//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/CodeGen/GlobalISel/Combiner.h" #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetMachine.h" #include #define DEBUG_TYPE "gi-combiner" using namespace llvm; using namespace MIPatternMatch; // Option to allow testing of the combiner while no targets know about indexed // addressing. static cl::opt ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), cl::desc("Force all indexed operations to be " "legal for the GlobalISel combiner")); CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, MachineIRBuilder &B, GISelKnownBits *KB, MachineDominatorTree *MDT, const LegalizerInfo *LI) : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), MDT(MDT), LI(LI) { (void)this->KB; } const TargetLowering &CombinerHelper::getTargetLowering() const { return *Builder.getMF().getSubtarget().getTargetLowering(); } /// \returns The little endian in-memory byte position of byte \p I in a /// \p ByteWidth bytes wide type. /// /// E.g. Given a 4-byte type x, x[0] -> byte 0 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { assert(I < ByteWidth && "I must be in [0, ByteWidth)"); return I; } /// \returns The big endian in-memory byte position of byte \p I in a /// \p ByteWidth bytes wide type. /// /// E.g. Given a 4-byte type x, x[0] -> byte 3 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { assert(I < ByteWidth && "I must be in [0, ByteWidth)"); return ByteWidth - I - 1; } /// Given a map from byte offsets in memory to indices in a load/store, /// determine if that map corresponds to a little or big endian byte pattern. /// /// \param MemOffset2Idx maps memory offsets to address offsets. /// \param LowestIdx is the lowest index in \p MemOffset2Idx. /// /// \returns true if the map corresponds to a big endian byte pattern, false /// if it corresponds to a little endian byte pattern, and None otherwise. /// /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns /// are as follows: /// /// AddrOffset Little endian Big endian /// 0 0 3 /// 1 1 2 /// 2 2 1 /// 3 3 0 static Optional isBigEndian(const SmallDenseMap &MemOffset2Idx, int64_t LowestIdx) { // Need at least two byte positions to decide on endianness. unsigned Width = MemOffset2Idx.size(); if (Width < 2) return None; bool BigEndian = true, LittleEndian = true; for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); if (MemOffsetAndIdx == MemOffset2Idx.end()) return None; const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; assert(Idx >= 0 && "Expected non-negative byte offset?"); LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); if (!BigEndian && !LittleEndian) return None; } assert((BigEndian != LittleEndian) && "Pattern cannot be both big and little endian!"); return BigEndian; } bool CombinerHelper::isLegalOrBeforeLegalizer( const LegalityQuery &Query) const { return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; } void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, Register ToReg) const { Observer.changingAllUsesOfReg(MRI, FromReg); if (MRI.constrainRegAttrs(ToReg, FromReg)) MRI.replaceRegWith(FromReg, ToReg); else Builder.buildCopy(ToReg, FromReg); Observer.finishedChangingAllUsesOfReg(); } void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, MachineOperand &FromRegOp, Register ToReg) const { assert(FromRegOp.getParent() && "Expected an operand in an MI"); Observer.changingInstr(*FromRegOp.getParent()); FromRegOp.setReg(ToReg); Observer.changedInstr(*FromRegOp.getParent()); } bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { if (matchCombineCopy(MI)) { applyCombineCopy(MI); return true; } return false; } bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { if (MI.getOpcode() != TargetOpcode::COPY) return false; Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); return canReplaceReg(DstReg, SrcReg, MRI); } void CombinerHelper::applyCombineCopy(MachineInstr &MI) { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); MI.eraseFromParent(); replaceRegWith(MRI, DstReg, SrcReg); } bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { bool IsUndef = false; SmallVector Ops; if (matchCombineConcatVectors(MI, IsUndef, Ops)) { applyCombineConcatVectors(MI, IsUndef, Ops); return true; } return false; } bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, SmallVectorImpl &Ops) { assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && "Invalid instruction"); IsUndef = true; MachineInstr *Undef = nullptr; // Walk over all the operands of concat vectors and check if they are // build_vector themselves or undef. // Then collect their operands in Ops. for (const MachineOperand &MO : MI.uses()) { Register Reg = MO.getReg(); MachineInstr *Def = MRI.getVRegDef(Reg); assert(Def && "Operand not defined"); switch (Def->getOpcode()) { case TargetOpcode::G_BUILD_VECTOR: IsUndef = false; // Remember the operands of the build_vector to fold // them into the yet-to-build flattened concat vectors. for (const MachineOperand &BuildVecMO : Def->uses()) Ops.push_back(BuildVecMO.getReg()); break; case TargetOpcode::G_IMPLICIT_DEF: { LLT OpType = MRI.getType(Reg); // Keep one undef value for all the undef operands. if (!Undef) { Builder.setInsertPt(*MI.getParent(), MI); Undef = Builder.buildUndef(OpType.getScalarType()); } assert(MRI.getType(Undef->getOperand(0).getReg()) == OpType.getScalarType() && "All undefs should have the same type"); // Break the undef vector in as many scalar elements as needed // for the flattening. for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); EltIdx != EltEnd; ++EltIdx) Ops.push_back(Undef->getOperand(0).getReg()); break; } default: return false; } } return true; } void CombinerHelper::applyCombineConcatVectors( MachineInstr &MI, bool IsUndef, const ArrayRef Ops) { // We determined that the concat_vectors can be flatten. // Generate the flattened build_vector. Register DstReg = MI.getOperand(0).getReg(); Builder.setInsertPt(*MI.getParent(), MI); Register NewDstReg = MRI.cloneVirtualRegister(DstReg); // Note: IsUndef is sort of redundant. We could have determine it by // checking that at all Ops are undef. Alternatively, we could have // generate a build_vector of undefs and rely on another combine to // clean that up. For now, given we already gather this information // in tryCombineConcatVectors, just save compile time and issue the // right thing. if (IsUndef) Builder.buildUndef(NewDstReg); else Builder.buildBuildVector(NewDstReg, Ops); MI.eraseFromParent(); replaceRegWith(MRI, DstReg, NewDstReg); } bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { SmallVector Ops; if (matchCombineShuffleVector(MI, Ops)) { applyCombineShuffleVector(MI, Ops); return true; } return false; } bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, SmallVectorImpl &Ops) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && "Invalid instruction kind"); LLT DstType = MRI.getType(MI.getOperand(0).getReg()); Register Src1 = MI.getOperand(1).getReg(); LLT SrcType = MRI.getType(Src1); // As bizarre as it may look, shuffle vector can actually produce // scalar! This is because at the IR level a <1 x ty> shuffle // vector is perfectly valid. unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; // If the resulting vector is smaller than the size of the source // vectors being concatenated, we won't be able to replace the // shuffle vector into a concat_vectors. // // Note: We may still be able to produce a concat_vectors fed by // extract_vector_elt and so on. It is less clear that would // be better though, so don't bother for now. // // If the destination is a scalar, the size of the sources doesn't // matter. we will lower the shuffle to a plain copy. This will // work only if the source and destination have the same size. But // that's covered by the next condition. // // TODO: If the size between the source and destination don't match // we could still emit an extract vector element in that case. if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) return false; // Check that the shuffle mask can be broken evenly between the // different sources. if (DstNumElts % SrcNumElts != 0) return false; // Mask length is a multiple of the source vector length. // Check if the shuffle is some kind of concatenation of the input // vectors. unsigned NumConcat = DstNumElts / SrcNumElts; SmallVector ConcatSrcs(NumConcat, -1); ArrayRef Mask = MI.getOperand(3).getShuffleMask(); for (unsigned i = 0; i != DstNumElts; ++i) { int Idx = Mask[i]; // Undef value. if (Idx < 0) continue; // Ensure the indices in each SrcType sized piece are sequential and that // the same source is used for the whole piece. if ((Idx % SrcNumElts != (i % SrcNumElts)) || (ConcatSrcs[i / SrcNumElts] >= 0 && ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) return false; // Remember which source this index came from. ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; } // The shuffle is concatenating multiple vectors together. // Collect the different operands for that. Register UndefReg; Register Src2 = MI.getOperand(2).getReg(); for (auto Src : ConcatSrcs) { if (Src < 0) { if (!UndefReg) { Builder.setInsertPt(*MI.getParent(), MI); UndefReg = Builder.buildUndef(SrcType).getReg(0); } Ops.push_back(UndefReg); } else if (Src == 0) Ops.push_back(Src1); else Ops.push_back(Src2); } return true; } void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, const ArrayRef Ops) { Register DstReg = MI.getOperand(0).getReg(); Builder.setInsertPt(*MI.getParent(), MI); Register NewDstReg = MRI.cloneVirtualRegister(DstReg); if (Ops.size() == 1) Builder.buildCopy(NewDstReg, Ops[0]); else Builder.buildMerge(NewDstReg, Ops); MI.eraseFromParent(); replaceRegWith(MRI, DstReg, NewDstReg); } namespace { /// Select a preference between two uses. CurrentUse is the current preference /// while *ForCandidate is attributes of the candidate under consideration. PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, const LLT TyForCandidate, unsigned OpcodeForCandidate, MachineInstr *MIForCandidate) { if (!CurrentUse.Ty.isValid()) { if (CurrentUse.ExtendOpcode == OpcodeForCandidate || CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; return CurrentUse; } // We permit the extend to hoist through basic blocks but this is only // sensible if the target has extending loads. If you end up lowering back // into a load and extend during the legalizer then the end result is // hoisting the extend up to the load. // Prefer defined extensions to undefined extensions as these are more // likely to reduce the number of instructions. if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) return CurrentUse; else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && OpcodeForCandidate != TargetOpcode::G_ANYEXT) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; // Prefer sign extensions to zero extensions as sign-extensions tend to be // more expensive. if (CurrentUse.Ty == TyForCandidate) { if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && OpcodeForCandidate == TargetOpcode::G_ZEXT) return CurrentUse; else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && OpcodeForCandidate == TargetOpcode::G_SEXT) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; } // This is potentially target specific. We've chosen the largest type // because G_TRUNC is usually free. One potential catch with this is that // some targets have a reduced number of larger registers than smaller // registers and this choice potentially increases the live-range for the // larger value. if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; } return CurrentUse; } /// Find a suitable place to insert some instructions and insert them. This /// function accounts for special cases like inserting before a PHI node. /// The current strategy for inserting before PHI's is to duplicate the /// instructions for each predecessor. However, while that's ok for G_TRUNC /// on most targets since it generally requires no code, other targets/cases may /// want to try harder to find a dominating block. static void InsertInsnsWithoutSideEffectsBeforeUse( MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, std::function Inserter) { MachineInstr &UseMI = *UseMO.getParent(); MachineBasicBlock *InsertBB = UseMI.getParent(); // If the use is a PHI then we want the predecessor block instead. if (UseMI.isPHI()) { MachineOperand *PredBB = std::next(&UseMO); InsertBB = PredBB->getMBB(); } // If the block is the same block as the def then we want to insert just after // the def instead of at the start of the block. if (InsertBB == DefMI.getParent()) { MachineBasicBlock::iterator InsertPt = &DefMI; Inserter(InsertBB, std::next(InsertPt), UseMO); return; } // Otherwise we want the start of the BB Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); } } // end anonymous namespace bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { PreferredTuple Preferred; if (matchCombineExtendingLoads(MI, Preferred)) { applyCombineExtendingLoads(MI, Preferred); return true; } return false; } bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, PreferredTuple &Preferred) { // We match the loads and follow the uses to the extend instead of matching // the extends and following the def to the load. This is because the load // must remain in the same position for correctness (unless we also add code // to find a safe place to sink it) whereas the extend is freely movable. // It also prevents us from duplicating the load for the volatile case or just // for performance. GAnyLoad *LoadMI = dyn_cast(&MI); if (!LoadMI) return false; Register LoadReg = LoadMI->getDstReg(); LLT LoadValueTy = MRI.getType(LoadReg); if (!LoadValueTy.isScalar()) return false; // Most architectures are going to legalize (&MI) ? TargetOpcode::G_ANYEXT : isa(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; Preferred = {LLT(), PreferredOpcode, nullptr}; for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { if (UseMI.getOpcode() == TargetOpcode::G_SEXT || UseMI.getOpcode() == TargetOpcode::G_ZEXT || (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { const auto &MMO = LoadMI->getMMO(); // For atomics, only form anyextending loads. if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) continue; // Check for legality. if (LI) { LegalityQuery::MemDesc MMDesc; MMDesc.MemoryTy = MMO.getMemoryType(); MMDesc.AlignInBits = MMO.getAlign().value() * 8; MMDesc.Ordering = MMO.getSuccessOrdering(); LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) .Action != LegalizeActions::Legal) continue; } Preferred = ChoosePreferredUse(Preferred, MRI.getType(UseMI.getOperand(0).getReg()), UseMI.getOpcode(), &UseMI); } } // There were no extends if (!Preferred.MI) return false; // It should be impossible to chose an extend without selecting a different // type since by definition the result of an extend is larger. assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); return true; } void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, PreferredTuple &Preferred) { // Rewrite the load to the chosen extending load. Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); // Inserter to insert a truncate back to the original type at a given point // with some basic CSE to limit truncate duplication to one per BB. DenseMap EmittedInsns; auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, MachineBasicBlock::iterator InsertBefore, MachineOperand &UseMO) { MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); if (PreviouslyEmitted) { Observer.changingInstr(*UseMO.getParent()); UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); Observer.changedInstr(*UseMO.getParent()); return; } Builder.setInsertPt(*InsertIntoBB, InsertBefore); Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); EmittedInsns[InsertIntoBB] = NewMI; replaceRegOpWith(MRI, UseMO, NewDstReg); }; Observer.changingInstr(MI); MI.setDesc( Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT ? TargetOpcode::G_SEXTLOAD : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT ? TargetOpcode::G_ZEXTLOAD : TargetOpcode::G_LOAD)); // Rewrite all the uses to fix up the types. auto &LoadValue = MI.getOperand(0); SmallVector Uses; for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) Uses.push_back(&UseMO); for (auto *UseMO : Uses) { MachineInstr *UseMI = UseMO->getParent(); // If the extend is compatible with the preferred extend then we should fix // up the type and extend so that it uses the preferred use. if (UseMI->getOpcode() == Preferred.ExtendOpcode || UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { Register UseDstReg = UseMI->getOperand(0).getReg(); MachineOperand &UseSrcMO = UseMI->getOperand(1); const LLT UseDstTy = MRI.getType(UseDstReg); if (UseDstReg != ChosenDstReg) { if (Preferred.Ty == UseDstTy) { // If the use has the same type as the preferred use, then merge // the vregs and erase the extend. For example: // %1:_(s8) = G_LOAD ... // %2:_(s32) = G_SEXT %1(s8) // %3:_(s32) = G_ANYEXT %1(s8) // ... = ... %3(s32) // rewrites to: // %2:_(s32) = G_SEXTLOAD ... // ... = ... %2(s32) replaceRegWith(MRI, UseDstReg, ChosenDstReg); Observer.erasingInstr(*UseMO->getParent()); UseMO->getParent()->eraseFromParent(); } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { // If the preferred size is smaller, then keep the extend but extend // from the result of the extending load. For example: // %1:_(s8) = G_LOAD ... // %2:_(s32) = G_SEXT %1(s8) // %3:_(s64) = G_ANYEXT %1(s8) // ... = ... %3(s64) /// rewrites to: // %2:_(s32) = G_SEXTLOAD ... // %3:_(s64) = G_ANYEXT %2:_(s32) // ... = ... %3(s64) replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); } else { // If the preferred size is large, then insert a truncate. For // example: // %1:_(s8) = G_LOAD ... // %2:_(s64) = G_SEXT %1(s8) // %3:_(s32) = G_ZEXT %1(s8) // ... = ... %3(s32) /// rewrites to: // %2:_(s64) = G_SEXTLOAD ... // %4:_(s8) = G_TRUNC %2:_(s32) // %3:_(s64) = G_ZEXT %2:_(s8) // ... = ... %3(s64) InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); } continue; } // The use is (one of) the uses of the preferred use we chose earlier. // We're going to update the load to def this value later so just erase // the old extend. Observer.erasingInstr(*UseMO->getParent()); UseMO->getParent()->eraseFromParent(); continue; } // The use isn't an extend. Truncate back to the type we originally loaded. // This is free on many targets. InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); } MI.getOperand(0).setReg(ChosenDstReg); Observer.changedInstr(MI); } bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, const MachineInstr &UseMI) { assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && "shouldn't consider debug uses"); assert(DefMI.getParent() == UseMI.getParent()); if (&DefMI == &UseMI) return false; const MachineBasicBlock &MBB = *DefMI.getParent(); auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { return &MI == &DefMI || &MI == &UseMI; }); if (DefOrUse == MBB.end()) llvm_unreachable("Block must contain both DefMI and UseMI!"); return &*DefOrUse == &DefMI; } bool CombinerHelper::dominates(const MachineInstr &DefMI, const MachineInstr &UseMI) { assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && "shouldn't consider debug uses"); if (MDT) return MDT->dominates(&DefMI, &UseMI); else if (DefMI.getParent() != UseMI.getParent()) return false; return isPredecessor(DefMI, UseMI); } bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); Register SrcReg = MI.getOperand(1).getReg(); Register LoadUser = SrcReg; if (MRI.getType(SrcReg).isVector()) return false; Register TruncSrc; if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) LoadUser = TruncSrc; uint64_t SizeInBits = MI.getOperand(2).getImm(); // If the source is a G_SEXTLOAD from the same bit width, then we don't // need any extend at all, just a truncate. if (auto *LoadMI = getOpcodeDef(LoadUser, MRI)) { // If truncating more than the original extended value, abort. auto LoadSizeBits = LoadMI->getMemSizeInBits(); if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) return false; if (LoadSizeBits == SizeInBits) return true; } return false; } void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); Builder.setInstrAndDebugLoc(MI); Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); MI.eraseFromParent(); } bool CombinerHelper::matchSextInRegOfLoad( MachineInstr &MI, std::tuple &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); // Only supports scalars for now. if (MRI.getType(MI.getOperand(0).getReg()).isVector()) return false; Register SrcReg = MI.getOperand(1).getReg(); auto *LoadDef = getOpcodeDef(SrcReg, MRI); if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || !LoadDef->isSimple()) return false; // If the sign extend extends from a narrower width than the load's width, // then we can narrow the load width when we combine to a G_SEXTLOAD. // Avoid widening the load at all. unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), LoadDef->getMemSizeInBits()); // Don't generate G_SEXTLOADs with a < 1 byte width. if (NewSizeBits < 8) return false; // Don't bother creating a non-power-2 sextload, it will likely be broken up // anyway for most targets. if (!isPowerOf2_32(NewSizeBits)) return false; MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); return true; } void CombinerHelper::applySextInRegOfLoad( MachineInstr &MI, std::tuple &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); Register LoadReg; unsigned ScalarSizeBits; std::tie(LoadReg, ScalarSizeBits) = MatchInfo; GLoad *LoadDef = cast(MRI.getVRegDef(LoadReg)); // If we have the following: // %ld = G_LOAD %ptr, (load 2) // %ext = G_SEXT_INREG %ld, 8 // ==> // %ld = G_SEXTLOAD %ptr (load 1) auto &MMO = LoadDef->getMMO(); Builder.setInstrAndDebugLoc(*LoadDef); auto &MF = Builder.getMF(); auto PtrInfo = MMO.getPointerInfo(); auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), LoadDef->getPointerReg(), *NewMMO); MI.eraseFromParent(); } bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, Register &Base, Register &Offset) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); #ifndef NDEBUG unsigned Opcode = MI.getOpcode(); assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); #endif Base = MI.getOperand(1).getReg(); MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) return false; LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); // FIXME: The following use traversal needs a bail out for patholigical cases. for (auto &Use : MRI.use_nodbg_instructions(Base)) { if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) continue; Offset = Use.getOperand(2).getReg(); if (!ForceLegalIndexing && !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " << Use); continue; } // Make sure the offset calculation is before the potentially indexed op. // FIXME: we really care about dependency here. The offset calculation might // be movable. MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); if (!OffsetDef || !dominates(*OffsetDef, MI)) { LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " << Use); continue; } // FIXME: check whether all uses of Base are load/store with foldable // addressing modes. If so, using the normal addr-modes is better than // forming an indexed one. bool MemOpDominatesAddrUses = true; for (auto &PtrAddUse : MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { if (!dominates(MI, PtrAddUse)) { MemOpDominatesAddrUses = false; break; } } if (!MemOpDominatesAddrUses) { LLVM_DEBUG( dbgs() << " Ignoring candidate as memop does not dominate uses: " << Use); continue; } LLVM_DEBUG(dbgs() << " Found match: " << Use); Addr = Use.getOperand(0).getReg(); return true; } return false; } bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, Register &Base, Register &Offset) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); #ifndef NDEBUG unsigned Opcode = MI.getOpcode(); assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); #endif Addr = MI.getOperand(1).getReg(); MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) return false; Base = AddrDef->getOperand(1).getReg(); Offset = AddrDef->getOperand(2).getReg(); LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); if (!ForceLegalIndexing && !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); return false; } MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); return false; } if (MI.getOpcode() == TargetOpcode::G_STORE) { // Would require a copy. if (Base == MI.getOperand(0).getReg()) { LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); return false; } // We're expecting one use of Addr in MI, but it could also be the // value stored, which isn't actually dominated by the instruction. if (MI.getOperand(0).getReg() == Addr) { LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); return false; } } // FIXME: check whether all uses of the base pointer are constant PtrAdds. // That might allow us to end base's liveness here by adjusting the constant. for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { if (!dominates(MI, UseMI)) { LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); return false; } } return true; } bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { IndexedLoadStoreMatchInfo MatchInfo; if (matchCombineIndexedLoadStore(MI, MatchInfo)) { applyCombineIndexedLoadStore(MI, MatchInfo); return true; } return false; } bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { unsigned Opcode = MI.getOpcode(); if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) return false; // For now, no targets actually support these opcodes so don't waste time // running these unless we're forced to for testing. if (!ForceLegalIndexing) return false; MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, MatchInfo.Offset); if (!MatchInfo.IsPre && !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, MatchInfo.Offset)) return false; return true; } void CombinerHelper::applyCombineIndexedLoadStore( MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); MachineIRBuilder MIRBuilder(MI); unsigned Opcode = MI.getOpcode(); bool IsStore = Opcode == TargetOpcode::G_STORE; unsigned NewOpcode; switch (Opcode) { case TargetOpcode::G_LOAD: NewOpcode = TargetOpcode::G_INDEXED_LOAD; break; case TargetOpcode::G_SEXTLOAD: NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; break; case TargetOpcode::G_ZEXTLOAD: NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; break; case TargetOpcode::G_STORE: NewOpcode = TargetOpcode::G_INDEXED_STORE; break; default: llvm_unreachable("Unknown load/store opcode"); } auto MIB = MIRBuilder.buildInstr(NewOpcode); if (IsStore) { MIB.addDef(MatchInfo.Addr); MIB.addUse(MI.getOperand(0).getReg()); } else { MIB.addDef(MI.getOperand(0).getReg()); MIB.addDef(MatchInfo.Addr); } MIB.addUse(MatchInfo.Base); MIB.addUse(MatchInfo.Offset); MIB.addImm(MatchInfo.IsPre); MI.eraseFromParent(); AddrDef.eraseFromParent(); LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); } bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, MachineInstr *&OtherMI) { unsigned Opcode = MI.getOpcode(); bool IsDiv, IsSigned; switch (Opcode) { default: llvm_unreachable("Unexpected opcode!"); case TargetOpcode::G_SDIV: case TargetOpcode::G_UDIV: { IsDiv = true; IsSigned = Opcode == TargetOpcode::G_SDIV; break; } case TargetOpcode::G_SREM: case TargetOpcode::G_UREM: { IsDiv = false; IsSigned = Opcode == TargetOpcode::G_SREM; break; } } Register Src1 = MI.getOperand(1).getReg(); unsigned DivOpcode, RemOpcode, DivremOpcode; if (IsSigned) { DivOpcode = TargetOpcode::G_SDIV; RemOpcode = TargetOpcode::G_SREM; DivremOpcode = TargetOpcode::G_SDIVREM; } else { DivOpcode = TargetOpcode::G_UDIV; RemOpcode = TargetOpcode::G_UREM; DivremOpcode = TargetOpcode::G_UDIVREM; } if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) return false; // Combine: // %div:_ = G_[SU]DIV %src1:_, %src2:_ // %rem:_ = G_[SU]REM %src1:_, %src2:_ // into: // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ // Combine: // %rem:_ = G_[SU]REM %src1:_, %src2:_ // %div:_ = G_[SU]DIV %src1:_, %src2:_ // into: // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { if (MI.getParent() == UseMI.getParent() && ((IsDiv && UseMI.getOpcode() == RemOpcode) || (!IsDiv && UseMI.getOpcode() == DivOpcode)) && matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { OtherMI = &UseMI; return true; } } return false; } void CombinerHelper::applyCombineDivRem(MachineInstr &MI, MachineInstr *&OtherMI) { unsigned Opcode = MI.getOpcode(); assert(OtherMI && "OtherMI shouldn't be empty."); Register DestDivReg, DestRemReg; if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { DestDivReg = MI.getOperand(0).getReg(); DestRemReg = OtherMI->getOperand(0).getReg(); } else { DestDivReg = OtherMI->getOperand(0).getReg(); DestRemReg = MI.getOperand(0).getReg(); } bool IsSigned = Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; // Check which instruction is first in the block so we don't break def-use // deps by "moving" the instruction incorrectly. if (dominates(MI, *OtherMI)) Builder.setInstrAndDebugLoc(MI); else Builder.setInstrAndDebugLoc(*OtherMI); Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM : TargetOpcode::G_UDIVREM, {DestDivReg, DestRemReg}, {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); MI.eraseFromParent(); OtherMI->eraseFromParent(); } bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, MachineInstr *&BrCond) { assert(MI.getOpcode() == TargetOpcode::G_BR); // Try to match the following: // bb1: // G_BRCOND %c1, %bb2 // G_BR %bb3 // bb2: // ... // bb3: // The above pattern does not have a fall through to the successor bb2, always // resulting in a branch no matter which path is taken. Here we try to find // and replace that pattern with conditional branch to bb3 and otherwise // fallthrough to bb2. This is generally better for branch predictors. MachineBasicBlock *MBB = MI.getParent(); MachineBasicBlock::iterator BrIt(MI); if (BrIt == MBB->begin()) return false; assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); BrCond = &*std::prev(BrIt); if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) return false; // Check that the next block is the conditional branch target. Also make sure // that it isn't the same as the G_BR's target (otherwise, this will loop.) MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); return BrCondTarget != MI.getOperand(0).getMBB() && MBB->isLayoutSuccessor(BrCondTarget); } void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, MachineInstr *&BrCond) { MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); Builder.setInstrAndDebugLoc(*BrCond); LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); // FIXME: Does int/fp matter for this? If so, we might need to restrict // this to i1 only since we might not know for sure what kind of // compare generated the condition value. auto True = Builder.buildConstant( Ty, getICmpTrueVal(getTargetLowering(), false, false)); auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); auto *FallthroughBB = BrCond->getOperand(1).getMBB(); Observer.changingInstr(MI); MI.getOperand(0).setMBB(FallthroughBB); Observer.changedInstr(MI); // Change the conditional branch to use the inverted condition and // new target block. Observer.changingInstr(*BrCond); BrCond->getOperand(0).setReg(Xor.getReg(0)); BrCond->getOperand(1).setMBB(BrTarget); Observer.changedInstr(*BrCond); } static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { // On Darwin, -Os means optimize for size without hurting performance, so // only really optimize for size when -Oz (MinSize) is used. if (MF.getTarget().getTargetTriple().isOSDarwin()) return MF.getFunction().hasMinSize(); return MF.getFunction().hasOptSize(); } // Returns a list of types to use for memory op lowering in MemOps. A partial // port of findOptimalMemOpLowering in TargetLowering. static bool findGISelOptimalMemOpLowering(std::vector &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes, const TargetLowering &TLI) { if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) return false; LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); if (Ty == LLT()) { // Use the largest scalar type whose alignment constraints are satisfied. // We only need to check DstAlign here as SrcAlign is always greater or // equal to DstAlign (or zero). Ty = LLT::scalar(64); if (Op.isFixedDstAlign()) while (Op.getDstAlign() < Ty.getSizeInBytes() && !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) Ty = LLT::scalar(Ty.getSizeInBytes()); assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); // FIXME: check for the largest legal type we can load/store to. } unsigned NumMemOps = 0; uint64_t Size = Op.size(); while (Size) { unsigned TySize = Ty.getSizeInBytes(); while (TySize > Size) { // For now, only use non-vector load / store's for the left-over pieces. LLT NewTy = Ty; // FIXME: check for mem op safety and legality of the types. Not all of // SDAGisms map cleanly to GISel concepts. if (NewTy.isVector()) NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); unsigned NewTySize = NewTy.getSizeInBytes(); assert(NewTySize > 0 && "Could not find appropriate type"); // If the new LLT cannot cover all of the remaining bits, then consider // issuing a (or a pair of) unaligned and overlapping load / store. bool Fast; // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). MVT VT = getMVTForLLT(Ty); if (NumMemOps && Op.allowOverlap() && NewTySize < Size && TLI.allowsMisalignedMemoryAccesses( VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), MachineMemOperand::MONone, &Fast) && Fast) TySize = Size; else { Ty = NewTy; TySize = NewTySize; } } if (++NumMemOps > Limit) return false; MemOps.push_back(Ty); Size -= TySize; } return true; } static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { if (Ty.isVector()) return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), Ty.getNumElements()); return IntegerType::get(C, Ty.getSizeInBits()); } // Get a vectorized representation of the memset value operand, GISel edition. static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { MachineRegisterInfo &MRI = *MIB.getMRI(); unsigned NumBits = Ty.getScalarSizeInBits(); auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); if (!Ty.isVector() && ValVRegAndVal) { APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); APInt SplatVal = APInt::getSplat(NumBits, Scalar); return MIB.buildConstant(Ty, SplatVal).getReg(0); } // Extend the byte value to the larger type, and then multiply by a magic // value 0x010101... in order to replicate it across every byte. // Unless it's zero, in which case just emit a larger G_CONSTANT 0. if (ValVRegAndVal && ValVRegAndVal->Value == 0) { return MIB.buildConstant(Ty, 0).getReg(0); } LLT ExtType = Ty.getScalarType(); auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); if (NumBits > 8) { APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); auto MagicMI = MIB.buildConstant(ExtType, Magic); Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); } // For vector types create a G_BUILD_VECTOR. if (Ty.isVector()) Val = MIB.buildSplatVector(Ty, Val).getReg(0); return Val; } bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, Register Val, uint64_t KnownLen, Align Alignment, bool IsVolatile) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); auto &DL = MF.getDataLayout(); LLVMContext &C = MF.getFunction().getContext(); assert(KnownLen != 0 && "Have a zero length memset length!"); bool DstAlignCanChange = false; MachineFrameInfo &MFI = MF.getFrameInfo(); bool OptSize = shouldLowerMemFuncForSize(MF); MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) DstAlignCanChange = true; unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); std::vector MemOps; const auto &DstMMO = **MI.memoperands_begin(); MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; if (!findGISelOptimalMemOpLowering(MemOps, Limit, MemOp::Set(KnownLen, DstAlignCanChange, Alignment, /*IsZeroMemset=*/IsZeroVal, /*IsVolatile=*/IsVolatile), DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes(), TLI)) return false; if (DstAlignCanChange) { // Get an estimate of the type from the LLT. Type *IRTy = getTypeForLLT(MemOps[0], C); Align NewAlign = DL.getABITypeAlign(IRTy); if (NewAlign > Alignment) { Alignment = NewAlign; unsigned FI = FIDef->getOperand(1).getIndex(); // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlign(FI) < Alignment) MFI.setObjectAlignment(FI, Alignment); } } MachineIRBuilder MIB(MI); // Find the largest store and generate the bit pattern for it. LLT LargestTy = MemOps[0]; for (unsigned i = 1; i < MemOps.size(); i++) if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) LargestTy = MemOps[i]; // The memset stored value is always defined as an s8, so in order to make it // work with larger store types we need to repeat the bit pattern across the // wider type. Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); if (!MemSetValue) return false; // Generate the stores. For each store type in the list, we generate the // matching store of that type to the destination address. LLT PtrTy = MRI.getType(Dst); unsigned DstOff = 0; unsigned Size = KnownLen; for (unsigned I = 0; I < MemOps.size(); I++) { LLT Ty = MemOps[I]; unsigned TySize = Ty.getSizeInBytes(); if (TySize > Size) { // Issuing an unaligned load / store pair that overlaps with the previous // pair. Adjust the offset accordingly. assert(I == MemOps.size() - 1 && I != 0); DstOff -= TySize - Size; } // If this store is smaller than the largest store see whether we can get // the smaller value for free with a truncate. Register Value = MemSetValue; if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { MVT VT = getMVTForLLT(Ty); MVT LargestVT = getMVTForLLT(LargestTy); if (!LargestTy.isVector() && !Ty.isVector() && TLI.isTruncateFree(LargestVT, VT)) Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); else Value = getMemsetValue(Val, Ty, MIB); if (!Value) return false; } auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); Register Ptr = Dst; if (DstOff != 0) { auto Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); } MIB.buildStore(Value, Ptr, *StoreMMO); DstOff += Ty.getSizeInBytes(); Size -= TySize; } MI.eraseFromParent(); return true; } bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); Register Len = MI.getOperand(2).getReg(); const auto *MMOIt = MI.memoperands_begin(); const MachineMemOperand *MemOp = *MMOIt; bool IsVolatile = MemOp->isVolatile(); // See if this is a constant length copy auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); // FIXME: support dynamically sized G_MEMCPY_INLINE assert(LenVRegAndVal.hasValue() && "inline memcpy with dynamic size is not yet supported"); uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); if (KnownLen == 0) { MI.eraseFromParent(); return true; } const auto &DstMMO = **MI.memoperands_begin(); const auto &SrcMMO = **std::next(MI.memoperands_begin()); Align DstAlign = DstMMO.getBaseAlign(); Align SrcAlign = SrcMMO.getBaseAlign(); return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); } bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst, Register Src, uint64_t KnownLen, Align DstAlign, Align SrcAlign, bool IsVolatile) { assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); return optimizeMemcpy(MI, Dst, Src, KnownLen, std::numeric_limits::max(), DstAlign, SrcAlign, IsVolatile); } bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, Register Src, uint64_t KnownLen, uint64_t Limit, Align DstAlign, Align SrcAlign, bool IsVolatile) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); auto &DL = MF.getDataLayout(); LLVMContext &C = MF.getFunction().getContext(); assert(KnownLen != 0 && "Have a zero length memcpy length!"); bool DstAlignCanChange = false; MachineFrameInfo &MFI = MF.getFrameInfo(); Align Alignment = commonAlignment(DstAlign, SrcAlign); MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) DstAlignCanChange = true; // FIXME: infer better src pointer alignment like SelectionDAG does here. // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining // if the memcpy is in a tail call position. std::vector MemOps; const auto &DstMMO = **MI.memoperands_begin(); const auto &SrcMMO = **std::next(MI.memoperands_begin()); MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); if (!findGISelOptimalMemOpLowering( MemOps, Limit, MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, IsVolatile), DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) return false; if (DstAlignCanChange) { // Get an estimate of the type from the LLT. Type *IRTy = getTypeForLLT(MemOps[0], C); Align NewAlign = DL.getABITypeAlign(IRTy); // Don't promote to an alignment that would require dynamic stack // realignment. const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!TRI->hasStackRealignment(MF)) while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) NewAlign = NewAlign / 2; if (NewAlign > Alignment) { Alignment = NewAlign; unsigned FI = FIDef->getOperand(1).getIndex(); // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlign(FI) < Alignment) MFI.setObjectAlignment(FI, Alignment); } } LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); MachineIRBuilder MIB(MI); // Now we need to emit a pair of load and stores for each of the types we've // collected. I.e. for each type, generate a load from the source pointer of // that type width, and then generate a corresponding store to the dest buffer // of that value loaded. This can result in a sequence of loads and stores // mixed types, depending on what the target specifies as good types to use. unsigned CurrOffset = 0; LLT PtrTy = MRI.getType(Src); unsigned Size = KnownLen; for (auto CopyTy : MemOps) { // Issuing an unaligned load / store pair that overlaps with the previous // pair. Adjust the offset accordingly. if (CopyTy.getSizeInBytes() > Size) CurrOffset -= CopyTy.getSizeInBytes() - Size; // Construct MMOs for the accesses. auto *LoadMMO = MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); // Create the load. Register LoadPtr = Src; Register Offset; if (CurrOffset != 0) { Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) .getReg(0); LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); } auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); // Create the store. Register StorePtr = CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); MIB.buildStore(LdVal, StorePtr, *StoreMMO); CurrOffset += CopyTy.getSizeInBytes(); Size -= CopyTy.getSizeInBytes(); } MI.eraseFromParent(); return true; } bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, Register Src, uint64_t KnownLen, Align DstAlign, Align SrcAlign, bool IsVolatile) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); auto &DL = MF.getDataLayout(); LLVMContext &C = MF.getFunction().getContext(); assert(KnownLen != 0 && "Have a zero length memmove length!"); bool DstAlignCanChange = false; MachineFrameInfo &MFI = MF.getFrameInfo(); bool OptSize = shouldLowerMemFuncForSize(MF); Align Alignment = commonAlignment(DstAlign, SrcAlign); MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) DstAlignCanChange = true; unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); std::vector MemOps; const auto &DstMMO = **MI.memoperands_begin(); const auto &SrcMMO = **std::next(MI.memoperands_begin()); MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due // to a bug in it's findOptimalMemOpLowering implementation. For now do the // same thing here. if (!findGISelOptimalMemOpLowering( MemOps, Limit, MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, /*IsVolatile*/ true), DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) return false; if (DstAlignCanChange) { // Get an estimate of the type from the LLT. Type *IRTy = getTypeForLLT(MemOps[0], C); Align NewAlign = DL.getABITypeAlign(IRTy); // Don't promote to an alignment that would require dynamic stack // realignment. const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!TRI->hasStackRealignment(MF)) while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) NewAlign = NewAlign / 2; if (NewAlign > Alignment) { Alignment = NewAlign; unsigned FI = FIDef->getOperand(1).getIndex(); // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlign(FI) < Alignment) MFI.setObjectAlignment(FI, Alignment); } } LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); MachineIRBuilder MIB(MI); // Memmove requires that we perform the loads first before issuing the stores. // Apart from that, this loop is pretty much doing the same thing as the // memcpy codegen function. unsigned CurrOffset = 0; LLT PtrTy = MRI.getType(Src); SmallVector LoadVals; for (auto CopyTy : MemOps) { // Construct MMO for the load. auto *LoadMMO = MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); // Create the load. Register LoadPtr = Src; if (CurrOffset != 