//==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file implements the RegBankSelect class. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include "llvm/CodeGen/GlobalISel/RegisterBank.h" #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #define DEBUG_TYPE "regbankselect" using namespace llvm; static cl::opt RegBankSelectMode( cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", "Run the Fast mode (default mapping)"), clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", "Use the Greedy mode (best local mapping)"))); char RegBankSelect::ID = 0; INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false); INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect::RegBankSelect(Mode RunningMode) : MachineFunctionPass(ID), OptMode(RunningMode) { if (RegBankSelectMode.getNumOccurrences() != 0) { OptMode = RegBankSelectMode; if (RegBankSelectMode != RunningMode) LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); } } void RegBankSelect::init(MachineFunction &MF) { RBI = MF.getSubtarget().getRegBankInfo(); assert(RBI && "Cannot work without RegisterBankInfo"); MRI = &MF.getRegInfo(); TRI = MF.getSubtarget().getRegisterInfo(); TPC = &getAnalysis(); if (OptMode != Mode::Fast) { MBFI = &getAnalysis(); MBPI = &getAnalysis(); } else { MBFI = nullptr; MBPI = nullptr; } MIRBuilder.setMF(MF); MORE = std::make_unique(MF, MBFI); } void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { if (OptMode != Mode::Fast) { // We could preserve the information from these two analysis but // the APIs do not allow to do so yet. AU.addRequired(); AU.addRequired(); } AU.addRequired(); getSelectionDAGFallbackAnalysisUsage(AU); MachineFunctionPass::getAnalysisUsage(AU); } bool RegBankSelect::assignmentMatch( Register Reg, const RegisterBankInfo::ValueMapping &ValMapping, bool &OnlyAssign) const { // By default we assume we will have to repair something. OnlyAssign = false; // Each part of a break down needs to end up in a different register. // In other word, Reg assignment does not match. if (ValMapping.NumBreakDowns != 1) return false; const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; // Reg is free of assignment, a simple assignment will make the // register bank to match. OnlyAssign = CurRegBank == nullptr; LLVM_DEBUG(dbgs() << "Does assignment already match: "; if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; dbgs() << " against "; assert(DesiredRegBank && "The mapping must be valid"); dbgs() << *DesiredRegBank << '\n';); return CurRegBank == DesiredRegBank; } bool RegBankSelect::repairReg( MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, RegBankSelect::RepairingPlacement &RepairPt, const iterator_range::const_iterator> &NewVRegs) { assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) && "need new vreg for each breakdown"); // An empty range of new register means no repairing. assert(!NewVRegs.empty() && "We should not have to repair"); MachineInstr *MI; if (ValMapping.NumBreakDowns == 1) { // Assume we are repairing a use and thus, the original reg will be // the source of the repairing. Register Src = MO.getReg(); Register Dst = *NewVRegs.begin(); // If we repair a definition, swap the source and destination for // the repairing. if (MO.isDef()) std::swap(Src, Dst); assert((RepairPt.getNumInsertPoints() == 1 || Register::isPhysicalRegister(Dst)) && "We are about to create several defs for Dst"); // Build the instruction used to repair, then clone it at the right // places. Avoiding buildCopy bypasses the check that Src and Dst have the // same types because the type is a placeholder when this function is called. MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY) .addDef(Dst) .addUse(Src); LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst) << '\n'); } else { // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT // sequence. assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported"); LLT RegTy = MRI->getType(MO.getReg()); if (MO.isDef()) { unsigned MergeOp; if (RegTy.isVector()) { if (ValMapping.NumBreakDowns == RegTy.getNumElements()) MergeOp = TargetOpcode::G_BUILD_VECTOR; else { assert( (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns == RegTy.getSizeInBits()) && (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() == 0) && "don't understand this value breakdown"); MergeOp = TargetOpcode::G_CONCAT_VECTORS; } } else MergeOp = TargetOpcode::G_MERGE_VALUES; auto MergeBuilder = MIRBuilder.buildInstrNoInsert(MergeOp) .addDef(MO.getReg()); for (Register SrcReg : NewVRegs) MergeBuilder.addUse(SrcReg); MI = MergeBuilder; } else { MachineInstrBuilder UnMergeBuilder = MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES); for (Register DefReg : NewVRegs) UnMergeBuilder.addDef(DefReg); UnMergeBuilder.addUse(MO.getReg()); MI = UnMergeBuilder; } } if (RepairPt.getNumInsertPoints() != 1) report_fatal_error("need testcase to support multiple insertion points"); // TODO: // Check if MI is legal. if not, we