//===-- BasicBlockSections.cpp ---=========--------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // BasicBlockSections implementation. // // The purpose of this pass is to assign sections to basic blocks when // -fbasic-block-sections= option is used. Further, with profile information // only the subset of basic blocks with profiles are placed in separate sections // and the rest are grouped in a cold section. The exception handling blocks are // treated specially to ensure they are all in one seciton. // // Basic Block Sections // ==================== // // With option, -fbasic-block-sections=list, every function may be split into // clusters of basic blocks. Every cluster will be emitted into a separate // section with its basic blocks sequenced in the given order. To get the // optimized performance, the clusters must form an optimal BB layout for the // function. We insert a symbol at the beginning of every cluster's section to // allow the linker to reorder the sections in any arbitrary sequence. A global // order of these sections would encapsulate the function layout. // For example, consider the following clusters for a function foo (consisting // of 6 basic blocks 0, 1, ..., 5). // // 0 2 // 1 3 5 // // * Basic blocks 0 and 2 are placed in one section with symbol `foo` // referencing the beginning of this section. // * Basic blocks 1, 3, 5 are placed in a separate section. A new symbol // `foo.__part.1` will reference the beginning of this section. // * Basic block 4 (note that it is not referenced in the list) is placed in // one section, and a new symbol `foo.cold` will point to it. // // There are a couple of challenges to be addressed: // // 1. The last basic block of every cluster should not have any implicit // fallthrough to its next basic block, as it can be reordered by the linker. // The compiler should make these fallthroughs explicit by adding // unconditional jumps.. // // 2. All inter-cluster branch targets would now need to be resolved by the // linker as they cannot be calculated during compile time. This is done // using static relocations. Further, the compiler tries to use short branch // instructions on some ISAs for small branch offsets. This is not possible // for inter-cluster branches as the offset is not determined at compile // time, and therefore, long branch instructions have to be used for those. // // 3. Debug Information (DebugInfo) and Call Frame Information (CFI) emission // needs special handling with basic block sections. DebugInfo needs to be // emitted with more relocations as basic block sections can break a // function into potentially several disjoint pieces, and CFI needs to be // emitted per cluster. This also bloats the object file and binary sizes. // // Basic Block Labels // ================== // // With -fbasic-block-sections=labels, we encode the offsets of BB addresses of // every function into the .llvm_bb_addr_map section. Along with the function // symbols, this allows for mapping of virtual addresses in PMU profiles back to // the corresponding basic blocks. This logic is implemented in AsmPrinter. This // pass only assigns the BBSectionType of every function to ``labels``. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/BasicBlockSectionUtils.h" #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/InitializePasses.h" #include "llvm/Target/TargetMachine.h" #include using namespace llvm; // Placing the cold clusters in a separate section mitigates against poor // profiles and allows optimizations such as hugepage mapping to be applied at a // section granularity. Defaults to ".text.split." which is recognized by lld // via the `-z keep-text-section-prefix` flag. cl::opt llvm::BBSectionsColdTextPrefix( "bbsections-cold-text-prefix", cl::desc("The text prefix to use for cold basic block clusters"), cl::init(".text.split."), cl::Hidden); static cl::opt BBSectionsDetectSourceDrift( "bbsections-detect-source-drift", cl::desc("This checks if there is a fdo instr. profile hash " "mismatch for this function"), cl::init(true), cl::Hidden); namespace { class BasicBlockSections : public MachineFunctionPass { public: static char ID; BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; BasicBlockSections() : MachineFunctionPass(ID) { initializeBasicBlockSectionsPass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "Basic Block Sections Analysis"; } void getAnalysisUsage(AnalysisUsage &AU) const override; /// Identify basic blocks that need separate sections and prepare to emit them /// accordingly. bool runOnMachineFunction(MachineFunction &MF) override; }; } // end anonymous namespace char BasicBlockSections::ID = 0; INITIALIZE_PASS_BEGIN( BasicBlockSections, "bbsections-prepare", "Prepares for basic block sections, by splitting functions " "into clusters of basic blocks.", false, false) INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader) INITIALIZE_PASS_END(BasicBlockSections, "bbsections-prepare", "Prepares for basic block sections, by splitting functions " "into clusters of basic blocks.", false, false) // This function updates and optimizes the branching instructions of every