0) { auto Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); } LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); CurrOffset += CopyTy.getSizeInBytes(); } CurrOffset = 0; for (unsigned I = 0; I < MemOps.size(); ++I) { LLT CopyTy = MemOps[I]; // Now store the values loaded. auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); Register StorePtr = Dst; if (CurrOffset != 0) { auto Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); } MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); CurrOffset += CopyTy.getSizeInBytes(); } MI.eraseFromParent(); return true; } bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { const unsigned Opc = MI.getOpcode(); // This combine is fairly complex so it's not written with a separate // matcher function. assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); auto MMOIt = MI.memoperands_begin(); const MachineMemOperand *MemOp = *MMOIt; Align DstAlign = MemOp->getBaseAlign(); Align SrcAlign; Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); Register Len = MI.getOperand(2).getReg(); if (Opc != TargetOpcode::G_MEMSET) { assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); MemOp = *(++MMOIt); SrcAlign = MemOp->getBaseAlign(); } // See if this is a constant length copy auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); if (!LenVRegAndVal) return false; // Leave it to the legalizer to lower it to a libcall. uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); if (KnownLen == 0) { MI.eraseFromParent(); return true; } bool IsVolatile = MemOp->isVolatile(); if (Opc == TargetOpcode::G_MEMCPY_INLINE) return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); // Don't try to optimize volatile. if (IsVolatile) return false; if (MaxLen && KnownLen > MaxLen) return false; if (Opc == TargetOpcode::G_MEMCPY) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); bool OptSize = shouldLowerMemFuncForSize(MF); uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, IsVolatile); } if (Opc == TargetOpcode::G_MEMMOVE) return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); if (Opc == TargetOpcode::G_MEMSET) return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); return false; } static Optional constantFoldFpUnary(unsigned Opcode, LLT DstTy, const Register Op, const MachineRegisterInfo &MRI) { const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); if (!MaybeCst) return None; APFloat V = MaybeCst->getValueAPF(); switch (Opcode) { default: llvm_unreachable("Unexpected opcode!"); case TargetOpcode::G_FNEG: { V.changeSign(); return V; } case TargetOpcode::G_FABS: { V.clearSign(); return V; } case TargetOpcode::G_FPTRUNC: break; case TargetOpcode::G_FSQRT: { bool Unused; V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); V = APFloat(sqrt(V.convertToDouble())); break; } case TargetOpcode::G_FLOG2: { bool Unused; V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); V = APFloat(log2(V.convertToDouble())); break; } } // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, // and `G_FLOG2` reach here. bool Unused; V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); return V; } bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, Optional &Cst) { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); return Cst.hasValue(); } void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, Optional &Cst) { assert(Cst.hasValue() && "Optional is unexpectedly empty!"); Builder.setInstrAndDebugLoc(MI); MachineFunction &MF = Builder.getMF(); auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); Register DstReg = MI.getOperand(0).getReg(); Builder.buildFConstant(DstReg, *FPVal); MI.eraseFromParent(); } bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, PtrAddChain &MatchInfo) { // We're trying to match the following pattern: // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 // --> // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) return false; Register Add2 = MI.getOperand(1).getReg(); Register Imm1 = MI.getOperand(2).getReg(); auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); if (!MaybeImmVal) return false; // Don't do this combine if there multiple uses of the first PTR_ADD, // since we may be able to compute the second PTR_ADD as an immediate // offset anyway. Folding the first offset into the second may cause us // to go beyond the bounds of our legal addressing modes. if (!MRI.hasOneNonDBGUse(Add2)) return false; MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) return false; Register Base = Add2Def->getOperand(1).getReg(); Register Imm2 = Add2Def->getOperand(2).getReg(); auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); if (!MaybeImm2Val) return false; // Pass the combined immediate to the apply function. MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); MatchInfo.Base = Base; return true; } void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, PtrAddChain &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); MachineIRBuilder MIB(MI); LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); Observer.changingInstr(MI); MI.getOperand(1).setReg(MatchInfo.Base); MI.getOperand(2).setReg(NewOffset.getReg(0)); Observer.changedInstr(MI); } bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, RegisterImmPair &MatchInfo) { // We're trying to match the following pattern with any of // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: // %t1 = SHIFT %base, G_CONSTANT imm1 // %root = SHIFT %t1, G_CONSTANT imm2 // --> // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) unsigned Opcode = MI.getOpcode(); assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); Register Shl2 = MI.getOperand(1).getReg(); Register Imm1 = MI.getOperand(2).getReg(); auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); if (!MaybeImmVal) return false; MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); if (Shl2Def->getOpcode() != Opcode) return false; Register Base = Shl2Def->getOperand(1).getReg(); Register Imm2 = Shl2Def->getOperand(2).getReg(); auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); if (!MaybeImm2Val) return false; // Pass the combined immediate to the apply function. MatchInfo.Imm = (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); MatchInfo.Reg = Base; // There is no simple replacement for a saturating unsigned left shift that // exceeds the scalar size. if (Opcode == TargetOpcode::G_USHLSAT && MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) return false; return true; } void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, RegisterImmPair &MatchInfo) { unsigned Opcode = MI.getOpcode(); assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); Builder.setInstrAndDebugLoc(MI); LLT Ty = MRI.getType(MI.getOperand(1).getReg()); unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); auto Imm = MatchInfo.Imm; if (Imm >= ScalarSizeInBits) { // Any logical shift that exceeds scalar size will produce zero. if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { Builder.buildConstant(MI.getOperand(0), 0); MI.eraseFromParent(); return; } // Arithmetic shift and saturating signed left shift have no effect beyond // scalar size. Imm = ScalarSizeInBits - 1; } LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); Observer.changingInstr(MI); MI.getOperand(1).setReg(MatchInfo.Reg); MI.getOperand(2).setReg(NewImm); Observer.changedInstr(MI); } bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, ShiftOfShiftedLogic &MatchInfo) { // We're trying to match the following pattern with any of // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination // with any of G_AND/G_OR/G_XOR logic instructions. // %t1 = SHIFT %X, G_CONSTANT C0 // %t2 = LOGIC %t1, %Y // %root = SHIFT %t2, G_CONSTANT C1 // --> // %t3 = SHIFT %X, G_CONSTANT (C0+C1) // %t4 = SHIFT %Y, G_CONSTANT C1 // %root = LOGIC %t3, %t4 unsigned ShiftOpcode = MI.getOpcode(); assert((ShiftOpcode == TargetOpcode::G_SHL || ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode == TargetOpcode::G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); // Match a one-use bitwise logic op. Register LogicDest = MI.getOperand(1).getReg(); if (!MRI.hasOneNonDBGUse(LogicDest)) return false; MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); unsigned LogicOpcode = LogicMI->getOpcode(); if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && LogicOpcode != TargetOpcode::G_XOR) return false; // Find a matching one-use shift by constant. const Register C1 = MI.getOperand(2).getReg(); auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); if (!MaybeImmVal) return false; const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { // Shift should match previous one and should be a one-use. if (MI->getOpcode() != ShiftOpcode || !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) return false; // Must be a constant. auto MaybeImmVal = getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); if (!MaybeImmVal) return false; ShiftVal = MaybeImmVal->Value.getSExtValue(); return true; }; // Logic ops are commutative, so check each operand for a match. Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); uint64_t C0Val; if (matchFirstShift(LogicMIOp1, C0Val)) { MatchInfo.LogicNonShiftReg = LogicMIReg2; MatchInfo.Shift2 = LogicMIOp1; } else if (matchFirstShift(LogicMIOp2, C0Val)) { MatchInfo.LogicNonShiftReg = LogicMIReg1; MatchInfo.Shift2 = LogicMIOp2; } else return false; MatchInfo.ValSum = C0Val + C1Val; // The fold is not valid if the sum of the shift values exceeds bitwidth. if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) return false; MatchInfo.Logic = LogicMI; return true; } void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, ShiftOfShiftedLogic &MatchInfo) { unsigned Opcode = MI.getOpcode(); assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || Opcode == TargetOpcode::G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); LLT DestType = MRI.getType(MI.getOperand(0).getReg()); Builder.setInstrAndDebugLoc(MI); Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); Register Shift1 = Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); Register Shift2Const = MI.getOperand(2).getReg(); Register Shift2 = Builder .buildInstr(Opcode, {DestType}, {MatchInfo.LogicNonShiftReg, Shift2Const}) .getReg(0); Register Dest = MI.getOperand(0).getReg(); Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); // These were one use so it's safe to remove them. MatchInfo.Shift2->eraseFromParent(); MatchInfo.Logic->eraseFromParent(); MI.eraseFromParent(); } bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, unsigned &ShiftVal) { assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); auto MaybeImmVal = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); if (!MaybeImmVal) return false; ShiftVal = MaybeImmVal->Value.exactLogBase2(); return (static_cast(ShiftVal) != -1); } void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, unsigned &ShiftVal) { assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); MachineIRBuilder MIB(MI); LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); Observer.changingInstr(MI); MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); MI.getOperand(2).setReg(ShiftCst.getReg(0)); Observer.changedInstr(MI); } // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, RegisterImmPair &MatchData) { assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); Register LHS = MI.getOperand(1).getReg(); Register ExtSrc; if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) return false; // TODO: Should handle vector splat. Register RHS = MI.getOperand(2).getReg(); auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); if (!MaybeShiftAmtVal) return false; if (LI) { LLT SrcTy = MRI.getType(ExtSrc); // We only really care about the legality with the shifted value. We can // pick any type the constant shift amount, so ask the target what to // use. Otherwise we would have to guess and hope it is reported as legal. LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) return false; } int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); MatchData.Reg = ExtSrc; MatchData.Imm = ShiftAmt; unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); return MinLeadingZeros >= ShiftAmt; } void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, const RegisterImmPair &MatchData) { Register ExtSrcReg = MatchData.Reg; int64_t ShiftAmtVal = MatchData.Imm; LLT ExtSrcTy = MRI.getType(ExtSrcReg); Builder.setInstrAndDebugLoc(MI); auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); auto NarrowShift = Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); Builder.buildZExt(MI.getOperand(0), NarrowShift); MI.eraseFromParent(); } bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, Register &MatchInfo) { GMerge &Merge = cast(MI); SmallVector MergedValues; for (unsigned I = 0; I < Merge.getNumSources(); ++I) MergedValues.emplace_back(Merge.getSourceReg(I)); auto *Unmerge = getOpcodeDef(MergedValues[0], MRI); if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) return false; for (unsigned I = 0; I < MergedValues.size(); ++I) if (MergedValues[I] != Unmerge->getReg(I)) return false; MatchInfo = Unmerge->getSourceReg(); return true; } static Register peekThroughBitcast(Register Reg, const MachineRegisterInfo &MRI) { while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) ; return Reg; } bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( MachineInstr &MI, SmallVectorImpl &Operands) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); Register SrcReg = peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) return false; // Check the source type of the merge. LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); if (SrcMergeTy != Dst0Ty && !SameSize) return false; // They are the same now (modulo a bitcast). // We can collect all the src registers. for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; ++Idx) Operands.push_back(SrcInstr->getOperand(Idx).getReg()); return true; } void CombinerHelper::applyCombineUnmergeMergeToPlainValues( MachineInstr &MI, SmallVectorImpl &Operands) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); assert((MI.getNumOperands() - 1 == Operands.size()) && "Not enough operands to replace all defs"); unsigned NumElems = MI.getNumOperands() - 1; LLT SrcTy = MRI.getType(Operands[0]); LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); bool CanReuseInputDirectly = DstTy == SrcTy; Builder.setInstrAndDebugLoc(MI); for (unsigned Idx = 0; Idx < NumElems; ++Idx) { Register DstReg = MI.getOperand(Idx).getReg(); Register SrcReg = Operands[Idx]; if (CanReuseInputDirectly) replaceRegWith(MRI, DstReg, SrcReg); else Builder.buildCast(DstReg, SrcReg); } MI.eraseFromParent(); } bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, SmallVectorImpl &Csts) { unsigned SrcIdx = MI.getNumOperands() - 1; Register SrcReg = MI.getOperand(SrcIdx).getReg(); MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) return false; // Break down the big constant in smaller ones. const MachineOperand &CstVal = SrcInstr->getOperand(1); APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT ? CstVal.getCImm()->getValue() : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); unsigned ShiftAmt = Dst0Ty.getSizeInBits(); // Unmerge a constant. for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { Csts.emplace_back(Val.trunc(ShiftAmt)); Val = Val.lshr(ShiftAmt); } return true; } void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, SmallVectorImpl &Csts) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); assert((MI.getNumOperands() - 1 == Csts.size()) && "Not enough operands to replace all defs"); unsigned NumElems = MI.getNumOperands() - 1; Builder.setInstrAndDebugLoc(MI); for (unsigned Idx = 0; Idx < NumElems; ++Idx) { Register DstReg = MI.getOperand(Idx).getReg(); Builder.buildConstant(DstReg, Csts[Idx]); } MI.eraseFromParent(); } bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); // Check that all the lanes are dead except the first one. for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) return false; } return true; } void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { Builder.setInstrAndDebugLoc(MI); Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); // Truncating a vector is going to truncate every single lane, // whereas we want the full lowbits. // Do the operation on a scalar instead. LLT SrcTy = MRI.getType(SrcReg); if (SrcTy.isVector()) SrcReg = Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); Register Dst0Reg = MI.getOperand(0).getReg(); LLT Dst0Ty = MRI.getType(Dst0Reg); if (Dst0Ty.isVector()) { auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); Builder.buildCast(Dst0Reg, MIB); } else Builder.buildTrunc(Dst0Reg, SrcReg); MI.eraseFromParent(); } bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); Register Dst0Reg = MI.getOperand(0).getReg(); LLT Dst0Ty = MRI.getType(Dst0Reg); // G_ZEXT on vector applies to each lane, so it will // affect all destinations. Therefore we won't be able // to simplify the unmerge to just the first definition. if (Dst0Ty.isVector()) return false; Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); LLT SrcTy = MRI.getType(SrcReg); if (SrcTy.isVector()) return false; Register ZExtSrcReg; if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) return false; // Finally we can replace the first definition with // a zext of the source if the definition is big enough to hold // all of ZExtSrc bits. LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); } void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); Register Dst0Reg = MI.getOperand(0).getReg(); MachineInstr *ZExtInstr = MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && "Expecting a G_ZEXT"); Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); LLT Dst0Ty = MRI.getType(Dst0Reg); LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); Builder.setInstrAndDebugLoc(MI); if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { Builder.buildZExt(Dst0Reg, ZExtSrcReg); } else { assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && "ZExt src doesn't fit in destination"); replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); } Register ZeroReg; for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { if (!ZeroReg) ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); } MI.eraseFromParent(); } bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, unsigned TargetShiftSize, unsigned &ShiftVal) { assert((MI.getOpcode() == TargetOpcode::G_SHL || MI.getOpcode() == TargetOpcode::G_LSHR || MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); LLT Ty = MRI.getType(MI.getOperand(0).getReg()); if (Ty.isVector()) // TODO: return false; // Don't narrow further than the requested size. unsigned Size = Ty.getSizeInBits(); if (Size <= TargetShiftSize) return false; auto MaybeImmVal = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); if (!MaybeImmVal) return false; ShiftVal = MaybeImmVal->Value.getSExtValue(); return ShiftVal >= Size / 2 && ShiftVal < Size; } void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, const unsigned &ShiftVal) { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(SrcReg); unsigned Size = Ty.getSizeInBits(); unsigned HalfSize = Size / 2; assert(ShiftVal >= HalfSize); LLT HalfTy = LLT::scalar(HalfSize); Builder.setInstr(MI); auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); unsigned NarrowShiftAmt = ShiftVal - HalfSize; if (MI.getOpcode() == TargetOpcode::G_LSHR) { Register Narrowed = Unmerge.getReg(1); // dst = G_LSHR s64:x, C for C >= 32 // => // lo, hi = G_UNMERGE_VALUES x // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 if (NarrowShiftAmt != 0) { Narrowed = Builder.buildLShr(HalfTy, Narrowed, Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); } auto Zero = Builder.buildConstant(HalfTy, 0); Builder.buildMerge(DstReg, { Narrowed, Zero }); } else if (MI.getOpcode() == TargetOpcode::G_SHL) { Register Narrowed = Unmerge.getReg(0); // dst = G_SHL s64:x, C for C >= 32 // => // lo, hi = G_UNMERGE_VALUES x // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) if (NarrowShiftAmt != 0) { Narrowed = Builder.buildShl(HalfTy, Narrowed, Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); } auto Zero = Builder.buildConstant(HalfTy, 0); Builder.buildMerge(DstReg, { Zero, Narrowed }); } else { assert(MI.getOpcode() == TargetOpcode::G_ASHR); auto Hi = Builder.buildAShr( HalfTy, Unmerge.getReg(1), Builder.buildConstant(HalfTy, HalfSize - 1)); if (ShiftVal == HalfSize) { // (G_ASHR i64:x, 32) -> // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); } else if (ShiftVal == Size - 1) { // Don't need a second shift. // (G_ASHR i64:x, 63) -> // %narrowed = (G_ASHR hi_32(x), 31) // G_MERGE_VALUES %narrowed, %narrowed Builder.buildMerge(DstReg, { Hi, Hi }); } else { auto Lo = Builder.buildAShr( HalfTy, Unmerge.getReg(1), Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); // (G_ASHR i64:x, C) ->, for C >= 32 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) Builder.buildMerge(DstReg, { Lo, Hi }); } } MI.eraseFromParent(); } bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, unsigned TargetShiftAmount) { unsigned ShiftAmt; if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { applyCombineShiftToUnmerge(MI, ShiftAmt); return true; } return false; } bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); Register SrcReg = MI.getOperand(1).getReg(); return mi_match(SrcReg, MRI, m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); } void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); Register DstReg = MI.getOperand(0).getReg(); Builder.setInstr(MI); Builder.buildCopy(DstReg, Reg); MI.eraseFromParent(); } bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); Register SrcReg = MI.getOperand(1).getReg(); return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); } void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); Register DstReg = MI.getOperand(0).getReg(); Builder.setInstr(MI); Builder.buildZExtOrTrunc(DstReg, Reg); MI.eraseFromParent(); } bool CombinerHelper::matchCombineAddP2IToPtrAdd( MachineInstr &MI, std::pair &PtrReg) { assert(MI.getOpcode() == TargetOpcode::G_ADD); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); LLT IntTy = MRI.getType(LHS); // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the // instruction. PtrReg.second = false; for (Register SrcReg : {LHS, RHS}) { if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { // Don't handle cases where the integer is implicitly converted to the // pointer width. LLT PtrTy = MRI.getType(PtrReg.first); if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) return true; } PtrReg.second = true; } return false; } void CombinerHelper::applyCombineAddP2IToPtrAdd( MachineInstr &MI, std::pair &PtrReg) { Register Dst = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); const bool DoCommute = PtrReg.second; if (DoCommute) std::swap(LHS, RHS); LHS = PtrReg.first; LLT PtrTy = MRI.getType(LHS); Builder.setInstrAndDebugLoc(MI); auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); Builder.buildPtrToInt(Dst, PtrAdd); MI.eraseFromParent(); } bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, int64_t &NewCst) { assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { int64_t Cst; if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { NewCst = Cst + *RHSCst; return true; } } return false; } void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, int64_t &NewCst) { assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); Register Dst = MI.getOperand(0).getReg(); Builder.setInstrAndDebugLoc(MI); Builder.buildConstant(Dst, NewCst); MI.eraseFromParent(); } bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); return mi_match(SrcReg, MRI, m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); } bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); if (mi_match(SrcReg, MRI, m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { unsigned DstSize = DstTy.getScalarSizeInBits(); unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; } return false; } bool CombinerHelper::matchCombineExtOfExt( MachineInstr &MI, std::tuple &MatchInfo) { assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT"); Register SrcReg = MI.getOperand(1).getReg(); MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); // Match exts with the same opcode, anyext([sz]ext) and sext(zext). unsigned Opc = MI.getOpcode(); unsigned SrcOpc = SrcMI->getOpcode(); if (Opc == SrcOpc || (Opc == TargetOpcode::G_ANYEXT && (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); return true; } return false; } void CombinerHelper::applyCombineExtOfExt( MachineInstr &MI, std::tuple &MatchInfo) { assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT"); Register Reg = std::get<0>(MatchInfo); unsigned SrcExtOp = std::get<1>(MatchInfo); // Combine exts with the same opcode. if (MI.getOpcode() == SrcExtOp) { Observer.changingInstr(MI); MI.getOperand(1).setReg(Reg); Observer.changedInstr(MI); return; } // Combine: // - anyext([sz]ext x) to [sz]ext x // - sext(zext x) to zext x if (MI.getOpcode() == TargetOpcode::G_ANYEXT || (MI.getOpcode() == TargetOpcode::G_SEXT && SrcExtOp == TargetOpcode::G_ZEXT)) { Register DstReg = MI.getOperand(0).getReg(); Builder.setInstrAndDebugLoc(MI); Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); MI.eraseFromParent(); } } void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); Builder.setInstrAndDebugLoc(MI); Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, MI.getFlags()); MI.eraseFromParent(); } bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); Register SrcReg = MI.getOperand(1).getReg(); return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); } bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); Src = MI.getOperand(1).getReg(); Register AbsSrc; return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); } bool CombinerHelper::matchCombineTruncOfExt( MachineInstr &MI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); Register SrcReg = MI.getOperand(1).getReg(); MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); unsigned SrcOpc = SrcMI->getOpcode(); if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT) { MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); return true; } return false; } void CombinerHelper::applyCombineTruncOfExt( MachineInstr &MI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); Register SrcReg = MatchInfo.first; unsigned SrcExtOp = MatchInfo.second; Register DstReg = MI.getOperand(0).getReg(); LLT SrcTy = MRI.getType(SrcReg); LLT DstTy = MRI.getType(DstReg); if (SrcTy == DstTy) { MI.eraseFromParent(); replaceRegWith(MRI, DstReg, SrcReg); return; } Builder.setInstrAndDebugLoc(MI); if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); else Builder.buildTrunc(DstReg, SrcReg); MI.eraseFromParent(); } bool CombinerHelper::matchCombineTruncOfShl( MachineInstr &MI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); Register ShiftSrc; Register ShiftAmt; if (MRI.hasOneNonDBGUse(SrcReg) && mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && isLegalOrBeforeLegalizer( {TargetOpcode::G_SHL, {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { KnownBits Known = KB->getKnownBits(ShiftAmt); unsigned Size = DstTy.getSizeInBits(); if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); return true; } } return false; } void CombinerHelper::applyCombineTruncOfShl( MachineInstr &MI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); Register ShiftSrc = MatchInfo.first; Register ShiftAmt = MatchInfo.second; Builder.setInstrAndDebugLoc(MI); auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); MI.eraseFromParent(); } bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { return MO.isReg() && getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); }); } bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { return !MO.isReg() || getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); }); } bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); ArrayRef Mask = MI.getOperand(3).getShuffleMask(); return all_of(Mask, [](int Elt) { return Elt < 0; }); } bool CombinerHelper::matchUndefStore(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_STORE); return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), MRI); } bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SELECT); return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), MRI); } bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { assert(MI.getOpcode() == TargetOpcode::G_SELECT); if (auto MaybeCstCmp = getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; return true; } return false; } bool CombinerHelper::eraseInst(MachineInstr &MI) { MI.eraseFromParent(); return true; } bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, const MachineOperand &MOP2) { if (!MOP1.isReg() || !MOP2.isReg()) return false; MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); if (!I1) return false; MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); if (!I2) return false; // Handle a case like this: // // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) // // Even though %0 and %1 are produced by the same instruction they are not // the same values. if (I1 == I2) return MOP1.getReg() == MOP2.getReg(); // If we have an instruction which loads or stores, we can't guarantee that // it is identical. // // For example, we may have // // %x1 = G_LOAD %addr (load N from @somewhere) // ... // call @foo // ... // %x2 = G_LOAD %addr (load N from @somewhere) // ... // %or = G_OR %x1, %x2 // // It's possible that @foo will modify whatever lives at the address we're // loading from. To be safe, let's just assume that all loads and stores // are different (unless we have something which is guaranteed to not // change.) if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) return false; // Check for physical registers on the instructions first to avoid cases // like this: // // %a = COPY $physreg // ... // SOMETHING