//===-- GCRootLowering.cpp - Garbage collection infrastructure ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the lowering for the gc.root mechanism. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GCMetadata.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCContext.h" using namespace llvm; namespace { /// LowerIntrinsics - This pass rewrites calls to the llvm.gcread or /// llvm.gcwrite intrinsics, replacing them with simple loads and stores as /// directed by the GCStrategy. It also performs automatic root initialization /// and custom intrinsic lowering. class LowerIntrinsics : public FunctionPass { bool DoLowering(Function &F, GCStrategy &S); public: static char ID; LowerIntrinsics(); StringRef getPassName() const override; void getAnalysisUsage(AnalysisUsage &AU) const override; bool doInitialization(Module &M) override; bool runOnFunction(Function &F) override; }; /// GCMachineCodeAnalysis - This is a target-independent pass over the machine /// function representation to identify safe points for the garbage collector /// in the machine code. It inserts labels at safe points and populates a /// GCMetadata record for each function. class GCMachineCodeAnalysis : public MachineFunctionPass { GCFunctionInfo *FI; const TargetInstrInfo *TII; void FindSafePoints(MachineFunction &MF); void VisitCallPoint(MachineBasicBlock::iterator CI); MCSymbol *InsertLabel(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL) const; void FindStackOffsets(MachineFunction &MF); public: static char ID; GCMachineCodeAnalysis(); void getAnalysisUsage(AnalysisUsage &AU) const override; bool runOnMachineFunction(MachineFunction &MF) override; }; } // ----------------------------------------------------------------------------- INITIALIZE_PASS_BEGIN(LowerIntrinsics, "gc-lowering", "GC Lowering", false, false) INITIALIZE_PASS_DEPENDENCY(GCModuleInfo) INITIALIZE_PASS_END(LowerIntrinsics, "gc-lowering", "GC Lowering", false, false) FunctionPass *llvm::createGCLoweringPass() { return new LowerIntrinsics(); } char LowerIntrinsics::ID = 0; char &llvm::GCLoweringID = LowerIntrinsics::ID; LowerIntrinsics::LowerIntrinsics() : FunctionPass(ID) { initializeLowerIntrinsicsPass(*PassRegistry::getPassRegistry()); } StringRef LowerIntrinsics::getPassName() const { return "Lower Garbage Collection Instructions"; } void LowerIntrinsics::getAnalysisUsage(AnalysisUsage &AU) const { FunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addPreserved(); } /// doInitialization - If this module uses the GC intrinsics, find them now. bool LowerIntrinsics::doInitialization(Module &M) { GCModuleInfo *MI = getAnalysisIfAvailable(); assert(MI && "LowerIntrinsics didn't require GCModuleInfo!?"); for (Function &F : M) if (!F.isDeclaration() && F.hasGC()) MI->getFunctionInfo(F); // Instantiate the GC strategy. return false; } /// CouldBecomeSafePoint - Predicate to conservatively determine whether the /// instruction could introduce a safe point. static bool CouldBecomeSafePoint(Instruction *I) { // The natural definition of instructions which could introduce safe points // are: // // - call, invoke (AfterCall, BeforeCall) // - phis (Loops) // - invoke, ret, unwind (Exit) // // However, instructions as seemingly inoccuous as arithmetic can become // libcalls upon lowering (e.g., div i64 on a 32-bit platform), so instead // it is necessary to take a conservative approach. if (isa(I) || isa(I) || isa(I) || isa(I)) return false; // llvm.gcroot is safe because it doesn't do anything at runtime. if (CallInst *CI = dyn_cast(I)) if (Function *F = CI->getCalledFunction()) if (Intrinsic::ID IID = F->getIntrinsicID()) if (IID == Intrinsic::gcroot) return false; return true; } static bool InsertRootInitializers(Function &F, ArrayRef Roots) { // Scroll past alloca instructions. BasicBlock::iterator IP = F.getEntryBlock().begin(); while (isa(IP)) ++IP; // Search for initializers in the initial BB. SmallPtrSet InitedRoots; for (; !CouldBecomeSafePoint(&*IP); ++IP) if (StoreInst *SI = dyn_cast(IP)) if (AllocaInst *AI = dyn_cast(SI->getOperand(1)->stripPointerCasts())) InitedRoots.insert(AI); // Add root initializers. bool MadeChange = false; for (AllocaInst *Root : Roots) if (!InitedRoots.count(Root)) { new StoreInst( ConstantPointerNull::get(cast(Root->getAllocatedType())), Root, Root->getNextNode()); MadeChange = true; } return MadeChange; } /// runOnFunction - Replace gcread/gcwrite intrinsics with loads and stores. /// Leave gcroot intrinsics; the code generator needs to see those. bool LowerIntrinsics::runOnFunction(Function &F) { // Quick exit for functions that do not use GC. if (!F.hasGC()) return false; GCFunctionInfo &FI = getAnalysis().getFunctionInfo(F); GCStrategy &S = FI.getStrategy(); return DoLowering(F, S); } /// Lower barriers