basic // block in a given function to account for changes in the layout. static void updateBranches(MachineFunction &MF, const SmallVector &PreLayoutFallThroughs) { const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); SmallVector Cond; for (auto &MBB : MF) { auto NextMBBI = std::next(MBB.getIterator()); auto *FTMBB = PreLayoutFallThroughs[MBB.getNumber()]; // If this block had a fallthrough before we need an explicit unconditional // branch to that block if either // 1- the block ends a section, which means its next block may be // reorderd by the linker, or // 2- the fallthrough block is not adjacent to the block in the new // order. if (FTMBB && (MBB.isEndSection() || &*NextMBBI != FTMBB)) TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc()); // We do not optimize branches for machine basic blocks ending sections, as // their adjacent block might be reordered by the linker. if (MBB.isEndSection()) continue; // It might be possible to optimize branches by flipping the branch // condition. Cond.clear(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. if (TII->analyzeBranch(MBB, TBB, FBB, Cond)) continue; MBB.updateTerminator(FTMBB); } } // This function provides the BBCluster information associated with a function. // Returns true if a valid association exists and false otherwise. bool getBBClusterInfoForFunction( const MachineFunction &MF, BasicBlockSectionsProfileReader *BBSectionsProfileReader, DenseMap &V) { // Find the assoicated cluster information. std::pair> P = BBSectionsProfileReader->getBBClusterInfoForFunction(MF.getName()); if (!P.first) return false; if (P.second.empty()) { // This indicates that sections are desired for all basic blocks of this // function. We clear the BBClusterInfo vector to denote this. V.clear(); return true; } for (const BBClusterInfo &BBCI : P.second) V[BBCI.BBID] = BBCI; return true; } // This function sorts basic blocks according to the cluster's information. // All explicitly specified clusters of basic blocks will be ordered // accordingly. All non-specified BBs go into a separate "Cold" section. // Additionally, if exception handling landing pads end up in more than one // clusters, they are moved into a single "Exception" section. Eventually, // clusters are ordered in increasing order of their IDs, with the "Exception" // and "Cold" succeeding all other clusters. // FuncBBClusterInfo represent the cluster information for basic blocks. It // maps from BBID of basic blocks to their cluster information. If this is // empty, it means unique sections for all basic blocks in the function. static void assignSections(MachineFunction &MF, const DenseMap &FuncBBClusterInfo) { assert(MF.hasBBSections() && "BB Sections is not set for function."); // This variable stores the section ID of the cluster containing eh_pads (if // all eh_pads are one cluster). If more than one cluster contain eh_pads, we // set it equal to ExceptionSectionID. std::optional EHPadsSectionID; for (auto &MBB : MF) { // With the 'all' option, every basic block is placed in a unique section. // With the 'list' option, every basic block is placed in a section // associated with its cluster, unless we want individual unique sections // for every basic block in this function (if FuncBBClusterInfo is empty). if (MF.getTarget().getBBSectionsType() == llvm::BasicBlockSection::All || FuncBBClusterInfo.empty()) { // If unique sections are desired for all basic blocks of the function, we // set every basic block's section ID equal to its original position in // the layout (which is equal to its number). This ensures that basic // blocks are ordered canonically. MBB.setSectionID(MBB.getNumber()); } else { // TODO: Replace `getBBIDOrNumber` with `getBBID` once version 1 is // deprecated. auto I = FuncBBClusterInfo.find(MBB.getBBIDOrNumber()); if (I != FuncBBClusterInfo.end()) { MBB.setSectionID(I->second.ClusterID); } else { // BB goes into the special cold section if it is not specified in the // cluster info map. MBB.setSectionID(MBBSectionID::ColdSectionID); } } if (MBB.isEHPad() && EHPadsSectionID != MBB.getSectionID() && EHPadsSectionID != MBBSectionID::ExceptionSectionID) { // If we already have one cluster containing eh_pads, this must be updated // to ExceptionSectionID. Otherwise, we set it equal to the current // section ID. EHPadsSectionID = EHPadsSectionID ? MBBSectionID::ExceptionSectionID : MBB.getSectionID(); } } // If EHPads are in more than one section, this places all of them in the // special exception section. if (EHPadsSectionID == MBBSectionID::ExceptionSectionID) for (auto &MBB : MF) if (MBB.isEHPad()) MBB.setSectionID(*EHPadsSectionID); } void llvm::sortBasicBlocksAndUpdateBranches( MachineFunction &MF, MachineBasicBlockComparator MBBCmp) { [[maybe_unused]] const MachineBasicBlock *EntryBlock = &MF.front(); SmallVector PreLayoutFallThroughs(MF.getNumBlockIDs()); for (auto &MBB : MF) PreLayoutFallThroughs[MBB.getNumber()] = MBB.getFallThrough(); MF.sort(MBBCmp); assert(&MF.front() == EntryBlock && "Entry block should not be displaced by basic block sections"); // Set IsBeginSection and IsEndSection according to the assigned