implicit-def $physreg // ... // %b = COPY $physreg // // These copies are not equivalent. if (any_of(I1->uses(), [](const MachineOperand &MO) { return MO.isReg() && MO.getReg().isPhysical(); })) { // Check if we have a case like this: // // %a = COPY $physreg // %b = COPY %a // // In this case, I1 and I2 will both be equal to %a = COPY $physreg. // From that, we know that they must have the same value, since they must // have come from the same COPY. return I1->isIdenticalTo(*I2); } // We don't have any physical registers, so we don't necessarily need the // same vreg defs. // // On the off-chance that there's some target instruction feeding into the // instruction, let's use produceSameValue instead of isIdenticalTo. return Builder.getTII().produceSameValue(*I1, *I2, &MRI); } bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { if (!MOP.isReg()) return false; // MIPatternMatch doesn't let us look through G_ZEXT etc. auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); return ValAndVReg && ValAndVReg->Value == C; } bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, unsigned OpIdx) { assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); Register OldReg = MI.getOperand(0).getReg(); Register Replacement = MI.getOperand(OpIdx).getReg(); assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); MI.eraseFromParent(); replaceRegWith(MRI, OldReg, Replacement); return true; } bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, Register Replacement) { assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); Register OldReg = MI.getOperand(0).getReg(); assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); MI.eraseFromParent(); replaceRegWith(MRI, OldReg, Replacement); return true; } bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SELECT); // Match (cond ? x : x) return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), MRI); } bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), MRI); } bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { return matchConstantOp(MI.getOperand(OpIdx), 0) && canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), MRI); } bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { MachineOperand &MO = MI.getOperand(OpIdx); return MO.isReg() && getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); } bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, unsigned OpIdx) { MachineOperand &MO = MI.getOperand(OpIdx); return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); } bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { assert(MI.getNumDefs() == 1 && "Expected only one def?"); Builder.setInstr(MI); Builder.buildFConstant(MI.getOperand(0), C); MI.eraseFromParent(); return true; } bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { assert(MI.getNumDefs() == 1 && "Expected only one def?"); Builder.setInstr(MI); Builder.buildConstant(MI.getOperand(0), C); MI.eraseFromParent(); return true; } bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { assert(MI.getNumDefs() == 1 && "Expected only one def?"); Builder.setInstr(MI); Builder.buildConstant(MI.getOperand(0), C); MI.eraseFromParent(); return true; } bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { assert(MI.getNumDefs() == 1 && "Expected only one def?"); Builder.setInstr(MI); Builder.buildUndef(MI.getOperand(0)); MI.eraseFromParent(); return true; } bool CombinerHelper::matchSimplifyAddToSub( MachineInstr &MI, std::tuple &MatchInfo) { Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); Register &NewLHS = std::get<0>(MatchInfo); Register &NewRHS = std::get<1>(MatchInfo); // Helper lambda to check for opportunities for // ((0-A) + B) -> B - A // (A + (0-B)) -> A - B auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) return false; NewLHS = MaybeNewLHS; return true; }; return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); } bool CombinerHelper::matchCombineInsertVecElts( MachineInstr &MI, SmallVectorImpl &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && "Invalid opcode"); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); unsigned NumElts = DstTy.getNumElements(); // If this MI is part of a sequence of insert_vec_elts, then // don't do the combine in the middle of the sequence. if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) return false; MachineInstr *CurrInst = &MI; MachineInstr *TmpInst; int64_t IntImm; Register TmpReg; MatchInfo.resize(NumElts); while (mi_match( CurrInst->getOperand(0).getReg(), MRI, m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { if (IntImm >= NumElts) return false; if (!MatchInfo[IntImm]) MatchInfo[IntImm] = TmpReg; CurrInst = TmpInst; } // Variable index. if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) return false; if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { if (!MatchInfo[I - 1].isValid()) MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); } return true; } // If we didn't end in a G_IMPLICIT_DEF, bail out. return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; } void CombinerHelper::applyCombineInsertVecElts( MachineInstr &MI, SmallVectorImpl &MatchInfo) { Builder.setInstr(MI); Register UndefReg; auto GetUndef = [&]() { if (UndefReg) return UndefReg; LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); return UndefReg; }; for (unsigned I = 0; I < MatchInfo.size(); ++I) { if (!MatchInfo[I]) MatchInfo[I] = GetUndef(); } Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); MI.eraseFromParent(); } void CombinerHelper::applySimplifyAddToSub( MachineInstr &MI, std::tuple &MatchInfo) { Builder.setInstr(MI); Register SubLHS, SubRHS; std::tie(SubLHS, SubRHS) = MatchInfo; Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); MI.eraseFromParent(); } bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... // // Creates the new hand + logic instruction (but does not insert them.) // // On success, MatchInfo is populated with the new instructions. These are // inserted in applyHoistLogicOpWithSameOpcodeHands. unsigned LogicOpcode = MI.getOpcode(); assert(LogicOpcode == TargetOpcode::G_AND || LogicOpcode == TargetOpcode::G_OR || LogicOpcode == TargetOpcode::G_XOR); MachineIRBuilder MIB(MI); Register Dst = MI.getOperand(0).getReg(); Register LHSReg = MI.getOperand(1).getReg(); Register RHSReg = MI.getOperand(2).getReg(); // Don't recompute anything. if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) return false; // Make sure we have (hand x, ...), (hand y, ...) MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); if (!LeftHandInst || !RightHandInst) return false; unsigned HandOpcode = LeftHandInst->getOpcode(); if (HandOpcode != RightHandInst->getOpcode()) return false; if (!LeftHandInst->getOperand(1).isReg() || !RightHandInst->getOperand(1).isReg()) return false; // Make sure the types match up, and if we're doing this post-legalization, // we end up with legal types. Register X = LeftHandInst->getOperand(1).getReg(); Register Y = RightHandInst->getOperand(1).getReg(); LLT XTy = MRI.getType(X); LLT YTy = MRI.getType(Y); if (XTy != YTy) return false; if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) return false; // Optional extra source register. Register ExtraHandOpSrcReg; switch (HandOpcode) { default: return false; case TargetOpcode::G_ANYEXT: case TargetOpcode::G_SEXT: case TargetOpcode::G_ZEXT: { // Match: logic (ext X), (ext Y) --> ext (logic X, Y) break; } case TargetOpcode::G_AND: case TargetOpcode::G_ASHR: case TargetOpcode::G_LSHR: case TargetOpcode::G_SHL: { // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z MachineOperand &ZOp = LeftHandInst->getOperand(2); if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) return false; ExtraHandOpSrcReg = ZOp.getReg(); break; } } // Record the steps to build the new instructions. // // Steps to build (logic x, y) auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); OperandBuildSteps LogicBuildSteps = { [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); // Steps to build hand (logic x, y), ...z OperandBuildSteps HandBuildSteps = { [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; if (ExtraHandOpSrcReg.isValid()) HandBuildSteps.push_back( [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); return true; } void CombinerHelper::applyBuildInstructionSteps( MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { assert(MatchInfo.InstrsToBuild.size() && "Expected at least one instr to build?"); Builder.setInstr(MI); for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { assert(InstrToBuild.Opcode && "Expected a valid opcode?"); assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); for (auto &OperandFn : InstrToBuild.OperandFns) OperandFn(Instr); } MI.eraseFromParent(); } bool CombinerHelper::matchAshrShlToSextInreg( MachineInstr &MI, std::tuple &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_ASHR); int64_t ShlCst, AshrCst; Register Src; // FIXME: detect splat constant vectors. if (!mi_match(MI.getOperand(0).getReg(), MRI, m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) return false; if (ShlCst != AshrCst) return false; if (!isLegalOrBeforeLegalizer( {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) return false; MatchInfo = std::make_tuple(Src, ShlCst); return true; } void CombinerHelper::applyAshShlToSextInreg( MachineInstr &MI, std::tuple &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_ASHR); Register Src; int64_t ShiftAmt; std::tie(Src, ShiftAmt) = MatchInfo; unsigned Size = MRI.getType(Src).getScalarSizeInBits(); Builder.setInstrAndDebugLoc(MI); Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); MI.eraseFromParent(); } /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 bool CombinerHelper::matchOverlappingAnd( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_AND); Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); Register R; int64_t C1; int64_t C2; if (!mi_match( Dst, MRI, m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) return false; MatchInfo = [=](MachineIRBuilder &B) { if (C1 & C2) { B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); return; } auto Zero = B.buildConstant(Ty, 0); replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); }; return true; } bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, Register &Replacement) { // Given // // %y:_(sN) = G_SOMETHING // %x:_(sN) = G_SOMETHING // %res:_(sN) = G_AND %x, %y // // Eliminate the G_AND when it is known that x & y == x or x & y == y. // // Patterns like this can appear as a result of legalization. E.g. // // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y // %one:_(s32) = G_CONSTANT i32 1 // %and:_(s32) = G_AND %cmp, %one // // In this case, G_ICMP only produces a single bit, so x & 1 == x. assert(MI.getOpcode() == TargetOpcode::G_AND); if (!KB) return false; Register AndDst = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(AndDst); // FIXME: This should be removed once GISelKnownBits supports vectors. if (DstTy.isVector()) return false; Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); KnownBits LHSBits = KB->getKnownBits(LHS); KnownBits RHSBits = KB->getKnownBits(RHS); // Check that x & Mask == x. // x & 1 == x, always // x & 0 == x, only if x is also 0 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. // // Check if we can replace AndDst with the LHS of the G_AND if (canReplaceReg(AndDst, LHS, MRI) && (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { Replacement = LHS; return true; } // Check if we can replace AndDst with the RHS of the G_AND if (canReplaceReg(AndDst, RHS, MRI) && (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { Replacement = RHS; return true; } return false; } bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { // Given // // %y:_(sN) = G_SOMETHING // %x:_(sN) = G_SOMETHING // %res:_(sN) = G_OR %x, %y // // Eliminate the G_OR when it is known that x | y == x or x | y == y. assert(MI.getOpcode() == TargetOpcode::G_OR); if (!KB) return false; Register OrDst = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(OrDst); // FIXME: This should be removed once GISelKnownBits supports vectors. if (DstTy.isVector()) return false; Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); KnownBits LHSBits = KB->getKnownBits(LHS); KnownBits RHSBits = KB->getKnownBits(RHS); // Check that x | Mask == x. // x | 0 == x, always // x | 1 == x, only if x is also 1 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. // // Check if we can replace OrDst with the LHS of the G_OR if (canReplaceReg(OrDst, LHS, MRI) && (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { Replacement = LHS; return true; } // Check if we can replace OrDst with the RHS of the G_OR if (canReplaceReg(OrDst, RHS, MRI) && (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { Replacement = RHS; return true; } return false; } bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { // If the input is already sign extended, just drop the extension. Register Src = MI.getOperand(1).getReg(); unsigned ExtBits = MI.getOperand(2).getImm(); unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); } static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, int64_t Cst, bool IsVector, bool IsFP) { // For i1, Cst will always be -1 regardless of boolean contents. return (ScalarSizeBits == 1 && Cst == -1) || isConstTrueVal(TLI, Cst, IsVector, IsFP); } bool CombinerHelper::matchNotCmp(MachineInstr &MI, SmallVectorImpl &RegsToNegate) { assert(MI.getOpcode() == TargetOpcode::G_XOR); LLT Ty = MRI.getType(MI.getOperand(0).getReg()); const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); Register XorSrc; Register CstReg; // We match xor(src, true) here. if (!mi_match(MI.getOperand(0).getReg(), MRI, m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) return false; if (!MRI.hasOneNonDBGUse(XorSrc)) return false; // Check that XorSrc is the root of a tree of comparisons combined with ANDs // and ORs. The suffix of RegsToNegate starting from index I is used a work // list of tree nodes to visit. RegsToNegate.push_back(XorSrc); // Remember whether the comparisons are all integer or all floating point. bool IsInt = false; bool IsFP = false; for (unsigned I = 0; I < RegsToNegate.size(); ++I) { Register Reg = RegsToNegate[I]; if (!MRI.hasOneNonDBGUse(Reg)) return false; MachineInstr *Def = MRI.getVRegDef(Reg); switch (Def->getOpcode()) { default: // Don't match if the tree contains anything other than ANDs, ORs and // comparisons. return false; case TargetOpcode::G_ICMP: if (IsFP) return false; IsInt = true; // When we apply the combine we will invert the predicate. break; case TargetOpcode::G_FCMP: if (IsInt) return false; IsFP = true; // When we apply the combine we will invert the predicate. break; case TargetOpcode::G_AND: case TargetOpcode::G_OR: // Implement De Morgan's laws: // ~(x & y) -> ~x | ~y // ~(x | y) -> ~x & ~y // When we apply the combine we will change the opcode and recursively // negate the