//===- llvm/CodeGen/AsmPrinter/DbgEntityHistoryCalculator.cpp -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/DbgEntityHistoryCalculator.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/LexicalScopes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "dwarfdebug" namespace { using EntryIndex = DbgValueHistoryMap::EntryIndex; } void InstructionOrdering::initialize(const MachineFunction &MF) { // We give meta instructions the same ordinal as the preceding instruction // because this class is written for the task of comparing positions of // variable location ranges against scope ranges. To reflect what we'll see // in the binary, when we look at location ranges we must consider all // DBG_VALUEs between two real instructions at the same position. And a // scope range which ends on a meta instruction should be considered to end // at the last seen real instruction. E.g. // // 1 instruction p Both the variable location for x and for y start // 1 DBG_VALUE for "x" after instruction p so we give them all the same // 1 DBG_VALUE for "y" number. If a scope range ends at DBG_VALUE for "y", // 2 instruction q we should treat it as ending after instruction p // because it will be the last real instruction in the // range. DBG_VALUEs at or after this position for // variables declared in the scope will have no effect. clear(); unsigned Position = 0; for (const MachineBasicBlock &MBB : MF) for (const MachineInstr &MI : MBB) InstNumberMap[&MI] = MI.isMetaInstruction() ? Position : ++Position; } bool InstructionOrdering::isBefore(const MachineInstr *A, const MachineInstr *B) const { assert(A->getParent() && B->getParent() && "Operands must have a parent"); assert(A->getMF() == B->getMF() && "Operands must be in the same MachineFunction"); return InstNumberMap.lookup(A) < InstNumberMap.lookup(B); } bool DbgValueHistoryMap::startDbgValue(InlinedEntity Var, const MachineInstr &MI, EntryIndex &NewIndex) { // Instruction range should start with a DBG_VALUE instruction for the // variable. assert(MI.isDebugValue() && "not a DBG_VALUE"); auto &Entries = VarEntries[Var]; if (!Entries.empty() && Entries.back().isDbgValue() && !Entries.back().isClosed() && Entries.back().getInstr()->isIdenticalTo(MI)) { LLVM_DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n" << "\t" << Entries.back().getInstr() << "\t" << MI << "\n"); return false; } Entries.emplace_back(&MI, Entry::DbgValue); NewIndex = Entries.size() - 1; return true; } EntryIndex DbgValueHistoryMap::startClobber(InlinedEntity Var, const MachineInstr &MI) { auto &Entries = VarEntries[Var]; // If an instruction clobbers multiple registers that the variable is // described by, then we may have already created a clobbering instruction. if (Entries.back().isClobber() && Entries.back().getInstr() == &MI) return Entries.size() - 1; Entries.emplace_back(&MI, Entry::Clobber); return Entries.size() - 1; } void DbgValueHistoryMap::Entry::endEntry(EntryIndex Index) { // For now, instruction ranges are not allowed to cross basic block // boundaries. assert(isDbgValue() && "Setting end index for non-debug value"); assert(!isClosed() && "End index has already been set"); EndIndex = Index; } /// Check if the instruction range [StartMI, EndMI] intersects any instruction /// range in Ranges. EndMI can be nullptr to indicate that the range is /// unbounded. Assumes Ranges is ordered and disjoint. Returns true and points /// to the first intersecting scope range if one exists. static Optional::iterator> intersects(const MachineInstr *StartMI, const MachineInstr *EndMI, const ArrayRef &Ranges, const InstructionOrdering &Ordering) { for (auto RangesI = Ranges.begin(), RangesE = Ranges.end(); RangesI != RangesE; ++RangesI) { if (EndMI && Ordering.isBefore(EndMI, RangesI->first)) return None; if (EndMI && !Ordering.isBefore(RangesI->second, EndMI)) return RangesI; if (Ordering.isBefore(StartMI, RangesI->second)) return RangesI; } return None; } void DbgValueHistoryMap::trimLocationRanges( const