//===- llvm/CodeGen/DwarfCompileUnit.cpp - Dwarf Compile Units ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains support for constructing a dwarf compile unit. // //===----------------------------------------------------------------------===// #include "DwarfCompileUnit.h" #include "AddressPool.h" #include "DwarfExpression.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/DIE.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCSymbolWasm.h" #include "llvm/MC/MachineLocation.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include using namespace llvm; static dwarf::Tag GetCompileUnitType(UnitKind Kind, DwarfDebug *DW) { // According to DWARF Debugging Information Format Version 5, // 3.1.2 Skeleton Compilation Unit Entries: // "When generating a split DWARF object file (see Section 7.3.2 // on page 187), the compilation unit in the .debug_info section // is a "skeleton" compilation unit with the tag DW_TAG_skeleton_unit" if (DW->getDwarfVersion() >= 5 && Kind == UnitKind::Skeleton) return dwarf::DW_TAG_skeleton_unit; return dwarf::DW_TAG_compile_unit; } DwarfCompileUnit::DwarfCompileUnit(unsigned UID, const DICompileUnit *Node, AsmPrinter *A, DwarfDebug *DW, DwarfFile *DWU, UnitKind Kind) : DwarfUnit(GetCompileUnitType(Kind, DW), Node, A, DW, DWU, UID) { insertDIE(Node, &getUnitDie()); MacroLabelBegin = Asm->createTempSymbol("cu_macro_begin"); } /// addLabelAddress - Add a dwarf label attribute data and value using /// DW_FORM_addr or DW_FORM_GNU_addr_index. void DwarfCompileUnit::addLabelAddress(DIE &Die, dwarf::Attribute Attribute, const MCSymbol *Label) { if ((Skeleton || !DD->useSplitDwarf()) && Label) DD->addArangeLabel(SymbolCU(this, Label)); // Don't use the address pool in non-fission or in the skeleton unit itself. if ((!DD->useSplitDwarf() || !Skeleton) && DD->getDwarfVersion() < 5) return addLocalLabelAddress(Die, Attribute, Label); bool UseAddrOffsetFormOrExpressions = DD->useAddrOffsetForm() || DD->useAddrOffsetExpressions(); const MCSymbol *Base = nullptr; if (Label->isInSection() && UseAddrOffsetFormOrExpressions) Base = DD->getSectionLabel(&Label->getSection()); if (!Base || Base == Label) { unsigned idx = DD->getAddressPool().getIndex(Label); addAttribute(Die, Attribute, DD->getDwarfVersion() >= 5 ? dwarf::DW_FORM_addrx : dwarf::DW_FORM_GNU_addr_index, DIEInteger(idx)); return; } // Could be extended to work with DWARFv4 Split DWARF if that's important for // someone. In that case DW_FORM_data would be used. assert(DD->getDwarfVersion() >= 5 && "Addr+offset expressions are only valuable when using debug_addr (to " "reduce relocations) available in DWARFv5 or higher"); if (DD->useAddrOffsetExpressions()) { auto *Loc = new (DIEValueAllocator) DIEBlock(); addPoolOpAddress(*Loc, Label); addBlock(Die, Attribute, dwarf::DW_FORM_exprloc, Loc); } else addAttribute(Die, Attribute, dwarf::DW_FORM_LLVM_addrx_offset, new (DIEValueAllocator) DIEAddrOffset( DD->getAddressPool().getIndex(Base), Label, Base)); } void DwarfCompileUnit::addLocalLabelAddress(DIE &Die, dwarf::Attribute Attribute, const MCSymbol *Label) { if (Label) addAttribute(Die, Attribute, dwarf::DW_FORM_addr, DIELabel(Label)); else addAttribute(Die, Attribute, dwarf::DW_FORM_addr, DIEInteger(0)); } unsigned DwarfCompileUnit::getOrCreateSourceID(const DIFile *File) { // If we print assembly, we can't separate .file entries according to // compile units. Thus all files will belong to the default compile unit. // FIXME: add a better feature test than hasRawTextSupport. Even better, // extend .file to support this. unsigned CUID = Asm->OutStreamer->hasRawTextSupport() ? 0 : getUniqueID(); if (!File) return Asm->OutStreamer->emitDwarfFileDirective(0, "", "", std::nullopt, std::nullopt, CUID); if (LastFile != File) { LastFile = File; LastFileID = Asm->OutStreamer->emitDwarfFileDirective( 0, File->getDirectory(), File->getFilename(), DD->getMD5AsBytes(File), File->getSource(), CUID); } return LastFileID; } DIE *DwarfCompileUnit::getOrCreateGlobalVariableDIE( const DIGlobalVariable *GV, ArrayRef GlobalExprs) { // Check for pre-existence. if (DIE *Die = getDIE(GV)) return Die; assert(GV); auto *GVContext = GV->getScope(); const DIType *GTy = GV->getType(); auto *CB = GVContext ? dyn_cast(GVContext) : nullptr; DIE *ContextDIE = CB ? getOrCreateCommonBlock(CB, GlobalExprs) : getOrCreateContextDIE(GVContext); // Add to map. DIE *VariableDIE = &createAndAddDIE(GV->getTag(), *ContextDIE, GV); DIScope *DeclContext; if (auto *SDMDecl = GV->getStaticDataMemberDeclaration()) { DeclContext = SDMDecl->getScope(); assert(SDMDecl->isStaticMember() && "Expected static member decl"); assert(GV->isDefinition()); // We need the declaration DIE that is in the static member's class. DIE *VariableSpecDIE = getOrCreateStaticMemberDIE(SDMDecl); addDIEEntry(*VariableDIE, dwarf::DW_AT_specification, *VariableSpecDIE); // If the global variable's type is different from the one in the class // member type, assume that it's more specific and also emit it. if (GTy != SDMDecl->getBaseType()) addType(*VariableDIE, GTy); } else { DeclContext = GV->getScope(); // Add name and type. StringRef DisplayName = GV->getDisplayName(); if (!DisplayName.empty()) addString(*VariableDIE, dwarf::DW_AT_name, GV->getDisplayName()); if (GTy) addType(*VariableDIE, GTy); // Add scoping info. if (!GV->isLocalToUnit()) addFlag(*VariableDIE, dwarf::DW_AT_external); // Add line number info. addSourceLine(*VariableDIE, GV); } if (!GV->isDefinition()) addFlag(*VariableDIE, dwarf::DW_AT_declaration); else addGlobalName(GV->getName(), *VariableDIE, DeclContext); addAnnotation(*VariableDIE, GV->getAnnotations()); if (uint32_t AlignInBytes = GV->getAlignInBytes()) addUInt(*VariableDIE, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata, AlignInBytes); if (MDTuple *TP = GV->getTemplateParams()) addTemplateParams(*VariableDIE, DINodeArray(TP)); // Add location. addLocationAttribute(VariableDIE, GV, GlobalExprs); return VariableDIE; } void DwarfCompileUnit::addLocationAttribute( DIE *VariableDIE, const DIGlobalVariable *GV, ArrayRef GlobalExprs) { bool addToAccelTable = false; DIELoc *Loc = nullptr; std::optional NVPTXAddressSpace; std::unique_ptr DwarfExpr; for (const auto &GE : GlobalExprs) { const GlobalVariable *Global = GE.Var; const DIExpression *Expr = GE.Expr; // For compatibility with DWARF 3 and earlier, // DW_AT_location(DW_OP_constu, X, DW_OP_stack_value) or // DW_AT_location(DW_OP_consts, X, DW_OP_stack_value) becomes // DW_AT_const_value(X). if (GlobalExprs.size() == 1 && Expr && Expr->isConstant()) { addToAccelTable = true; addConstantValue( *VariableDIE, DIExpression::SignedOrUnsignedConstant::UnsignedConstant == *Expr->isConstant(), Expr->getElement(1)); break; } // We cannot describe the location of dllimport'd variables: the // computation of their address requires loads from the IAT. if (Global && Global->hasDLLImportStorageClass()) continue; // Nothing to describe without address or constant. if (!Global && (!Expr || !Expr->isConstant())) continue; if (Global && Global->isThreadLocal() && !Asm->getObjFileLowering().supportDebugThreadLocalLocation()) continue; if (!Loc) { addToAccelTable = true; Loc = new (DIEValueAllocator) DIELoc; DwarfExpr = std::make_unique(*Asm, *this, *Loc); } if (Expr) { // According to // https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf // cuda-gdb requires DW_AT_address_class