//===-- HardwareLoops.cpp - Target Independent Hardware Loops --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// Insert hardware loop intrinsics into loops which are deemed profitable by /// the target, by querying TargetTransformInfo. A hardware loop comprises of /// two intrinsics: one, outside the loop, to set the loop iteration count and /// another, in the exit block, to decrement the counter. The decremented value /// can either be carried through the loop via a phi or handled in some opaque /// way by the target. /// //===----------------------------------------------------------------------===// #include "llvm/CodeGen/HardwareLoops.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/PassRegistry.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" #define DEBUG_TYPE "hardware-loops" #define HW_LOOPS_NAME "Hardware Loop Insertion" using namespace llvm; static cl::opt ForceHardwareLoops("force-hardware-loops", cl::Hidden, cl::init(false), cl::desc("Force hardware loops intrinsics to be inserted")); static cl::opt ForceHardwareLoopPHI( "force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi")); static cl::opt ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops")); static cl::opt LoopDecrement("hardware-loop-decrement", cl::Hidden, cl::init(1), cl::desc("Set the loop decrement value")); static cl::opt CounterBitWidth("hardware-loop-counter-bitwidth", cl::Hidden, cl::init(32), cl::desc("Set the loop counter bitwidth")); static cl::opt ForceGuardLoopEntry( "force-hardware-loop-guard", cl::Hidden, cl::init(false), cl::desc("Force generation of loop guard intrinsic")); STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); #ifndef NDEBUG static void debugHWLoopFailure(const StringRef DebugMsg, Instruction *I) { dbgs() << "HWLoops: " << DebugMsg; if (I) dbgs() << ' ' << *I; else dbgs() << '.'; dbgs() << '\n'; } #endif static OptimizationRemarkAnalysis createHWLoopAnalysis(StringRef RemarkName, Loop *L, Instruction *I) { Value *CodeRegion = L->getHeader(); DebugLoc DL = L->getStartLoc(); if (I) { CodeRegion = I->getParent(); // If there is no debug location attached to the instruction, revert back to // using the loop's. if (I->getDebugLoc()) DL = I->getDebugLoc(); } OptimizationRemarkAnalysis R(DEBUG_TYPE, RemarkName, DL, CodeRegion); R << "hardware-loop not created: "; return R; } namespace { void reportHWLoopFailure(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I = nullptr) { LLVM_DEBUG(debugHWLoopFailure(Msg, I)); ORE->emit(createHWLoopAnalysis(ORETag, TheLoop, I) << Msg); } using TTI = TargetTransformInfo; class HardwareLoopsLegacy : public FunctionPass { public: static char ID; HardwareLoopsLegacy() : FunctionPass(ID) { initializeHardwareLoopsLegacyPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); } }; class HardwareLoopsImpl { public: HardwareLoopsImpl(ScalarEvolution &SE, LoopInfo &LI, bool PreserveLCSSA, DominatorTree &DT, const DataLayout &DL, const TargetTransformInfo &TTI, TargetLibraryInfo *TLI, AssumptionCache &AC, OptimizationRemarkEmitter *ORE, HardwareLoopOptions &Opts) : SE(SE), LI(LI), PreserveLCSSA(PreserveLCSSA), DT(DT), DL(DL), TTI(TTI), TLI(TLI), AC(AC), ORE(ORE), Opts(Opts) { } bool run(Function &F); private: // Try to convert the given Loop into a hardware loop. bool TryConvertLoop(Loop *L, LLVMContext &Ctx); // Given that the target believes the loop to be profitable, try to // convert it. bool TryConvertLoop(HardwareLoopInfo &HWLoopInfo); ScalarEvolution &SE; LoopInfo &LI; bool PreserveLCSSA; DominatorTree &DT; const DataLayout &DL; const TargetTransformInfo &TTI; TargetLibraryInfo *TLI = nullptr; AssumptionCache &AC; OptimizationRemarkEmitter *ORE; HardwareLoopOptions &Opts; bool MadeChange = false; }; class HardwareLoop { // Expand the trip count scev into a value that we can use. Value *InitLoopCount(); // Insert the set_loop_iteration intrinsic. Value *InsertIterationSetup(Value *LoopCountInit); // Insert the loop_decrement intrinsic. void InsertLoopDec(); // Insert the loop_decrement_reg intrinsic. Instruction *InsertLoopRegDec(Value *EltsRem); // If the target requires the counter value to be updated in the loop, // insert a phi to hold the value. The intended purpose is for use by // loop_decrement_reg. PHINode *InsertPHICounter(Value *NumElts, Value *EltsRem); // Create a new cmp, that checks the returned value of loop_decrement*, // and update the exit branch to use it. void UpdateBranch(Value *EltsRem); public: HardwareLoop(HardwareLoopInfo &Info, ScalarEvolution &SE, const DataLayout &DL, OptimizationRemarkEmitter *ORE, HardwareLoopOptions &Opts) : SE(SE), DL(DL), ORE(ORE), Opts(Opts), L(Info.L), M(L->getHeader()->getModule()), ExitCount(Info.ExitCount), CountType(Info.CountType), ExitBranch(Info.ExitBranch), LoopDecrement(Info.LoopDecrement), UsePHICounter(Info.CounterInReg), UseLoopGuard(Info.PerformEntryTest) { } void Create(); private: ScalarEvolution &SE; const DataLayout &DL; OptimizationRemarkEmitter *ORE = nullptr; HardwareLoopOptions &Opts; Loop *L = nullptr; Module *M = nullptr; const SCEV *ExitCount = nullptr; Type *CountType = nullptr; BranchInst *ExitBranch = nullptr; Value *LoopDecrement = nullptr; bool UsePHICounter = false; bool UseLoopGuard = false; BasicBlock *BeginBB = nullptr; }; } char HardwareLoopsLegacy::ID = 0; bool HardwareLoopsLegacy::runOnFunction(Function &F) { if (skipFunction(F)) return false; LLVM_DEBUG(dbgs() << "HWLoops: Running on " << F.getName() << "\n"); auto &LI = getAnalysis().getLoopInfo(); auto &SE = getAnalysis().getSE(); auto &DT = getAnalysis().getDomTree(); auto &TTI = getAnalysis().getTTI(F); auto &DL = F.getParent()->getDataLayout(); auto *ORE = &getAnalysis().getORE(); auto *TLIP = getAnalysisIfAvailable(); auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; auto &AC = getAnalysis().getAssumptionCache(F); bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); HardwareLoopOptions Opts; if (ForceHardwareLoops.getNumOccurrences()) Opts.setForce(ForceHardwareLoops); if (ForceHardwareLoopPHI.getNumOccurrences()) Opts.setForcePhi(ForceHardwareLoopPHI); if (ForceNestedLoop.getNumOccurrences()) Opts.setForceNested(ForceNestedLoop); if (ForceGuardLoopEntry.getNumOccurrences()) Opts.setForceGuard(ForceGuardLoopEntry); if (LoopDecrement.getNumOccurrences()) Opts.setDecrement(LoopDecrement); if (CounterBitWidth.getNumOccurrences()) Opts.setCounterBitwidth(CounterBitWidth); HardwareLoopsImpl Impl(SE, LI, PreserveLCSSA, DT, DL, TTI, TLI, AC, ORE, Opts); return Impl.run(F); } PreservedAnalyses HardwareLoopsPass::run(Function &F, FunctionAnalysisManager &AM) { auto &LI = AM.getResult(F); auto &SE = AM.getResult(F); auto &DT = AM.getResult(F); auto &TTI = AM.getResult(F); auto *TLI = &AM.getResult(F); auto &AC = AM.getResult(F); auto *ORE = &AM.getResult(F); auto &DL = F.getParent()->getDataLayout(); HardwareLoopsImpl Impl(SE, LI, true, DT, DL, TTI, TLI, AC, ORE, Opts); bool Changed = Impl.run(F); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); PA.preserve(); PA.preserve(); return