MachineFunction &MF, LexicalScopes &LScopes, const InstructionOrdering &Ordering) { // The indices of the entries we're going to remove for each variable. SmallVector ToRemove; // Entry reference count for each variable. Clobbers left with no references // will be removed. SmallVector ReferenceCount; // Entries reference other entries by index. Offsets is used to remap these // references if any entries are removed. SmallVector Offsets; for (auto &Record : VarEntries) { auto &HistoryMapEntries = Record.second; if (HistoryMapEntries.empty()) continue; InlinedEntity Entity = Record.first; const DILocalVariable *LocalVar = cast(Entity.first); LexicalScope *Scope = nullptr; if (const DILocation *InlinedAt = Entity.second) { Scope = LScopes.findInlinedScope(LocalVar->getScope(), InlinedAt); } else { Scope = LScopes.findLexicalScope(LocalVar->getScope()); // Ignore variables for non-inlined function level scopes. The scope // ranges (from scope->getRanges()) will not include any instructions // before the first one with a debug-location, which could cause us to // incorrectly drop a location. We could introduce special casing for // these variables, but it doesn't seem worth it because no out-of-scope // locations have been observed for variables declared in function level // scopes. if (Scope && (Scope->getScopeNode() == Scope->getScopeNode()->getSubprogram()) && (Scope->getScopeNode() == LocalVar->getScope())) continue; } // If there is no scope for the variable then something has probably gone // wrong. if (!Scope) continue; ToRemove.clear(); // Zero the reference counts. ReferenceCount.assign(HistoryMapEntries.size(), 0); // Index of the DBG_VALUE which marks the start of the current location // range. EntryIndex StartIndex = 0; ArrayRef ScopeRanges(Scope->getRanges()); for (auto EI = HistoryMapEntries.begin(), EE = HistoryMapEntries.end(); EI != EE; ++EI, ++StartIndex) { // Only DBG_VALUEs can open location ranges so skip anything else. if (!EI->isDbgValue()) continue; // Index of the entry which closes this range. EntryIndex EndIndex = EI->getEndIndex(); // If this range is closed bump the reference count of the closing entry. if (EndIndex != NoEntry) ReferenceCount[EndIndex] += 1; // Skip this location range if the opening entry is still referenced. It // may close a location range which intersects a scope range. // TODO: We could be 'smarter' and trim these kinds of ranges such that // they do not leak out of the scope ranges if they partially overlap. if (ReferenceCount[StartIndex] > 0) continue; const MachineInstr *StartMI = EI->getInstr(); const MachineInstr *EndMI = EndIndex != NoEntry ? HistoryMapEntries[EndIndex].getInstr() : nullptr; // Check if the location range [StartMI, EndMI] intersects with any scope // range for the variable. if (auto R = intersects(StartMI, EndMI, ScopeRanges, Ordering)) { // Adjust ScopeRanges to exclude ranges which subsequent location ranges // cannot possibly intersect. ScopeRanges = ArrayRef(R.getValue(), ScopeRanges.end()); } else { // If the location range does not intersect any scope range then the // DBG_VALUE which opened this location range is usless, mark it for // removal. ToRemove.push_back(StartIndex); // Because we'll be removing this entry we need to update the reference // count of the closing entry, if one exists. if (EndIndex != NoEntry) ReferenceCount[EndIndex] -= 1; } } // If there is nothing to remove then jump to next variable. if (ToRemove.empty()) continue; // Mark clobbers that will no longer close any location ranges for removal. for (size_t i = 0; i < HistoryMapEntries.size(); ++i) if (ReferenceCount[i] <= 0 && HistoryMapEntries[i].isClobber()) ToRemove.push_back(i); llvm::sort(ToRemove); // Build an offset map so we can update the EndIndex of the remaining // entries. // Zero the offsets. Offsets.assign(HistoryMapEntries.size(), 0); size_t CurOffset = 0; auto ToRemoveItr = ToRemove.begin(); for (size_t EntryIdx = *ToRemoveItr; EntryIdx < HistoryMapEntries.size(); ++EntryIdx) { // Check if this is an entry which will be removed. if (ToRemoveItr != ToRemove.end() && *ToRemoveItr == EntryIdx) { ++ToRemoveItr; ++CurOffset; } Offsets[EntryIdx] = CurOffset; } // Update the EndIndex of the entries to account for those which will be // removed. for (auto &Entry : HistoryMapEntries) if (Entry.isClosed()) Entry.EndIndex -= Offsets[Entry.EndIndex]; // Now actually remove the entries. Iterate backwards so that our remaining // ToRemove indices are valid after each erase. for (auto Itr = ToRemove.rbegin(), End = ToRemove.rend(); Itr != End; ++Itr) HistoryMapEntries.erase(HistoryMapEntries.begin() + *Itr); } } bool DbgValueHistoryMap::hasNonEmptyLocation(const Entries &Entries) const { for (const auto &Entry : Entries) { if (!Entry.isDbgValue()) continue; const MachineInstr *MI = Entry.getInstr(); assert(MI->isDebugValue()); // A DBG_VALUE $noreg is an empty variable location if (MI->getOperand(0).isReg() && MI->getOperand(0).getReg() == 0) continue; return true; } return false; } void DbgLabelInstrMap::addInstr(InlinedEntity Label, const MachineInstr &MI) { assert(MI.isDebugLabel() && "not a DBG_LABEL"); LabelInstr[Label] = &MI; } namespace { // Maps physreg numbers to the variables they describe. using InlinedEntity = DbgValueHistoryMap::InlinedEntity; using RegDescribedVarsMap = std::map>; // Keeps track of the debug value entries that are currently live for each // inlined entity. As the history map entries are stored in a SmallVector, they // may be moved at insertion of new entries, so store indices rather than // pointers. using DbgValueEntriesMap = std::map>; } // end anonymous namespace // Claim that @Var is not described by @RegNo anymore. static void dropRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo, InlinedEntity Var) { const auto &I = RegVars.find(RegNo); assert(RegNo != 0U && I != RegVars.end()); auto &VarSet = I->second; const auto &VarPos = llvm::find(VarSet, Var); assert(VarPos != VarSet.end()); VarSet.erase(VarPos); // Don't keep empty sets in a map to keep it as small as possible. if (VarSet.empty()) RegVars.erase(I); } // Claim that @Var is now described by @RegNo. static void addRegDescribedVar(RegDescribedVarsMap &RegVars, unsigned RegNo, InlinedEntity Var) { assert(RegNo != 0U); auto &VarSet = RegVars[RegNo]; assert(!is_contained(VarSet, Var)); VarSet.push_back(Var); } /// Create a clobbering entry and end all open debug value entries /// for \p Var that are described by \p RegNo using that entry. Inserts into \p /// FellowRegisters the set of Registers that were also used to describe \p Var /// alongside \p RegNo. static void clobberRegEntries(InlinedEntity Var, unsigned RegNo, const MachineInstr &ClobberingInstr, DbgValueEntriesMap &LiveEntries, DbgValueHistoryMap &HistMap, SmallVectorImpl &FellowRegisters) { EntryIndex ClobberIndex = HistMap.startClobber(Var, ClobberingInstr); // Close all entries whose values are described by the register. SmallVector IndicesToErase; // If a given register appears in a live DBG_VALUE_LIST for Var alongside the // clobbered register, and never appears in a live DBG_VALUE* for Var without // the clobbered register, then it is no longer linked to the variable. SmallSet MaybeRemovedRegisters; SmallSet KeepRegisters; for (auto Index : LiveEntries[Var]) { auto &Entry = HistMap.getEntry(Var, Index); assert(Entry.isDbgValue() && "Not a DBG_VALUE in LiveEntries"); if (Entry.getInstr()->isDebugEntryValue()) continue; if (Entry.getInstr()->hasDebugOperandForReg(RegNo)) { IndicesToErase.push_back(Index); Entry.endEntry(ClobberIndex); for (auto &MO : Entry.getInstr()->debug_operands()) if (MO.isReg() && MO.getReg() && MO.getReg() != RegNo) MaybeRemovedRegisters.insert(MO.getReg()); } else { for (auto &MO : Entry.getInstr()->debug_operands()) if (MO.isReg() && MO.getReg()) KeepRegisters.insert(MO.getReg()); } } for (Register Reg : MaybeRemovedRegisters) if (!KeepRegisters.contains(Reg)) FellowRegisters.push_back(Reg); // Drop all