for all variables to be able to // correctly interpret address space of the variable address. // Decode DW_OP_constu DW_OP_swap DW_OP_xderef // sequence for the NVPTX + gdb target. unsigned LocalNVPTXAddressSpace; if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) { const DIExpression *NewExpr = DIExpression::extractAddressClass(Expr, LocalNVPTXAddressSpace); if (NewExpr != Expr) { Expr = NewExpr; NVPTXAddressSpace = LocalNVPTXAddressSpace; } } DwarfExpr->addFragmentOffset(Expr); } if (Global) { const MCSymbol *Sym = Asm->getSymbol(Global); // 16-bit platforms like MSP430 and AVR take this path, so sink this // assert to platforms that use it. auto GetPointerSizedFormAndOp = [this]() { unsigned PointerSize = Asm->MAI->getCodePointerSize(); assert((PointerSize == 4 || PointerSize == 8) && "Add support for other sizes if necessary"); struct FormAndOp { dwarf::Form Form; dwarf::LocationAtom Op; }; return PointerSize == 4 ? FormAndOp{dwarf::DW_FORM_data4, dwarf::DW_OP_const4u} : FormAndOp{dwarf::DW_FORM_data8, dwarf::DW_OP_const8u}; }; if (Global->isThreadLocal()) { if (Asm->TM.getTargetTriple().isWasm()) { // FIXME This is not guaranteed, but in practice, in static linking, // if present, __tls_base's index is 1. This doesn't hold for dynamic // linking, so TLS variables used in dynamic linking won't have // correct debug info for now. See // https://github.com/llvm/llvm-project/blob/19afbfe33156d211fa959dadeea46cd17b9c723c/lld/wasm/Driver.cpp#L786-L823 addWasmRelocBaseGlobal(Loc, "__tls_base", 1); addOpAddress(*Loc, Sym); addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_plus); } else if (Asm->TM.useEmulatedTLS()) { // TODO: add debug info for emulated thread local mode. } else { // FIXME: Make this work with -gsplit-dwarf. // Based on GCC's support for TLS: if (!DD->useSplitDwarf()) { auto FormAndOp = GetPointerSizedFormAndOp(); // 1) Start with a constNu of the appropriate pointer size addUInt(*Loc, dwarf::DW_FORM_data1, FormAndOp.Op); // 2) containing the (relocated) offset of the TLS variable // within the module's TLS block. addExpr(*Loc, FormAndOp.Form, Asm->getObjFileLowering().getDebugThreadLocalSymbol(Sym)); } else { addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_const_index); addUInt(*Loc, dwarf::DW_FORM_udata, DD->getAddressPool().getIndex(Sym, /* TLS */ true)); } // 3) followed by an OP to make the debugger do a TLS lookup. addUInt(*Loc, dwarf::DW_FORM_data1, DD->useGNUTLSOpcode() ? dwarf::DW_OP_GNU_push_tls_address : dwarf::DW_OP_form_tls_address); } } else if (Asm->TM.getTargetTriple().isWasm() && Asm->TM.getRelocationModel() == Reloc::PIC_) { // FIXME This is not guaranteed, but in practice, if present, // __memory_base's index is 1. See // https://github.com/llvm/llvm-project/blob/19afbfe33156d211fa959dadeea46cd17b9c723c/lld/wasm/Driver.cpp#L786-L823 addWasmRelocBaseGlobal(Loc, "__memory_base", 1); addOpAddress(*Loc, Sym); addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_plus); } else if ((Asm->TM.getRelocationModel() == Reloc::RWPI || Asm->TM.getRelocationModel() == Reloc::ROPI_RWPI) && !Asm->getObjFileLowering() .getKindForGlobal(Global, Asm->TM) .isReadOnly()) { auto FormAndOp = GetPointerSizedFormAndOp(); // Constant addUInt(*Loc, dwarf::DW_FORM_data1, FormAndOp.Op); // Relocation offset addExpr(*Loc, FormAndOp.Form, Asm->getObjFileLowering().getIndirectSymViaRWPI(Sym)); // Base register Register BaseReg = Asm->getObjFileLowering().getStaticBase(); BaseReg = Asm->TM.getMCRegisterInfo()->getDwarfRegNum(BaseReg, false); addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_breg0 + BaseReg); // Offset from base register addSInt(*Loc, dwarf::DW_FORM_sdata, 0); // Operation addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_plus); } else { DD->addArangeLabel(SymbolCU(this, Sym)); addOpAddress(*Loc, Sym); } } // Global variables attached to symbols are memory locations. // It would be better if this were unconditional, but malformed input that // mixes non-fragments and fragments for the same variable is too expensive // to detect in the verifier. if (DwarfExpr->isUnknownLocation()) DwarfExpr->setMemoryLocationKind(); DwarfExpr->addExpression(Expr); } if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) { // According to // https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf // cuda-gdb requires DW_AT_address_class for all variables to be able to // correctly interpret address space of the variable address. const unsigned NVPTX_ADDR_global_space = 5; addUInt(*VariableDIE, dwarf::DW_AT_address_class, dwarf::DW_FORM_data1, NVPTXAddressSpace.value_or(NVPTX_ADDR_global_space)); } if (Loc) addBlock(*VariableDIE, dwarf::DW_AT_location, DwarfExpr->finalize()); if (DD->useAllLinkageNames()) addLinkageName(*VariableDIE, GV->getLinkageName()); if (addToAccelTable) { DD->addAccelName(*this, CUNode->getNameTableKind(), GV->getName(), *VariableDIE); // If the linkage name is different than the name, go ahead and output // that as well into the name table. if (GV->getLinkageName() != "" && GV->getName() != GV->getLinkageName() && DD->useAllLinkageNames()) DD->addAccelName(*this, CUNode->getNameTableKind(), GV->getLinkageName(), *VariableDIE); } } DIE *DwarfCompileUnit::getOrCreateCommonBlock( const DICommonBlock *CB, ArrayRef GlobalExprs) { // Check for pre-existence. if (DIE *NDie = getDIE(CB)) return NDie; DIE *ContextDIE = getOrCreateContextDIE(CB->getScope()); DIE &NDie = createAndAddDIE(dwarf::DW_TAG_common_block, *ContextDIE, CB); StringRef Name = CB->getName().empty() ? "_BLNK_" : CB->getName(); addString(NDie, dwarf::DW_AT_name, Name); addGlobalName(Name, NDie, CB->getScope()); if (CB->getFile()) addSourceLine(NDie, CB->getLineNo(), CB->getFile()); if (DIGlobalVariable *V = CB->getDecl()) getCU().addLocationAttribute(&NDie, V, GlobalExprs); return &NDie; } void DwarfCompileUnit::addRange(RangeSpan Range) { DD->insertSectionLabel(Range.Begin); auto *PrevCU = DD->getPrevCU(); bool SameAsPrevCU = this == PrevCU; DD->setPrevCU(this); // If we have no current ranges just add the range and return, otherwise, // check the current section and CU against the previous section and CU we // emitted into and the subprogram was contained within. If these are the // same then extend our current range, otherwise add this as a new range. if (CURanges.empty() || !SameAsPrevCU || (&CURanges.back().End->getSection() != &Range.End->getSection())) { // Before a new range is added, always terminate the prior line table. if (PrevCU) DD->terminateLineTable(PrevCU); CURanges.push_back(Range); return; } CURanges.back().End = Range.End; } void DwarfCompileUnit::initStmtList() { if (CUNode->isDebugDirectivesOnly()) return; const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); if (DD->useSectionsAsReferences()) { LineTableStartSym = TLOF.getDwarfLineSection()->getBeginSymbol(); } else { LineTableStartSym = Asm->OutStreamer->getDwarfLineTableSymbol(getUniqueID()); } // DW_AT_stmt_list is a offset of line number information for this // compile unit in debug_line section. For split dwarf this is // left in the skeleton CU and so not included. // The line table entries are not always emitted in assembly, so it // is not okay to use line_table_start here. addSectionLabel(getUnitDie(), dwarf::DW_AT_stmt_list, LineTableStartSym, TLOF.getDwarfLineSection()->getBeginSymbol()); } void DwarfCompileUnit::applyStmtList(DIE &D) { const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); addSectionLabel(D, dwarf::DW_AT_stmt_list, LineTableStartSym, TLOF.getDwarfLineSection()->getBeginSymbol()); } void DwarfCompileUnit::attachLowHighPC(DIE &D, const MCSymbol *Begin, const MCSymbol *End) { assert(Begin && "Begin label should not be null!"); assert(End && "End label should not be null!"); assert(Begin->isDefined() && "Invalid starting label"); assert(End->isDefined() && "Invalid end label"); addLabelAddress(D, dwarf::DW_AT_low_pc, Begin); if (DD->getDwarfVersion() < 4) addLabelAddress(D, dwarf::DW_AT_high_pc, End); else addLabelDelta(D, dwarf::DW_AT_high_pc, End, Begin); } // Add info for Wasm-global-based relocation. // 'GlobalIndex' is used for split dwarf, which currently relies on a few // assumptions that are not guaranteed in a formal way but work in practice. void DwarfCompileUnit::addWasmRelocBaseGlobal(DIELoc *Loc, StringRef GlobalName, uint64_t GlobalIndex) { // FIXME: duplicated from Target/WebAssembly/WebAssembly.h // don't want to depend on target specific headers in this code? const unsigned TI_GLOBAL_RELOC = 3; unsigned PointerSize = Asm->getDataLayout().getPointerSize(); auto *Sym = cast(Asm->GetExternalSymbolSymbol(GlobalName)); // FIXME: this repeats what WebAssemblyMCInstLower:: // GetExternalSymbolSymbol does, since if there's no code that // refers to this symbol, we have to set it here. Sym->setType(wasm::WASM_SYMBOL_TYPE_GLOBAL); Sym->setGlobalType(wasm::WasmGlobalType{ static_cast(PointerSize == 4 ? wasm::WASM_TYPE_I32 : wasm::WASM_TYPE_I64), true}); addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_WASM_location); addSInt(*Loc, dwarf::DW_FORM_sdata, TI_GLOBAL_RELOC); if (!isDwoUnit()) { addLabel(*Loc, dwarf::DW_FORM_data4, Sym); } else { // FIXME: when writing dwo, we need to avoid relocations. Probably // the "right" solution is to treat globals the way func and data // symbols are (with entries in .debug_addr). // For now we hardcode the indices in the callsites. Global indices are not // fixed, but in practice a few are fixed; for example, __stack_pointer is // always index 0. addUInt(*Loc, dwarf::DW_FORM_data4, GlobalIndex); } } // Find DIE for the given subprogram and attach appropriate DW_AT_low_pc // and DW_AT_high_pc attributes. If there are global variables in this // scope then create and insert DIEs for these variables. DIE &DwarfCompileUnit::updateSubprogramScopeDIE(const DISubprogram *SP) { DIE *SPDie = getOrCreateSubprogramDIE(SP, includeMinimalInlineScopes()); SmallVector BB_List; // If basic block sections are on, ranges for each basic block section has // to be emitted separately. for (const auto &R : Asm->MBBSectionRanges) BB_List.push_back({R.second.BeginLabel, R.second.EndLabel}); attachRangesOrLowHighPC(*SPDie, BB_List); if (DD->useAppleExtensionAttributes() && !DD->getCurrentFunction()->getTarget().Options.DisableFramePointerElim( *DD->getCurrentFunction())) addFlag(*SPDie, dwarf::DW_AT_APPLE_omit_frame_ptr); // Only include DW_AT_frame_base in full debug info if (!includeMinimalInlineScopes()) { const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering(); TargetFrameLowering::DwarfFrameBase FrameBase = TFI->getDwarfFrameBase(*Asm->MF); switch (FrameBase.Kind) { case TargetFrameLowering::DwarfFrameBase::Register: { if (Register::isPhysicalRegister(FrameBase.Location.Reg)) { MachineLocation Location(FrameBase.Location.Reg); addAddress(*SPDie, dwarf::DW_AT_frame_base, Location); } break; } case TargetFrameLowering::DwarfFrameBase::CFA: { DIELoc *Loc = new (DIEValueAllocator) DIELoc; addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_call_frame_cfa); if (FrameBase.Location.Offset != 0) { addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_consts); addSInt(*Loc, dwarf::DW_FORM_sdata, FrameBase.Location.Offset); addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_plus); } addBlock(*SPDie, dwarf::DW_AT_frame_base, Loc); break; } case TargetFrameLowering::DwarfFrameBase::WasmFrameBase: { // FIXME: duplicated from Target/WebAssembly/WebAssembly.h const unsigned TI_GLOBAL_RELOC = 3; if (FrameBase.Location.WasmLoc.Kind == TI_GLOBAL_RELOC) { // These need to be relocatable. DIELoc *Loc = new (DIEValueAllocator) DIELoc; assert(FrameBase.Location.WasmLoc.Index == 0); // Only SP so far. // For now, since we only ever use index 0, this should work as-is. addWasmRelocBaseGlobal(Loc, "__stack_pointer", FrameBase.Location.WasmLoc.Index); addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_stack_value); addBlock(*SPDie, dwarf::DW_AT_frame_base, Loc); } else { DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); DIExpressionCursor Cursor({}); DwarfExpr.addWasmLocation(FrameBase.Location.WasmLoc.Kind, FrameBase.Location.WasmLoc.Index); DwarfExpr.addExpression(std::move(Cursor)); addBlock(*SPDie, dwarf::DW_AT_frame_base, DwarfExpr.finalize()); } break; } } } // Add name to the name table, we do this here because we're guaranteed // to have concrete versions of our DW_TAG_subprogram nodes. DD->addSubprogramNames(*this, CUNode->getNameTableKind(), SP, *SPDie); return *SPDie; } // Construct a DIE for this scope. void DwarfCompileUnit::constructScopeDIE(LexicalScope *Scope, DIE &ParentScopeDIE) { if (!Scope || !Scope->getScopeNode()) return; auto *DS = Scope->getScopeNode(); assert((Scope->getInlinedAt() || !isa(DS)) && "Only handle inlined subprograms here, use " "constructSubprogramScopeDIE for non-inlined " "subprograms"); // Emit inlined subprograms. if (Scope->getParent() && isa(DS)) { DIE *ScopeDIE = constructInlinedScopeDIE(Scope, ParentScopeDIE); assert(ScopeDIE && "Scope DIE should not be null."); createAndAddScopeChildren(Scope, *ScopeDIE); return; } // Early exit when we know the scope DIE is going to be null. if (DD->isLexicalScopeDIENull(Scope)) return; // Emit lexical blocks. DIE *ScopeDIE = constructLexicalScopeDIE(Scope); assert(ScopeDIE && "Scope DIE should not be null."); ParentScopeDIE.addChild(ScopeDIE); createAndAddScopeChildren(Scope, *ScopeDIE); } void DwarfCompileUnit::addScopeRangeList(DIE &ScopeDIE, SmallVector Range) { HasRangeLists = true; // Add the range list to the set of ranges to be emitted. auto IndexAndList = (DD->getDwarfVersion() < 5 && Skeleton ? Skeleton->DU : DU) ->addRange(*(Skeleton ? Skeleton : this), std::move(Range)); uint32_t Index = IndexAndList.first; auto &List = *IndexAndList.second; // Under fission, ranges are specified by constant offsets relative to the // CU's DW_AT_GNU_ranges_base. // FIXME: For DWARF v5, do not generate the DW_AT_ranges attribute under // fission until we support the forms using the .debug_addr section // (DW_RLE_startx_endx etc.). if (DD->getDwarfVersion() >= 5) addUInt(ScopeDIE, dwarf::DW_AT_ranges, dwarf::DW_FORM_rnglistx, Index); else { const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); const MCSymbol *RangeSectionSym = TLOF.getDwarfRangesSection()->getBeginSymbol(); if (isDwoUnit()) addSectionDelta(ScopeDIE, dwarf::DW_AT_ranges, List.Label, RangeSectionSym); else addSectionLabel(ScopeDIE, dwarf::DW_AT_ranges, List.Label, RangeSectionSym); } } void DwarfCompileUnit::attachRangesOrLowHighPC( DIE &Die, SmallVector Ranges) { assert(!Ranges.empty()); if (!DD->useRangesSection() || (Ranges.size() == 1 && (!DD->alwaysUseRanges(*this) || DD->getSectionLabel(&Ranges.front().Begin->getSection()) == Ranges.front().Begin))) { const