//===-- llvm/CodeGen/GlobalISel/MachineIRBuilder.cpp - MIBuilder--*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file implements the MachineIRBuidler class. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugInfoMetadata.h" using namespace llvm; void MachineIRBuilder::setMF(MachineFunction &MF) { State.MF = &MF; State.MBB = nullptr; State.MRI = &MF.getRegInfo(); State.TII = MF.getSubtarget().getInstrInfo(); State.DL = DebugLoc(); State.PCSections = nullptr; State.II = MachineBasicBlock::iterator(); State.Observer = nullptr; } //------------------------------------------------------------------------------ // Build instruction variants. //------------------------------------------------------------------------------ MachineInstrBuilder MachineIRBuilder::buildInstrNoInsert(unsigned Opcode) { return BuildMI(getMF(), {getDL(), getPCSections()}, getTII().get(Opcode)); } MachineInstrBuilder MachineIRBuilder::insertInstr(MachineInstrBuilder MIB) { getMBB().insert(getInsertPt(), MIB); recordInsertion(MIB); return MIB; } MachineInstrBuilder MachineIRBuilder::buildDirectDbgValue(Register Reg, const MDNode *Variable, const MDNode *Expr) { assert(isa(Variable) && "not a variable"); assert(cast(Expr)->isValid() && "not an expression"); assert( cast(Variable)->isValidLocationForIntrinsic(getDL()) && "Expected inlined-at fields to agree"); return insertInstr(BuildMI(getMF(), getDL(), getTII().get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ false, Reg, Variable, Expr)); } MachineInstrBuilder MachineIRBuilder::buildIndirectDbgValue(Register Reg, const MDNode *Variable, const MDNode *Expr) { assert(isa(Variable) && "not a variable"); assert(cast(Expr)->isValid() && "not an expression"); assert( cast(Variable)->isValidLocationForIntrinsic(getDL()) && "Expected inlined-at fields to agree"); return insertInstr(BuildMI(getMF(), getDL(), getTII().get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, Reg, Variable, Expr)); } MachineInstrBuilder MachineIRBuilder::buildFIDbgValue(int FI, const MDNode *Variable, const MDNode *Expr) { assert(isa(Variable) && "not a variable"); assert(cast(Expr)->isValid() && "not an expression"); assert( cast(Variable)->isValidLocationForIntrinsic(getDL()) && "Expected inlined-at fields to agree"); return insertInstr(buildInstrNoInsert(TargetOpcode::DBG_VALUE) .addFrameIndex(FI) .addImm(0) .addMetadata(Variable) .addMetadata(Expr)); } MachineInstrBuilder MachineIRBuilder::buildConstDbgValue(const Constant &C, const MDNode *Variable, const MDNode *Expr) { assert(isa(Variable) && "not a variable"); assert(cast(Expr)->isValid() && "not an expression"); assert( cast(Variable)->isValidLocationForIntrinsic(getDL()) && "Expected inlined-at fields to agree"); auto MIB = buildInstrNoInsert(TargetOpcode::DBG_VALUE); auto *NumericConstant = [&] () -> const Constant* { if (const auto *CE = dyn_cast(&C)) if (CE->getOpcode() == Instruction::IntToPtr) return CE->getOperand(0); return &C; }(); if (auto *CI = dyn_cast(NumericConstant)) { if (CI->getBitWidth() > 64) MIB.addCImm(CI); else MIB.addImm(CI->getZExtValue()); } else if (auto *CFP = dyn_cast(NumericConstant)) { MIB.addFPImm(CFP); } else if (isa(NumericConstant)) { MIB.addImm(0); } else { // Insert $noreg if we didn't find a usable constant and had to drop it. MIB.addReg(Register()); } MIB.addImm(0).addMetadata(Variable).addMetadata(Expr); return insertInstr(MIB); } MachineInstrBuilder MachineIRBuilder::buildDbgLabel(const MDNode *Label) { assert(isa(Label) && "not a label"); assert(cast(Label)->isValidLocationForIntrinsic(State.DL) && "Expected inlined-at fields to agree"); auto MIB = buildInstr(TargetOpcode::DBG_LABEL); return MIB.addMetadata(Label); } MachineInstrBuilder MachineIRBuilder::buildDynStackAlloc(const DstOp &Res, const SrcOp &Size, Align Alignment) { assert(Res.getLLTTy(*getMRI()).isPointer() && "expected ptr dst type"); auto MIB = buildInstr(TargetOpcode::G_DYN_STACKALLOC); Res.addDefToMIB(*getMRI(), MIB); Size.addSrcToMIB(MIB); MIB.addImm(Alignment.value()); return MIB; } MachineInstrBuilder MachineIRBuilder::buildFrameIndex(const DstOp &Res, int Idx) { assert(Res.getLLTTy(*getMRI()).isPointer() && "invalid operand type"); auto MIB = buildInstr(TargetOpcode::G_FRAME_INDEX); Res.addDefToMIB(*getMRI(), MIB); MIB.addFrameIndex(Idx); return MIB; } MachineInstrBuilder MachineIRBuilder::buildGlobalValue(const DstOp &Res, const GlobalValue *GV) { assert(Res.getLLTTy(*getMRI()).isPointer() && "invalid operand type"); assert(Res.getLLTTy(*getMRI()).getAddressSpace() == GV->getType()->getAddressSpace() && "address space mismatch"); auto MIB = buildInstr(TargetOpcode::G_GLOBAL_VALUE); Res.addDefToMIB(*getMRI(), MIB); MIB.addGlobalAddress(GV); return MIB; } MachineInstrBuilder MachineIRBuilder::buildConstantPool(const DstOp &Res, unsigned Idx) { assert(Res.getLLTTy(*getMRI()).isPointer() && "invalid operand type"); auto MIB = buildInstr(TargetOpcode::G_CONSTANT_POOL); Res.addDefToMIB(*getMRI(), MIB); MIB.addConstantPoolIndex(Idx); return MIB; } MachineInstrBuilder MachineIRBuilder::buildJumpTable(const LLT