//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements some simple delegations needed for call lowering. /// //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/CallLowering.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Target/TargetMachine.h" #define DEBUG_TYPE "call-lowering" using namespace llvm; void CallLowering::anchor() {} /// Helper function which updates \p Flags when \p AttrFn returns true. static void addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, const std::function &AttrFn) { if (AttrFn(Attribute::SExt)) Flags.setSExt(); if (AttrFn(Attribute::ZExt)) Flags.setZExt(); if (AttrFn(Attribute::InReg)) Flags.setInReg(); if (AttrFn(Attribute::StructRet)) Flags.setSRet(); if (AttrFn(Attribute::Nest)) Flags.setNest(); if (AttrFn(Attribute::ByVal)) Flags.setByVal(); if (AttrFn(Attribute::Preallocated)) Flags.setPreallocated(); if (AttrFn(Attribute::InAlloca)) Flags.setInAlloca(); if (AttrFn(Attribute::Returned)) Flags.setReturned(); if (AttrFn(Attribute::SwiftSelf)) Flags.setSwiftSelf(); if (AttrFn(Attribute::SwiftAsync)) Flags.setSwiftAsync(); if (AttrFn(Attribute::SwiftError)) Flags.setSwiftError(); } ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, unsigned ArgIdx) const { ISD::ArgFlagsTy Flags; addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { return Call.paramHasAttr(ArgIdx, Attr); }); return Flags; } ISD::ArgFlagsTy CallLowering::getAttributesForReturn(const CallBase &Call) const { ISD::ArgFlagsTy Flags; addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) { return Call.hasRetAttr(Attr); }); return Flags; } void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, const AttributeList &Attrs, unsigned OpIdx) const { addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { return Attrs.hasAttributeAtIndex(OpIdx, Attr); }); } bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, ArrayRef ResRegs, ArrayRef> ArgRegs, Register SwiftErrorVReg, std::function GetCalleeReg) const { CallLoweringInfo Info; const DataLayout &DL = MIRBuilder.getDataLayout(); MachineFunction &MF = MIRBuilder.getMF(); MachineRegisterInfo &MRI = MF.getRegInfo(); bool CanBeTailCalled = CB.isTailCall() && isInTailCallPosition(CB, MF.getTarget()) && (MF.getFunction() .getFnAttribute("disable-tail-calls") .getValueAsString() != "true"); CallingConv::ID CallConv = CB.getCallingConv(); Type *RetTy = CB.getType(); bool IsVarArg = CB.getFunctionType()->isVarArg(); SmallVector SplitArgs; getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); Info.IsConvergent = CB.isConvergent(); if (!Info.CanLowerReturn) { // Callee requires sret demotion. insertSRetOutgoingArgument(MIRBuilder, CB, Info); // The sret demotion isn't compatible with tail-calls, since the sret // argument points into the caller's stack frame. CanBeTailCalled = false; } // First step is to marshall all the function's parameters into the correct // physregs and memory locations. Gather the sequence of argument types that // we'll pass to the assigner function. unsigned i = 0; unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); for (const auto &Arg : CB.args()) { ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), i < NumFixedArgs}; setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); // If we have an explicit sret argument that is an Instruction, (i.e., it // might point to function-local memory), we can't meaningfully tail-call. if (OrigArg.Flags[0].isSRet() && isa(&Arg)) CanBeTailCalled = false; Info.OrigArgs.push_back(OrigArg); ++i; } // Try looking through a bitcast from one function type to another. // Commonly happens with calls to objc_msgSend(). const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); if (const Function *F = dyn_cast(CalleeV)) Info.Callee = MachineOperand::CreateGA(F, 0); else if (isa(CalleeV) || isa(CalleeV)) { // IR IFuncs and Aliases can't be forward declared (only defined), so the // callee must be in the same TU and therefore we can direct-call it without // worrying about it being out of range. Info.Callee = MachineOperand::CreateGA(cast(CalleeV), 0); } else Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); Register ReturnHintAlignReg; Align ReturnHintAlign; Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)}; if (!Info.OrigRet.Ty->isVoidTy()) { setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); if (MaybeAlign Alignment = CB.getRetAlign()) { if (*Alignment > Align(1)) { ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]); Info.OrigRet.Regs[0] = ReturnHintAlignReg; ReturnHintAlign = *Alignment; } } } auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi); if (Bundle && CB.isIndirectCall()) { Info.CFIType = cast(Bundle->Inputs[0]); assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); } Info.CB = &CB; Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); Info.CallConv = CallConv; Info.SwiftErrorVReg = SwiftErrorVReg; Info.IsMustTailCall = CB.isMustTailCall(); Info.IsTailCall = CanBeTailCalled; Info.IsVarArg = IsVarArg; if (!lowerCall(MIRBuilder, Info)) return false; if (ReturnHintAlignReg && !Info.IsTailCall) { MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg, ReturnHintAlign); } return true; } template void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const FuncInfoTy &FuncInfo) const { auto &Flags = Arg.Flags[0]; const AttributeList &Attrs = FuncInfo.getAttributes(); addArgFlagsFromAttributes(Flags, Attrs, OpIdx); PointerType *PtrTy = dyn_cast(Arg.Ty->getScalarType()); if (PtrTy) { Flags.setPointer(); Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); } Align MemAlign = DL.getABITypeAlign(Arg.Ty); if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { assert(OpIdx >= AttributeList::FirstArgIndex); unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); if (!ElementTy) ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); if (!ElementTy) ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); assert(ElementTy && "Must have byval, inalloca or preallocated type"); Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); // For ByVal, alignment should be passed from FE. BE will guess if // this info is not there but there are cases it cannot get right. if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) MemAlign = *ParamAlign; else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) MemAlign = *ParamAlign; else MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); } else if (OpIdx >= AttributeList::FirstArgIndex) { if (auto ParamAlign = FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) MemAlign = *ParamAlign; } Flags.setMemAlign(MemAlign); Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); // Don't try to use the returned attribute if the argument is marked as // swiftself, since it won't be passed in x0. if (Flags.isSwiftSelf()) Flags.setReturned(false); } template void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const Function &FuncInfo) const; template void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const CallBase &FuncInfo) const; void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, SmallVectorImpl &SplitArgs, const DataLayout &DL, CallingConv::ID CallConv, SmallVectorImpl *Offsets) const { LLVMContext &Ctx = OrigArg.Ty->getContext(); SmallVector SplitVTs; ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); if (SplitVTs.size() == 0) return; if (SplitVTs.size() == 1) { // No splitting to do, but we want to replace the original type (e.g. [1 x // double] -> double). SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), OrigArg.OrigArgIndex, OrigArg.Flags[0], OrigArg.IsFixed, OrigArg.OrigValue); return; } // Create one ArgInfo for each virtual register in the original ArgInfo. assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( OrigArg.Ty, CallConv, false, DL); for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, OrigArg.Flags[0], OrigArg.IsFixed); if (NeedsRegBlock) SplitArgs.back().Flags[0].setInConsecutiveRegs(); } SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); } /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. static MachineInstrBuilder mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef DstRegs, ArrayRef SrcRegs) { MachineRegisterInfo &MRI = *B.getMRI(); LLT LLTy = MRI.getType(DstRegs[0]); LLT PartLLT = MRI.getType(SrcRegs[0]); // Deal with v3s16 split into v2s16 LLT LCMTy = getCoverTy(LLTy, PartLLT); if (LCMTy == LLTy) { // Common case where no padding is needed. assert(DstRegs.size() == 1); return B.buildConcatVectors(DstRegs[0], SrcRegs); } // We need to create an unmerge to the result registers, which may require // widening the original value. Register UnmergeSrcReg; if (LCMTy != PartLLT) { assert(DstRegs.size() == 1); return B.buildDeleteTrailingVectorElements( DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs)); } else { // We don't need to widen anything if we're extracting a scalar which was // promoted to a vector e.g. s8 -> v4s8 -> s8 assert(SrcRegs.size() == 1); UnmergeSrcReg = SrcRegs[0]; } int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); SmallVector PadDstRegs(NumDst); std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); // Create the excess dead defs for the unmerge. for (int I = DstRegs.size(); I != NumDst; ++I) PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); if (PadDstRegs.size() == 1) return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); } /// Create a sequence of instructions to combine pieces split into register /// typed values to the original IR value. \p OrigRegs contains the destination /// value registers of type \p LLTy, and \p Regs contains the legalized pieces /// with type \p PartLLT. This is used for incoming values (physregs to vregs). static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef OrigRegs, ArrayRef Regs, LLT LLTy, LLT PartLLT, const ISD::ArgFlagsTy Flags) { MachineRegisterInfo &MRI = *B.getMRI(); if (PartLLT == LLTy) { // We should have avoided introducing a new virtual register, and just // directly assigned here. assert(OrigRegs[0] == Regs[0]); return; } if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && Regs.size() == 1) { B.buildBitcast(OrigRegs[0], Regs[0]); return; } // A vector PartLLT needs extending to LLTy's element size. // E.g. <2 x s64> = G_SEXT <2 x s32>. if (PartLLT.isVector() == LLTy.isVector() && PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && (!PartLLT.isVector() || PartLLT.getElementCount() == LLTy.getElementCount()) && OrigRegs.size() == 1 && Regs.size() == 1) { Register SrcReg = Regs[0]; LLT LocTy = MRI.getType(SrcReg); if (Flags.isSExt()) { SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) .getReg(0); } else if (Flags.isZExt()) { SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) .getReg(0); } // Sometimes pointers are passed zero extended. LLT OrigTy = MRI.getType(OrigRegs[0]); if (OrigTy.isPointer()) { LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); return; } B.buildTrunc(OrigRegs[0], SrcReg); return; } if (!LLTy.isVector() && !PartLLT.isVector()) { assert(OrigRegs.size() == 1); LLT OrigTy = MRI.getType(OrigRegs[0]); unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size(); if (SrcSize == OrigTy.getSizeInBits()) B.buildMergeValues(OrigRegs[0], Regs); else { auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs); B.buildTrunc(OrigRegs[0], Widened); } return; } if (PartLLT.isVector()) { assert(OrigRegs.size() == 1); SmallVector CastRegs(Regs.begin(), Regs.end()); // If PartLLT is a mismatched vector in both number of elements and element // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to // have the same elt type, i.e. v4s32. // TODO: Extend this coersion to element multiples other than just 2. if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && Regs.size() == 1) { LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) .changeElementCount(PartLLT.getElementCount() * 2); CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); PartLLT = NewTy; } if (LLTy.getScalarType() == PartLLT.getElementType()) { mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); } else { unsigned I = 0; LLT GCDTy = getGCDType(LLTy, PartLLT); // We are both splitting a vector, and bitcasting its element types. Cast // the source pieces into the appropriate number of pieces with the result // element type. for (Register SrcReg : CastRegs) CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); } return; } assert(LLTy.isVector() && !PartLLT.isVector()); LLT DstEltTy = LLTy.getElementType(); // Pointer information was discarded. We'll need to coerce some register types // to avoid violating type constraints. LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); if (DstEltTy == PartLLT) { // Vector was trivially scalarized. if (RealDstEltTy.isPointer()) { for (Register Reg : Regs) MRI.setType(Reg, RealDstEltTy); } B.buildBuildVector(OrigRegs[0], Regs); } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { // Deal with vector with 64-bit elements decomposed to 32-bit // registers. Need to create intermediate 64-bit elements. SmallVector EltMerges; int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { auto Merge = B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt)); // Fix the type in case this is really a vector of pointers. MRI.setType(Merge.getReg(0), RealDstEltTy); EltMerges.push_back(Merge.getReg(0)); Regs = Regs.drop_front(PartsPerElt); } B.buildBuildVector(OrigRegs[0], EltMerges); } else { // Vector was split, and elements promoted to a wider type. // FIXME: Should handle floating point promotions. unsigned NumElts = LLTy.getNumElements(); LLT BVType = LLT::fixed_vector(NumElts, PartLLT); Register BuildVec; if (NumElts == Regs.size()) BuildVec = B.buildBuildVector(BVType, Regs).getReg(0); else { // Vector elements are packed in the inputs. // e.g. we have a <4 x s16> but 2 x s32 in regs. assert(NumElts > Regs.size()); LLT SrcEltTy = MRI.getType(Regs[0]); LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType(); // Input