RangeSpan &Front = Ranges.front(); const RangeSpan &Back = Ranges.back(); attachLowHighPC(Die, Front.Begin, Back.End); } else addScopeRangeList(Die, std::move(Ranges)); } void DwarfCompileUnit::attachRangesOrLowHighPC( DIE &Die, const SmallVectorImpl &Ranges) { SmallVector List; List.reserve(Ranges.size()); for (const InsnRange &R : Ranges) { auto *BeginLabel = DD->getLabelBeforeInsn(R.first); auto *EndLabel = DD->getLabelAfterInsn(R.second); const auto *BeginMBB = R.first->getParent(); const auto *EndMBB = R.second->getParent(); const auto *MBB = BeginMBB; // Basic block sections allows basic block subsets to be placed in unique // sections. For each section, the begin and end label must be added to the // list. If there is more than one range, debug ranges must be used. // Otherwise, low/high PC can be used. // FIXME: Debug Info Emission depends on block order and this assumes that // the order of blocks will be frozen beyond this point. do { if (MBB->sameSection(EndMBB) || MBB->isEndSection()) { auto MBBSectionRange = Asm->MBBSectionRanges[MBB->getSectionIDNum()]; List.push_back( {MBB->sameSection(BeginMBB) ? BeginLabel : MBBSectionRange.BeginLabel, MBB->sameSection(EndMBB) ? EndLabel : MBBSectionRange.EndLabel}); } if (MBB->sameSection(EndMBB)) break; MBB = MBB->getNextNode(); } while (true); } attachRangesOrLowHighPC(Die, std::move(List)); } DIE *DwarfCompileUnit::constructInlinedScopeDIE(LexicalScope *Scope, DIE &ParentScopeDIE) { assert(Scope->getScopeNode()); auto *DS = Scope->getScopeNode(); auto *InlinedSP = getDISubprogram(DS); // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram // was inlined from another compile unit. DIE *OriginDIE = getAbstractScopeDIEs()[InlinedSP]; assert(OriginDIE && "Unable to find original DIE for an inlined subprogram."); auto ScopeDIE = DIE::get(DIEValueAllocator, dwarf::DW_TAG_inlined_subroutine); ParentScopeDIE.addChild(ScopeDIE); addDIEEntry(*ScopeDIE, dwarf::DW_AT_abstract_origin, *OriginDIE); attachRangesOrLowHighPC(*ScopeDIE, Scope->getRanges()); // Add the call site information to the DIE. const DILocation *IA = Scope->getInlinedAt(); addUInt(*ScopeDIE, dwarf::DW_AT_call_file, std::nullopt, getOrCreateSourceID(IA->getFile())); addUInt(*ScopeDIE, dwarf::DW_AT_call_line, std::nullopt, IA->getLine()); if (IA->getColumn()) addUInt(*ScopeDIE, dwarf::DW_AT_call_column, std::nullopt, IA->getColumn()); if (IA->getDiscriminator() && DD->getDwarfVersion() >= 4) addUInt(*ScopeDIE, dwarf::DW_AT_GNU_discriminator, std::nullopt, IA->getDiscriminator()); // Add name to the name table, we do this here because we're guaranteed // to have concrete versions of our DW_TAG_inlined_subprogram nodes. DD->addSubprogramNames(*this, CUNode->getNameTableKind(), InlinedSP, *ScopeDIE); return ScopeDIE; } // Construct new DW_TAG_lexical_block for this scope and attach // DW_AT_low_pc/DW_AT_high_pc labels. DIE *DwarfCompileUnit::constructLexicalScopeDIE(LexicalScope *Scope) { if (DD->isLexicalScopeDIENull(Scope)) return nullptr; const auto *DS = Scope->getScopeNode(); auto ScopeDIE = DIE::get(DIEValueAllocator, dwarf::DW_TAG_lexical_block); if (Scope->isAbstractScope()) { assert(!getAbstractScopeDIEs().count(DS) && "Abstract DIE for this scope exists!"); getAbstractScopeDIEs()[DS] = ScopeDIE; return ScopeDIE; } if (!Scope->getInlinedAt()) { assert(!LexicalBlockDIEs.count(DS) && "Concrete out-of-line DIE for this scope exists!"); LexicalBlockDIEs[DS] = ScopeDIE; } attachRangesOrLowHighPC(*ScopeDIE, Scope->getRanges()); return ScopeDIE; } DIE *DwarfCompileUnit::constructVariableDIE(DbgVariable &DV, bool Abstract) { auto *VariableDie = DIE::get(DIEValueAllocator, DV.getTag()); insertDIE(DV.getVariable(), VariableDie); DV.setDIE(*VariableDie); // Abstract variables don't get common attributes later, so apply them now. if (Abstract) { applyCommonDbgVariableAttributes(DV, *VariableDie); } else { std::visit( [&](const auto &V) { applyConcreteDbgVariableAttributes(V, DV, *VariableDie); }, DV.asVariant()); } return VariableDie; } void DwarfCompileUnit::applyConcreteDbgVariableAttributes( const Loc::Single &Single, const DbgVariable &DV, DIE &VariableDie) { const DbgValueLoc *DVal = &Single.getValueLoc(); if (!DVal->isVariadic()) { const DbgValueLocEntry *Entry = DVal->getLocEntries().begin(); if (Entry->isLocation()) { addVariableAddress(DV, VariableDie, Entry->getLoc()); } else if (Entry->isInt()) { auto *Expr = Single.getExpr(); if (Expr && Expr->getNumElements()) { DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); // If there is an expression, emit raw unsigned bytes. DwarfExpr.addFragmentOffset(Expr); DwarfExpr.addUnsignedConstant(Entry->getInt()); DwarfExpr.addExpression(Expr); addBlock(VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize()); if (DwarfExpr.TagOffset) addUInt(VariableDie, dwarf::DW_AT_LLVM_tag_offset, dwarf::DW_FORM_data1, *DwarfExpr.TagOffset); } else addConstantValue(VariableDie, Entry->getInt(), DV.getType()); } else if (Entry->isConstantFP()) { addConstantFPValue(VariableDie, Entry->getConstantFP()); } else if (Entry->isConstantInt()) { addConstantValue(VariableDie, Entry->getConstantInt(), DV.getType()); } else if (Entry->isTargetIndexLocation()) { DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); const DIBasicType *BT = dyn_cast( static_cast(DV.getVariable()->getType())); DwarfDebug::emitDebugLocValue(*Asm, BT, *DVal, DwarfExpr); addBlock(VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize()); } return; } // If any of the location entries are registers with the value 0, // then the location is undefined. if (any_of(DVal->getLocEntries(), [](const DbgValueLocEntry &Entry) { return Entry.isLocation() && !Entry.getLoc().getReg(); })) return; const DIExpression *Expr = Single.getExpr(); assert(Expr && "Variadic Debug Value must have an Expression."); DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); DwarfExpr.addFragmentOffset(Expr); DIExpressionCursor Cursor(Expr); const TargetRegisterInfo &TRI = *Asm->MF->getSubtarget().getRegisterInfo(); auto AddEntry = [&](const DbgValueLocEntry &Entry, DIExpressionCursor &Cursor) { if (Entry.isLocation()) { if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Entry.getLoc().getReg())) return false; } else if (Entry.isInt()) { // If there is an expression, emit raw unsigned bytes. DwarfExpr.addUnsignedConstant(Entry.getInt()); } else if (Entry.isConstantFP()) { // DwarfExpression does not support arguments wider than 64 bits // (see PR52584). // TODO: Consider chunking expressions containing overly wide // arguments into separate pointer-sized fragment expressions. APInt RawBytes = Entry.getConstantFP()->getValueAPF().bitcastToAPInt(); if (RawBytes.getBitWidth() > 64) return false; DwarfExpr.addUnsignedConstant(RawBytes.getZExtValue()); } else if (Entry.isConstantInt()) { APInt RawBytes = Entry.getConstantInt()->getValue(); if (RawBytes.getBitWidth() > 64) return false; DwarfExpr.addUnsignedConstant(RawBytes.getZExtValue()); } else if (Entry.isTargetIndexLocation()) { TargetIndexLocation Loc = Entry.getTargetIndexLocation(); // TODO TargetIndexLocation is a target-independent. Currently // only the WebAssembly-specific encoding is supported. assert(Asm->TM.getTargetTriple().isWasm()); DwarfExpr.addWasmLocation(Loc.Index, static_cast(Loc.Offset)); } else { llvm_unreachable("Unsupported Entry type."); } return true; }; if (!DwarfExpr.addExpression( std::move(Cursor), [&](unsigned Idx, DIExpressionCursor &Cursor) -> bool { return AddEntry(DVal->getLocEntries()[Idx], Cursor); })) return; // Now attach the location information to the DIE. addBlock(VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize()); if (DwarfExpr.TagOffset) addUInt(VariableDie, dwarf::DW_AT_LLVM_tag_offset, dwarf::DW_FORM_data1, *DwarfExpr.TagOffset); } void DwarfCompileUnit::applyConcreteDbgVariableAttributes( const Loc::Multi &Multi, const DbgVariable &DV, DIE &VariableDie) { addLocationList(VariableDie, dwarf::DW_AT_location, Multi.getDebugLocListIndex()); auto TagOffset = Multi.getDebugLocListTagOffset(); if (TagOffset) addUInt(VariableDie, dwarf::DW_AT_LLVM_tag_offset, dwarf::DW_FORM_data1, *TagOffset); } void DwarfCompileUnit::applyConcreteDbgVariableAttributes(const Loc::MMI &MMI, const DbgVariable &DV, DIE &VariableDie) { std::optional NVPTXAddressSpace; DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); for (const auto &Fragment : MMI.getFrameIndexExprs()) { Register FrameReg; const DIExpression *Expr = Fragment.Expr; const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering(); StackOffset Offset = TFI->getFrameIndexReference(*Asm->MF, Fragment.FI, FrameReg); DwarfExpr.addFragmentOffset(Expr); auto *TRI = Asm->MF->getSubtarget().getRegisterInfo(); SmallVector Ops; TRI->getOffsetOpcodes(Offset, Ops); // According to // https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf // cuda-gdb requires DW_AT_address_class for all variables to be // able to correctly interpret address space of the variable // address. Decode DW_OP_constu DW_OP_swap // DW_OP_xderef sequence for the NVPTX + gdb target. unsigned LocalNVPTXAddressSpace; if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) { const DIExpression *NewExpr = DIExpression::extractAddressClass(Expr, LocalNVPTXAddressSpace); if (NewExpr != Expr) { Expr = NewExpr; NVPTXAddressSpace = LocalNVPTXAddressSpace; } } if (Expr) Ops.append(Expr->elements_begin(), Expr->elements_end()); DIExpressionCursor Cursor(Ops); DwarfExpr.setMemoryLocationKind(); if (const MCSymbol *FrameSymbol = Asm->getFunctionFrameSymbol()) addOpAddress(*Loc, FrameSymbol); else DwarfExpr.addMachineRegExpression( *Asm->MF->getSubtarget().getRegisterInfo(), Cursor, FrameReg); DwarfExpr.addExpression(std::move(Cursor)); } if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) { // According to // https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf // cuda-gdb requires DW_AT_address_class for all variables to be // able to correctly interpret address space of the variable // address. const unsigned NVPTX_ADDR_local_space = 6; addUInt(VariableDie, dwarf::DW_AT_address_class, dwarf::DW_FORM_data1, NVPTXAddressSpace.value_or(NVPTX_ADDR_local_space)); } addBlock(VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize()); if (DwarfExpr.TagOffset) addUInt(VariableDie, dwarf::DW_AT_LLVM_tag_offset, dwarf::DW_FORM_data1, *DwarfExpr.TagOffset); } void DwarfCompileUnit::applyConcreteDbgVariableAttributes( const Loc::EntryValue &EntryValue, const DbgVariable &DV, DIE &VariableDie) { DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); // Emit each expression as: EntryValue(Register) . for (auto [Register, Expr] : EntryValue.EntryValues) { DwarfExpr.addFragmentOffset(&Expr); DIExpressionCursor Cursor(Expr.getElements()); DwarfExpr.beginEntryValueExpression(Cursor); DwarfExpr.addMachineRegExpression( *Asm->MF->getSubtarget().getRegisterInfo(), Cursor, Register); DwarfExpr.addExpression(std::move(Cursor)); } addBlock(VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize()); } void DwarfCompileUnit::applyConcreteDbgVariableAttributes( const std::monostate &, const DbgVariable &DV, DIE &VariableDie) {} DIE *DwarfCompileUnit::constructVariableDIE(DbgVariable &DV, const LexicalScope &Scope, DIE *&ObjectPointer) { auto Var = constructVariableDIE(DV, Scope.isAbstractScope()); if (DV.isObjectPointer()) ObjectPointer = Var; return Var; } DIE *DwarfCompileUnit::constructLabelDIE(DbgLabel &DL, const LexicalScope &Scope) { auto LabelDie = DIE::get(DIEValueAllocator, DL.getTag()); insertDIE(DL.getLabel(), LabelDie); DL.setDIE(*LabelDie); if (Scope.isAbstractScope()) applyLabelAttributes(DL, *LabelDie); return LabelDie; } /// Return all DIVariables that appear in count: expressions. static SmallVector dependencies(DbgVariable *Var) { SmallVector Result; auto *Array = dyn_cast(Var->getType()); if (!Array || Array->getTag() != dwarf::DW_TAG_array_type) return Result; if (auto *DLVar = Array->getDataLocation()) Result.push_back(DLVar); if (auto *AsVar = Array->getAssociated()) Result.push_back(AsVar); if (auto *AlVar = Array->getAllocated()) Result.push_back(AlVar); for (auto *El : Array->getElements()) { if (auto *Subrange = dyn_cast(El)) { if (auto Count = Subrange->getCount()) if (auto *Dependency = dyn_cast_if_present(Count)) Result.push_back(Dependency); if (auto LB = Subrange->getLowerBound()) if (auto *Dependency = dyn_cast_if_present(LB)) Result.push_back(Dependency); if (auto UB = Subrange->getUpperBound()) if (auto *Dependency = dyn_cast_if_present(UB)) Result.push_back(Dependency); if (auto ST = Subrange->getStride()) if (auto *Dependency = dyn_cast_if_present(ST)) Result.push_back(Dependency); } else if (auto *GenericSubrange = dyn_cast(El)) { if (auto Count = GenericSubrange->getCount()) if (auto *Dependency = dyn_cast_if_present(Count)) Result.push_back(Dependency); if (auto LB = GenericSubrange->getLowerBound()) if (auto *Dependency = dyn_cast_if_present(LB)) Result.push_back(Dependency); if (auto UB = GenericSubrange->getUpperBound()) if (auto *Dependency = dyn_cast_if_present(UB)) Result.push_back(Dependency); if (auto ST = GenericSubrange->getStride()) if (auto *Dependency = dyn_cast_if_present(ST)) Result.push_back(Dependency); } } return Result; } /// Sort local variables so that variables appearing inside of helper /// expressions come first. static SmallVector sortLocalVars(SmallVectorImpl &Input) { SmallVector Result; SmallVector, 8> WorkList; // Map back from a DIVariable to its containing DbgVariable. SmallDenseMap DbgVar; // Set of DbgVariables in Result. SmallDenseSet Visited; // For cycle detection. SmallDenseSet Visiting; // Initialize the worklist and the DIVariable lookup table. for (auto *Var : reverse(Input)) { DbgVar.insert({Var->getVariable(), Var}); WorkList.push_back({Var, 0}); } // Perform a stable topological sort by doing a DFS. while (!WorkList.empty()) { auto Item = WorkList.back(); DbgVariable *Var = Item.getPointer(); bool visitedAllDependencies = Item.getInt(); WorkList.pop_back(); assert(Var); // Already handled. if (Visited.count(Var)) continue; // Add to Result if all dependencies are visited. if (visitedAllDependencies) { Visited.insert(Var); Result.push_back(Var); continue; } // Detect cycles. auto Res = Visiting.insert(Var); if (!Res.second) { assert(false && "dependency cycle in local variables"); return Result; } // Push dependencies and this node onto the worklist, so that this node is // visited again after all of its dependencies are handled. WorkList.push_back({Var, 1}); for (const auto *Dependency : dependencies(Var)) { // Don't add dependency if it is in a different lexical scope or a global. if (const auto *Dep = dyn_cast(Dependency)) if (DbgVariable *Var = DbgVar.lookup(Dep)) WorkList.push_back({Var, 0}); } } return