operands. RegsToNegate.push_back(Def->getOperand(1).getReg()); RegsToNegate.push_back(Def->getOperand(2).getReg()); break; } } // Now we know whether the comparisons are integer or floating point, check // the constant in the xor. int64_t Cst; if (Ty.isVector()) { MachineInstr *CstDef = MRI.getVRegDef(CstReg); auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); if (!MaybeCst) return false; if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) return false; } else { if (!mi_match(CstReg, MRI, m_ICst(Cst))) return false; if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) return false; } return true; } void CombinerHelper::applyNotCmp(MachineInstr &MI, SmallVectorImpl &RegsToNegate) { for (Register Reg : RegsToNegate) { MachineInstr *Def = MRI.getVRegDef(Reg); Observer.changingInstr(*Def); // For each comparison, invert the opcode. For each AND and OR, change the // opcode. switch (Def->getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case TargetOpcode::G_ICMP: case TargetOpcode::G_FCMP: { MachineOperand &PredOp = Def->getOperand(1); CmpInst::Predicate NewP = CmpInst::getInversePredicate( (CmpInst::Predicate)PredOp.getPredicate()); PredOp.setPredicate(NewP); break; } case TargetOpcode::G_AND: Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); break; case TargetOpcode::G_OR: Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); break; } Observer.changedInstr(*Def); } replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); MI.eraseFromParent(); } bool CombinerHelper::matchXorOfAndWithSameReg( MachineInstr &MI, std::pair &MatchInfo) { // Match (xor (and x, y), y) (or any of its commuted cases) assert(MI.getOpcode() == TargetOpcode::G_XOR); Register &X = MatchInfo.first; Register &Y = MatchInfo.second; Register AndReg = MI.getOperand(1).getReg(); Register SharedReg = MI.getOperand(2).getReg(); // Find a G_AND on either side of the G_XOR. // Look for one of // // (xor (and x, y), SharedReg) // (xor SharedReg, (and x, y)) if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { std::swap(AndReg, SharedReg); if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) return false; } // Only do this if we'll eliminate the G_AND. if (!MRI.hasOneNonDBGUse(AndReg)) return false; // We can combine if SharedReg is the same as either the LHS or RHS of the // G_AND. if (Y != SharedReg) std::swap(X, Y); return Y == SharedReg; } void CombinerHelper::applyXorOfAndWithSameReg( MachineInstr &MI, std::pair &MatchInfo) { // Fold (xor (and x, y), y) -> (and (not x), y) Builder.setInstrAndDebugLoc(MI); Register X, Y; std::tie(X, Y) = MatchInfo; auto Not = Builder.buildNot(MRI.getType(X), X); Observer.changingInstr(MI); MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); MI.getOperand(1).setReg(Not->getOperand(0).getReg()); MI.getOperand(2).setReg(Y); Observer.changedInstr(MI); } bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { Register DstReg = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(DstReg); const DataLayout &DL = Builder.getMF().getDataLayout(); if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) return false; if (Ty.isPointer()) { auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); return ConstVal && *ConstVal == 0; } assert(Ty.isVector() && "Expecting a vector type"); const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); return isBuildVectorAllZeros(*VecMI, MRI); } void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); Builder.setInstrAndDebugLoc(MI); Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); MI.eraseFromParent(); } /// The second source operand is known to be a power of 2. void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { Register DstReg = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(1).getReg(); Register Pow2Src1 = MI.getOperand(2).getReg(); LLT Ty = MRI.getType(DstReg); Builder.setInstrAndDebugLoc(MI); // Fold (urem x, pow2) -> (and x, pow2-1) auto NegOne = Builder.buildConstant(Ty, -1); auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); Builder.buildAnd(DstReg, Src0, Add); MI.eraseFromParent(); } Optional> CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); // We want to detect if Root is part of a tree which represents a bunch // of loads being merged into a larger load. We'll try to recognize patterns // like, for example: // // Reg Reg // \ / // OR_1 Reg // \ / // OR_2 // \ Reg // .. / // Root // // Reg Reg Reg Reg // \ / \ / // OR_1 OR_2 // \ / // \ / // ... // Root // // Each "Reg" may have been produced by a load + some arithmetic. This // function will save each of them. SmallVector RegsToVisit; SmallVector Ors = {Root}; // In the "worst" case, we're dealing with a load for each byte. So, there // are at most #bytes - 1 ORs. const unsigned MaxIter = MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { if (Ors.empty()) break; const MachineInstr *Curr = Ors.pop_back_val(); Register OrLHS = Curr->getOperand(1).getReg(); Register OrRHS = Curr->getOperand(2).getReg(); // In the combine, we want to elimate the entire tree. if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) return None; // If it's a G_OR, save it and continue to walk. If it's not, then it's // something that may be a load + arithmetic. if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) Ors.push_back(Or); else RegsToVisit.push_back(OrLHS); if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) Ors.push_back(Or); else RegsToVisit.push_back(OrRHS); } // We're going to try and merge each register into a wider power-of-2 type, // so we ought to have an even number of registers. if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) return None; return RegsToVisit; } /// Helper function for findLoadOffsetsForLoadOrCombine. /// /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, /// and then moving that value into a specific byte offset. /// /// e.g. x[i] << 24 /// /// \returns The load instruction and the byte offset it is moved into. static Optional> matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, const MachineRegisterInfo &MRI) { assert(MRI.hasOneNonDBGUse(Reg) && "Expected Reg to only have one non-debug use?"); Register MaybeLoad; int64_t Shift; if (!mi_match(Reg, MRI, m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { Shift = 0; MaybeLoad = Reg; } if (Shift % MemSizeInBits != 0) return None; // TODO: Handle other types of loads. auto *Load = getOpcodeDef(MaybeLoad, MRI); if (!Load) return None; if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) return None; return std::make_pair(Load, Shift / MemSizeInBits); } Optional> CombinerHelper::findLoadOffsetsForLoadOrCombine( SmallDenseMap &MemOffset2Idx, const SmallVector &RegsToVisit, const unsigned MemSizeInBits) { // Each load found for the pattern. There should be one for each RegsToVisit. SmallSetVector Loads; // The lowest index used in any load. (The lowest "i" for each x[i].) int64_t LowestIdx = INT64_MAX; // The load which uses the lowest index. GZExtLoad *LowestIdxLoad = nullptr; // Keeps track of the load indices we see. We shouldn't see any indices twice. SmallSet SeenIdx; // Ensure each load is in the same MBB. // TODO: Support multiple MachineBasicBlocks. MachineBasicBlock *MBB = nullptr; const MachineMemOperand *MMO = nullptr; // Earliest instruction-order load in the pattern. GZExtLoad *EarliestLoad = nullptr; // Latest instruction-order load in the pattern. GZExtLoad *LatestLoad = nullptr; // Base pointer which every load should share. Register BasePtr; // We want to find a load for each register. Each load should have some // appropriate bit twiddling arithmetic. During this loop, we will also keep // track of the load which uses the lowest index. Later, we will check if we // can use its pointer in the final, combined load. for (auto Reg : RegsToVisit) { // Find the load, and find the position that it will end up in (e.g. a // shifted) value. auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); if (!LoadAndPos) return None; GZExtLoad *Load; int64_t DstPos; std::tie(Load, DstPos) = *LoadAndPos; // TODO: Handle multiple MachineBasicBlocks. Currently not handled because // it is difficult to check for stores/calls/etc between loads. MachineBasicBlock *LoadMBB = Load->getParent(); if (!MBB) MBB = LoadMBB; if (LoadMBB != MBB) return None; // Make sure that the MachineMemOperands of every seen load are compatible. auto &LoadMMO = Load->getMMO(); if (!MMO) MMO = &LoadMMO; if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) return None; // Find out what the base pointer and index for the load is. Register LoadPtr; int64_t Idx; if (!mi_match(Load->getOperand(1).getReg(), MRI, m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { LoadPtr = Load->getOperand(1).getReg(); Idx = 0; } // Don't combine things like a[i], a[i] -> a bigger load. if (!SeenIdx.insert(Idx).second) return None; // Every load must share the same base pointer; don't combine things like: // // a[i], b[i + 1] -> a bigger load. if (!BasePtr.isValid()) BasePtr = LoadPtr; if (BasePtr != LoadPtr) return None; if (Idx < LowestIdx) { LowestIdx = Idx; LowestIdxLoad = Load; } // Keep track of the byte offset that this load ends up at. If we have seen // the byte offset, then stop here. We do not want to combine: // // a[i] << 16, a[i + k] << 16 -> a bigger load. if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) return None; Loads.insert(Load); // Keep track of the position of the earliest/latest loads in the pattern. // We will check that there are no load fold barriers between them later // on. // // FIXME: Is there a better way to check for load fold barriers? if (!EarliestLoad || dominates(*Load, *EarliestLoad)) EarliestLoad = Load; if (!LatestLoad || dominates(*LatestLoad, *Load)) LatestLoad = Load; } // We found a load for each register. Let's check if each load satisfies the // pattern. assert(Loads.size() == RegsToVisit.size() && "Expected to find a load for each register?"); assert(EarliestLoad != LatestLoad && EarliestLoad && LatestLoad && "Expected at least two loads?"); // Check if there are any stores, calls, etc. between any of the loads. If // there are, then we can't safely perform the combine. // // MaxIter is chosen based off the (worst case) number of iterations it // typically takes to succeed in the LLVM test suite plus some padding. // // FIXME: Is there a better way to check for load fold barriers? const unsigned MaxIter = 20; unsigned Iter = 0; for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), LatestLoad->getIterator())) { if (Loads.count(&MI)) continue; if (MI.isLoadFoldBarrier()) return None; if (Iter++ == MaxIter) return None; } return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); } bool CombinerHelper::matchLoadOrCombine( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_OR); MachineFunction &MF = *MI.getMF(); // Assuming a little-endian target, transform: // s8 *a = ... // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) // => // s32 val = *((i32)a) // // s8 *a = ... // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] // => // s32 val = BSWAP(*((s32)a)) Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); if (Ty.isVector()) return false; // We need to combine at least two loads into this type. Since the smallest // possible load is into a byte, we need at least a 16-bit wide type. const unsigned WideMemSizeInBits = Ty.getSizeInBits(); if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) return false; // Match a collection of non-OR instructions in the pattern. auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); if (!RegsToVisit) return false; // We have a collection of non-OR instructions. Figure out how wide each of // the small loads should be based off of the number of potential loads we // found. const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); if (NarrowMemSizeInBits % 8 != 0) return false; // Check if each register feeding into each OR is a load from the same // base pointer + some arithmetic. // // e.g. a[0], a[1] << 8, a[2] << 16, etc. // // Also verify that each of these ends up putting a[i] into the same memory // offset as a load into a wide type would. SmallDenseMap MemOffset2Idx; GZExtLoad *LowestIdxLoad, *LatestLoad; int64_t LowestIdx; auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); if (!MaybeLoadInfo) return false; std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; // We have a bunch of loads being OR'd together. Using the addresses + offsets // we found before, check if this corresponds to a big or little endian byte // pattern. If it does, then we can represent it using a load + possibly a // BSWAP. bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); Optional IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); if (!IsBigEndian.hasValue()) return false; bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) return false; // Make sure that the load from the lowest index produces offset 0 in the // final value. // // This ensures that we won't combine something like this: // // load x[i] -> byte 2 // load x[i+1] -> byte 0 ---> wide_load x[i] // load x[i+2] -> byte 1 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; const unsigned ZeroByteOffset = *IsBigEndian ? bigEndianByteAt(NumLoadsInTy, 0) : littleEndianByteAt(NumLoadsInTy, 0); auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); if (ZeroOffsetIdx == MemOffset2Idx.end() || ZeroOffsetIdx->second != LowestIdx) return false; // We wil reuse the pointer from the load which ends up at byte offset 0. It // may not use index 0. Register Ptr = LowestIdxLoad->getPointerReg(); const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); LegalityQuery::MemDesc MMDesc; MMDesc.MemoryTy = Ty; MMDesc.AlignInBits = MMO.getAlign().value() * 8; MMDesc.Ordering = MMO.getSuccessOrdering(); if (!isLegalOrBeforeLegalizer( {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) return false; auto PtrInfo = MMO.getPointerInfo(); auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); // Load must be allowed and fast on the target. LLVMContext &C = MF.getFunction().getContext(); auto &DL = MF.getDataLayout(); bool Fast = false; if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || !Fast) return false; MatchInfo = [=](MachineIRBuilder &MIB) { MIB.setInstrAndDebugLoc(*LatestLoad); Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; MIB.buildLoad(LoadDst, Ptr, *NewMMO); if (NeedsBSwap) MIB.buildBSwap(Dst, LoadDst); }; return true; } bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, MachineInstr *&ExtMI) { assert(MI.getOpcode() == TargetOpcode::G_PHI); Register DstReg = MI.getOperand(0).getReg(); // TODO: Extending a vector may be expensive, don't do this until heuristics // are better. if (MRI.getType(DstReg).isVector()) return false; // Try to match a phi, whose only use is an extend. if (!MRI.hasOneNonDBGUse(DstReg)) return false; ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); switch (ExtMI->getOpcode()) { case TargetOpcode::G_ANYEXT: return true; // G_ANYEXT