registers contain packed elements. // Determine how many elements per reg. assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0); unsigned EltPerReg = (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits()); SmallVector BVRegs; BVRegs.reserve(Regs.size() * EltPerReg); for (Register R : Regs) { auto Unmerge = B.buildUnmerge(OriginalEltTy, R); for (unsigned K = 0; K < EltPerReg; ++K) BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0)); } // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces // for a <3 x s16> vector. We should have less than EltPerReg extra items. if (BVRegs.size() > NumElts) { assert((BVRegs.size() - NumElts) < EltPerReg); BVRegs.truncate(NumElts); } BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0); } B.buildTrunc(OrigRegs[0], BuildVec); } } /// Create a sequence of instructions to expand the value in \p SrcReg (of type /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should /// contain the type of scalar value extension if necessary. /// /// This is used for outgoing values (vregs to physregs) static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef DstRegs, Register SrcReg, LLT SrcTy, LLT PartTy, unsigned ExtendOp = TargetOpcode::G_ANYEXT) { // We could just insert a regular copy, but this is unreachable at the moment. assert(SrcTy != PartTy && "identical part types shouldn't reach here"); const unsigned PartSize = PartTy.getSizeInBits(); if (PartTy.isVector() == SrcTy.isVector() && PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { assert(DstRegs.size() == 1); B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); return; } if (SrcTy.isVector() && !PartTy.isVector() && PartSize > SrcTy.getElementType().getSizeInBits()) { // Vector was scalarized, and the elements extended. auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); for (int i = 0, e = DstRegs.size(); i != e; ++i) B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); return; } if (SrcTy.isVector() && PartTy.isVector() && PartTy.getScalarSizeInBits() == SrcTy.getScalarSizeInBits() && SrcTy.getNumElements() < PartTy.getNumElements()) { // A coercion like: v2f32 -> v4f32. Register DstReg = DstRegs.front(); B.buildPadVectorWithUndefElements(DstReg, SrcReg); return; } LLT GCDTy = getGCDType(SrcTy, PartTy); if (GCDTy == PartTy) { // If this already evenly divisible, we can create a simple unmerge. B.buildUnmerge(DstRegs, SrcReg); return; } MachineRegisterInfo &MRI = *B.getMRI(); LLT DstTy = MRI.getType(DstRegs[0]); LLT LCMTy = getCoverTy(SrcTy, PartTy); if (PartTy.isVector() && LCMTy == PartTy) { assert(DstRegs.size() == 1); B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg); return; } const unsigned DstSize = DstTy.getSizeInBits(); const unsigned SrcSize = SrcTy.getSizeInBits(); unsigned CoveringSize = LCMTy.getSizeInBits(); Register UnmergeSrc = SrcReg; if (!LCMTy.isVector() && CoveringSize != SrcSize) { // For scalars, it's common to be able to use a simple extension. if (SrcTy.isScalar() && DstTy.isScalar()) { CoveringSize = alignTo(SrcSize, DstSize); LLT CoverTy = LLT::scalar(CoveringSize); UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); } else { // Widen to the common type. // FIXME: This should respect the extend type Register Undef = B.buildUndef(SrcTy).getReg(0); SmallVector MergeParts(1, SrcReg); for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) MergeParts.push_back(Undef); UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0); } } if (LCMTy.isVector() && CoveringSize != SrcSize) UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); B.buildUnmerge(DstRegs, UnmergeSrc); } bool CallLowering::determineAndHandleAssignments( ValueHandler &Handler, ValueAssigner &Assigner, SmallVectorImpl &Args, MachineIRBuilder &MIRBuilder, CallingConv::ID CallConv, bool IsVarArg, ArrayRef ThisReturnRegs) const { MachineFunction &MF = MIRBuilder.getMF(); const Function &F = MF.getFunction(); SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); if (!determineAssignments(Assigner, Args, CCInfo)) return false; return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, ThisReturnRegs); } static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { if (Flags.isSExt()) return TargetOpcode::G_SEXT; if (Flags.isZExt()) return TargetOpcode::G_ZEXT; return TargetOpcode::G_ANYEXT; } bool CallLowering::determineAssignments(ValueAssigner &Assigner, SmallVectorImpl &Args, CCState &CCInfo) const { LLVMContext &Ctx = CCInfo.getContext(); const CallingConv::ID CallConv = CCInfo.getCallingConv(); unsigned NumArgs = Args.size(); for (unsigned i = 0; i != NumArgs; ++i) { EVT CurVT = EVT::getEVT(Args[i].Ty); MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); // If we need to split the type over multiple regs, check it's a scenario // we currently support. unsigned NumParts = TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); if (NumParts == 1) { // Try to use the register type if we couldn't assign the VT. if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], Args[i].Flags[0], CCInfo)) return false; continue; } // For incoming arguments (physregs to vregs), we could have values in // physregs (or memlocs) which we want to extract and copy to vregs. // During this, we might have to deal with the LLT being split across // multiple regs, so we have to record this information for later. // // If we have outgoing args, then we have the opposite case. We have a // vreg with an LLT which we want to assign to a physical location, and // we might have to record that the value has to be split later. // We're handling an incoming arg which is split over multiple regs. // E.g. passing an s128 on AArch64. ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; Args[i].Flags.clear(); for (unsigned Part = 0; Part < NumParts; ++Part) { ISD::ArgFlagsTy Flags = OrigFlags; if (Part == 0) { Flags.setSplit(); } else { Flags.setOrigAlign(Align(1)); if (Part == NumParts - 1) Flags.setSplitEnd(); } Args[i].Flags.push_back(Flags); if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], Args[i].Flags[Part], CCInfo)) { // Still couldn't assign this smaller part type for some reason. return false; } } } return true; } bool CallLowering::handleAssignments(ValueHandler &Handler, SmallVectorImpl &Args, CCState &CCInfo, SmallVectorImpl &ArgLocs, MachineIRBuilder &MIRBuilder, ArrayRef ThisReturnRegs) const { MachineFunction &MF = MIRBuilder.getMF(); MachineRegisterInfo &MRI = MF.getRegInfo(); const Function &F = MF.getFunction(); const DataLayout &DL = F.getParent()->getDataLayout(); const unsigned NumArgs = Args.size(); // Stores thunks for outgoing register assignments. This is used so we delay // generating register copies until mem loc assignments are done. We do this // so that if the target is using the delayed stack protector feature, we can // find the split point of the block accurately. E.g. if we have: // G_STORE %val, %memloc // $x0 = COPY %foo // $x1 = COPY %bar // CALL func // ... then the split point for the block will correctly be at, and including, // the copy to $x0. If instead the G_STORE instruction immediately precedes // the CALL, then we'd prematurely choose the CALL as the split point, thus // generating a split block with a CALL that uses undefined physregs. SmallVector> DelayedOutgoingRegAssignments; for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { assert(j < ArgLocs.size() && "Skipped too many arg locs"); CCValAssign &VA = ArgLocs[j]; assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); if (VA.needsCustom()) { std::function Thunk; unsigned NumArgRegs = Handler.assignCustomValue( Args[i], ArrayRef(ArgLocs).slice(j), &Thunk); if (Thunk) DelayedOutgoingRegAssignments.emplace_back(Thunk); if (!NumArgRegs) return false; j += (NumArgRegs - 1); continue; } const MVT ValVT = VA.getValVT(); const MVT LocVT = VA.getLocVT(); const LLT LocTy(LocVT); const LLT ValTy(ValVT); const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; const EVT OrigVT = EVT::getEVT(Args[i].Ty); const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); // Expected to be multiple regs for a single incoming arg. // There should be Regs.size() ArgLocs per argument. // This should be the same as getNumRegistersForCallingConv const unsigned NumParts = Args[i].Flags.size(); // Now split the registers into the assigned types. Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); if (NumParts != 1 || NewLLT != OrigTy) { // If we can't directly assign the register, we need one or more // intermediate values. Args[i].Regs.resize(NumParts); // For each split register, create and assign a vreg that will store // the incoming component of the larger value. These will later be // merged to form the final vreg. for (unsigned Part = 0; Part < NumParts; ++Part) Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); } assert((j + (NumParts - 1)) < ArgLocs.size() && "Too many regs for number of args"); // Coerce into outgoing value types before register assignment. if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { assert(Args[i].OrigRegs.size() == 1); buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, ValTy, extendOpFromFlags(Args[i].Flags[0])); } bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL); for (unsigned Part = 0; Part < NumParts; ++Part) { Register ArgReg = Args[i].Regs[Part]; // There should be Regs.size() ArgLocs per argument. unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part; CCValAssign &VA = ArgLocs[j + Idx]; const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; if (VA.isMemLoc() && !Flags.isByVal()) { // Individual pieces may have been spilled to the stack and others // passed in registers. // TODO: The memory size may be larger than the value we need to // store. We may need to adjust the offset for big endian targets. LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); MachinePointerInfo MPO; Register StackAddr = Handler.getStackAddress( MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); continue; } if (VA.isMemLoc() && Flags.isByVal()) { assert(Args[i].Regs.size() == 1 && "didn't expect split byval pointer"); if (Handler.isIncomingArgumentHandler()) { // We just need to copy the frame index value to the pointer. MachinePointerInfo MPO; Register StackAddr = Handler.getStackAddress( Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); } else { // For outgoing byval arguments, insert the implicit copy byval // implies, such that writes in the callee do not modify the caller's // value. uint64_t MemSize = Flags.getByValSize(); int64_t Offset = VA.getLocMemOffset(); MachinePointerInfo DstMPO; Register StackAddr = Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); MachinePointerInfo SrcMPO(Args[i].OrigValue); if (!Args[i].OrigValue) { // We still need to accurately track the stack address space if we // don't know the underlying value. const LLT PtrTy = MRI.getType(StackAddr); SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); } Align DstAlign = std::max(Flags.getNonZeroByValAlign(), inferAlignFromPtrInfo(MF, DstMPO)); Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), inferAlignFromPtrInfo(MF, SrcMPO)); Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], DstMPO, DstAlign, SrcMPO, SrcAlign, MemSize, VA); } continue; } assert(!VA.needsCustom() && "custom loc should have been handled already"); if (i == 0 && !ThisReturnRegs.empty() && Handler.isIncomingArgumentHandler() && isTypeIsValidForThisReturn(ValVT)) { Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA); continue; } if (Handler.isIncomingArgumentHandler()) Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); else { DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); }); } } // Now that all pieces have been assigned, re-pack the register typed values // into the original value typed registers. if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { // Merge the split registers into the expected larger result vregs of // the original call. buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, LocTy, Args[i].Flags[0]); } j += NumParts - 1; } for (auto &Fn : DelayedOutgoingRegAssignments) Fn(); return true; } void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef VRegs, Register DemoteReg, int FI) const { MachineFunction &MF = MIRBuilder.getMF(); MachineRegisterInfo &MRI = MF.getRegInfo(); const DataLayout &DL = MF.getDataLayout(); SmallVector SplitVTs; SmallVector Offsets; ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); assert(VRegs.size() == SplitVTs.size()); unsigned NumValues = SplitVTs.size(); Align BaseAlign = DL.getPrefTypeAlign(RetTy); Type *RetPtrTy = PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace()); LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL); MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); for (unsigned I = 0; I < NumValues; ++I) { Register Addr; MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, MRI.getType(VRegs[I]), commonAlignment(BaseAlign, Offsets[I])); MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); } } void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef VRegs, Register DemoteReg) const { MachineFunction &MF = MIRBuilder.getMF(); MachineRegisterInfo &MRI = MF.getRegInfo(); const DataLayout &DL = MF.getDataLayout(); SmallVector SplitVTs; SmallVector Offsets; ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); assert(VRegs.size() == SplitVTs.size()); unsigned NumValues = SplitVTs.size(); Align BaseAlign = DL.getPrefTypeAlign(RetTy); unsigned AS = DL.getAllocaAddrSpace(); LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL); MachinePointerInfo PtrInfo(AS); for (unsigned I = 0; I < NumValues; ++I) { Register Addr; MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, MRI.getType(VRegs[I]), commonAlignment(BaseAlign, Offsets[I])); MIRBuilder.buildStore(VRegs[I], Addr, *MMO); } } void CallLowering::insertSRetIncomingArgument( const