section IDs. MF.assignBeginEndSections(); // After reordering basic blocks, we must update basic block branches to // insert explicit fallthrough branches when required and optimize branches // when possible. updateBranches(MF, PreLayoutFallThroughs); } // If the exception section begins with a landing pad, that landing pad will // assume a zero offset (relative to @LPStart) in the LSDA. However, a value of // zero implies "no landing pad." This function inserts a NOP just before the EH // pad label to ensure a nonzero offset. void llvm::avoidZeroOffsetLandingPad(MachineFunction &MF) { for (auto &MBB : MF) { if (MBB.isBeginSection() && MBB.isEHPad()) { MachineBasicBlock::iterator MI = MBB.begin(); while (!MI->isEHLabel()) ++MI; MCInst Nop = MF.getSubtarget().getInstrInfo()->getNop(); BuildMI(MBB, MI, DebugLoc(), MF.getSubtarget().getInstrInfo()->get(Nop.getOpcode())); } } } // This checks if the source of this function has drifted since this binary was // profiled previously. For now, we are piggy backing on what PGO does to // detect this with instrumented profiles. PGO emits an hash of the IR and // checks if the hash has changed. Advanced basic block layout is usually done // on top of PGO optimized binaries and hence this check works well in practice. static bool hasInstrProfHashMismatch(MachineFunction &MF) { if (!BBSectionsDetectSourceDrift) return false; const char MetadataName[] = "instr_prof_hash_mismatch"; auto *Existing = MF.getFunction().getMetadata(LLVMContext::MD_annotation); if (Existing) { MDTuple *Tuple = cast(Existing); for (const auto &N : Tuple->operands()) if (N.equalsStr(MetadataName)) return true; } return false; } bool BasicBlockSections::runOnMachineFunction(MachineFunction &MF) { auto BBSectionsType = MF.getTarget().getBBSectionsType(); assert(BBSectionsType != BasicBlockSection::None && "BB Sections not enabled!"); // Check for source drift. If the source has changed since the profiles // were obtained, optimizing basic blocks might be sub-optimal. // This only applies to BasicBlockSection::List as it creates // clusters of basic blocks using basic block ids. Source drift can // invalidate these groupings leading to sub-optimal code generation with // regards to performance. if (BBSectionsType == BasicBlockSection::List && hasInstrProfHashMismatch(MF)) return true; // Renumber blocks before sorting them. This is useful during sorting, // basic blocks in the same section will retain the default order. // This renumbering should also be done for basic block labels to match the // profiles with the correct blocks. // For LLVM_BB_ADDR_MAP versions 2 and higher, this renumbering serves // the different purpose of accessing the original layout positions and // finding the original fallthroughs. // TODO: Change the above comment accordingly when version 1 is deprecated. MF.RenumberBlocks(); if (BBSectionsType == BasicBlockSection::Labels) { MF.setBBSectionsType(BBSectionsType); return true; } BBSectionsProfileReader = &getAnalysis(); // Map from BBID of blocks to their cluster information. DenseMap FuncBBClusterInfo; if (BBSectionsType == BasicBlockSection::List && !getBBClusterInfoForFunction(MF, BBSectionsProfileReader, FuncBBClusterInfo)) return true; MF.setBBSectionsType(BBSectionsType); assignSections(MF, FuncBBClusterInfo); // We make sure that the cluster including the entry basic block precedes all // other clusters. auto EntryBBSectionID = MF.front().getSectionID(); // Helper function for ordering BB sections as follows: // * Entry section (section including the entry block). // * Regular sections (in increasing order of their Number). // ... // * Exception section // * Cold section auto MBBSectionOrder = [EntryBBSectionID](const MBBSectionID &LHS, const MBBSectionID &RHS) { // We make sure that the section containing the entry block precedes all the // other sections. if (LHS == EntryBBSectionID || RHS == EntryBBSectionID) return LHS == EntryBBSectionID; return LHS.Type == RHS.Type ? LHS.Number < RHS.Number : LHS.Type < RHS.Type; }; // We sort all basic blocks to make sure the basic blocks of every cluster are // contiguous and ordered accordingly. Furthermore, clusters are ordered in // increasing order of their section IDs, with the exception and the // cold section placed at the end of the function. auto Comparator = [&](const MachineBasicBlock &X, const MachineBasicBlock &Y) { auto XSectionID = X.getSectionID(); auto YSectionID = Y.getSectionID(); if (XSectionID != YSectionID) return MBBSectionOrder(XSectionID, YSectionID); // If the two basic block are in the same section, the order is decided by // their position within the section. if (XSectionID.Type == MBBSectionID::SectionType::Default) return FuncBBClusterInfo.lookup(X.getBBIDOrNumber()).PositionInCluster < FuncBBClusterInfo.lookup(Y.getBBIDOrNumber()).PositionInCluster; return X.getNumber() < Y.getNumber(); }; sortBasicBlocksAndUpdateBranches(MF, Comparator); avoidZeroOffsetLandingPad(MF); return true; } void BasicBlockSections::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionPass *llvm::createBasicBlockSectionsPass() { return new BasicBlockSections(); }