out of existance (if the associated GCStrategy hasn't /// already done so...), and insert initializing stores to roots as a defensive /// measure. Given we're going to report all roots live at all safepoints, we /// need to be able to ensure each root has been initialized by the point the /// first safepoint is reached. This really should have been done by the /// frontend, but the old API made this non-obvious, so we do a potentially /// redundant store just in case. bool LowerIntrinsics::DoLowering(Function &F, GCStrategy &S) { SmallVector Roots; bool MadeChange = false; for (BasicBlock &BB : F) for (Instruction &I : llvm::make_early_inc_range(BB)) { IntrinsicInst *CI = dyn_cast(&I); if (!CI) continue; Function *F = CI->getCalledFunction(); switch (F->getIntrinsicID()) { default: break; case Intrinsic::gcwrite: { // Replace a write barrier with a simple store. Value *St = new StoreInst(CI->getArgOperand(0), CI->getArgOperand(2), CI); CI->replaceAllUsesWith(St); CI->eraseFromParent(); MadeChange = true; break; } case Intrinsic::gcread: { // Replace a read barrier with a simple load. Value *Ld = new LoadInst(CI->getType(), CI->getArgOperand(1), "", CI); Ld->takeName(CI); CI->replaceAllUsesWith(Ld); CI->eraseFromParent(); MadeChange = true; break; } case Intrinsic::gcroot: { // Initialize the GC root, but do not delete the intrinsic. The // backend needs the intrinsic to flag the stack slot. Roots.push_back( cast(CI->getArgOperand(0)->stripPointerCasts())); break; } } } if (Roots.size()) MadeChange |= InsertRootInitializers(F, Roots); return MadeChange; } // ----------------------------------------------------------------------------- char GCMachineCodeAnalysis::ID = 0; char &llvm::GCMachineCodeAnalysisID = GCMachineCodeAnalysis::ID; INITIALIZE_PASS(GCMachineCodeAnalysis, "gc-analysis", "Analyze Machine Code For Garbage Collection", false, false) GCMachineCodeAnalysis::GCMachineCodeAnalysis() : MachineFunctionPass(ID) {} void GCMachineCodeAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { MachineFunctionPass::getAnalysisUsage(AU); AU.setPreservesAll(); AU.addRequired(); } MCSymbol *GCMachineCodeAnalysis::InsertLabel(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL) const { MCSymbol *Label = MBB.getParent()->getContext().createTempSymbol(); BuildMI(MBB, MI, DL, TII->get(TargetOpcode::GC_LABEL)).addSym(Label); return Label; } void GCMachineCodeAnalysis::VisitCallPoint(MachineBasicBlock::iterator CI) { // Find the return address (next instruction), since that's what will be on // the stack when the call is suspended and we need to inspect the stack. MachineBasicBlock::iterator RAI = CI; ++RAI; MCSymbol *Label = InsertLabel(*CI->getParent(), RAI, CI->getDebugLoc()); FI->addSafePoint(Label, CI->getDebugLoc()); } void GCMachineCodeAnalysis::FindSafePoints(MachineFunction &MF) { for (MachineBasicBlock &MBB : MF) for (MachineInstr &MI : MBB) if (MI.isCall()) { // Do not treat tail or sibling call sites as safe points. This is // legal since any arguments passed to the callee which live in the // remnants of the callers frame will be owned and updated by the // callee if required. if (MI.isTerminator()) continue; VisitCallPoint(&MI); } } void GCMachineCodeAnalysis::FindStackOffsets(MachineFunction &MF) { const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); assert(TFI && "TargetRegisterInfo not available!"); for (GCFunctionInfo::roots_iterator RI = FI->roots_begin(); RI != FI->roots_end();) { // If the root references a dead object, no need to keep it. if (MF.getFrameInfo().isDeadObjectIndex(RI->Num)) { RI = FI->removeStackRoot(RI); } else { Register FrameReg; // FIXME: surely GCRoot ought to store the // register that the offset is from? auto FrameOffset = TFI->getFrameIndexReference(MF, RI->Num, FrameReg); assert(!FrameOffset.getScalable() && "Frame offsets with a scalable component are not supported"); RI->StackOffset = FrameOffset.getFixed(); ++RI; } } } bool GCMachineCodeAnalysis::runOnMachineFunction(MachineFunction &MF) { // Quick exit for functions that do not use GC. if (!MF.getFunction().hasGC()) return false; FI = &getAnalysis().getFunctionInfo(MF.getFunction()); TII = MF.getSubtarget().getInstrInfo(); // Find the size of the stack frame. There may be no correct static frame // size, we use UINT64_MAX to represent this. const MachineFrameInfo &MFI = MF.getFrameInfo(); const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); const bool DynamicFrameSize = MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF); FI->setFrameSize(DynamicFrameSize ? UINT64_MAX : MFI.getStackSize()); // Find all safe points. if (FI->getStrategy().needsSafePoints()) FindSafePoints(MF); // Find the concrete stack offsets for all roots (stack slots) FindStackOffsets(MF); return false; }