PtrTy, unsigned JTI) { return buildInstr(TargetOpcode::G_JUMP_TABLE, {PtrTy}, {}) .addJumpTableIndex(JTI); } void MachineIRBuilder::validateUnaryOp(const LLT Res, const LLT Op0) { assert((Res.isScalar() || Res.isVector()) && "invalid operand type"); assert((Res == Op0) && "type mismatch"); } void MachineIRBuilder::validateBinaryOp(const LLT Res, const LLT Op0, const LLT Op1) { assert((Res.isScalar() || Res.isVector()) && "invalid operand type"); assert((Res == Op0 && Res == Op1) && "type mismatch"); } void MachineIRBuilder::validateShiftOp(const LLT Res, const LLT Op0, const LLT Op1) { assert((Res.isScalar() || Res.isVector()) && "invalid operand type"); assert((Res == Op0) && "type mismatch"); } MachineInstrBuilder MachineIRBuilder::buildPtrAdd(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1) { assert(Res.getLLTTy(*getMRI()).getScalarType().isPointer() && Res.getLLTTy(*getMRI()) == Op0.getLLTTy(*getMRI()) && "type mismatch"); assert(Op1.getLLTTy(*getMRI()).getScalarType().isScalar() && "invalid offset type"); return buildInstr(TargetOpcode::G_PTR_ADD, {Res}, {Op0, Op1}); } std::optional MachineIRBuilder::materializePtrAdd(Register &Res, Register Op0, const LLT ValueTy, uint64_t Value) { assert(Res == 0 && "Res is a result argument"); assert(ValueTy.isScalar() && "invalid offset type"); if (Value == 0) { Res = Op0; return std::nullopt; } Res = getMRI()->createGenericVirtualRegister(getMRI()->getType(Op0)); auto Cst = buildConstant(ValueTy, Value); return buildPtrAdd(Res, Op0, Cst.getReg(0)); } MachineInstrBuilder MachineIRBuilder::buildMaskLowPtrBits(const DstOp &Res, const SrcOp &Op0, uint32_t NumBits) { LLT PtrTy = Res.getLLTTy(*getMRI()); LLT MaskTy = LLT::scalar(PtrTy.getSizeInBits()); Register MaskReg = getMRI()->createGenericVirtualRegister(MaskTy); buildConstant(MaskReg, maskTrailingZeros(NumBits)); return buildPtrMask(Res, Op0, MaskReg); } MachineInstrBuilder MachineIRBuilder::buildPadVectorWithUndefElements(const DstOp &Res, const SrcOp &Op0) { LLT ResTy = Res.getLLTTy(*getMRI()); LLT Op0Ty = Op0.getLLTTy(*getMRI()); assert(ResTy.isVector() && "Res non vector type"); SmallVector Regs; if (Op0Ty.isVector()) { assert((ResTy.getElementType() == Op0Ty.getElementType()) && "Different vector element types"); assert((ResTy.getNumElements() > Op0Ty.getNumElements()) && "Op0 has more elements"); auto Unmerge = buildUnmerge(Op0Ty.getElementType(), Op0); for (auto Op : Unmerge.getInstr()->defs()) Regs.push_back(Op.getReg()); } else { assert((ResTy.getSizeInBits() > Op0Ty.getSizeInBits()) && "Op0 has more size"); Regs.push_back(Op0.getReg()); } Register Undef = buildUndef(Op0Ty.isVector() ? Op0Ty.getElementType() : Op0Ty).getReg(0); unsigned NumberOfPadElts = ResTy.getNumElements() - Regs.size(); for (unsigned i = 0; i < NumberOfPadElts; ++i) Regs.push_back(Undef); return buildMergeLikeInstr(Res, Regs); } MachineInstrBuilder MachineIRBuilder::buildDeleteTrailingVectorElements(const DstOp &Res, const SrcOp &Op0) { LLT ResTy = Res.getLLTTy(*getMRI()); LLT Op0Ty = Op0.getLLTTy(*getMRI()); assert((ResTy.isVector() && Op0Ty.isVector()) && "Non vector type"); assert((ResTy.getElementType() == Op0Ty.getElementType()) && "Different vector element types"); assert((ResTy.getNumElements() < Op0Ty.getNumElements()) && "Op0 has fewer elements"); SmallVector Regs; auto Unmerge = buildUnmerge(Op0Ty.getElementType(), Op0); for (unsigned i = 0; i < ResTy.getNumElements(); ++i) Regs.push_back(Unmerge.getReg(i)); return buildMergeLikeInstr(Res, Regs); } MachineInstrBuilder MachineIRBuilder::buildBr(MachineBasicBlock &Dest) { return buildInstr(TargetOpcode::G_BR).addMBB(&Dest); } MachineInstrBuilder MachineIRBuilder::buildBrIndirect(Register Tgt) { assert(getMRI()->getType(Tgt).isPointer() && "invalid branch destination"); return buildInstr(TargetOpcode::G_BRINDIRECT).addUse(Tgt); } MachineInstrBuilder MachineIRBuilder::buildBrJT(Register TablePtr, unsigned JTI, Register IndexReg) { assert(getMRI()->getType(TablePtr).isPointer() && "Table reg must be a pointer"); return buildInstr(TargetOpcode::G_BRJT) .addUse(TablePtr) .addJumpTableIndex(JTI) .addUse(IndexReg); } MachineInstrBuilder MachineIRBuilder::buildCopy(const DstOp &Res, const SrcOp &Op) { return buildInstr(TargetOpcode::COPY, Res, Op); } MachineInstrBuilder MachineIRBuilder::buildConstant(const DstOp &Res, const ConstantInt &Val) { LLT Ty = Res.getLLTTy(*getMRI()); LLT EltTy = Ty.getScalarType(); assert(EltTy.getScalarSizeInBits() == Val.getBitWidth() && "creating constant with the wrong size"); if (Ty.isVector()) { auto Const = buildInstr(TargetOpcode::G_CONSTANT) .addDef(getMRI()->createGenericVirtualRegister(EltTy)) .addCImm(&Val); return buildSplatVector(Res, Const); } auto Const = buildInstr(TargetOpcode::G_CONSTANT); Const->setDebugLoc(DebugLoc()); Res.addDefToMIB(*getMRI(), Const); Const.addCImm(&Val); return Const; } MachineInstrBuilder MachineIRBuilder::buildConstant(const DstOp &Res, int64_t Val) { auto IntN = IntegerType::get(getMF().getFunction().getContext(), Res.getLLTTy(*getMRI()).getScalarSizeInBits()); ConstantInt *CI = ConstantInt::get(IntN, Val, true); return buildConstant(Res, *CI); } MachineInstrBuilder MachineIRBuilder::buildFConstant(const DstOp &Res, const ConstantFP &Val) { LLT Ty = Res.getLLTTy(*getMRI()); LLT EltTy = Ty.getScalarType(); assert(APFloat::getSizeInBits(Val.getValueAPF().getSemantics()) == EltTy.getSizeInBits() && "creating fconstant with the wrong size"); assert(!Ty.isPointer() && "invalid operand type"); if (Ty.isVector()) { auto Const = buildInstr(TargetOpcode::G_FCONSTANT) .addDef(getMRI()->createGenericVirtualRegister(EltTy)) .addFPImm(&Val); return buildSplatVector(Res, Const); } auto Const = buildInstr(TargetOpcode::G_FCONSTANT); Const->setDebugLoc(DebugLoc()); Res.addDefToMIB(*getMRI(), Const); Const.addFPImm(&Val); return Const; } MachineInstrBuilder MachineIRBuilder::buildConstant(const DstOp &Res, const APInt &Val) { ConstantInt *CI = ConstantInt::get(getMF().getFunction().getContext(), Val); return buildConstant(Res, *CI); } MachineInstrBuilder MachineIRBuilder::buildFConstant(const DstOp &Res, double Val) { LLT DstTy = Res.getLLTTy(*getMRI()); auto &Ctx = getMF().getFunction().getContext(); auto *CFP = ConstantFP::get(Ctx, getAPFloatFromSize(Val, DstTy.getScalarSizeInBits())); return buildFConstant(Res, *CFP); } MachineInstrBuilder MachineIRBuilder::buildFConstant(const DstOp &Res, const APFloat &Val) { auto &Ctx = getMF().getFunction().getContext(); auto *CFP = ConstantFP::get(Ctx, Val); return buildFConstant(Res, *CFP); } MachineInstrBuilder MachineIRBuilder::buildBrCond(const SrcOp &Tst, MachineBasicBlock &Dest) { assert(Tst.getLLTTy(*getMRI()).isScalar() && "invalid operand type"); auto MIB = buildInstr(TargetOpcode::G_BRCOND); Tst.addSrcToMIB(MIB); MIB.addMBB(&Dest); return MIB; } MachineInstrBuilder MachineIRBuilder::buildLoad(const DstOp &Dst, const SrcOp &Addr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo) { MMOFlags |= MachineMemOperand::MOLoad; assert((MMOFlags & MachineMemOperand::MOStore) == 0); LLT Ty = Dst.getLLTTy(*getMRI()); MachineMemOperand *MMO = getMF().getMachineMemOperand(PtrInfo, MMOFlags, Ty, Alignment, AAInfo); return buildLoad(Dst, Addr, *MMO); } MachineInstrBuilder MachineIRBuilder::buildLoadInstr(unsigned Opcode, const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO) { assert(Res.getLLTTy(*getMRI()).isValid() && "invalid operand type"); assert(Addr.getLLTTy(*getMRI()).isPointer() && "invalid operand type"); auto MIB = buildInstr(Opcode); Res.addDefToMIB(*getMRI(), MIB); Addr.addSrcToMIB(MIB); MIB.addMemOperand(&MMO); return MIB; } MachineInstrBuilder MachineIRBuilder::buildLoadFromOffset( const DstOp &Dst, const SrcOp &BasePtr, MachineMemOperand &BaseMMO, int64_t Offset) { LLT LoadTy = Dst.getLLTTy(*getMRI()); MachineMemOperand *OffsetMMO = getMF().getMachineMemOperand(&BaseMMO, Offset, LoadTy); if (Offset == 0) // This may be a size or type changing load. return buildLoad(Dst, BasePtr, *OffsetMMO); LLT PtrTy = BasePtr.getLLTTy(*getMRI()); LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); auto ConstOffset = buildConstant(OffsetTy, Offset); auto Ptr = buildPtrAdd(PtrTy, BasePtr, ConstOffset); return buildLoad(Dst, Ptr, *OffsetMMO); } MachineInstrBuilder MachineIRBuilder::buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO) { assert(Val.getLLTTy(*getMRI()).isValid() && "invalid operand type"); assert(Addr.getLLTTy(*getMRI()).isPointer() && "invalid operand type"); auto MIB = buildInstr(TargetOpcode::G_STORE); Val.addSrcToMIB(MIB); Addr.addSrcToMIB(MIB); MIB.addMemOperand(&MMO); return MIB; } MachineInstrBuilder MachineIRBuilder::buildStore(const SrcOp &Val, const SrcOp &Addr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo) { MMOFlags |= MachineMemOperand::MOStore; assert((MMOFlags & MachineMemOperand::MOLoad) == 0); LLT Ty = Val.getLLTTy(*getMRI()); MachineMemOperand *MMO = getMF().getMachineMemOperand(PtrInfo, MMOFlags, Ty, Alignment, AAInfo); return buildStore(Val, Addr, *MMO); } MachineInstrBuilder MachineIRBuilder::buildAnyExt(const DstOp &Res, const SrcOp &Op) { return buildInstr(TargetOpcode::G_ANYEXT, Res, Op); } MachineInstrBuilder MachineIRBuilder::buildSExt(const DstOp &Res, const SrcOp &Op) { return buildInstr(TargetOpcode::G_SEXT, Res, Op); } MachineInstrBuilder MachineIRBuilder::buildZExt(const DstOp &Res, const SrcOp &Op) { return buildInstr(TargetOpcode::G_ZEXT, Res, Op); } unsigned MachineIRBuilder::getBoolExtOp(bool IsVec, bool IsFP) const { const auto *TLI = getMF().getSubtarget().getTargetLowering(); switch (TLI->getBooleanContents(IsVec, IsFP)) { case TargetLoweringBase::ZeroOrNegativeOneBooleanContent: return TargetOpcode::G_SEXT; case TargetLoweringBase::ZeroOrOneBooleanContent: return TargetOpcode::G_ZEXT; default: return TargetOpcode::G_ANYEXT; } } MachineInstrBuilder MachineIRBuilder::buildBoolExt(const DstOp &Res, const SrcOp &Op, bool IsFP) { unsigned ExtOp = getBoolExtOp(getMRI()->getType(Op.getReg()).isVector(), IsFP); return buildInstr(ExtOp, Res, Op); } MachineInstrBuilder MachineIRBuilder::buildBoolExtInReg(const DstOp &Res, const SrcOp &Op, bool IsVector, bool IsFP) { const auto *TLI = getMF().getSubtarget().getTargetLowering(); switch (TLI->getBooleanContents(IsVector, IsFP)) { case TargetLoweringBase::ZeroOrNegativeOneBooleanContent: return buildSExtInReg(Res, Op, 1); case TargetLoweringBase::ZeroOrOneBooleanContent: return buildZExtInReg(Res, Op, 1); case TargetLoweringBase::UndefinedBooleanContent: return buildCopy(Res, Op); } llvm_unreachable("unexpected BooleanContent"); } MachineInstrBuilder MachineIRBuilder::buildExtOrTrunc(unsigned ExtOpc, const DstOp &Res, const SrcOp &Op) { assert((TargetOpcode::G_ANYEXT == ExtOpc || TargetOpcode::G_ZEXT == ExtOpc || TargetOpcode::G_SEXT == ExtOpc) && "Expecting Extending Opc"); assert(Res.getLLTTy(*getMRI()).isScalar() || Res.getLLTTy(*getMRI()).isVector()); assert(Res.getLLTTy(*getMRI()).isScalar() == Op.getLLTTy(*getMRI()).isScalar()); unsigned Opcode = TargetOpcode::COPY; if (Res.getLLTTy(*getMRI()).getSizeInBits() > Op.getLLTTy(*getMRI()).getSizeInBits()) Opcode = ExtOpc; else if (Res.getLLTTy(*getMRI()).getSizeInBits() < Op.getLLTTy(*getMRI()).getSizeInBits()) Opcode = TargetOpcode::G_TRUNC; else assert(Res.getLLTTy(*getMRI()) == Op.getLLTTy(*getMRI())); return buildInstr(Opcode, Res, Op); } MachineInstrBuilder MachineIRBuilder::buildSExtOrTrunc(const DstOp &Res, const SrcOp &Op) { return buildExtOrTrunc(TargetOpcode::G_SEXT, Res, Op); } MachineInstrBuilder MachineIRBuilder::buildZExtOrTrunc(const DstOp &Res, const SrcOp &Op) { return buildExtOrTrunc(TargetOpcode::G_ZEXT, Res, Op); } MachineInstrBuilder MachineIRBuilder::buildAnyExtOrTrunc(const DstOp &Res, const SrcOp &Op) { return buildExtOrTrunc(TargetOpcode::G_ANYEXT, Res, Op); } MachineInstrBuilder MachineIRBuilder::buildZExtInReg(const DstOp &Res, const SrcOp &Op, int64_t ImmOp) { LLT ResTy = Res.getLLTTy(*getMRI()); auto Mask = buildConstant( ResTy, APInt::getLowBitsSet(ResTy.getScalarSizeInBits(), ImmOp)); return buildAnd(Res, Op, Mask); } MachineInstrBuilder MachineIRBuilder::buildCast(const DstOp &Dst, const SrcOp &Src) { LLT SrcTy = Src.getLLTTy(*getMRI()); LLT DstTy = Dst.getLLTTy(*getMRI()); if (SrcTy == DstTy) return buildCopy(Dst, Src); unsigned Opcode; if (SrcTy.isPointer() && DstTy.isScalar()) Opcode = TargetOpcode::G_PTRTOINT; else if (DstTy.isPointer() && SrcTy.isScalar()) Opcode = TargetOpcode::G_INTTOPTR; else { assert(!SrcTy.isPointer() && !DstTy.isPointer() && "n G_ADDRCAST yet"); Opcode = TargetOpcode::G_BITCAST; } return buildInstr(Opcode, Dst, Src); } MachineInstrBuilder MachineIRBuilder::buildExtract(const DstOp &Dst, const SrcOp &Src, uint64_t Index) { LLT SrcTy = Src.getLLTTy(*getMRI()); LLT DstTy = Dst.getLLTTy(*getMRI()); #ifndef NDEBUG assert(SrcTy.isValid() && "invalid operand type"); assert(DstTy.isValid() && "invalid operand type"); assert(Index + DstTy.getSizeInBits() <= SrcTy.getSizeInBits() && "extracting off end of register"); #endif if (DstTy.getSizeInBits() == SrcTy.getSizeInBits()) { assert(Index == 0 && "insertion past the end of a register"); return buildCast(Dst, Src); } auto Extract = buildInstr(TargetOpcode::G_EXTRACT); Dst.addDefToMIB(*getMRI(), Extract); Src.addSrcToMIB(Extract); Extract.addImm(Index); return Extract; } MachineInstrBuilder MachineIRBuilder::buildUndef(const DstOp &Res) { return buildInstr(TargetOpcode::G_IMPLICIT_DEF, {Res}, {}); } MachineInstrBuilder MachineIRBuilder::buildMergeValues(const DstOp &Res, ArrayRef Ops) { // Unfortunately to convert from ArrayRef to ArrayRef, // we need some temporary storage for the DstOp objects. Here we use a // sufficiently large SmallVector to not go through the heap. SmallVector TmpVec(Ops.begin(), Ops.end()); assert(TmpVec.size() > 1); return buildInstr(TargetOpcode::G_MERGE_VALUES, Res, TmpVec); } MachineInstrBuilder MachineIRBuilder::buildMergeLikeInstr(const DstOp &Res, ArrayRef Ops) { // Unfortunately to convert from ArrayRef to ArrayRef, // we need some temporary storage for the DstOp objects. Here we use a // sufficiently large SmallVector to not go through the heap. SmallVector TmpVec(Ops.begin(), Ops.end()); assert(TmpVec.size() > 1); return buildInstr(getOpcodeForMerge(Res, TmpVec), Res, TmpVec); } MachineInstrBuilder MachineIRBuilder::buildMergeLikeInstr(const DstOp &Res, std::initializer_list Ops) { assert(Ops.size() > 1); return buildInstr(getOpcodeForMerge(Res, Ops), Res, Ops); } unsigned MachineIRBuilder::getOpcodeForMerge(const DstOp &DstOp, ArrayRef SrcOps) const { if (DstOp.getLLTTy(*getMRI()).isVector()) { if (SrcOps[0].getLLTTy(*getMRI()).isVector()) return TargetOpcode::G_CONCAT_VECTORS; return TargetOpcode::G_BUILD_VECTOR; } return TargetOpcode::G_MERGE_VALUES; } MachineInstrBuilder MachineIRBuilder::buildUnmerge(ArrayRef Res, const SrcOp &Op) { // Unfortunately to convert from ArrayRef to ArrayRef, // we need some temporary storage for the DstOp objects. Here we use a // sufficiently large SmallVector to not go through the heap. SmallVector TmpVec(Res.begin(), Res.end()); assert(TmpVec.size() > 1); return buildInstr(TargetOpcode::G_UNMERGE_VALUES, TmpVec, Op); } MachineInstrBuilder MachineIRBuilder::buildUnmerge(LLT Res, const SrcOp &Op) { unsigned NumReg = Op.getLLTTy(*getMRI()).getSizeInBits() / Res.getSizeInBits(); SmallVector TmpVec(NumReg, Res); return buildInstr(TargetOpcode::G_UNMERGE_VALUES, TmpVec, Op); } MachineInstrBuilder MachineIRBuilder::buildUnmerge(ArrayRef Res, const SrcOp &Op) { // Unfortunately to convert from ArrayRef to ArrayRef, // we need some temporary storage for the DstOp objects. Here we use a // sufficiently large SmallVector to not go through the heap. SmallVector TmpVec(Res.begin(), Res.end()); assert(TmpVec.size() > 1); return buildInstr(TargetOpcode::G_UNMERGE_VALUES, TmpVec, Op); } MachineInstrBuilder MachineIRBuilder::buildBuildVector(const DstOp &Res, ArrayRef Ops) { // Unfortunately to convert from ArrayRef to ArrayRef, // we need some temporary storage for the DstOp objects. Here we use a // sufficiently large SmallVector to not go through the heap. SmallVector TmpVec(Ops.begin(), Ops.end()); return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec); } MachineInstrBuilder MachineIRBuilder::buildBuildVectorConstant(const DstOp &Res, ArrayRef Ops) { SmallVector TmpVec; TmpVec.reserve(Ops.size()); LLT EltTy = Res.getLLTTy(*getMRI()).getElementType(); for (const auto &Op : Ops) TmpVec.push_back(buildConstant(EltTy, Op)); return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec); } MachineInstrBuilder MachineIRBuilder::buildSplatVector(const DstOp &Res, const SrcOp &Src) { SmallVector TmpVec(Res.getLLTTy(*getMRI()).getNumElements(), Src); return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec); } MachineInstrBuilder MachineIRBuilder::buildBuildVectorTrunc(const DstOp &Res, ArrayRef Ops) { // Unfortunately to convert from ArrayRef to ArrayRef, // we need some temporary storage for the DstOp objects. Here we use a // sufficiently large SmallVector to not go through the heap. SmallVector TmpVec(Ops.begin(), Ops.end()); if (TmpVec[0].getLLTTy(*getMRI()).getSizeInBits() == Res.getLLTTy(*getMRI()).getElementType().getSizeInBits()) return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec); return buildInstr(TargetOpcode::G_BUILD_VECTOR_TRUNC, Res, TmpVec); } MachineInstrBuilder MachineIRBuilder::buildShuffleSplat(const DstOp &Res, const SrcOp &Src) { LLT DstTy = Res.getLLTTy(*getMRI()); assert(Src.getLLTTy(*getMRI()) == DstTy.getElementType() && "Expected Src to match Dst elt ty"); auto UndefVec = buildUndef(DstTy); auto Zero = buildConstant(LLT::scalar(64), 0); auto InsElt = buildInsertVectorElement(DstTy, UndefVec, Src, Zero); SmallVector ZeroMask(DstTy.getNumElements()); return buildShuffleVector(DstTy, InsElt, UndefVec, ZeroMask); } MachineInstrBuilder MachineIRBuilder::buildShuffleVector(const DstOp &Res, const SrcOp &Src1, const SrcOp &Src2, ArrayRef Mask) { LLT DstTy = Res.getLLTTy(*getMRI()); LLT Src1Ty = Src1.getLLTTy(*getMRI()); LLT Src2Ty = Src2.getLLTTy(*getMRI()); assert((size_t)(Src1Ty.getNumElements() + Src2Ty.getNumElements()) >= Mask.size()); assert(DstTy.getElementType() == Src1Ty.getElementType() && DstTy.getElementType() == Src2Ty.getElementType()); (void)DstTy; (void)Src1Ty; (void)Src2Ty; ArrayRef MaskAlloc = getMF().allocateShuffleMask(Mask); return buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {Res}, {Src1, Src2}) .addShuffleMask(MaskAlloc); } MachineInstrBuilder MachineIRBuilder::buildConcatVectors(const DstOp &Res, ArrayRef Ops) { // Unfortunately to convert from ArrayRef to ArrayRef, // we need some temporary storage for the DstOp objects. Here we use a // sufficiently large SmallVector to not go through the heap. SmallVector TmpVec(Ops.begin(), Ops.end()); return buildInstr(TargetOpcode::G_CONCAT_VECTORS, Res, TmpVec); } MachineInstrBuilder MachineIRBuilder::buildInsert(const DstOp &Res, const SrcOp &Src, const SrcOp &Op, unsigned Index) { assert(Index + Op.getLLTTy(*getMRI()).getSizeInBits() <= Res.getLLTTy(*getMRI()).getSizeInBits() && "insertion past the end of a register"); if (Res.getLLTTy(*getMRI()).getSizeInBits() == Op.getLLTTy(*getMRI()).getSizeInBits()) { return buildCast(Res, Op); } return buildInstr(TargetOpcode::G_INSERT, Res, {Src, Op, uint64_t(Index)}); } MachineInstrBuilder MachineIRBuilder::buildIntrinsic(Intrinsic::ID ID, ArrayRef ResultRegs, bool HasSideEffects) { auto MIB = buildInstr(HasSideEffects ? TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS : TargetOpcode::G_INTRINSIC); for (unsigned ResultReg : ResultRegs) MIB.addDef(ResultReg); MIB.addIntrinsicID(ID); return MIB; } MachineInstrBuilder MachineIRBuilder::buildIntrinsic(Intrinsic::ID ID, ArrayRef Results, bool HasSideEffects) { auto MIB = buildInstr(HasSideEffects ? TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS : TargetOpcode::G_INTRINSIC); for (DstOp Result : Results) Result.addDefToMIB(*getMRI(), MIB); MIB.addIntrinsicID(ID); return MIB; } MachineInstrBuilder MachineIRBuilder::buildTrunc(const DstOp &Res, const SrcOp &Op) { return buildInstr(TargetOpcode::G_TRUNC, Res, Op); } MachineInstrBuilder MachineIRBuilder::buildFPTrunc(const DstOp &Res, const SrcOp &Op, std::optional Flags) { return buildInstr(TargetOpcode::G_FPTRUNC, Res, Op, Flags); } MachineInstrBuilder