need to legalize all the // instructions we are going to insert. std::unique_ptr NewInstrs( new MachineInstr *[RepairPt.getNumInsertPoints()]); bool IsFirst = true; unsigned Idx = 0; for (const std::unique_ptr &InsertPt : RepairPt) { MachineInstr *CurMI; if (IsFirst) CurMI = MI; else CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); InsertPt->insert(*CurMI); NewInstrs[Idx++] = CurMI; IsFirst = false; } // TODO: // Legalize NewInstrs if need be. return true; } uint64_t RegBankSelect::getRepairCost( const MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping) const { assert(MO.isReg() && "We should only repair register operand"); assert(ValMapping.NumBreakDowns && "Nothing to map??"); bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); // If MO does not have a register bank, we should have just been // able to set one unless we have to break the value down. assert(CurRegBank || MO.isDef()); // Def: Val <- NewDefs // Same number of values: copy // Different number: Val = build_sequence Defs1, Defs2, ... // Use: NewSources <- Val. // Same number of values: copy. // Different number: Src1, Src2, ... = // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... // We should remember that this value is available somewhere else to // coalesce the value. if (ValMapping.NumBreakDowns != 1) return RBI->getBreakDownCost(ValMapping, CurRegBank); if (IsSameNumOfValues) { const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; // If we repair a definition, swap the source and destination for // the repairing. if (MO.isDef()) std::swap(CurRegBank, DesiredRegBank); // TODO: It may be possible to actually avoid the copy. // If we repair something where the source is defined by a copy // and the source of that copy is on the right bank, we can reuse // it for free. // E.g., // RegToRepair = copy AlternativeSrc // = op RegToRepair // We can simply propagate AlternativeSrc instead of copying RegToRepair // into a new virtual register. // We would also need to propagate this information in the // repairing placement. unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank, RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); // TODO: use a dedicated constant for ImpossibleCost. if (Cost != std::numeric_limits::max()) return Cost; // Return the legalization cost of that repairing. } return std::numeric_limits::max(); } const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, SmallVectorImpl &RepairPts) { assert(!PossibleMappings.empty() && "Do not know how to map this instruction"); const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; MappingCost Cost = MappingCost::ImpossibleCost(); SmallVector LocalRepairPts; for (const RegisterBankInfo::InstructionMapping *CurMapping : PossibleMappings) { MappingCost CurCost = computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); if (CurCost < Cost) { LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); Cost = CurCost; BestMapping = CurMapping; RepairPts.clear(); for (RepairingPlacement &RepairPt : LocalRepairPts) RepairPts.emplace_back(std::move(RepairPt)); } } if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { // If none of the mapping worked that means they are all impossible. // Thus, pick the first one and set an impossible repairing point. // It will trigger the failed isel mode. BestMapping = *PossibleMappings.begin(); RepairPts.emplace_back( RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); } else assert(BestMapping && "No suitable mapping for instruction"); return *BestMapping; } void RegBankSelect::tryAvoidingSplit( RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping) const { const MachineInstr &MI = *MO.getParent(); assert(RepairPt.hasSplit() && "We should not have to adjust for split"); // Splitting should only occur for PHIs or between terminators, // because we only do local repairing. assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && "Repairing placement does not match operand"); // If we need splitting for phis, that means it is because we // could not find an insertion point before the terminators of // the predecessor block for this argument. In other words, // the input value is defined by one of the terminators. assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); // We split to repair the use of a phi or a terminator. if (!MO.isDef()) { if (MI.isTerminator()) { assert(&MI != &(*MI.getParent()->getFirstTerminator()) && "Need to split for the first terminator?!"); } else { // For the PHI case, the split may not be actually required. // In the copy case, a phi is already a copy on the incoming edge, // therefore there is no need to split. if (ValMapping.NumBreakDowns == 1) // This is a already a copy, there is nothing to do. RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); } return; } // At this point, we need to repair a defintion of a terminator. // Technically we need to fix the def of MI on all outgoing // edges of MI to keep the repairing