entries that have ended. for (auto Index : IndicesToErase) LiveEntries[Var].erase(Index); } /// Add a new debug value for \p Var. Closes all overlapping debug values. static void handleNewDebugValue(InlinedEntity Var, const MachineInstr &DV, RegDescribedVarsMap &RegVars, DbgValueEntriesMap &LiveEntries, DbgValueHistoryMap &HistMap) { EntryIndex NewIndex; if (HistMap.startDbgValue(Var, DV, NewIndex)) { SmallDenseMap TrackedRegs; // If we have created a new debug value entry, close all preceding // live entries that overlap. SmallVector IndicesToErase; const DIExpression *DIExpr = DV.getDebugExpression(); for (auto Index : LiveEntries[Var]) { auto &Entry = HistMap.getEntry(Var, Index); assert(Entry.isDbgValue() && "Not a DBG_VALUE in LiveEntries"); const MachineInstr &DV = *Entry.getInstr(); bool Overlaps = DIExpr->fragmentsOverlap(DV.getDebugExpression()); if (Overlaps) { IndicesToErase.push_back(Index); Entry.endEntry(NewIndex); } if (!DV.isDebugEntryValue()) for (const MachineOperand &Op : DV.debug_operands()) if (Op.isReg() && Op.getReg()) TrackedRegs[Op.getReg()] |= !Overlaps; } // If the new debug value is described by a register, add tracking of // that register if it is not already tracked. if (!DV.isDebugEntryValue()) { for (const MachineOperand &Op : DV.debug_operands()) { if (Op.isReg() && Op.getReg()) { Register NewReg = Op.getReg(); if (!TrackedRegs.count(NewReg)) addRegDescribedVar(RegVars, NewReg, Var); LiveEntries[Var].insert(NewIndex); TrackedRegs[NewReg] = true; } } } // Drop tracking of registers that are no longer used. for (auto I : TrackedRegs) if (!I.second) dropRegDescribedVar(RegVars, I.first, Var); // Drop all entries that have ended, and mark the new entry as live. for (auto Index : IndicesToErase) LiveEntries[Var].erase(Index); LiveEntries[Var].insert(NewIndex); } } // Terminate the location range for variables described by register at // @I by inserting @ClobberingInstr to their history. static void clobberRegisterUses(RegDescribedVarsMap &RegVars, RegDescribedVarsMap::iterator I, DbgValueHistoryMap &HistMap, DbgValueEntriesMap &LiveEntries, const MachineInstr &ClobberingInstr) { // Iterate over all variables described by this register and add this // instruction to their history, clobbering it. All registers that also // describe the clobbered variables (i.e. in variadic debug values) will have // those Variables removed from their DescribedVars. for (const auto &Var : I->second) { SmallVector FellowRegisters; clobberRegEntries(Var, I->first, ClobberingInstr, LiveEntries, HistMap, FellowRegisters); for (Register RegNo : FellowRegisters) dropRegDescribedVar(RegVars, RegNo, Var); } RegVars.erase(I); } // Terminate the location range for variables described by register // @RegNo by inserting @ClobberingInstr to their history. static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo, DbgValueHistoryMap &HistMap, DbgValueEntriesMap &LiveEntries, const MachineInstr &ClobberingInstr) { const auto &I = RegVars.find(RegNo); if (I == RegVars.end()) return; clobberRegisterUses(RegVars, I, HistMap, LiveEntries, ClobberingInstr); } void llvm::calculateDbgEntityHistory(const MachineFunction *MF, const TargetRegisterInfo *TRI, DbgValueHistoryMap &DbgValues, DbgLabelInstrMap &DbgLabels) { const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); Register SP = TLI->getStackPointerRegisterToSaveRestore(); Register FrameReg = TRI->getFrameRegister(*MF); RegDescribedVarsMap RegVars; DbgValueEntriesMap LiveEntries; for (const auto &MBB : *MF) { for (const auto &MI : MBB) { if (MI.isDebugValue()) { assert(MI.getNumOperands() > 1 && "Invalid DBG_VALUE instruction!"); // Use the base variable (without any DW_OP_piece expressions) // as index into History. The full variables including the // piece expressions are attached to the MI. const DILocalVariable *RawVar = MI.getDebugVariable(); assert(RawVar->isValidLocationForIntrinsic(MI.getDebugLoc()) && "Expected inlined-at fields to agree"); InlinedEntity