MachineIRBuilder::buildICmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1) { return buildInstr(TargetOpcode::G_ICMP, Res, {Pred, Op0, Op1}); } MachineInstrBuilder MachineIRBuilder::buildFCmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional Flags) { return buildInstr(TargetOpcode::G_FCMP, Res, {Pred, Op0, Op1}, Flags); } MachineInstrBuilder MachineIRBuilder::buildSelect(const DstOp &Res, const SrcOp &Tst, const SrcOp &Op0, const SrcOp &Op1, std::optional Flags) { return buildInstr(TargetOpcode::G_SELECT, {Res}, {Tst, Op0, Op1}, Flags); } MachineInstrBuilder MachineIRBuilder::buildInsertVectorElement(const DstOp &Res, const SrcOp &Val, const SrcOp &Elt, const SrcOp &Idx) { return buildInstr(TargetOpcode::G_INSERT_VECTOR_ELT, Res, {Val, Elt, Idx}); } MachineInstrBuilder MachineIRBuilder::buildExtractVectorElement(const DstOp &Res, const SrcOp &Val, const SrcOp &Idx) { return buildInstr(TargetOpcode::G_EXTRACT_VECTOR_ELT, Res, {Val, Idx}); } MachineInstrBuilder MachineIRBuilder::buildAtomicCmpXchgWithSuccess( Register OldValRes, Register SuccessRes, Register Addr, Register CmpVal, Register NewVal, MachineMemOperand &MMO) { #ifndef NDEBUG LLT OldValResTy = getMRI()->getType(OldValRes); LLT SuccessResTy = getMRI()->getType(SuccessRes); LLT AddrTy = getMRI()->getType(Addr); LLT CmpValTy = getMRI()->getType(CmpVal); LLT NewValTy = getMRI()->getType(NewVal); assert(OldValResTy.isScalar() && "invalid operand type"); assert(SuccessResTy.isScalar() && "invalid operand type"); assert(AddrTy.isPointer() && "invalid operand type"); assert(CmpValTy.isValid() && "invalid operand type"); assert(NewValTy.isValid() && "invalid operand type"); assert(OldValResTy == CmpValTy && "type mismatch"); assert(OldValResTy == NewValTy && "type mismatch"); #endif return buildInstr(TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS) .addDef(OldValRes) .addDef(SuccessRes) .addUse(Addr) .addUse(CmpVal) .addUse(NewVal) .addMemOperand(&MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicCmpXchg(Register OldValRes, Register Addr, Register CmpVal, Register NewVal, MachineMemOperand &MMO) { #ifndef NDEBUG LLT OldValResTy = getMRI()->getType(OldValRes); LLT AddrTy = getMRI()->getType(Addr); LLT CmpValTy = getMRI()->getType(CmpVal); LLT NewValTy = getMRI()->getType(NewVal); assert(OldValResTy.isScalar() && "invalid operand type"); assert(AddrTy.isPointer() && "invalid operand type"); assert(CmpValTy.isValid() && "invalid operand type"); assert(NewValTy.isValid() && "invalid operand type"); assert(OldValResTy == CmpValTy && "type mismatch"); assert(OldValResTy == NewValTy && "type mismatch"); #endif return buildInstr(TargetOpcode::G_ATOMIC_CMPXCHG) .addDef(OldValRes) .addUse(Addr) .addUse(CmpVal) .addUse(NewVal) .addMemOperand(&MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMW( unsigned Opcode, const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO) { #ifndef NDEBUG LLT OldValResTy = OldValRes.getLLTTy(*getMRI()); LLT AddrTy = Addr.getLLTTy(*getMRI()); LLT ValTy = Val.getLLTTy(*getMRI()); assert(OldValResTy.isScalar() && "invalid operand type"); assert(AddrTy.isPointer() && "invalid operand type"); assert(ValTy.isValid() && "invalid operand type"); assert(OldValResTy == ValTy && "type mismatch"); assert(MMO.isAtomic() && "not atomic mem operand"); #endif auto MIB = buildInstr(Opcode); OldValRes.addDefToMIB(*getMRI(), MIB); Addr.addSrcToMIB(MIB); Val.addSrcToMIB(MIB); MIB.addMemOperand(&MMO); return MIB; } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWXchg(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_XCHG, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWAdd(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_ADD, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWSub(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_SUB, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWAnd(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_AND, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWNand(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_NAND, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWOr(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_OR, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWXor(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_XOR, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWMax(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_MAX, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWMin(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_MIN, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWUmax(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_UMAX, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWUmin(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_UMIN, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWFAdd( const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FADD, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWFSub(const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FSUB, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWFMax(const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FMAX, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildAtomicRMWFMin(const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO) { return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FMIN, OldValRes, Addr, Val, MMO); } MachineInstrBuilder