Result; } DIE &DwarfCompileUnit::constructSubprogramScopeDIE(const DISubprogram *Sub, LexicalScope *Scope) { DIE &ScopeDIE = updateSubprogramScopeDIE(Sub); if (Scope) { assert(!Scope->getInlinedAt()); assert(!Scope->isAbstractScope()); // Collect lexical scope children first. // ObjectPointer might be a local (non-argument) local variable if it's a // block's synthetic this pointer. if (DIE *ObjectPointer = createAndAddScopeChildren(Scope, ScopeDIE)) addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer, *ObjectPointer); } // If this is a variadic function, add an unspecified parameter. DITypeRefArray FnArgs = Sub->getType()->getTypeArray(); // If we have a single element of null, it is a function that returns void. // If we have more than one elements and the last one is null, it is a // variadic function. if (FnArgs.size() > 1 && !FnArgs[FnArgs.size() - 1] && !includeMinimalInlineScopes()) ScopeDIE.addChild( DIE::get(DIEValueAllocator, dwarf::DW_TAG_unspecified_parameters)); return ScopeDIE; } DIE *DwarfCompileUnit::createAndAddScopeChildren(LexicalScope *Scope, DIE &ScopeDIE) { DIE *ObjectPointer = nullptr; // Emit function arguments (order is significant). auto Vars = DU->getScopeVariables().lookup(Scope); for (auto &DV : Vars.Args) ScopeDIE.addChild(constructVariableDIE(*DV.second, *Scope, ObjectPointer)); // Emit local variables. auto Locals = sortLocalVars(Vars.Locals); for (DbgVariable *DV : Locals) ScopeDIE.addChild(constructVariableDIE(*DV, *Scope, ObjectPointer)); // Emit labels. for (DbgLabel *DL : DU->getScopeLabels().lookup(Scope)) ScopeDIE.addChild(constructLabelDIE(*DL, *Scope)); // Track other local entities (skipped in gmlt-like data). // This creates mapping between CU and a set of local declarations that // should be emitted for subprograms in this CU. if (!includeMinimalInlineScopes() && !Scope->getInlinedAt()) { auto &LocalDecls = DD->getLocalDeclsForScope(Scope->getScopeNode()); DeferredLocalDecls.insert(LocalDecls.begin(), LocalDecls.end()); } // Emit inner lexical scopes. auto skipLexicalScope = [this](LexicalScope *S) -> bool { if (isa(S->getScopeNode())) return false; auto Vars = DU->getScopeVariables().lookup(S); if (!Vars.Args.empty() || !Vars.Locals.empty()) return false; return includeMinimalInlineScopes() || DD->getLocalDeclsForScope(S->getScopeNode()).empty(); }; for (LexicalScope *LS : Scope->getChildren()) { // If the lexical block doesn't have non-scope children, skip // its emission and put its children directly to the parent scope. if (skipLexicalScope(LS)) createAndAddScopeChildren(LS, ScopeDIE); else constructScopeDIE(LS, ScopeDIE); } return ObjectPointer; } void DwarfCompileUnit::constructAbstractSubprogramScopeDIE( LexicalScope *Scope) { auto *SP = cast(Scope->getScopeNode()); if (getAbstractScopeDIEs().count(SP)) return; DIE *ContextDIE; DwarfCompileUnit *ContextCU = this; if (includeMinimalInlineScopes()) ContextDIE = &getUnitDie(); // Some of this is duplicated from DwarfUnit::getOrCreateSubprogramDIE, with // the important distinction that the debug node is not associated with the // DIE (since the debug node will be associated with the concrete DIE, if // any). It could be refactored to some common utility function. else if (auto *SPDecl = SP->getDeclaration()) { ContextDIE = &getUnitDie(); getOrCreateSubprogramDIE(SPDecl); } else { ContextDIE = getOrCreateContextDIE(SP->getScope()); // The scope may be shared with a subprogram that has already been // constructed in another CU, in which case we need to construct this // subprogram in the same CU. ContextCU = DD->lookupCU(ContextDIE->getUnitDie()); } // Passing null as the associated node because the abstract definition // shouldn't be found by lookup. DIE &AbsDef = ContextCU->createAndAddDIE(dwarf::DW_TAG_subprogram, *ContextDIE, nullptr); // Store the DIE before creating children. ContextCU->getAbstractScopeDIEs()[SP] = &AbsDef; ContextCU->applySubprogramAttributesToDefinition(SP, AbsDef); ContextCU->addSInt(AbsDef, dwarf::DW_AT_inline, DD->getDwarfVersion() <= 4 ? std::optional() : dwarf::DW_FORM_implicit_const, dwarf::DW_INL_inlined); if (DIE *ObjectPointer = ContextCU->createAndAddScopeChildren(Scope, AbsDef)) ContextCU->addDIEEntry(AbsDef, dwarf::DW_AT_object_pointer, *ObjectPointer); } bool DwarfCompileUnit::useGNUAnalogForDwarf5Feature() const { return DD->getDwarfVersion() == 4 && !DD->tuneForLLDB(); } dwarf::Tag DwarfCompileUnit::getDwarf5OrGNUTag(dwarf::Tag Tag) const { if (!useGNUAnalogForDwarf5Feature()) return Tag; switch (Tag) { case dwarf::DW_TAG_call_site: return dwarf::DW_TAG_GNU_call_site; case dwarf::DW_TAG_call_site_parameter: return dwarf::DW_TAG_GNU_call_site_parameter; default: llvm_unreachable("DWARF5 tag with no GNU analog"); } } dwarf::Attribute DwarfCompileUnit::getDwarf5OrGNUAttr(dwarf::Attribute Attr) const { if (!useGNUAnalogForDwarf5Feature()) return Attr; switch (Attr) { case dwarf::DW_AT_call_all_calls: return dwarf::DW_AT_GNU_all_call_sites; case dwarf::DW_AT_call_target: return dwarf::DW_AT_GNU_call_site_target; case dwarf::DW_AT_call_origin: return dwarf::DW_AT_abstract_origin; case dwarf::DW_AT_call_return_pc: return dwarf::DW_AT_low_pc; case dwarf::DW_AT_call_value: return dwarf::DW_AT_GNU_call_site_value; case dwarf::DW_AT_call_tail_call: return dwarf::DW_AT_GNU_tail_call; default: llvm_unreachable("DWARF5 attribute with no GNU analog"); } } dwarf::LocationAtom DwarfCompileUnit::getDwarf5OrGNULocationAtom(dwarf::LocationAtom Loc) const { if (!useGNUAnalogForDwarf5Feature()) return Loc; switch (Loc) { case dwarf::DW_OP_entry_value: return dwarf::DW_OP_GNU_entry_value; default: llvm_unreachable("DWARF5 location atom with no GNU analog"); } } DIE &DwarfCompileUnit::constructCallSiteEntryDIE(DIE &ScopeDIE, const DISubprogram *CalleeSP, bool IsTail, const MCSymbol *PCAddr, const MCSymbol *CallAddr, unsigned CallReg) { // Insert a call site entry DIE within ScopeDIE. DIE &CallSiteDIE = createAndAddDIE(getDwarf5OrGNUTag(dwarf::DW_TAG_call_site), ScopeDIE, nullptr); if (CallReg) { // Indirect call. addAddress(CallSiteDIE, getDwarf5OrGNUAttr(dwarf::DW_AT_call_target), MachineLocation(CallReg)); } else { DIE *CalleeDIE = getOrCreateSubprogramDIE(CalleeSP); assert(CalleeDIE && "Could not create DIE for call site entry origin"); addDIEEntry(CallSiteDIE, getDwarf5OrGNUAttr(dwarf::DW_AT_call_origin), *CalleeDIE); } if (IsTail) { // Attach DW_AT_call_tail_call to tail calls for standards compliance. addFlag(CallSiteDIE, getDwarf5OrGNUAttr(dwarf::DW_AT_call_tail_call)); // Attach the address of the branch instruction to allow the debugger to // show where the tail call occurred. This attribute has no GNU analog. // // GDB works backwards from non-standard usage of DW_AT_low_pc (in DWARF4 // mode -- equivalently, in DWARF5 mode, DW_AT_call_return_pc) at tail-call // site entries to figure out the PC of tail-calling branch instructions. // This means it doesn't need the compiler to emit DW_AT_call_pc, so we // don't emit it here. // // There's no need to tie non-GDB debuggers to this non-standardness, as it // adds unnecessary complexity to the debugger. For non-GDB debuggers, emit // the standard DW_AT_call_pc info. if (!useGNUAnalogForDwarf5Feature()) addLabelAddress(CallSiteDIE, dwarf::DW_AT_call_pc, CallAddr); } // Attach the return PC to allow the debugger to disambiguate call paths // from one function to another. // // The