Function &F, SmallVectorImpl &SplitArgs, Register &DemoteReg, MachineRegisterInfo &MRI, const DataLayout &DL) const { unsigned AS = DL.getAllocaAddrSpace(); DemoteReg = MRI.createGenericVirtualRegister( LLT::pointer(AS, DL.getPointerSizeInBits(AS))); Type *PtrTy = PointerType::get(F.getReturnType(), AS); SmallVector ValueVTs; ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); // NOTE: Assume that a pointer won't get split into more than one VT. assert(ValueVTs.size() == 1); ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), ArgInfo::NoArgIndex); setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); DemoteArg.Flags[0].setSRet(); SplitArgs.insert(SplitArgs.begin(), DemoteArg); } void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, const CallBase &CB, CallLoweringInfo &Info) const { const DataLayout &DL = MIRBuilder.getDataLayout(); Type *RetTy = CB.getType(); unsigned AS = DL.getAllocaAddrSpace(); LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), ArgInfo::NoArgIndex); setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); DemoteArg.Flags[0].setSRet(); Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); Info.DemoteStackIndex = FI; Info.DemoteRegister = DemoteReg; } bool CallLowering::checkReturn(CCState &CCInfo, SmallVectorImpl &Outs, CCAssignFn *Fn) const { for (unsigned I = 0, E = Outs.size(); I < E; ++I) { MVT VT = MVT::getVT(Outs[I].Ty); if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) return false; } return true; } void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, AttributeList Attrs, SmallVectorImpl &Outs, const DataLayout &DL) const { LLVMContext &Context = RetTy->getContext(); ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); SmallVector SplitVTs; ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); for (EVT VT : SplitVTs) { unsigned NumParts = TLI->getNumRegistersForCallingConv(Context, CallConv, VT); MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); Type *PartTy = EVT(RegVT).getTypeForEVT(Context); for (unsigned I = 0; I < NumParts; ++I) { Outs.emplace_back(PartTy, Flags); } } } bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { const auto &F = MF.getFunction(); Type *ReturnType = F.getReturnType(); CallingConv::ID CallConv = F.getCallingConv(); SmallVector SplitArgs; getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, MF.getDataLayout()); return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); } bool CallLowering::parametersInCSRMatch( const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl &OutLocs, const SmallVectorImpl &OutArgs) const { for (unsigned i = 0; i < OutLocs.size(); ++i) { const auto &ArgLoc = OutLocs[i]; // If it's not a register, it's fine. if (!ArgLoc.isRegLoc()) continue; MCRegister PhysReg = ArgLoc.getLocReg(); // Only look at callee-saved registers. if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) continue; LLVM_DEBUG( dbgs() << "... Call has an argument passed in a callee-saved register.\n"); // Check if it was copied from. const ArgInfo &OutInfo = OutArgs[i]; if (OutInfo.Regs.size() > 1) { LLVM_DEBUG( dbgs() << "... Cannot handle arguments in multiple registers.\n"); return false; } // Check if we copy the register, walking through copies from virtual // registers. Note that getDefIgnoringCopies does not ignore copies from // physical registers. MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { LLVM_DEBUG( dbgs() << "... Parameter was not copied into a VReg, cannot tail call.\n"); return false; } // Got a copy. Verify that it's the same as the register we want. Register CopyRHS = RegDef->getOperand(1).getReg(); if (CopyRHS != PhysReg) { LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " "VReg, cannot tail call.\n"); return false; } } return true; } bool CallLowering::resultsCompatible(CallLoweringInfo &Info, MachineFunction &MF, SmallVectorImpl &InArgs, ValueAssigner &CalleeAssigner, ValueAssigner &CallerAssigner) const { const Function &F = MF.getFunction(); CallingConv::ID CalleeCC = Info.CallConv; CallingConv::ID CallerCC = F.getCallingConv(); if (CallerCC == CalleeCC) return true; SmallVector ArgLocs1; CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) return false; SmallVector ArgLocs2; CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) return false; // We need the argument locations to match up exactly. If there's more in // one than the other, then we are done. if (ArgLocs1.size() != ArgLocs2.size()) return false; // Make sure that each location is passed in exactly the same way. for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { const CCValAssign &Loc1 = ArgLocs1[i]; const