//===- Localizer.cpp ---------------------- Localize some instrs -*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file implements the Localizer class. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/Localizer.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "localizer" using namespace llvm; char Localizer::ID = 0; INITIALIZE_PASS_BEGIN(Localizer, DEBUG_TYPE, "Move/duplicate certain instructions close to their use", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(Localizer, DEBUG_TYPE, "Move/duplicate certain instructions close to their use", false, false) Localizer::Localizer(std::function F) : MachineFunctionPass(ID), DoNotRunPass(F) {} Localizer::Localizer() : Localizer([](const MachineFunction &) { return false; }) {} void Localizer::init(MachineFunction &MF) { MRI = &MF.getRegInfo(); TTI = &getAnalysis().getTTI(MF.getFunction()); } void Localizer::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); getSelectionDAGFallbackAnalysisUsage(AU); MachineFunctionPass::getAnalysisUsage(AU); } bool Localizer::isLocalUse(MachineOperand &MOUse, const MachineInstr &Def, MachineBasicBlock *&InsertMBB) { MachineInstr &MIUse = *MOUse.getParent(); InsertMBB = MIUse.getParent(); if (MIUse.isPHI()) InsertMBB = MIUse.getOperand(MOUse.getOperandNo() + 1).getMBB(); return InsertMBB == Def.getParent(); } unsigned Localizer::getNumPhiUses(MachineOperand &Op) const { auto *MI = dyn_cast(&*Op.getParent()); if (!MI) return 0; Register SrcReg = Op.getReg(); unsigned NumUses = 0; for (unsigned I = 0, NumVals = MI->getNumIncomingValues(); I < NumVals; ++I) { if (MI->getIncomingValue(I) == SrcReg) ++NumUses; } return NumUses; } bool Localizer::localizeInterBlock(MachineFunction &MF, LocalizedSetVecT &LocalizedInstrs) { bool Changed = false; DenseMap, unsigned> MBBWithLocalDef; // Since the IRTranslator only emits constants into the entry block, and the // rest of the GISel pipeline generally emits constants close to their users, // we only localize instructions in the entry block here. This might change if // we start doing CSE across blocks. auto &MBB = MF.front(); auto &TL = *MF.getSubtarget().getTargetLowering(); for (MachineInstr &MI : llvm::reverse(MBB)) { if (!TL.shouldLocalize(MI, TTI)) continue; LLVM_DEBUG(dbgs() << "Should localize: " << MI); assert(MI.getDesc().getNumDefs() == 1 && "More than one definition not supported yet"); Register Reg = MI.getOperand(0).getReg(); // Check if all the users of MI are local. // We are going to invalidation the list of use operands, so we // can't use range iterator. for (MachineOperand &MOUse : llvm::make_early_inc_range(MRI->use_operands(Reg))) { // Check if the use is already local. MachineBasicBlock *InsertMBB; LLVM_DEBUG(MachineInstr &MIUse = *MOUse.getParent(); dbgs() << "Checking use: " << MIUse << " #Opd: " << MOUse.getOperandNo() << '\n'); if (isLocalUse(MOUse, MI, InsertMBB)) { // Even if we're in the same block, if the block is very large we could // still have many long live ranges. Try to do intra-block localization // too. LocalizedInstrs.insert(&MI); continue; } // PHIs look like a single user but can use the same register in multiple // edges, causing remat into each predecessor. Allow this to a certain // extent. unsigned NumPhiUses = getNumPhiUses(MOUse); const unsigned PhiThreshold = 2; // FIXME: Tune this more. if (NumPhiUses > PhiThreshold) continue; LLVM_DEBUG(dbgs() << "Fixing non-local use\n"); Changed = true; auto MBBAndReg = std::make_pair(InsertMBB, Reg); auto NewVRegIt = MBBWithLocalDef.find(MBBAndReg); if (NewVRegIt == MBBWithLocalDef.end()) { // Create the localized instruction. MachineInstr *LocalizedMI = MF.CloneMachineInstr(&MI); LocalizedInstrs.insert(LocalizedMI); MachineInstr &UseMI = *MOUse.getParent(); if (MRI->hasOneUse(Reg) && !UseMI.isPHI()) InsertMBB->insert(UseMI, LocalizedMI); else InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(InsertMBB->begin()), LocalizedMI); // Set a new register for the definition. Register NewReg = MRI->cloneVirtualRegister(Reg); LocalizedMI->getOperand(0).setReg(NewReg); NewVRegIt = MBBWithLocalDef.insert(std::make_pair(MBBAndReg, NewReg)).first; LLVM_DEBUG(dbgs() << "Inserted: " << *LocalizedMI); } LLVM_DEBUG(dbgs() << "Update use with: " << printReg(NewVRegIt->second) << '\n'); // Update the user reg. MOUse.setReg(NewVRegIt->second); } } return Changed; } bool Localizer::localizeIntraBlock(LocalizedSetVecT &LocalizedInstrs) { bool Changed = false; // For each already-localized instruction which has multiple users, then we // scan the block top down from the current position until we hit one of them. // FIXME: Consider doing inst duplication if live ranges are very long due to // many users, but this case may be better served by regalloc improvements. for (MachineInstr *MI : LocalizedInstrs) { Register Reg = MI->getOperand(0).getReg(); MachineBasicBlock &MBB = *MI->getParent(); // All of the user MIs of this reg. SmallPtrSet Users; for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { if (!UseMI.isPHI()) Users.insert(&UseMI); } MachineBasicBlock::iterator II(MI); // If all the users were PHIs then they're not going to be in our block, we // may still benefit from sinking, especially since the value might be live // across a call. if (Users.empty()) { // Make sure we don't sink in between two terminator sequences by scanning // forward, not backward. II = MBB.getFirstTerminatorForward(); LLVM_DEBUG(dbgs() << "Only phi users: moving inst to end: " << *MI); } else { ++II; while (II != MBB.end() && !Users.count(&*II)) ++II; assert(II != MBB.end() && "Didn't find the user in the MBB"); LLVM_DEBUG(dbgs() << "Intra-block: moving " << *MI << " before " << *II); } MI->removeFromParent(); MBB.insert(II, MI); Changed = true; // If the instruction (constant) being localized has single user, we can // propagate debug location from user. if (Users.size() == 1) { const auto &DefDL = MI->getDebugLoc(); const auto &UserDL = (*Users.begin())->getDebugLoc(); if ((!DefDL || DefDL.getLine() == 0) && UserDL && UserDL.getLine() != 0) { MI->setDebugLoc(UserDL); } } } return Changed; } bool Localizer::runOnMachineFunction(MachineFunction &MF) { // If the ISel pipeline failed, do not bother running that pass. if (MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailedISel)) return false; // Don't run the pass if the target asked so. if (DoNotRunPass(MF)) return false; LLVM_DEBUG(dbgs() << "Localize instructions for: " << MF.getName() << '\n'); init(MF); // Keep track of the instructions we localized. We'll do a second pass of // intra-block localization to further reduce live ranges. LocalizedSetVecT LocalizedInstrs; bool Changed = localizeInterBlock(MF, LocalizedInstrs); Changed |= localizeIntraBlock(LocalizedInstrs); return Changed; }