is usually free. case TargetOpcode::G_ZEXT: case TargetOpcode::G_SEXT: break; default: return false; } // If the target is likely to fold this extend away, don't propagate. if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) return false; // We don't want to propagate the extends unless there's a good chance that // they'll be optimized in some way. // Collect the unique incoming values. SmallPtrSet InSrcs; for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); switch (DefMI->getOpcode()) { case TargetOpcode::G_LOAD: case TargetOpcode::G_TRUNC: case TargetOpcode::G_SEXT: case TargetOpcode::G_ZEXT: case TargetOpcode::G_ANYEXT: case TargetOpcode::G_CONSTANT: InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); // Don't try to propagate if there are too many places to create new // extends, chances are it'll increase code size. if (InSrcs.size() > 2) return false; break; default: return false; } } return true; } void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, MachineInstr *&ExtMI) { assert(MI.getOpcode() == TargetOpcode::G_PHI); Register DstReg = ExtMI->getOperand(0).getReg(); LLT ExtTy = MRI.getType(DstReg); // Propagate the extension into the block of each incoming reg's block. // Use a SetVector here because PHIs can have duplicate edges, and we want // deterministic iteration order. SmallSetVector SrcMIs; SmallDenseMap OldToNewSrcMap; for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); if (!SrcMIs.insert(SrcMI)) continue; // Build an extend after each src inst. auto *MBB = SrcMI->getParent(); MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); if (InsertPt != MBB->end() && InsertPt->isPHI()) InsertPt = MBB->getFirstNonPHI(); Builder.setInsertPt(*SrcMI->getParent(), InsertPt); Builder.setDebugLoc(MI.getDebugLoc()); auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, SrcMI->getOperand(0).getReg()); OldToNewSrcMap[SrcMI] = NewExt; } // Create a new phi with the extended inputs. Builder.setInstrAndDebugLoc(MI); auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); NewPhi.addDef(DstReg); for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) { auto &MO = MI.getOperand(SrcIdx); if (!MO.isReg()) { NewPhi.addMBB(MO.getMBB()); continue; } auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; NewPhi.addUse(NewSrc->getOperand(0).getReg()); } Builder.insertInstr(NewPhi); ExtMI->eraseFromParent(); } bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); // If we have a constant index, look for a G_BUILD_VECTOR source // and find the source register that the index maps to. Register SrcVec = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(SrcVec); if (!isLegalOrBeforeLegalizer( {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) return false; auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) return false; unsigned VecIdx = Cst->Value.getZExtValue(); MachineInstr *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); if (!BuildVecMI) { BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); if (!BuildVecMI) return false; LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); if (!isLegalOrBeforeLegalizer( {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) return false; } EVT Ty(getMVTForLLT(SrcTy)); if (!MRI.hasOneNonDBGUse(SrcVec) && !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) return false; Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); return true; } void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, Register &Reg) { // Check the type of the register, since it may have come from a // G_BUILD_VECTOR_TRUNC. LLT ScalarTy = MRI.getType(Reg); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); Builder.setInstrAndDebugLoc(MI); if (ScalarTy != DstTy) { assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); Builder.buildTrunc(DstReg, Reg); MI.eraseFromParent(); return; } replaceSingleDefInstWithReg(MI, Reg); } bool CombinerHelper::matchExtractAllEltsFromBuildVector( MachineInstr &MI, SmallVectorImpl> &SrcDstPairs) { assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); // This combine tries to find build_vector's which have every source element // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like // the masked load scalarization is run late in the pipeline. There's already // a combine for a similar pattern starting from the extract, but that // doesn't attempt to do it if there are multiple uses of the build_vector, // which in this case is true. Starting the combine from the build_vector // feels more natural than trying to find sibling nodes of extracts. // E.g. // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 // ==> // replace ext{1,2,3,4} with %s{1,2,3,4} Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); unsigned NumElts = DstTy.getNumElements(); SmallBitVector ExtractedElts(NumElts); for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg), MRI.use_instr_nodbg_end())) { if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) return false; auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI); if (!Cst) return false; unsigned Idx = Cst.getValue().getZExtValue(); if (Idx >= NumElts) return false; // Out of range. ExtractedElts.set(Idx); SrcDstPairs.emplace_back( std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); } // Match if every element was extracted. return ExtractedElts.all(); } void CombinerHelper::applyExtractAllEltsFromBuildVector( MachineInstr &MI, SmallVectorImpl> &SrcDstPairs) { assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); for (auto &Pair : SrcDstPairs) { auto *ExtMI = Pair.second; replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); ExtMI->eraseFromParent(); } MI.eraseFromParent(); } void CombinerHelper::applyBuildFn( MachineInstr &MI, std::function &MatchInfo) { Builder.setInstrAndDebugLoc(MI); MatchInfo(Builder); MI.eraseFromParent(); } void CombinerHelper::applyBuildFnNoErase( MachineInstr &MI, std::function &MatchInfo) { Builder.setInstrAndDebugLoc(MI); MatchInfo(Builder); } /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { unsigned Opc = MI.getOpcode(); assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); Register X = MI.getOperand(1).getReg(); Register Y = MI.getOperand(2).getReg(); if (X != Y) return false; unsigned RotateOpc = Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); } void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { unsigned Opc = MI.getOpcode(); assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); bool IsFSHL = Opc == TargetOpcode::G_FSHL; Observer.changingInstr(MI); MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR)); MI.RemoveOperand(2); Observer.changedInstr(MI); } // Fold (rot x, c) -> (rot x, c % BitSize) bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_ROTL || MI.getOpcode() == TargetOpcode::G_ROTR); unsigned Bitsize = MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); Register AmtReg = MI.getOperand(2).getReg(); bool OutOfRange = false; auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { if (auto *CI = dyn_cast(C)) OutOfRange |= CI->getValue().uge(Bitsize); return true; }; return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; } void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_ROTL || MI.getOpcode() == TargetOpcode::G_ROTR); unsigned Bitsize = MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); Builder.setInstrAndDebugLoc(MI); Register Amt = MI.getOperand(2).getReg(); LLT AmtTy = MRI.getType(Amt); auto Bits = Builder.buildConstant(AmtTy, Bitsize); Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); Observer.changingInstr(MI); MI.getOperand(2).setReg(Amt); Observer.changedInstr(MI); } bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, int64_t &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_ICMP); auto Pred = static_cast(MI.getOperand(1).getPredicate()); auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); Optional KnownVal; switch (Pred) { default: llvm_unreachable("Unexpected G_ICMP predicate?"); case CmpInst::ICMP_EQ: KnownVal = KnownBits::eq(KnownLHS, KnownRHS); break; case CmpInst::ICMP_NE: KnownVal = KnownBits::ne(KnownLHS, KnownRHS); break; case CmpInst::ICMP_SGE: KnownVal = KnownBits::sge(KnownLHS, KnownRHS); break; case CmpInst::ICMP_SGT: KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); break; case CmpInst::ICMP_SLE: KnownVal = KnownBits::sle(KnownLHS, KnownRHS); break; case CmpInst::ICMP_SLT: KnownVal = KnownBits::slt(KnownLHS, KnownRHS); break; case CmpInst::ICMP_UGE: KnownVal = KnownBits::uge(KnownLHS, KnownRHS); break; case CmpInst::ICMP_UGT: KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); break; case CmpInst::ICMP_ULE: KnownVal = KnownBits::ule(KnownLHS, KnownRHS); break; case CmpInst::ICMP_ULT: KnownVal = KnownBits::ult(KnownLHS, KnownRHS); break; } if (!KnownVal) return false; MatchInfo = *KnownVal ? getICmpTrueVal(getTargetLowering(), /*IsVector = */ MRI.getType(MI.getOperand(0).getReg()).isVector(), /* IsFP = */ false) : 0; return true; } /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. bool CombinerHelper::matchBitfieldExtractFromSExtInReg( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(Src); LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) return false; int64_t Width = MI.getOperand(2).getImm(); Register ShiftSrc; int64_t ShiftImm; if (!mi_match( Src, MRI, m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) return false; if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) return false; MatchInfo = [=](MachineIRBuilder &B) { auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); auto Cst2 = B.buildConstant(ExtractTy, Width); B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); }; return true; } /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. bool CombinerHelper::matchBitfieldExtractFromAnd( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_AND); Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( TargetOpcode::G_UBFX, Ty, Ty)) return false; int64_t AndImm, LSBImm; Register ShiftSrc; const unsigned Size = Ty.getScalarSizeInBits(); if (!mi_match(MI.getOperand(0).getReg(), MRI, m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), m_ICst(AndImm)))) return false; // The mask is a mask of the low bits iff imm & (imm+1) == 0. auto MaybeMask = static_cast(AndImm); if (MaybeMask & (MaybeMask + 1)) return false; // LSB must fit within the register. if (static_cast(LSBImm) >= Size) return false; LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); MatchInfo = [=](MachineIRBuilder &B) { auto WidthCst = B.buildConstant(ExtractTy, Width); auto LSBCst = B.buildConstant(ExtractTy, LSBImm); B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); }; return true; } bool CombinerHelper::reassociationCanBreakAddressingModePattern( MachineInstr &PtrAdd) { assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); Register Src1Reg = PtrAdd.getOperand(1).getReg(); MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); if (!Src1Def) return false; Register Src2Reg = PtrAdd.getOperand(2).getReg(); if (MRI.hasOneNonDBGUse(Src1Reg)) return false; auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); if (!C1) return false; auto C2 = getConstantVRegVal(Src2Reg, MRI); if (!C2) return false; const APInt &C1APIntVal = *C1; const APInt &C2APIntVal = *C2; const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { // This combine may end up running before ptrtoint/inttoptr combines // manage to eliminate redundant conversions, so try to look through them. MachineInstr *ConvUseMI = &UseMI; unsigned ConvUseOpc = ConvUseMI->getOpcode(); while (ConvUseOpc == TargetOpcode::G_INTTOPTR || ConvUseOpc == TargetOpcode::G_PTRTOINT) { Register DefReg = ConvUseMI->getOperand(0).getReg(); if (!MRI.hasOneNonDBGUse(DefReg)) break; ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); ConvUseOpc = ConvUseMI->getOpcode(); } auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || ConvUseOpc == TargetOpcode::G_STORE; if (!LoadStore) continue; // Is x[offset2] already not a legal addressing mode? If so then // reassociating the constants breaks nothing (we test offset2 because // that's the one we hope to fold into the load or store). TargetLoweringBase::AddrMode AM; AM.HasBaseReg = true; AM.BaseOffs = C2APIntVal.getSExtValue(); unsigned AS = MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); Type *AccessTy = getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), PtrAdd.getMF()->getFunction().getContext()); const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, AccessTy, AS)) continue; // Would x[offset1+offset2] still be a legal addressing mode? AM.BaseOffs = CombinedValue; if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, AccessTy, AS)) return true; } return false; } bool CombinerHelper::matchReassocPtrAdd( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); // We're trying to match a few pointer computation patterns here for // re-association opportunities. // 1) Isolating a constant operand to be on the RHS, e.g.: // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) // // 2) Folding two constants in each sub-tree as long as such folding // doesn't break a legal addressing mode. // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) Register Src1Reg = MI.getOperand(1).getReg(); Register Src2Reg = MI.getOperand(2).getReg(); MachineInstr *LHS = MRI.getVRegDef(Src1Reg); MachineInstr *RHS = MRI.getVRegDef(Src2Reg); if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) { // Try to match example 1). if (RHS->getOpcode() != TargetOpcode::G_ADD) return false; auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI); if (!C2) return false; MatchInfo = [=,&MI](MachineIRBuilder &B) { LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); auto NewBase = Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); Observer.changingInstr(MI); MI.getOperand(1).setReg(NewBase.getReg(0)); MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); Observer.changedInstr(MI); }; } else { // Try to match example 2. Register LHSSrc1 = LHS->getOperand(1).getReg(); Register LHSSrc2 = LHS->getOperand(2).getReg(); auto C1 = getConstantVRegVal(LHSSrc2, MRI); if (!C1) return false; auto C2 = getConstantVRegVal(Src2Reg, MRI); if (!C2) return false; MatchInfo = [=, &MI](MachineIRBuilder &B) { auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); Observer.changingInstr(MI); MI.getOperand(1).setReg(LHSSrc1); MI.getOperand(2).setReg(NewCst.getReg(0)); Observer.changedInstr(MI); }; } return !reassociationCanBreakAddressingModePattern(MI); } bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { Register Op1 = MI.getOperand(1).getReg(); Register Op2 = MI.getOperand(2).getReg(); auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); if (!MaybeCst) return false; MatchInfo = *MaybeCst; return true; } bool CombinerHelper::tryCombine(MachineInstr &MI) { if (tryCombineCopy(MI)) return true; if (tryCombineExtendingLoads(MI)) return true; if (tryCombineIndexedLoadStore(MI)) return true; return false; }