MachineIRBuilder::buildFence(unsigned Ordering, unsigned Scope) { return buildInstr(TargetOpcode::G_FENCE) .addImm(Ordering) .addImm(Scope); } MachineInstrBuilder MachineIRBuilder::buildBlockAddress(Register Res, const BlockAddress *BA) { #ifndef NDEBUG assert(getMRI()->getType(Res).isPointer() && "invalid res type"); #endif return buildInstr(TargetOpcode::G_BLOCK_ADDR).addDef(Res).addBlockAddress(BA); } void MachineIRBuilder::validateTruncExt(const LLT DstTy, const LLT SrcTy, bool IsExtend) { #ifndef NDEBUG if (DstTy.isVector()) { assert(SrcTy.isVector() && "mismatched cast between vector and non-vector"); assert(SrcTy.getNumElements() == DstTy.getNumElements() && "different number of elements in a trunc/ext"); } else assert(DstTy.isScalar() && SrcTy.isScalar() && "invalid extend/trunc"); if (IsExtend) assert(DstTy.getSizeInBits() > SrcTy.getSizeInBits() && "invalid narrowing extend"); else assert(DstTy.getSizeInBits() < SrcTy.getSizeInBits() && "invalid widening trunc"); #endif } void MachineIRBuilder::validateSelectOp(const LLT ResTy, const LLT TstTy, const LLT Op0Ty, const LLT Op1Ty) { #ifndef NDEBUG assert((ResTy.isScalar() || ResTy.isVector() || ResTy.isPointer()) && "invalid operand type"); assert((ResTy == Op0Ty && ResTy == Op1Ty) && "type mismatch"); if (ResTy.isScalar() || ResTy.isPointer()) assert(TstTy.isScalar() && "type mismatch"); else assert((TstTy.isScalar() || (TstTy.isVector() && TstTy.getNumElements() == Op0Ty.getNumElements())) && "type mismatch"); #endif } MachineInstrBuilder MachineIRBuilder::buildInstr(unsigned Opc, ArrayRef DstOps, ArrayRef SrcOps, std::optional Flags) { switch (Opc) { default: break; case TargetOpcode::G_SELECT: { assert(DstOps.size() == 1 && "Invalid select"); assert(SrcOps.size() == 3 && "Invalid select"); validateSelectOp( DstOps[0].getLLTTy(*getMRI()), SrcOps[0].getLLTTy(*getMRI()), SrcOps[1].getLLTTy(*getMRI()), SrcOps[2].getLLTTy(*getMRI())); break; } case TargetOpcode::G_FNEG: case TargetOpcode::G_ABS: // All these are unary ops. assert(DstOps.size() == 1 && "Invalid Dst"); assert(SrcOps.size() == 1 && "Invalid Srcs"); validateUnaryOp(DstOps[0].getLLTTy(*getMRI()), SrcOps[0].getLLTTy(*getMRI())); break; case TargetOpcode::G_ADD: case TargetOpcode::G_AND: case TargetOpcode::G_MUL: case TargetOpcode::G_OR: case TargetOpcode::G_SUB: case TargetOpcode::G_XOR: case TargetOpcode::G_UDIV: case TargetOpcode::G_SDIV: case TargetOpcode::G_UREM: case TargetOpcode::G_SREM: case TargetOpcode::G_SMIN: case TargetOpcode::G_SMAX: case TargetOpcode::G_UMIN: case TargetOpcode::G_UMAX: case TargetOpcode::G_UADDSAT: case TargetOpcode::G_SADDSAT: case TargetOpcode::G_USUBSAT: case TargetOpcode::G_SSUBSAT: { // All these are binary ops. assert(DstOps.size() == 1 && "Invalid Dst"); assert(SrcOps.size() == 2 && "Invalid Srcs"); validateBinaryOp(DstOps[0].getLLTTy(*getMRI()), SrcOps[0].getLLTTy(*getMRI()), SrcOps[1].getLLTTy(*getMRI())); break; } case TargetOpcode::G_SHL: case TargetOpcode::G_ASHR: case TargetOpcode::G_LSHR: case TargetOpcode::G_USHLSAT: case TargetOpcode::G_SSHLSAT: { assert(DstOps.size() == 1 && "Invalid Dst"); assert(SrcOps.size() == 2 && "Invalid Srcs"); validateShiftOp(DstOps[0].getLLTTy(*getMRI()), SrcOps[0].getLLTTy(*getMRI()), SrcOps[1].getLLTTy(*getMRI())); break; } case TargetOpcode::G_SEXT: case TargetOpcode::G_ZEXT: case TargetOpcode::G_ANYEXT: assert(DstOps.size() == 1 && "Invalid Dst"); assert(SrcOps.size() == 1 && "Invalid Srcs"); validateTruncExt(DstOps[0].getLLTTy(*getMRI()), SrcOps[0].getLLTTy(*getMRI()), true); break; case TargetOpcode::G_TRUNC: case TargetOpcode::G_FPTRUNC: { assert(DstOps.size() == 1 && "Invalid Dst"); assert(SrcOps.size() == 1 && "Invalid Srcs"); validateTruncExt(DstOps[0].getLLTTy(*getMRI()), SrcOps[0].getLLTTy(*getMRI()), false); break; } case TargetOpcode::G_BITCAST: { assert(DstOps.size() == 1 && "Invalid Dst"); assert(SrcOps.size() == 1 && "Invalid Srcs"); assert(DstOps[0].getLLTTy(*getMRI()).getSizeInBits() == SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() && "invalid bitcast"); break; } case TargetOpcode::COPY: assert(DstOps.size() == 1 && "Invalid Dst"); // If the caller wants to add a subreg source it has to be done separately // so we may not have any SrcOps at this point yet. break; case TargetOpcode::G_FCMP: case TargetOpcode::G_ICMP: { assert(DstOps.size() == 1 && "Invalid Dst Operands"); assert(SrcOps.size() == 3 && "Invalid Src Operands"); // For F/ICMP, the first src operand is the predicate, followed by // the two comparands. assert(SrcOps[0].getSrcOpKind() == SrcOp::SrcType::Ty_Predicate && "Expecting predicate"); assert([&]() -> bool { CmpInst::Predicate Pred = SrcOps[0].getPredicate(); return Opc == TargetOpcode::G_ICMP ? CmpInst::isIntPredicate(Pred) : CmpInst::isFPPredicate(Pred); }() && "Invalid