local. In other words, we // will create several definitions of the same register. This // does not work for SSA unless that definition is a physical // register. // However, there are other cases where we can get away with // that while still keeping the repairing local. assert(MI.isTerminator() && MO.isDef() && "This code is for the def of a terminator"); // Since we use RPO traversal, if we need to repair a definition // this means this definition could be: // 1. Used by PHIs (i.e., this VReg has been visited as part of the // uses of a phi.), or // 2. Part of a target specific instruction (i.e., the target applied // some register class constraints when creating the instruction.) // If the constraints come for #2, the target said that another mapping // is supported so we may just drop them. Indeed, if we do not change // the number of registers holding that value, the uses will get fixed // when we get to them. // Uses in PHIs may have already been proceeded though. // If the constraints come for #1, then, those are weak constraints and // no actual uses may rely on them. However, the problem remains mainly // the same as for #2. If the value stays in one register, we could // just switch the register bank of the definition, but we would need to // account for a repairing cost for each phi we silently change. // // In any case, if the value needs to be broken down into several // registers, the repairing is not local anymore as we need to patch // every uses to rebuild the value in just one register. // // To summarize: // - If the value is in a physical register, we can do the split and // fix locally. // Otherwise if the value is in a virtual register: // - If the value remains in one register, we do not have to split // just switching the register bank would do, but we need to account // in the repairing cost all the phi we changed. // - If the value spans several registers, then we cannot do a local // repairing. // Check if this is a physical or virtual register. Register Reg = MO.getReg(); if (Register::isPhysicalRegister(Reg)) { // We are going to split every outgoing edges. // Check that this is possible. // FIXME: The machine representation is currently broken // since it also several terminators in one basic block. // Because of that we would technically need a way to get // the targets of just one terminator to know which edges // we have to split. // Assert that we do not hit the ill-formed representation. // If there are other terminators before that one, some of // the outgoing edges may not be dominated by this definition. assert(&MI == &(*MI.getParent()->getFirstTerminator()) && "Do not know which outgoing edges are relevant"); const MachineInstr *Next = MI.getNextNode(); assert((!Next || Next->isUnconditionalBranch()) && "Do not know where each terminator ends up"); if (Next) // If the next terminator uses Reg, this means we have // to split right after MI and thus we need a way to ask // which outgoing edges are affected. assert(!Next->readsRegister(Reg) && "Need to split between terminators"); // We will split all the edges and repair there. } else { // This is a virtual register defined by a terminator. if (ValMapping.NumBreakDowns == 1) { // There is nothing to repair, but we may actually lie on // the repairing cost because of the PHIs already proceeded // as already stated. // Though the code will be correct. assert(false && "Repairing cost may not be accurate"); } else { // We need to do non-local repairing. Basically, patch all // the uses (i.e., phis) that we already proceeded. // For now, just say this mapping is not possible. RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); } } } RegBankSelect::MappingCost RegBankSelect::computeMapping( MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, SmallVectorImpl &RepairPts, const RegBankSelect::MappingCost *BestCost) { assert((MBFI || !BestCost) && "Costs comparison require MBFI"); if (!InstrMapping.isValid()) return MappingCost::ImpossibleCost(); // If mapped with InstrMapping, MI will have the recorded cost. MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1); bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); assert(!Saturated && "Possible mapping saturated the cost"); LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); RepairPts.clear(); if (BestCost && Cost > *BestCost) { LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n"); return Cost; } // Moreover, to realize this mapping, the register bank of each operand must // match this mapping. In other words, we may need to locally reassign the // register banks. Account for that repairing cost as well. // In this context, local means in the surrounding of MI. for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); OpIdx != EndOpIdx; ++OpIdx) { const MachineOperand &MO = MI.getOperand(OpIdx); if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg) continue; LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); const RegisterBankInfo::ValueMapping &ValMapping = InstrMapping.getOperandMapping(OpIdx); // If Reg is already properly mapped, this is free. bool Assign; if (assignmentMatch(Reg, ValMapping, Assign)) { LLVM_DEBUG(dbgs() << "=> is free (match).