CCValAssign &Loc2 = ArgLocs2[i]; // We need both of them to be the same. So if one is a register and one // isn't, we're done. if (Loc1.isRegLoc() != Loc2.isRegLoc()) return false; if (Loc1.isRegLoc()) { // If they don't have the same register location, we're done. if (Loc1.getLocReg() != Loc2.getLocReg()) return false; // They matched, so we can move to the next ArgLoc. continue; } // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) return false; } return true; } LLT CallLowering::ValueHandler::getStackValueStoreType( const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { const MVT ValVT = VA.getValVT(); if (ValVT != MVT::iPTR) { LLT ValTy(ValVT); // We lost the pointeriness going through CCValAssign, so try to restore it // based on the flags. if (Flags.isPointer()) { LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), ValTy.getScalarSizeInBits()); if (ValVT.isVector()) return LLT::vector(ValTy.getElementCount(), PtrTy); return PtrTy; } return ValTy; } unsigned AddrSpace = Flags.getPointerAddrSpace(); return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); } void CallLowering::ValueHandler::copyArgumentMemory( const ArgInfo &Arg, Register DstPtr, Register SrcPtr, const MachinePointerInfo &DstPtrInfo, Align DstAlign, const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, CCValAssign &VA) const { MachineFunction &MF = MIRBuilder.getMF(); MachineMemOperand *SrcMMO = MF.getMachineMemOperand( SrcPtrInfo, MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, SrcAlign); MachineMemOperand *DstMMO = MF.getMachineMemOperand( DstPtrInfo, MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, MemSize, DstAlign); const LLT PtrTy = MRI.getType(DstPtr); const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); } Register CallLowering::ValueHandler::extendRegister(Register ValReg, const CCValAssign &VA, unsigned MaxSizeBits) { LLT LocTy{VA.getLocVT()}; LLT ValTy{VA.getValVT()}; if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) return ValReg; if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { if (MaxSizeBits <= ValTy.getSizeInBits()) return ValReg; LocTy = LLT::scalar(MaxSizeBits); } const LLT ValRegTy = MRI.getType(ValReg); if (ValRegTy.isPointer()) { // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so // we have to cast to do the extension. LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); } switch (VA.getLocInfo()) { default: break; case CCValAssign::Full: case CCValAssign::BCvt: // FIXME: bitconverting between vector types may or may not be a // nop in big-endian situations. return ValReg; case CCValAssign::AExt: { auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); return MIB.getReg(0); } case CCValAssign::SExt: { Register NewReg = MRI.createGenericVirtualRegister(LocTy); MIRBuilder.buildSExt(NewReg, ValReg); return NewReg; } case CCValAssign::ZExt: { Register NewReg = MRI.createGenericVirtualRegister(LocTy); MIRBuilder.buildZExt(NewReg, ValReg); return NewReg; } } llvm_unreachable("unable to extend register"); } void CallLowering::ValueAssigner::anchor() {} Register CallLowering::IncomingValueHandler::buildExtensionHint( const CCValAssign &VA, Register SrcReg, LLT NarrowTy) { switch (VA.getLocInfo()) { case CCValAssign::LocInfo::ZExt: { return MIRBuilder .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, NarrowTy.getScalarSizeInBits()) .getReg(0); } case CCValAssign::LocInfo::SExt: { return MIRBuilder .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, NarrowTy.getScalarSizeInBits()) .getReg(0); break; } default: return SrcReg; } } /// Check if we can use a basic COPY instruction between the two types. /// /// We're currently building on top of the infrastructure using MVT, which loses /// pointer information in the CCValAssign. We accept copies from physical /// registers that have been reported as integers if it's to an equivalent sized /// pointer LLT. static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { if (SrcTy == DstTy) return true; if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) return false; SrcTy = SrcTy.getScalarType(); DstTy = DstTy.getScalarType(); return (SrcTy.isPointer() && DstTy.isScalar()) || (DstTy.isPointer() && SrcTy.isScalar()); } void CallLowering::IncomingValueHandler::assignValueToReg( Register ValVReg, Register PhysReg, const CCValAssign &VA) { const MVT LocVT = VA.getLocVT(); const LLT LocTy(LocVT); const LLT RegTy = MRI.getType(ValVReg); if (isCopyCompatibleType(RegTy, LocTy)) { MIRBuilder.buildCopy(ValVReg, PhysReg); return; } auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); MIRBuilder.buildTrunc(ValVReg, Hint); }