predicate"); assert(SrcOps[1].getLLTTy(*getMRI()) == SrcOps[2].getLLTTy(*getMRI()) && "Type mismatch"); assert([&]() -> bool { LLT Op0Ty = SrcOps[1].getLLTTy(*getMRI()); LLT DstTy = DstOps[0].getLLTTy(*getMRI()); if (Op0Ty.isScalar() || Op0Ty.isPointer()) return DstTy.isScalar(); else return DstTy.isVector() && DstTy.getNumElements() == Op0Ty.getNumElements(); }() && "Type Mismatch"); break; } case TargetOpcode::G_UNMERGE_VALUES: { assert(!DstOps.empty() && "Invalid trivial sequence"); assert(SrcOps.size() == 1 && "Invalid src for Unmerge"); assert(llvm::all_of(DstOps, [&, this](const DstOp &Op) { return Op.getLLTTy(*getMRI()) == DstOps[0].getLLTTy(*getMRI()); }) && "type mismatch in output list"); assert((TypeSize::ScalarTy)DstOps.size() * DstOps[0].getLLTTy(*getMRI()).getSizeInBits() == SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() && "input operands do not cover output register"); break; } case TargetOpcode::G_MERGE_VALUES: { assert(SrcOps.size() >= 2 && "invalid trivial sequence"); assert(DstOps.size() == 1 && "Invalid Dst"); assert(llvm::all_of(SrcOps, [&, this](const SrcOp &Op) { return Op.getLLTTy(*getMRI()) == SrcOps[0].getLLTTy(*getMRI()); }) && "type mismatch in input list"); assert((TypeSize::ScalarTy)SrcOps.size() * SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() == DstOps[0].getLLTTy(*getMRI()).getSizeInBits() && "input operands do not cover output register"); assert(!DstOps[0].getLLTTy(*getMRI()).isVector() && "vectors should be built with G_CONCAT_VECTOR or G_BUILD_VECTOR"); break; } case TargetOpcode::G_EXTRACT_VECTOR_ELT: { assert(DstOps.size() == 1 && "Invalid Dst size"); assert(SrcOps.size() == 2 && "Invalid Src size"); assert(SrcOps[0].getLLTTy(*getMRI()).isVector() && "Invalid operand type"); assert((DstOps[0].getLLTTy(*getMRI()).isScalar() || DstOps[0].getLLTTy(*getMRI()).isPointer()) && "Invalid operand type"); assert(SrcOps[1].getLLTTy(*getMRI()).isScalar() && "Invalid operand type"); assert(SrcOps[0].getLLTTy(*getMRI()).getElementType() == DstOps[0].getLLTTy(*getMRI()) && "Type mismatch"); break; } case TargetOpcode::G_INSERT_VECTOR_ELT: { assert(DstOps.size() == 1 && "Invalid dst size"); assert(SrcOps.size() == 3 && "Invalid src size"); assert(DstOps[0].getLLTTy(*getMRI()).isVector() && SrcOps[0].getLLTTy(*getMRI()).isVector() && "Invalid operand type"); assert(DstOps[0].getLLTTy(*getMRI()).getElementType() == SrcOps[1].getLLTTy(*getMRI()) && "Type mismatch"); assert(SrcOps[2].getLLTTy(*getMRI()).isScalar() && "Invalid index"); assert(DstOps[0].getLLTTy(*getMRI()).getNumElements() == SrcOps[0].getLLTTy(*getMRI()).getNumElements() && "Type mismatch"); break; } case TargetOpcode::G_BUILD_VECTOR: { assert((!SrcOps.empty() || SrcOps.size() < 2) && "Must have at least 2 operands"); assert(DstOps.size() == 1 && "Invalid DstOps"); assert(DstOps[0].getLLTTy(*getMRI()).isVector() && "Res type must be a vector"); assert(llvm::all_of(SrcOps, [&, this](const SrcOp &Op) { return Op.getLLTTy(*getMRI()) == SrcOps[0].getLLTTy(*getMRI()); }) && "type mismatch in input list"); assert((TypeSize::ScalarTy)SrcOps.size() * SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() == DstOps[0].getLLTTy(*getMRI()).getSizeInBits() && "input scalars do not exactly cover the output vector register"); break; } case TargetOpcode::G_BUILD_VECTOR_TRUNC: { assert((!SrcOps.empty() || SrcOps.size() < 2) && "Must have at least 2 operands"); assert(DstOps.size() == 1 && "Invalid DstOps"); assert(DstOps[0].getLLTTy(*getMRI()).isVector() && "Res type must be a vector"); assert(llvm::all_of(SrcOps, [&, this](const SrcOp &Op) { return Op.getLLTTy(*getMRI()) == SrcOps[0].getLLTTy(*getMRI()); }) && "type mismatch in input list"); break; } case TargetOpcode::G_CONCAT_VECTORS: { assert(DstOps.size() == 1 && "Invalid DstOps"); assert((!SrcOps.empty() || SrcOps.size() < 2) && "Must have at least 2 operands"); assert(llvm::all_of(SrcOps, [&, this](const SrcOp &Op) { return (Op.getLLTTy(*getMRI()).isVector() && Op.getLLTTy(*getMRI()) == SrcOps[0].getLLTTy(*getMRI())); }) && "type mismatch in input list"); assert((TypeSize::ScalarTy)SrcOps.size() * SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() == DstOps[0].getLLTTy(*getMRI()).getSizeInBits() && "input vectors do not exactly cover the output vector register"); break; } case TargetOpcode::G_UADDE: { assert(DstOps.size() == 2 && "Invalid no of dst operands"); assert(SrcOps.size() == 3 && "Invalid no of src operands"); assert(DstOps[0].getLLTTy(*getMRI()).isScalar() && "Invalid operand"); assert((DstOps[0].getLLTTy(*getMRI()) == SrcOps[0].getLLTTy(*getMRI())) && (DstOps[0].getLLTTy(*getMRI()) == SrcOps[1].getLLTTy(*getMRI())) && "Invalid operand"); assert(DstOps[1].getLLTTy(*getMRI()).isScalar() && "Invalid operand"); assert(DstOps[1].getLLTTy(*getMRI()) == SrcOps[2].getLLTTy(*getMRI()) && "type mismatch"); break; } } auto MIB = buildInstr(Opc); for (const DstOp &Op : DstOps) Op.addDefToMIB(*getMRI(), MIB); for (const SrcOp &Op : SrcOps) Op.addSrcToMIB(MIB); if (Flags) MIB->setFlags(*Flags); return MIB; }