PA; } bool HardwareLoopsImpl::run(Function &F) { LLVMContext &Ctx = F.getParent()->getContext(); for (Loop *L : LI) if (L->isOutermost()) TryConvertLoop(L, Ctx); return MadeChange; } // Return true if the search should stop, which will be when an inner loop is // converted and the parent loop doesn't support containing a hardware loop. bool HardwareLoopsImpl::TryConvertLoop(Loop *L, LLVMContext &Ctx) { // Process nested loops first. bool AnyChanged = false; for (Loop *SL : *L) AnyChanged |= TryConvertLoop(SL, Ctx); if (AnyChanged) { reportHWLoopFailure("nested hardware-loops not supported", "HWLoopNested", ORE, L); return true; // Stop search. } LLVM_DEBUG(dbgs() << "HWLoops: Loop " << L->getHeader()->getName() << "\n"); HardwareLoopInfo HWLoopInfo(L); if (!HWLoopInfo.canAnalyze(LI)) { reportHWLoopFailure("cannot analyze loop, irreducible control flow", "HWLoopCannotAnalyze", ORE, L); return false; } if (!Opts.Force && !TTI.isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) { reportHWLoopFailure("it's not profitable to create a hardware-loop", "HWLoopNotProfitable", ORE, L); return false; } // Allow overriding of the counter width and loop decrement value. if (Opts.Bitwidth.has_value()) { HWLoopInfo.CountType = IntegerType::get(Ctx, Opts.Bitwidth.value()); } if (Opts.Decrement.has_value()) HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, Opts.Decrement.value()); MadeChange |= TryConvertLoop(HWLoopInfo); return MadeChange && (!HWLoopInfo.IsNestingLegal && !Opts.ForceNested); } bool HardwareLoopsImpl::TryConvertLoop(HardwareLoopInfo &HWLoopInfo) { Loop *L = HWLoopInfo.L; LLVM_DEBUG(dbgs() << "HWLoops: Try to convert profitable loop: " << *L); if (!HWLoopInfo.isHardwareLoopCandidate(SE, LI, DT, Opts.getForceNested(), Opts.getForcePhi())) { // TODO: there can be many reasons a loop is not considered a // candidate, so we should let isHardwareLoopCandidate fill in the // reason and then report a better message here. reportHWLoopFailure("loop is not a candidate", "HWLoopNoCandidate", ORE, L); return false; } assert( (HWLoopInfo.ExitBlock && HWLoopInfo.ExitBranch && HWLoopInfo.ExitCount) && "Hardware Loop must have set exit info."); BasicBlock *Preheader = L->getLoopPreheader(); // If we don't have a preheader, then insert one. if (!Preheader) Preheader = InsertPreheaderForLoop(L, &DT, &LI, nullptr, PreserveLCSSA); if (!Preheader) return false; HardwareLoop HWLoop(HWLoopInfo, SE, DL, ORE, Opts); HWLoop.Create(); ++NumHWLoops; return true; } void HardwareLoop::Create() { LLVM_DEBUG(dbgs() << "HWLoops: Converting loop..\n"); Value *LoopCountInit = InitLoopCount(); if (!LoopCountInit) { reportHWLoopFailure("could not safely create a loop count expression", "HWLoopNotSafe", ORE, L); return; } Value *Setup = InsertIterationSetup(LoopCountInit); if (UsePHICounter || Opts.ForcePhi) { Instruction *LoopDec = InsertLoopRegDec(LoopCountInit); Value *EltsRem = InsertPHICounter(Setup, LoopDec); LoopDec->setOperand(0, EltsRem); UpdateBranch(LoopDec); } else InsertLoopDec(); // Run through the basic blocks of the loop and see if any of them have dead // PHIs that can be removed. for (auto *I : L->blocks()) DeleteDeadPHIs(I); } static bool CanGenerateTest(Loop *L, Value *Count) { BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader->getSinglePredecessor()) return false; BasicBlock *Pred = Preheader->getSinglePredecessor(); if (!isa(Pred->getTerminator())) return false; auto *BI = cast(Pred->getTerminator()); if (BI->isUnconditional() || !isa(BI->getCondition())) return false; // Check that the icmp is checking for equality of Count and zero and that // a non-zero value results in entering the loop. auto ICmp = cast(BI->getCondition()); LLVM_DEBUG(dbgs() << " - Found condition: " << *ICmp << "\n"); if (!ICmp->isEquality()) return false; auto IsCompareZero = [](ICmpInst *ICmp, Value *Count, unsigned OpIdx) { if (auto *Const = dyn_cast(ICmp->getOperand(OpIdx))) return Const->isZero() && ICmp->getOperand(OpIdx ^ 1) == Count; return false; }; // Check if Count is a zext. Value *CountBefZext = isa(Count) ? cast(Count)->getOperand(0) : nullptr; if (!IsCompareZero(ICmp, Count, 0) && !IsCompareZero(ICmp, Count, 1) && !IsCompareZero(ICmp, CountBefZext, 0) && !IsCompareZero(ICmp, CountBefZext, 1)) return false; unsigned SuccIdx = ICmp->getPredicate() == ICmpInst::ICMP_NE ? 0 : 1; if (BI->getSuccessor(SuccIdx) != Preheader) return false; return true; } Value *HardwareLoop::InitLoopCount() { LLVM_DEBUG(dbgs() << "HWLoops: Initialising loop counter value:\n"); // Can we replace a conditional branch with an intrinsic that sets the // loop counter and tests that is not zero? SCEVExpander SCEVE(SE, DL, "loopcnt"); if (!ExitCount->getType()->isPointerTy() && ExitCount->getType() != CountType) ExitCount = SE.getZeroExtendExpr(ExitCount, CountType); ExitCount = SE.getAddExpr(ExitCount, SE.getOne(CountType)); // If we're trying to use the 'test and set' form of the intrinsic, we need // to replace a conditional branch that is controlling entry to the loop. It // is likely (guaranteed?) that the preheader has an unconditional branch to // the loop header, so also check if it has a single predecessor. if (SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount, SE.getZero(ExitCount->getType()))) { LLVM_DEBUG(dbgs() << " - Attempting to use test.set counter.\n"); if (Opts.ForceGuard) UseLoopGuard = true; } else UseLoopGuard = false; BasicBlock *BB = L->getLoopPreheader(); if (UseLoopGuard && BB->getSinglePredecessor() && cast(BB->getTerminator())->isUnconditional()) { BasicBlock *Predecessor = BB->getSinglePredecessor(); // If it's not safe to create a while loop then don't force it and create a // do-while loop instead if (!SCEVE.isSafeToExpandAt(ExitCount, Predecessor->getTerminator())) UseLoopGuard = false; else BB = Predecessor; } if (!SCEVE.isSafeToExpandAt(ExitCount, BB->getTerminator())) { LLVM_DEBUG(dbgs() << "- Bailing, unsafe to expand ExitCount " << *ExitCount << "\n"); return nullptr; } Value *Count = SCEVE.expandCodeFor(ExitCount, CountType, BB->getTerminator()); // FIXME: We've expanded Count where we hope to insert the counter setting // intrinsic. But, in the case of the 'test and set' form, we may fallback to // the just 'set' form and in which case the insertion block is most likely // different. It means there will be instruction(s) in a block that possibly // aren't needed. The isLoopEntryGuardedByCond is trying to avoid this issue, // but it's doesn't appear to work in all cases. UseLoopGuard = UseLoopGuard && CanGenerateTest(L, Count); BeginBB = UseLoopGuard ? BB : L->getLoopPreheader(); LLVM_DEBUG(dbgs() << " - Loop Count: " << *Count << "\n" << " - Expanded Count in " << BB->getName() << "\n" << " - Will insert set counter intrinsic into: " << BeginBB->getName() << "\n"); return Count; } Value* HardwareLoop::InsertIterationSetup(Value *LoopCountInit) { IRBuilder<> Builder(BeginBB->getTerminator()); Type *Ty = LoopCountInit->getType(); bool UsePhi = UsePHICounter || Opts.ForcePhi; Intrinsic::ID ID = UseLoopGuard ? (UsePhi ? Intrinsic::test_start_loop_iterations : Intrinsic::test_set_loop_iterations) : (UsePhi ? Intrinsic::start_loop_iterations : Intrinsic::set_loop_iterations); Function *LoopIter = Intrinsic::getDeclaration(M, ID, Ty); Value *LoopSetup = Builder.CreateCall(LoopIter, LoopCountInit); // Use the return value of the intrinsic to control the entry of the loop. if (UseLoopGuard) { assert((isa(BeginBB->getTerminator()) && cast(BeginBB->getTerminator())->isConditional()) && "Expected conditional branch"); Value *SetCount = UsePhi ? Builder.CreateExtractValue(LoopSetup, 1) : LoopSetup; auto *LoopGuard = cast(BeginBB->getTerminator()); LoopGuard->setCondition(SetCount); if (LoopGuard->getSuccessor(0) != L->getLoopPreheader()) LoopGuard->swapSuccessors(); } LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop counter: " << *LoopSetup << "\n"); if (UsePhi && UseLoopGuard) LoopSetup = Builder.CreateExtractValue(LoopSetup, 0); return !UsePhi ? LoopCountInit : LoopSetup; } void HardwareLoop::InsertLoopDec() { IRBuilder<> CondBuilder(ExitBranch); Function *DecFunc = Intrinsic::getDeclaration(M, Intrinsic::loop_decrement, LoopDecrement->getType()); Value *Ops[] = { LoopDecrement }; Value *NewCond = CondBuilder.CreateCall(DecFunc, Ops); Value *OldCond = ExitBranch->getCondition(); ExitBranch->setCondition(NewCond); // The false branch must exit the loop. if (!L->contains(ExitBranch->getSuccessor(0))) ExitBranch->swapSuccessors(); // The old condition may be dead now, and may have even created a dead PHI // (the original induction variable). RecursivelyDeleteTriviallyDeadInstructions(OldCond); LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop dec: " << *NewCond << "\n"); } Instruction* HardwareLoop::InsertLoopRegDec(Value *EltsRem) { IRBuilder<> CondBuilder(ExitBranch); Function *DecFunc = Intrinsic::getDeclaration(M, Intrinsic::loop_decrement_reg, { EltsRem->getType() }); Value *Ops[] = { EltsRem, LoopDecrement }; Value *Call = CondBuilder.CreateCall(DecFunc, Ops); LLVM_DEBUG(dbgs() << "HWLoops: Inserted loop dec: " << *Call << "\n"); return cast(Call); } PHINode* HardwareLoop::InsertPHICounter(Value *NumElts, Value *EltsRem) { BasicBlock *Preheader = L->getLoopPreheader(); BasicBlock *Header = L->getHeader(); BasicBlock *Latch = ExitBranch->getParent(); IRBuilder<> Builder(Header->getFirstNonPHI()); PHINode *Index = Builder.CreatePHI(NumElts->getType(), 2); Index->addIncoming(NumElts, Preheader); Index->addIncoming(EltsRem, Latch); LLVM_DEBUG(dbgs() << "HWLoops: PHI Counter: " << *Index << "\n"); return Index; } void HardwareLoop::UpdateBranch(Value *EltsRem) { IRBuilder<> CondBuilder(ExitBranch); Value *NewCond = CondBuilder.CreateICmpNE(EltsRem, ConstantInt::get(EltsRem->getType(), 0)); Value *OldCond = ExitBranch->getCondition(); ExitBranch->setCondition(NewCond); // The false branch must exit the loop. if (!L->contains(ExitBranch->getSuccessor(0))) ExitBranch->swapSuccessors(); // The old condition may be dead now, and may have even created a dead PHI // (the original induction variable). RecursivelyDeleteTriviallyDeadInstructions(OldCond); } INITIALIZE_PASS_BEGIN(HardwareLoopsLegacy, DEBUG_TYPE, HW_LOOPS_NAME, false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_END(HardwareLoopsLegacy, DEBUG_TYPE, HW_LOOPS_NAME, false, false) FunctionPass *llvm::createHardwareLoopsLegacyPass() { return new HardwareLoopsLegacy(); }