return PC is only really needed when the call /isn't/ a tail call, but // GDB expects it in DWARF4 mode, even for tail calls (see the comment above // the DW_AT_call_pc emission logic for an explanation). if (!IsTail || useGNUAnalogForDwarf5Feature()) { assert(PCAddr && "Missing return PC information for a call"); addLabelAddress(CallSiteDIE, getDwarf5OrGNUAttr(dwarf::DW_AT_call_return_pc), PCAddr); } return CallSiteDIE; } void DwarfCompileUnit::constructCallSiteParmEntryDIEs( DIE &CallSiteDIE, SmallVector &Params) { for (const auto &Param : Params) { unsigned Register = Param.getRegister(); auto CallSiteDieParam = DIE::get(DIEValueAllocator, getDwarf5OrGNUTag(dwarf::DW_TAG_call_site_parameter)); insertDIE(CallSiteDieParam); addAddress(*CallSiteDieParam, dwarf::DW_AT_location, MachineLocation(Register)); DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); DwarfExpr.setCallSiteParamValueFlag(); DwarfDebug::emitDebugLocValue(*Asm, nullptr, Param.getValue(), DwarfExpr); addBlock(*CallSiteDieParam, getDwarf5OrGNUAttr(dwarf::DW_AT_call_value), DwarfExpr.finalize()); CallSiteDIE.addChild(CallSiteDieParam); } } DIE *DwarfCompileUnit::constructImportedEntityDIE( const DIImportedEntity *Module) { DIE *IMDie = DIE::get(DIEValueAllocator, (dwarf::Tag)Module->getTag()); insertDIE(Module, IMDie); DIE *EntityDie; auto *Entity = Module->getEntity(); if (auto *NS = dyn_cast(Entity)) EntityDie = getOrCreateNameSpace(NS); else if (auto *M = dyn_cast(Entity)) EntityDie = getOrCreateModule(M); else if (auto *SP = dyn_cast(Entity)) { // If there is an abstract subprogram, refer to it. Note that this assumes // that all the abstract subprograms have been already created (which is // correct until imported entities get emitted in DwarfDebug::endModule()). if (auto *AbsSPDie = getAbstractScopeDIEs().lookup(SP)) EntityDie = AbsSPDie; else EntityDie = getOrCreateSubprogramDIE(SP); } else if (auto *T = dyn_cast(Entity)) EntityDie = getOrCreateTypeDIE(T); else if (auto *GV = dyn_cast(Entity)) EntityDie = getOrCreateGlobalVariableDIE(GV, {}); else if (auto *IE = dyn_cast(Entity)) EntityDie = getOrCreateImportedEntityDIE(IE); else EntityDie = getDIE(Entity); assert(EntityDie); addSourceLine(*IMDie, Module->getLine(), Module->getFile()); addDIEEntry(*IMDie, dwarf::DW_AT_import, *EntityDie); StringRef Name = Module->getName(); if (!Name.empty()) { addString(*IMDie, dwarf::DW_AT_name, Name); // FIXME: if consumers ever start caring about handling // unnamed import declarations such as `using ::nullptr_t` // or `using namespace std::ranges`, we could add the // import declaration into the accelerator table with the // name being the one of the entity being imported. DD->addAccelNamespace(*this, CUNode->getNameTableKind(), Name, *IMDie); } // This is for imported module with renamed entities (such as variables and // subprograms). DINodeArray Elements = Module->getElements(); for (const auto *Element : Elements) { if (!Element) continue; IMDie->addChild( constructImportedEntityDIE(cast(Element))); } return IMDie; } DIE *DwarfCompileUnit::getOrCreateImportedEntityDIE( const DIImportedEntity *IE) { // Check for pre-existence. if (DIE *Die = getDIE(IE)) return Die; DIE *ContextDIE = getOrCreateContextDIE(IE->getScope()); assert(ContextDIE && "Empty scope for the imported entity!"); DIE *IMDie = constructImportedEntityDIE(IE); ContextDIE->addChild(IMDie); return IMDie; } void DwarfCompileUnit::finishSubprogramDefinition(const DISubprogram *SP) { DIE *D = getDIE(SP); if (DIE *AbsSPDIE = getAbstractScopeDIEs().lookup(SP)) { if (D) // If this subprogram has an abstract definition, reference that addDIEEntry(*D, dwarf::DW_AT_abstract_origin, *AbsSPDIE); } else { assert(D || includeMinimalInlineScopes()); if (D) // And attach the attributes applySubprogramAttributesToDefinition(SP, *D); } } void DwarfCompileUnit::finishEntityDefinition(const DbgEntity *Entity) { DbgEntity *AbsEntity = getExistingAbstractEntity(Entity->getEntity()); auto *Die = Entity->getDIE(); /// Label may be used to generate DW_AT_low_pc, so put it outside /// if/else block. const DbgLabel *Label = nullptr; if (AbsEntity && AbsEntity->getDIE()) { addDIEEntry(*Die, dwarf::DW_AT_abstract_origin, *AbsEntity->getDIE()); Label = dyn_cast(Entity); } else { if (const DbgVariable *Var = dyn_cast(Entity)) applyCommonDbgVariableAttributes(*Var, *Die); else if ((Label = dyn_cast(Entity))) applyLabelAttributes(*Label, *Die); else llvm_unreachable("DbgEntity must be DbgVariable or DbgLabel."); } if (!Label) return; const auto *Sym = Label->getSymbol(); if (!Sym) return; addLabelAddress(*Die, dwarf::DW_AT_low_pc, Sym); // A TAG_label with a name and an AT_low_pc must be placed in debug_names. if (StringRef Name = Label->getName(); !Name.empty()) getDwarfDebug().addAccelName(*this, CUNode->getNameTableKind(), Name, *Die); } DbgEntity *DwarfCompileUnit::getExistingAbstractEntity(const DINode *Node) { auto &AbstractEntities = getAbstractEntities(); auto I = AbstractEntities.find(Node); if (I != AbstractEntities.end()) return I->second.get(); return nullptr; } void DwarfCompileUnit::createAbstractEntity(const DINode *Node, LexicalScope *Scope) { assert(Scope && Scope->isAbstractScope()); auto &Entity = getAbstractEntities()[Node]; if (isa(Node)) { Entity = std::make_unique(cast(Node), nullptr /* IA */); DU->addScopeVariable(Scope, cast(Entity.get())); } else if (isa(Node)) { Entity = std::make_unique( cast(Node), nullptr /* IA */); DU->addScopeLabel(Scope, cast(Entity.get())); } } void DwarfCompileUnit::emitHeader(bool UseOffsets) { // Don't bother labeling the .dwo unit, as its offset isn't used. if (!Skeleton && !DD->useSectionsAsReferences()) { LabelBegin = Asm->createTempSymbol("cu_begin"); Asm->OutStreamer->emitLabel(LabelBegin); } dwarf::UnitType UT = Skeleton ? dwarf::DW_UT_split_compile : DD->useSplitDwarf() ? dwarf::DW_UT_skeleton : dwarf::DW_UT_compile; DwarfUnit::emitCommonHeader(UseOffsets, UT); if (DD->getDwarfVersion() >= 5 && UT != dwarf::DW_UT_compile) Asm->emitInt64(getDWOId()); } bool DwarfCompileUnit::hasDwarfPubSections() const { switch (CUNode->getNameTableKind()) { case DICompileUnit::DebugNameTableKind::None: return false; // Opting in to GNU Pubnames/types overrides the default to ensure these are // generated for things like Gold's gdb_index generation. case DICompileUnit::DebugNameTableKind::GNU: return true; case DICompileUnit::DebugNameTableKind::Apple: return false; case DICompileUnit::DebugNameTableKind::Default: return DD->tuneForGDB() && !includeMinimalInlineScopes() && !CUNode->isDebugDirectivesOnly() && DD->getAccelTableKind() != AccelTableKind::Apple && DD->getDwarfVersion() < 5; } llvm_unreachable("Unhandled DICompileUnit::DebugNameTableKind enum"); } /// addGlobalName - Add a new global name to the compile unit. void DwarfCompileUnit::addGlobalName(StringRef Name, const DIE &Die, const DIScope *Context) { if (!hasDwarfPubSections()) return; std::string FullName = getParentContextString(Context) + Name.str(); GlobalNames[FullName] = &Die; } void DwarfCompileUnit::addGlobalNameForTypeUnit(StringRef Name, const DIScope *Context) { if (!hasDwarfPubSections()) return; std::string FullName = getParentContextString(Context) + Name.str(); // Insert, allowing the entry to remain as-is if it's already present // This way the CU-level type DIE is preferred over the "can't describe this // type as a