\n"); continue; } if (Assign) { LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n"); RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Reassign)); continue; } // Find the insertion point for the repairing code. RepairPts.emplace_back( RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); RepairingPlacement &RepairPt = RepairPts.back(); // If we need to split a basic block to materialize this insertion point, // we may give a higher cost to this mapping. // Nevertheless, we may get away with the split, so try that first. if (RepairPt.hasSplit()) tryAvoidingSplit(RepairPt, MO, ValMapping); // Check that the materialization of the repairing is possible. if (!RepairPt.canMaterialize()) { LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n"); return MappingCost::ImpossibleCost(); } // Account for the split cost and repair cost. // Unless the cost is already saturated or we do not care about the cost. if (!BestCost || Saturated) continue; // To get accurate information we need MBFI and MBPI. // Thus, if we end up here this information should be here. assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); // FIXME: We will have to rework the repairing cost model. // The repairing cost depends on the register bank that MO has. // However, when we break down the value into different values, // MO may not have a register bank while still needing repairing. // For the fast mode, we don't compute the cost so that is fine, // but still for the repairing code, we will have to make a choice. // For the greedy mode, we should choose greedily what is the best // choice based on the next use of MO. // Sums up the repairing cost of MO at each insertion point. uint64_t RepairCost = getRepairCost(MO, ValMapping); // This is an impossible to repair cost. if (RepairCost == std::numeric_limits::max()) return MappingCost::ImpossibleCost(); // Bias used for splitting: 5%. const uint64_t PercentageForBias = 5; uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; // We should not need more than a couple of instructions to repair // an assignment. In other words, the computation should not // overflow because the repairing cost is free of basic block // frequency. assert(((RepairCost < RepairCost * PercentageForBias) && (RepairCost * PercentageForBias < RepairCost * PercentageForBias + 99)) && "Repairing involves more than a billion of instructions?!"); for (const std::unique_ptr &InsertPt : RepairPt) { assert(InsertPt->canMaterialize() && "We should not have made it here"); // We will applied some basic block frequency and those uses uint64_t. if (!InsertPt->isSplit()) Saturated = Cost.addLocalCost(RepairCost); else { uint64_t CostForInsertPt = RepairCost; // Again we shouldn't overflow here givent that // CostForInsertPt is frequency free at this point. assert(CostForInsertPt + Bias > CostForInsertPt && "Repairing + split bias overflows"); CostForInsertPt += Bias; uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; // Check if we just overflowed. if ((Saturated = PtCost < CostForInsertPt)) Cost.saturate(); else Saturated = Cost.addNonLocalCost(PtCost); } // Stop looking into what it takes to repair, this is already // too expensive. if (BestCost && Cost > *BestCost) { LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); return Cost; } // No need to accumulate more cost information. // We need to still gather the repairing information though. if (Saturated) break; } } LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); return Cost; } bool RegBankSelect::applyMapping( MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, SmallVectorImpl &RepairPts) { // OpdMapper will hold all the information needed for the rewriting. RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); // First, place the repairing code. for (RepairingPlacement &RepairPt : RepairPts) { if (!RepairPt.canMaterialize() || RepairPt.getKind() == RepairingPlacement::Impossible) return false; assert(RepairPt.getKind() != RepairingPlacement::None && "This should not make its way in the list"); unsigned OpIdx = RepairPt.getOpIdx(); MachineOperand &MO = MI.getOperand(OpIdx); const RegisterBankInfo::ValueMapping &ValMapping = InstrMapping.getOperandMapping(OpIdx); Register Reg = MO.getReg(); switch (RepairPt.getKind()) { case RepairingPlacement::Reassign: assert(ValMapping.NumBreakDowns == 1 && "Reassignment should only be for simple mapping"); MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); break; case RepairingPlacement::Insert: OpdMapper.createVRegs(OpIdx); if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) return false; break; default: llvm_unreachable("Other kind should not happen"); } } // Second, rewrite the