cast(Shuffle->getOperand(0))->getOperand(0) == LI) Indices.push_back(Index); if (cast(Shuffle->getOperand(0))->getOperand(1) == LI) Indices.push_back(Index); } // Try and modify users of the load that are extractelement instructions to // use the shufflevector instructions instead of the load. if (!tryReplaceExtracts(Extracts, Shuffles)) return false; bool BinOpShuffleChanged = replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI); LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); // Try to create target specific intrinsics to replace the load and shuffles. if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) { // If Extracts is not empty, tryReplaceExtracts made changes earlier. return !Extracts.empty() || BinOpShuffleChanged; } append_range(DeadInsts, Shuffles); DeadInsts.push_back(LI); return true; } bool InterleavedAccess::replaceBinOpShuffles( ArrayRef BinOpShuffles, SmallVectorImpl &Shuffles, LoadInst *LI) { for (auto *SVI : BinOpShuffles) { BinaryOperator *BI = cast(SVI->getOperand(0)); Type *BIOp0Ty = BI->getOperand(0)->getType(); ArrayRef Mask = SVI->getShuffleMask(); assert(all_of(Mask, [&](int Idx) { return Idx < (int)cast(BIOp0Ty)->getNumElements(); })); auto *NewSVI1 = new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty), Mask, SVI->getName(), SVI); auto *NewSVI2 = new ShuffleVectorInst( BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask, SVI->getName(), SVI); BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags( BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), SVI); SVI->replaceAllUsesWith(NewBI); LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI << "\n With : " << *NewSVI1 << "\n And : " << *NewSVI2 << "\n And : " << *NewBI << "\n"); RecursivelyDeleteTriviallyDeadInstructions(SVI); if (NewSVI1->getOperand(0) == LI) Shuffles.push_back(NewSVI1); if (NewSVI2->getOperand(0) == LI) Shuffles.push_back(NewSVI2); } return !BinOpShuffles.empty(); } bool InterleavedAccess::tryReplaceExtracts( ArrayRef Extracts, ArrayRef Shuffles) { // If there aren't any extractelement instructions to modify, there's nothing // to do. if (Extracts.empty()) return true; // Maps extractelement instructions to vector-index pairs. The extractlement // instructions will be modified to use the new vector and index operands. DenseMap> ReplacementMap; for (auto *Extract : Extracts) { // The vector index that is extracted. auto *IndexOperand = cast(Extract->getIndexOperand()); auto Index = IndexOperand->getSExtValue(); // Look for a suitable shufflevector instruction. The goal is to modify the // extractelement instruction (which uses an interleaved load) to use one // of the shufflevector instructions instead of the load. for (auto *Shuffle : Shuffles) { // If the shufflevector instruction doesn't dominate the extract, we // can't create a use of it. if (!DT->dominates(Shuffle, Extract)) continue; // Inspect the indices of the shufflevector instruction. If the shuffle // selects the same index that is extracted, we can modify the // extractelement instruction. SmallVector Indices; Shuffle->getShuffleMask(Indices); for (unsigned I = 0; I < Indices.size(); ++I) if (Indices[I] == Index) { assert(Extract->getOperand(0) == Shuffle->getOperand(0) && "Vector operations do not match"); ReplacementMap[Extract] = std::make_pair(Shuffle, I); break; } // If we found a suitable shufflevector instruction, stop looking. if (ReplacementMap.count(Extract)) break; } // If we did not find a suitable shufflevector instruction, the // extractelement instruction cannot be modified, so we must give up. if (!ReplacementMap.count(Extract)) return false; } // Finally, perform the replacements. IRBuilder<> Builder(Extracts[0]->getContext()); for (auto &Replacement : ReplacementMap) { auto *Extract = Replacement.first; auto *Vector = Replacement.second.first; auto Index = Replacement.second.second; Builder.SetInsertPoint(Extract); Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); Extract->eraseFromParent(); } return true; } bool InterleavedAccess::lowerInterleavedStore( StoreInst *SI, SmallVector &DeadInsts) { if (!SI->isSimple()) return false; auto *SVI = dyn_cast(SI->getValueOperand()); if (!SVI || !SVI->hasOneUse() || isa(SVI->getType())) return false; // Check if the shufflevector is RE-interleave shuffle. unsigned Factor; unsigned OpNumElts = cast(SVI->getOperand(0)->getType())->getNumElements(); if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts)) return false; LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); // Try to create target specific intrinsics to replace the store and shuffle. if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) return false; // Already have a new target specific interleaved store. Erase the old store. DeadInsts.push_back(SI); DeadInsts.push_back(SVI); return true; } bool InterleavedAccess::runOnFunction(Function &F) { auto *TPC = getAnalysisIfAvailable(); if (!TPC || !LowerInterleavedAccesses) return false; LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); DT = &getAnalysis().getDomTree(); auto &TM = TPC->getTM(); TLI = TM.getSubtargetImpl(F)->getTargetLowering(); MaxFactor = TLI->getMaxSupportedInterleaveFactor(); // Holds dead instructions that will be erased later. SmallVector DeadInsts; bool Changed = false; for (auto &I : instructions(F)) { if (auto *LI = dyn_cast(&I)) Changed |= lowerInterleavedLoad(LI, DeadInsts); if (auto *SI = dyn_cast(&I)) Changed |= lowerInterleavedStore(SI, DeadInsts); } for (auto *I : DeadInsts) I->eraseFromParent(); return Changed; }