unit offset because it's not really in the CU at all, it's only // in a type unit" GlobalNames.insert(std::make_pair(std::move(FullName), &getUnitDie())); } /// Add a new global type to the unit. void DwarfCompileUnit::addGlobalType(const DIType *Ty, const DIE &Die, const DIScope *Context) { if (!hasDwarfPubSections()) return; std::string FullName = getParentContextString(Context) + Ty->getName().str(); GlobalTypes[FullName] = &Die; } void DwarfCompileUnit::addGlobalTypeUnitType(const DIType *Ty, const DIScope *Context) { if (!hasDwarfPubSections()) return; std::string FullName = getParentContextString(Context) + Ty->getName().str(); // Insert, allowing the entry to remain as-is if it's already present // This way the CU-level type DIE is preferred over the "can't describe this // type as a unit offset because it's not really in the CU at all, it's only // in a type unit" GlobalTypes.insert(std::make_pair(std::move(FullName), &getUnitDie())); } void DwarfCompileUnit::addVariableAddress(const DbgVariable &DV, DIE &Die, MachineLocation Location) { auto *Single = std::get_if(&DV); if (Single && Single->getExpr()) addComplexAddress(Single->getExpr(), Die, dwarf::DW_AT_location, Location); else addAddress(Die, dwarf::DW_AT_location, Location); } /// Add an address attribute to a die based on the location provided. void DwarfCompileUnit::addAddress(DIE &Die, dwarf::Attribute Attribute, const MachineLocation &Location) { DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); if (Location.isIndirect()) DwarfExpr.setMemoryLocationKind(); DIExpressionCursor Cursor({}); const TargetRegisterInfo &TRI = *Asm->MF->getSubtarget().getRegisterInfo(); if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) return; DwarfExpr.addExpression(std::move(Cursor)); // Now attach the location information to the DIE. addBlock(Die, Attribute, DwarfExpr.finalize()); if (DwarfExpr.TagOffset) addUInt(Die, dwarf::DW_AT_LLVM_tag_offset, dwarf::DW_FORM_data1, *DwarfExpr.TagOffset); } /// Start with the address based on the location provided, and generate the /// DWARF information necessary to find the actual variable given the extra /// address information encoded in the DbgVariable, starting from the starting /// location. Add the DWARF information to the die. void DwarfCompileUnit::addComplexAddress(const DIExpression *DIExpr, DIE &Die, dwarf::Attribute Attribute, const MachineLocation &Location) { DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); DwarfExpr.addFragmentOffset(DIExpr); DwarfExpr.setLocation(Location, DIExpr); DIExpressionCursor Cursor(DIExpr); if (DIExpr->isEntryValue()) DwarfExpr.beginEntryValueExpression(Cursor); const TargetRegisterInfo &TRI = *Asm->MF->getSubtarget().getRegisterInfo(); if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) return; DwarfExpr.addExpression(std::move(Cursor)); // Now attach the location information to the DIE. addBlock(Die, Attribute, DwarfExpr.finalize()); if (DwarfExpr.TagOffset) addUInt(Die, dwarf::DW_AT_LLVM_tag_offset, dwarf::DW_FORM_data1, *DwarfExpr.TagOffset); } /// Add a Dwarf loclistptr attribute data and value. void DwarfCompileUnit::addLocationList(DIE &Die, dwarf::Attribute Attribute, unsigned Index) { dwarf::Form Form = (DD->getDwarfVersion() >= 5) ? dwarf::DW_FORM_loclistx : DD->getDwarfSectionOffsetForm(); addAttribute(Die, Attribute, Form, DIELocList(Index)); } void DwarfCompileUnit::applyCommonDbgVariableAttributes(const DbgVariable &Var, DIE &VariableDie) { StringRef Name = Var.getName(); if (!Name.empty()) addString(VariableDie, dwarf::DW_AT_name, Name); const auto *DIVar = Var.getVariable(); if (DIVar) { if (uint32_t AlignInBytes = DIVar->getAlignInBytes()) addUInt(VariableDie, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata, AlignInBytes); addAnnotation(VariableDie, DIVar->getAnnotations()); } addSourceLine(VariableDie, DIVar); addType(VariableDie, Var.getType()); if (Var.isArtificial()) addFlag(VariableDie, dwarf::DW_AT_artificial); } void DwarfCompileUnit::applyLabelAttributes(const DbgLabel &Label, DIE &LabelDie) { StringRef Name = Label.getName(); if (!Name.empty()) addString(LabelDie, dwarf::DW_AT_name, Name); const auto *DILabel = Label.getLabel(); addSourceLine(LabelDie, DILabel); } /// Add a Dwarf expression attribute data and value. void DwarfCompileUnit::addExpr(DIELoc &Die, dwarf::Form Form, const MCExpr *Expr) { addAttribute(Die, (dwarf::Attribute)0, Form, DIEExpr(Expr)); } void DwarfCompileUnit::applySubprogramAttributesToDefinition( const DISubprogram *SP, DIE &SPDie) { auto *SPDecl = SP->getDeclaration(); auto *Context = SPDecl ? SPDecl->getScope() : SP->getScope(); applySubprogramAttributes(SP, SPDie, includeMinimalInlineScopes()); addGlobalName(SP->getName(), SPDie, Context); } bool DwarfCompileUnit::isDwoUnit() const { return DD->useSplitDwarf() && Skeleton; } void DwarfCompileUnit::finishNonUnitTypeDIE(DIE& D, const DICompositeType *CTy) { constructTypeDIE(D, CTy); } bool DwarfCompileUnit::includeMinimalInlineScopes() const { return getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly || (DD->useSplitDwarf() && !Skeleton); } void DwarfCompileUnit::addAddrTableBase() { const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); MCSymbol *Label = DD->getAddressPool().getLabel(); addSectionLabel(getUnitDie(), DD->getDwarfVersion() >= 5 ? dwarf::DW_AT_addr_base : dwarf::DW_AT_GNU_addr_base, Label, TLOF.getDwarfAddrSection()->getBeginSymbol()); } void DwarfCompileUnit::addBaseTypeRef(DIEValueList &Die, int64_t Idx) { addAttribute(Die, (dwarf::Attribute)0, dwarf::DW_FORM_udata, new (DIEValueAllocator) DIEBaseTypeRef(this, Idx)); } void DwarfCompileUnit::createBaseTypeDIEs() { // Insert the base_type DIEs directly after the CU so that their offsets will // fit in the fixed size ULEB128 used inside the location expressions. // Maintain order by iterating backwards and inserting to the front of CU // child list. for (auto &Btr : reverse(ExprRefedBaseTypes)) { DIE &Die = getUnitDie().addChildFront( DIE::get(DIEValueAllocator, dwarf::DW_TAG_base_type)); SmallString<32> Str; addString(Die, dwarf::DW_AT_name, Twine(dwarf::AttributeEncodingString(Btr.Encoding) + "_" + Twine(Btr.BitSize)).toStringRef(Str)); addUInt(Die, dwarf::DW_AT_encoding, dwarf::DW_FORM_data1, Btr.Encoding); // Round up to smallest number of bytes that contains this number of bits. addUInt(Die, dwarf::DW_AT_byte_size, std::nullopt, divideCeil(Btr.BitSize, 8)); Btr.Die = &Die; } } DIE *DwarfCompileUnit::getLexicalBlockDIE(const DILexicalBlock *LB) { // Assume if there is an abstract tree all the DIEs are already emitted. bool isAbstract = getAbstractScopeDIEs().count(LB->getSubprogram()); if (isAbstract && getAbstractScopeDIEs().count(LB)) return getAbstractScopeDIEs()[LB]; assert(!isAbstract && "Missed lexical block DIE in abstract tree!"); // Return a concrete DIE if it exists or nullptr otherwise. return LexicalBlockDIEs.lookup(LB); } DIE *DwarfCompileUnit::getOrCreateContextDIE(const DIScope *Context) { if (isa_and_nonnull(Context)) { if (auto *LFScope = dyn_cast(Context)) Context = LFScope->getNonLexicalBlockFileScope(); if (auto *LScope = dyn_cast(Context)) return getLexicalBlockDIE(LScope); // Otherwise the context must be a DISubprogram. auto *SPScope = cast(Context); if (getAbstractScopeDIEs().count(SPScope)) return getAbstractScopeDIEs()[SPScope]; } return DwarfUnit::getOrCreateContextDIE(Context); }