instruction. LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); RBI->applyMapping(OpdMapper); return true; } bool RegBankSelect::assignInstr(MachineInstr &MI) { LLVM_DEBUG(dbgs() << "Assign: " << MI); unsigned Opc = MI.getOpcode(); if (isPreISelGenericOptimizationHint(Opc)) { assert((Opc == TargetOpcode::G_ASSERT_ZEXT || Opc == TargetOpcode::G_ASSERT_SEXT || Opc == TargetOpcode::G_ASSERT_ALIGN) && "Unexpected hint opcode!"); // The only correct mapping for these is to always use the source register // bank. const RegisterBank *RB = MRI->getRegBankOrNull(MI.getOperand(1).getReg()); // We can assume every instruction above this one has a selected register // bank. assert(RB && "Expected source register to have a register bank?"); LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n"); MRI->setRegBank(MI.getOperand(0).getReg(), *RB); return true; } // Remember the repairing placement for all the operands. SmallVector RepairPts; const RegisterBankInfo::InstructionMapping *BestMapping; if (OptMode == RegBankSelect::Mode::Fast) { BestMapping = &RBI->getInstrMapping(MI); MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); (void)DefaultCost; if (DefaultCost == MappingCost::ImpossibleCost()) return false; } else { RegisterBankInfo::InstructionMappings PossibleMappings = RBI->getInstrPossibleMappings(MI); if (PossibleMappings.empty()) return false; BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); } // Make sure the mapping is valid for MI. assert(BestMapping->verify(MI) && "Invalid instruction mapping"); LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); // After this call, MI may not be valid anymore. // Do not use it. return applyMapping(MI, *BestMapping, RepairPts); } bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { // If the ISel pipeline failed, do not bother running that pass. if (MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailedISel)) return false; LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); const Function &F = MF.getFunction(); Mode SaveOptMode = OptMode; if (F.hasOptNone()) OptMode = Mode::Fast; init(MF); #ifndef NDEBUG // Check that our input is fully legal: we require the function to have the // Legalized property, so it should be. // FIXME: This should be in the MachineVerifier. if (!DisableGISelLegalityCheck) if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", "instruction is not legal", *MI); return false; } #endif // Walk the function and assign register banks to all operands. // Use a RPOT to make sure all registers are assigned before we choose // the best mapping of the current instruction. ReversePostOrderTraversal RPOT(&MF); for (MachineBasicBlock *MBB : RPOT) { // Set a sensible insertion point so that subsequent calls to // MIRBuilder. MIRBuilder.setMBB(*MBB); SmallVector WorkList( make_pointer_range(reverse(MBB->instrs()))); while (!WorkList.empty()) { MachineInstr &MI = *WorkList.pop_back_val(); // Ignore target-specific post-isel instructions: they should use proper // regclasses. if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode()) continue; // Ignore inline asm instructions: they should use physical // registers/regclasses if (MI.isInlineAsm()) continue; // Ignore debug info. if (MI.isDebugInstr()) continue; // Ignore IMPLICIT_DEF which must have a regclass. if (MI.isImplicitDef()) continue; if (!assignInstr(MI)) { reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", "unable to map instruction", MI); return false; } } } OptMode = SaveOptMode; return false; } //------------------------------------------------------------------------------ // Helper Classes Implementation //------------------------------------------------------------------------------ RegBankSelect::RepairingPlacement::RepairingPlacement( MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, RepairingPlacement::RepairingKind Kind) // Default is, we are going to insert code to repair OpIdx. : Kind(Kind), OpIdx(OpIdx), CanMaterialize(Kind != RepairingKind::Impossible), P(P) { const MachineOperand &MO = MI.getOperand(OpIdx); assert(MO.isReg() && "Trying to repair a non-reg operand"); if (Kind != RepairingKind::Insert) return; // Repairings for definitions happen after MI, uses happen before. bool Before = !MO.isDef(); // Check if we are done with MI. if (!MI.isPHI() && !MI.isTerminator()) { addInsertPoint(MI, Before); // We are done with the initialization. return; } // Now, look for the special cases. if (MI.isPHI()) { // - PHI must be the first instructions: // * Before, we have to split the related incoming edge. // * After, move the insertion point past the last phi. if (!Before) { MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); if (It != MI.getParent()->end()) addInsertPoint(*It, /*Before*/ true); else addInsertPoint(*(--It), /*Before*/ false); return; } // We repair a use of a phi, we may need to split the related edge. MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); // Check if we can move the insertion point