Var(RawVar, MI.getDebugLoc()->getInlinedAt()); handleNewDebugValue(Var, MI, RegVars, LiveEntries, DbgValues); } else if (MI.isDebugLabel()) { assert(MI.getNumOperands() == 1 && "Invalid DBG_LABEL instruction!"); const DILabel *RawLabel = MI.getDebugLabel(); assert(RawLabel->isValidLocationForIntrinsic(MI.getDebugLoc()) && "Expected inlined-at fields to agree"); // When collecting debug information for labels, there is no MCSymbol // generated for it. So, we keep MachineInstr in DbgLabels in order // to query MCSymbol afterward. InlinedEntity L(RawLabel, MI.getDebugLoc()->getInlinedAt()); DbgLabels.addInstr(L, MI); } // Meta Instructions have no output and do not change any values and so // can be safely ignored. if (MI.isMetaInstruction()) continue; // Not a DBG_VALUE instruction. It may clobber registers which describe // some variables. for (const MachineOperand &MO : MI.operands()) { if (MO.isReg() && MO.isDef() && MO.getReg()) { // Ignore call instructions that claim to clobber SP. The AArch64 // backend does this for aggregate function arguments. if (MI.isCall() && MO.getReg() == SP) continue; // If this is a virtual register, only clobber it since it doesn't // have aliases. if (Register::isVirtualRegister(MO.getReg())) clobberRegisterUses(RegVars, MO.getReg(), DbgValues, LiveEntries, MI); // If this is a register def operand, it may end a debug value // range. Ignore frame-register defs in the epilogue and prologue, // we expect debuggers to understand that stack-locations are // invalid outside of the function body. else if (MO.getReg() != FrameReg || (!MI.getFlag(MachineInstr::FrameDestroy) && !MI.getFlag(MachineInstr::FrameSetup))) { for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) clobberRegisterUses(RegVars, *AI, DbgValues, LiveEntries, MI); } } else if (MO.isRegMask()) { // If this is a register mask operand, clobber all debug values in // non-CSRs. SmallVector RegsToClobber; // Don't consider SP to be clobbered by register masks. for (auto It : RegVars) { unsigned int Reg = It.first; if (Reg != SP && Register::isPhysicalRegister(Reg) && MO.clobbersPhysReg(Reg)) RegsToClobber.push_back(Reg); } for (unsigned Reg : RegsToClobber) { clobberRegisterUses(RegVars, Reg, DbgValues, LiveEntries, MI); } } } // End MO loop. } // End instr loop. // Make sure locations for all variables are valid only until the end of // the basic block (unless it's the last basic block, in which case let // their liveness run off to the end of the function). if (!MBB.empty() && &MBB != &MF->back()) { // Iterate over all variables that have open debug values. for (auto &Pair : LiveEntries) { if (Pair.second.empty()) continue; // Create a clobbering entry. EntryIndex ClobIdx = DbgValues.startClobber(Pair.first, MBB.back()); // End all entries. for (EntryIndex Idx : Pair.second) { DbgValueHistoryMap::Entry &Ent = DbgValues.getEntry(Pair.first, Idx); assert(Ent.isDbgValue() && !Ent.isClosed()); Ent.endEntry(ClobIdx); } } LiveEntries.clear(); RegVars.clear(); } } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void DbgValueHistoryMap::dump() const { dbgs() << "DbgValueHistoryMap:\n"; for (const auto &VarRangePair : *this) { const InlinedEntity &Var = VarRangePair.first; const Entries &Entries = VarRangePair.second; const DILocalVariable *LocalVar = cast(Var.first); const DILocation *Location = Var.second; dbgs() << " - " << LocalVar->getName() << " at "; if (Location) dbgs() << Location->getFilename() << ":" << Location->getLine() << ":" << Location->getColumn(); else dbgs() << ""; dbgs() << " --\n"; for (const auto &E : enumerate(Entries)) { const auto &Entry = E.value(); dbgs() << " Entry[" << E.index() << "]: "; if (Entry.isDbgValue()) dbgs() << "Debug value\n"; else dbgs() << "Clobber\n"; dbgs() << " Instr: " << *Entry.getInstr(); if (Entry.isDbgValue()) { if (Entry.getEndIndex() == NoEntry) dbgs() << " - Valid until end of function\n"; else dbgs() << " - Closed by Entry[" << Entry.getEndIndex() << "]\n"; } dbgs() << "\n"; } } } #endif