//===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Common functionality for different debug information format backends. // LLVM currently supports DWARF and CodeView. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/DebugHandlerBase.h" #include "llvm/ADT/Optional.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Support/CommandLine.h" using namespace llvm; #define DEBUG_TYPE "dwarfdebug" /// If true, we drop variable location ranges which exist entirely outside the /// variable's lexical scope instruction ranges. static cl::opt TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true)); Optional DbgVariableLocation::extractFromMachineInstruction( const MachineInstr &Instruction) { DbgVariableLocation Location; // Variables calculated from multiple locations can't be represented here. if (Instruction.getNumDebugOperands() != 1) return None; if (!Instruction.getDebugOperand(0).isReg()) return None; Location.Register = Instruction.getDebugOperand(0).getReg(); Location.FragmentInfo.reset(); // We only handle expressions generated by DIExpression::appendOffset, // which doesn't require a full stack machine. int64_t Offset = 0; const DIExpression *DIExpr = Instruction.getDebugExpression(); auto Op = DIExpr->expr_op_begin(); // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that // appears exactly once at the start of the expression. if (Instruction.isDebugValueList()) { if (Instruction.getNumDebugOperands() == 1 && Op->getOp() == dwarf::DW_OP_LLVM_arg) ++Op; else return None; } while (Op != DIExpr->expr_op_end()) { switch (Op->getOp()) { case dwarf::DW_OP_constu: { int Value = Op->getArg(0); ++Op; if (Op != DIExpr->expr_op_end()) { switch (Op->getOp()) { case dwarf::DW_OP_minus: Offset -= Value; break; case dwarf::DW_OP_plus: Offset += Value; break; default: continue; } } } break; case dwarf::DW_OP_plus_uconst: Offset += Op->getArg(0); break; case dwarf::DW_OP_LLVM_fragment: Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)}; break; case dwarf::DW_OP_deref: Location.LoadChain.push_back(Offset); Offset = 0; break; default: return None; } ++Op; } // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE // instruction. // FIXME: Replace these with DIExpression. if (Instruction.isIndirectDebugValue()) Location.LoadChain.push_back(Offset); return Location; } DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} void DebugHandlerBase::beginModule(Module *M) { if (M->debug_compile_units().empty()) Asm = nullptr; } // Each LexicalScope has first instruction and last instruction to mark // beginning and end of a scope respectively. Create an inverse map that list // scopes starts (and ends) with an instruction. One instruction may start (or // end) multiple scopes. Ignore scopes that are not reachable. void DebugHandlerBase::identifyScopeMarkers() { SmallVector WorkList; WorkList.push_back(LScopes.getCurrentFunctionScope()); while (!WorkList.empty()) { LexicalScope *S = WorkList.pop_back_val(); const SmallVectorImpl &Children = S->getChildren(); if (!Children.empty()) WorkList.append(Children.begin(), Children.end()); if (S->isAbstractScope()) continue; for (const InsnRange &R : S->getRanges()) { assert(R.first && "InsnRange does not have first instruction!"); assert(R.second && "InsnRange does not have second instruction!"); requestLabelBeforeInsn(R.first); requestLabelAfterInsn(R.second); } } } // Return Label preceding the instruction. MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { MCSymbol *Label = LabelsBeforeInsn.lookup(MI); assert(Label && "Didn't insert label before instruction"); return Label; } // Return Label immediately following the instruction. MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { return LabelsAfterInsn.lookup(MI); } /// If this type is derived from a base type then return base type size. uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) { assert(Ty); const DIDerivedType *DDTy = dyn_cast(Ty); if (!DDTy) return Ty->getSizeInBits(); unsigned Tag = DDTy->getTag(); if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type && Tag != dwarf::DW_TAG_immutable_type) return DDTy->getSizeInBits(); DIType *BaseType = DDTy->getBaseType(); if (!BaseType) return 0; // If this is a derived type, go ahead and get the base type, unless it's a // reference then it's just the size of the field. Pointer types have no need // of this since they're a different type of qualification on the type. if (BaseType->getTag() == dwarf::DW_TAG_reference_type || BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) return Ty->getSizeInBits(); return getBaseTypeSize(BaseType); } bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) { if (isa(Ty)) { // Some transformations (e.g. instcombine) may decide to turn a Fortran // character object into an integer, and later ones (e.g. SROA) may // further inject a constant integer in a llvm.dbg.value call to track // the object's value. Here we trust the transformations are doing the // right thing, and treat the constant as unsigned to preserve that value // (i.e. avoid sign extension). return true; } if (auto *CTy = dyn_cast(Ty)) { if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) { if (!(Ty = CTy->getBaseType())) // FIXME: Enums without a fixed underlying type have unknown signedness // here, leading to incorrectly emitted constants. return false; } else // (Pieces of) aggregate types that get hacked apart by SROA may be // represented by a constant. Encode them as unsigned bytes. return true; } if (auto *DTy = dyn_cast(Ty)) { dwarf::Tag T = (dwarf::Tag)Ty->getTag(); // Encode pointer constants as unsigned bytes. This is used at least for // null pointer constant emission. // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed // here, but accept them for now due to a bug in SROA producing bogus // dbg.values. if (T == dwarf::DW_TAG_pointer_type || T == dwarf::DW_TAG_ptr_to_member_type || T == dwarf::DW_TAG_reference_type || T == dwarf::DW_TAG_rvalue_reference_type) return true; assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type || T == dwarf::DW_TAG_volatile_type || T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type || T == dwarf::DW_TAG_immutable_type); assert(DTy->getBaseType() && "Expected valid base type"); return isUnsignedDIType(DTy->getBaseType()); } auto *BTy = cast(Ty); unsigned Encoding = BTy->getEncoding(); assert((Encoding == dwarf::DW_ATE_unsigned || Encoding == dwarf::DW_ATE_unsigned_char || Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char || Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean || (Ty->getTag() == dwarf::DW_TAG_unspecified_type && Ty->getName() == "decltype(nullptr)")) && "Unsupported encoding"); return Encoding == dwarf::DW_ATE_unsigned || Encoding == dwarf::DW_ATE_unsigned_char || Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean || Ty->getTag() == dwarf::DW_TAG_unspecified_type; } static bool hasDebugInfo(const MachineModuleInfo *MMI, const MachineFunction *MF) { if (!MMI->hasDebugInfo()) return false; auto *SP = MF->getFunction().getSubprogram(); if (!SP) return false; assert(SP->getUnit()); auto EK = SP->getUnit()->getEmissionKind(); if (EK == DICompileUnit::NoDebug) return false; return true; } void DebugHandlerBase::beginFunction(const MachineFunction *MF) { PrevInstBB = nullptr; if (!Asm || !hasDebugInfo(MMI, MF)) { skippedNonDebugFunction(); return; } // Grab the lexical scopes for the function, if we don't have any of those // then we're not going to be able to do anything. LScopes.initialize(*MF); if (LScopes.empty()) { beginFunctionImpl(MF); return; } // Make sure that each lexical scope will have a begin/end label. identifyScopeMarkers(); // Calculate history for local variables. assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!"); calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), DbgValues, DbgLabels); InstOrdering.initialize(*MF); if (TrimVarLocs) DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering); LLVM_DEBUG(DbgValues.dump()); // Request labels for the full history. for (const auto &I : DbgValues) { const auto &Entries = I.second; if (Entries.empty()) continue; auto IsDescribedByReg = [](const MachineInstr *MI) { return any_of(MI->debug_operands(), [](auto &MO) { return MO.isReg() && MO.getReg(); }); }; // The first mention of a function argument gets the CurrentFnBegin label, // so arguments are visible when breaking at function entry. // // We do not change the label for values that are described by registers, // as that could place them above their defining instructions. We should // ideally not change the labels for constant debug values either, since // doing that violates the ranges that are calculated in the history map. // However, we currently do not emit debug values for constant arguments // directly at the start of the function, so this code is still useful. const DILocalVariable *DIVar = Entries.front().getInstr()->getDebugVariable(); if (DIVar->isParameter() && getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) { if (!IsDescribedByReg(Entries.front().getInstr())) LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin(); if (Entries.front().getInstr()->getDebugExpression()->isFragment()) { // Mark all non-overlapping initial fragments. for (const auto *I = Entries.begin(); I != Entries.end(); ++I) { if (!I->isDbgValue()) continue; const DIExpression *Fragment = I->getInstr()->getDebugExpression(); if (std::any_of(Entries.begin(), I, [&](DbgValueHistoryMap::Entry Pred) { return Pred.isDbgValue() && Fragment->fragmentsOverlap( Pred.getInstr()->getDebugExpression()); })) break; // The code that generates location lists for DWARF assumes that the // entries' start labels are monotonically increasing, and since we // don't change the label for fragments that are described by // registers, we must bail out when encountering such a fragment. if (IsDescribedByReg(I->getInstr())) break; LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin(); } } } for (const auto &Entry : Entries) { if (Entry.isDbgValue()) requestLabelBeforeInsn(Entry.getInstr()); else requestLabelAfterInsn(Entry.getInstr()); } } // Ensure there is a symbol before DBG_LABEL. for (const auto &I : DbgLabels) { const MachineInstr *MI = I.second; requestLabelBeforeInsn(MI); } PrevInstLoc = DebugLoc(); PrevLabel = Asm->getFunctionBegin(); beginFunctionImpl(MF); } void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { if (!Asm || !MMI->hasDebugInfo()) return; assert(CurMI == nullptr); CurMI = MI; // Insert labels where requested. DenseMap::iterator I = LabelsBeforeInsn.find(MI); // No label needed. if (I == LabelsBeforeInsn.end()) return; // Label already assigned. if (I->second) return; if (!PrevLabel) { PrevLabel = MMI->getContext().createTempSymbol(); Asm->OutStreamer->emitLabel(PrevLabel); } I->second = PrevLabel; } void DebugHandlerBase::endInstruction() { if (!Asm || !MMI->hasDebugInfo()) return; assert(CurMI != nullptr); // Don't create a new label after DBG_VALUE and other instructions that don't // generate code. if (!CurMI->isMetaInstruction()) { PrevLabel = nullptr; PrevInstBB = CurMI->getParent(); } DenseMap::iterator I = LabelsAfterInsn.find(CurMI); // No label needed or label already assigned. if (I == LabelsAfterInsn.end() || I->second) { CurMI = nullptr; return; } // We need a label after this instruction. With basic block sections, just // use the end symbol of the section if this is the last instruction of the // section. This reduces the need for an additional label and also helps // merging ranges. if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) { PrevLabel = CurMI->getParent()->getEndSymbol(); } else if (!PrevLabel) { PrevLabel = MMI->getContext().createTempSymbol(); Asm->OutStreamer->emitLabel(PrevLabel); } I->second = PrevLabel; CurMI = nullptr; } void DebugHandlerBase::endFunction(const MachineFunction *MF) { if (Asm && hasDebugInfo(MMI, MF)) endFunctionImpl(MF); DbgValues.clear(); DbgLabels.clear(); LabelsBeforeInsn.clear(); LabelsAfterInsn.clear(); InstOrdering.clear(); } void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock &MBB) { if (!MBB.isBeginSection()) return; PrevLabel = MBB.getSymbol(); } void DebugHandlerBase::endBasicBlock(const MachineBasicBlock &MBB) { if (!MBB.isEndSection()) return; PrevLabel = nullptr; }