prior to the // terminators of the predecessor. Register Reg = MO.getReg(); MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) if (It->modifiesRegister(Reg, &TRI)) { // We cannot hoist the repairing code in the predecessor. // Split the edge. addInsertPoint(Pred, *MI.getParent()); return; } // At this point, we can insert in Pred. // - If It is invalid, Pred is empty and we can insert in Pred // wherever we want. // - If It is valid, It is the first non-terminator, insert after It. if (It == Pred.end()) addInsertPoint(Pred, /*Beginning*/ false); else addInsertPoint(*It, /*Before*/ false); } else { // - Terminators must be the last instructions: // * Before, move the insert point before the first terminator. // * After, we have to split the outcoming edges. if (Before) { // Check whether Reg is defined by any terminator. MachineBasicBlock::reverse_iterator It = MI; auto REnd = MI.getParent()->rend(); for (; It != REnd && It->isTerminator(); ++It) { assert(!It->modifiesRegister(MO.getReg(), &TRI) && "copy insertion in middle of terminators not handled"); } if (It == REnd) { addInsertPoint(*MI.getParent()->begin(), true); return; } // We are sure to be right before the first terminator. addInsertPoint(*It, /*Before*/ false); return; } // Make sure Reg is not redefined by other terminators, otherwise // we do not know how to split. for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); ++It != End;) // The machine verifier should reject this kind of code. assert(It->modifiesRegister(MO.getReg(), &TRI) && "Do not know where to split"); // Split each outcoming edges. MachineBasicBlock &Src = *MI.getParent(); for (auto &Succ : Src.successors()) addInsertPoint(Src, Succ); } } void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, bool Before) { addInsertPoint(*new InstrInsertPoint(MI, Before)); } void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, bool Beginning) { addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); } void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, MachineBasicBlock &Dst) { addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); } void RegBankSelect::RepairingPlacement::addInsertPoint( RegBankSelect::InsertPoint &Point) { CanMaterialize &= Point.canMaterialize(); HasSplit |= Point.isSplit(); InsertPoints.emplace_back(&Point); } RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, bool Before) : Instr(Instr), Before(Before) { // Since we do not support splitting, we do not need to update // liveness and such, so do not do anything with P. assert((!Before || !Instr.isPHI()) && "Splitting before phis requires more points"); assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && "Splitting between phis does not make sense"); } void RegBankSelect::InstrInsertPoint::materialize() { if (isSplit()) { // Slice and return the beginning of the new block. // If we need to split between the terminators, we theoritically // need to know where the first and second set of terminators end // to update the successors properly. // Now, in pratice, we should have a maximum of 2 branch // instructions; one conditional and one unconditional. Therefore // we know how to update the successor by looking at the target of // the unconditional branch. // If we end up splitting at some point, then, we should update // the liveness information and such. I.e., we would need to // access P here. // The machine verifier should actually make sure such cases // cannot happen. llvm_unreachable("Not yet implemented"); } // Otherwise the insertion point is just the current or next // instruction depending on Before. I.e., there is nothing to do // here. } bool RegBankSelect::InstrInsertPoint::isSplit() const { // If the insertion point is after a terminator, we need to split. if (!Before) return Instr.isTerminator(); // If we insert before an instruction that is after a terminator, // we are still after a terminator. return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); } uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { // Even if we need to split, because we insert between terminators, // this split has actually the same frequency as the instruction. const MachineBlockFrequencyInfo *MBFI = P.getAnalysisIfAvailable(); if (!MBFI) return 1; return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); } uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { const MachineBlockFrequencyInfo *MBFI = P.getAnalysisIfAvailable(); if (!MBFI) return 1; return MBFI->getBlockFreq(&MBB).getFrequency(); } void RegBankSelect::EdgeInsertPoint::materialize() { // If we end up repairing twice at the same place before materializing the // insertion point, we may think we have to split an edge twice. // We should have a factory for the insert point such that identical points // are the same instance. assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && "This point has already been split"); MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); assert(NewBB && "Invalid call to materialize"); // We reuse the destination block to hold the information of the new block. DstOrSplit = NewBB; } uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { const MachineBlockFrequencyInfo *MBFI = P.getAnalysisIfAvailable(); if (!MBFI) return 1; if (WasMaterialized) return MBFI->getBlockFreq(DstOrSplit).getFrequency(); const MachineBranchProbabilityInfo *MBPI = P.getAnalysisIfAvailable(); if (!MBPI) return 1; // The basic block will be on the edge. return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) .getFrequency(); } bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { // If this is not a critical edge, we should not have used this insert // point. Indeed, either the successor or the predecessor should // have do. assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && "Edge is not critical"); return Src.canSplitCriticalEdge(DstOrSplit); } RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq) : LocalFreq(LocalFreq.getFrequency()) {} bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { // Check if this overflows. if (LocalCost + Cost < LocalCost) { saturate(); return true; } LocalCost += Cost; return isSaturated(); } bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { // Check if this overflows. if (NonLocalCost + Cost < NonLocalCost) { saturate(); return true; } NonLocalCost += Cost; return isSaturated(); } bool RegBankSelect::MappingCost::isSaturated() const { return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && LocalFreq == UINT64_MAX; } void RegBankSelect::MappingCost::saturate() { *this = ImpossibleCost(); --LocalCost; } RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); } bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { // Sort out the easy cases. if (*this == Cost) return false; // If one is impossible to realize the other is cheaper unless it is // impossible as well. if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); // If one is saturated the other is cheaper, unless it is saturated // as well. if (isSaturated() || Cost.isSaturated()) return isSaturated() < Cost.isSaturated(); // At this point we know both costs hold sensible values. // If both values have a different base frequency, there is no much // we can do but to scale everything. // However, if they have the same base frequency we can avoid making // complicated computation. uint64_t ThisLocalAdjust; uint64_t OtherLocalAdjust; if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { // At this point, we know the local costs are comparable. // Do the case that do not involve potential overflow first. if (NonLocalCost == Cost.NonLocalCost) // Since the non-local costs do not discriminate on the result, // just compare the local costs. return LocalCost < Cost.LocalCost; // The base costs are comparable so we may only keep the relative // value to increase our chances of avoiding overflows. ThisLocalAdjust = 0; OtherLocalAdjust = 0; if (LocalCost < Cost.LocalCost) OtherLocalAdjust = Cost.LocalCost - LocalCost; else ThisLocalAdjust = LocalCost - Cost.LocalCost; } else { ThisLocalAdjust = LocalCost; OtherLocalAdjust = Cost.LocalCost; } // The non-local costs are comparable, just keep the relative value. uint64_t ThisNonLocalAdjust = 0; uint64_t OtherNonLocalAdjust = 0; if (NonLocalCost < Cost.NonLocalCost) OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; else ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; // Scale everything to make them comparable. uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; // Check for overflow on that operation. bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || ThisScaledCost < LocalFreq); uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; // Check for overflow on the last operation. bool OtherOverflows = OtherLocalAdjust && (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); // Add the non-local costs. ThisOverflows |= ThisNonLocalAdjust && ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; ThisScaledCost += ThisNonLocalAdjust; OtherOverflows |= OtherNonLocalAdjust && OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; OtherScaledCost += OtherNonLocalAdjust; // If both overflows, we cannot compare without additional // precision, e.g., APInt. Just give up on that case. if (ThisOverflows && OtherOverflows) return false; // If one overflows but not the other, we can still compare. if (ThisOverflows || OtherOverflows) return ThisOverflows < OtherOverflows; // Otherwise, just compare the values. return ThisScaledCost < OtherScaledCost; } bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && LocalFreq == Cost.LocalFreq; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { print(dbgs()); dbgs() << '\n'; } #endif void RegBankSelect::MappingCost::print(raw_ostream &OS) const { if (*this == ImpossibleCost()) { OS << "impossible"; return; } if (isSaturated()) { OS << "saturated"; return; } OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; }