//===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains support for writing Microsoft CodeView debug info. // //===----------------------------------------------------------------------===// #include "CodeViewDebug.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/LexicalScopes.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" #include "llvm/DebugInfo/CodeView/EnumTables.h" #include "llvm/DebugInfo/CodeView/Line.h" #include "llvm/DebugInfo/CodeView/SymbolRecord.h" #include "llvm/DebugInfo/CodeView/TypeRecord.h" #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCSectionCOFF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/BinaryStreamWriter.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/Path.h" #include "llvm/Support/Program.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/TargetParser/Triple.h" #include #include #include #include #include #include using namespace llvm; using namespace llvm::codeview; namespace { class CVMCAdapter : public CodeViewRecordStreamer { public: CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) : OS(&OS), TypeTable(TypeTable) {} void emitBytes(StringRef Data) override { OS->emitBytes(Data); } void emitIntValue(uint64_t Value, unsigned Size) override { OS->emitIntValueInHex(Value, Size); } void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); } void AddComment(const Twine &T) override { OS->AddComment(T); } void AddRawComment(const Twine &T) override { OS->emitRawComment(T); } bool isVerboseAsm() override { return OS->isVerboseAsm(); } std::string getTypeName(TypeIndex TI) override { std::string TypeName; if (!TI.isNoneType()) { if (TI.isSimple()) TypeName = std::string(TypeIndex::simpleTypeName(TI)); else TypeName = std::string(TypeTable.getTypeName(TI)); } return TypeName; } private: MCStreamer *OS = nullptr; TypeCollection &TypeTable; }; } // namespace static CPUType mapArchToCVCPUType(Triple::ArchType Type) { switch (Type) { case Triple::ArchType::x86: return CPUType::Pentium3; case Triple::ArchType::x86_64: return CPUType::X64; case Triple::ArchType::thumb: // LLVM currently doesn't support Windows CE and so thumb // here is indiscriminately mapped to ARMNT specifically. return CPUType::ARMNT; case Triple::ArchType::aarch64: return CPUType::ARM64; default: report_fatal_error("target architecture doesn't map to a CodeView CPUType"); } } CodeViewDebug::CodeViewDebug(AsmPrinter *AP) : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {} StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { std::string &Filepath = FileToFilepathMap[File]; if (!Filepath.empty()) return Filepath; StringRef Dir = File->getDirectory(), Filename = File->getFilename(); // If this is a Unix-style path, just use it as is. Don't try to canonicalize // it textually because one of the path components could be a symlink. if (Dir.startswith("/") || Filename.startswith("/")) { if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) return Filename; Filepath = std::string(Dir); if (Dir.back() != '/') Filepath += '/'; Filepath += Filename; return Filepath; } // Clang emits directory and relative filename info into the IR, but CodeView // operates on full paths. We could change Clang to emit full paths too, but // that would increase the IR size and probably not needed for other users. // For now, just concatenate and canonicalize the path here. if (Filename.find(':') == 1) Filepath = std::string(Filename); else Filepath = (Dir + "\\" + Filename).str(); // Canonicalize the path. We have to do it textually because we may no longer // have access the file in the filesystem. // First, replace all slashes with backslashes. std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); // Remove all "\.\" with "\". size_t Cursor = 0; while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) Filepath.erase(Cursor, 2); // Replace all "\XXX\..\" with "\". Don't try too hard though as the original // path should be well-formatted, e.g. start with a drive letter, etc. Cursor = 0; while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { // Something's wrong if the path starts with "\..\", abort. if (Cursor == 0) break; size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); if (PrevSlash == std::string::npos) // Something's wrong, abort. break; Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); // The next ".." might be following the one we've just erased. Cursor = PrevSlash; } // Remove all duplicate backslashes. Cursor = 0; while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) Filepath.erase(Cursor, 1); return Filepath; } unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { StringRef FullPath = getFullFilepath(F); unsigned NextId = FileIdMap.size() + 1; auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); if (Insertion.second) { // We have to compute the full filepath and emit a .cv_file directive. ArrayRef ChecksumAsBytes; FileChecksumKind CSKind = FileChecksumKind::None; if (F->getChecksum()) { std::string Checksum = fromHex(F->getChecksum()->Value); void *CKMem = OS.getContext().allocate(Checksum.size(), 1); memcpy(CKMem, Checksum.data(), Checksum.size()); ChecksumAsBytes = ArrayRef( reinterpret_cast(CKMem), Checksum.size()); switch (F->getChecksum()->Kind) { case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; case DIFile::CSK_SHA256: CSKind = FileChecksumKind::SHA256; break; } } bool Success = OS.emitCVFileDirective(NextId, FullPath, ChecksumAsBytes, static_cast(CSKind)); (void)Success; assert(Success && ".cv_file directive failed"); } return Insertion.first->second; } CodeViewDebug::InlineSite & CodeViewDebug::getInlineSite(const DILocation *InlinedAt, const DISubprogram *Inlinee) { auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); InlineSite *Site = &SiteInsertion.first->second; if (SiteInsertion.second) { unsigned ParentFuncId = CurFn->FuncId; if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) ParentFuncId = getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) .SiteFuncId; Site->SiteFuncId = NextFuncId++; OS.emitCVInlineSiteIdDirective( Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); Site->Inlinee = Inlinee; InlinedSubprograms.insert(Inlinee); getFuncIdForSubprogram(Inlinee); } return *Site; } static StringRef getPrettyScopeName(const DIScope *Scope) { StringRef ScopeName = Scope->getName(); if (!ScopeName.empty()) return ScopeName; switch (Scope->getTag()) { case dwarf::DW_TAG_enumeration_type: case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_union_type: return ""; case dwarf::DW_TAG_namespace: return "`anonymous namespace'"; default: return StringRef(); } } const DISubprogram *CodeViewDebug::collectParentScopeNames( const DIScope *Scope, SmallVectorImpl &QualifiedNameComponents) { const DISubprogram *ClosestSubprogram = nullptr; while (Scope != nullptr) { if (ClosestSubprogram == nullptr) ClosestSubprogram = dyn_cast(Scope); // If a type appears in a scope chain, make sure it gets emitted. The // frontend will be responsible for deciding if this should be a forward // declaration or a complete type. if (const auto *Ty = dyn_cast(Scope)) DeferredCompleteTypes.push_back(Ty); StringRef ScopeName = getPrettyScopeName(Scope); if (!ScopeName.empty()) QualifiedNameComponents.push_back(ScopeName); Scope = Scope->getScope(); } return ClosestSubprogram; } static std::string formatNestedName(ArrayRef QualifiedNameComponents, StringRef TypeName) { std::string FullyQualifiedName; for (StringRef QualifiedNameComponent : llvm::reverse(QualifiedNameComponents)) { FullyQualifiedName.append(std::string(QualifiedNameComponent)); FullyQualifiedName.append("::"); } FullyQualifiedName.append(std::string(TypeName)); return FullyQualifiedName; } struct CodeViewDebug::TypeLoweringScope { TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } ~TypeLoweringScope() { // Don't decrement TypeEmissionLevel until after emitting deferred types, so // inner TypeLoweringScopes don't attempt to emit deferred types. if (CVD.TypeEmissionLevel == 1) CVD.emitDeferredCompleteTypes(); --CVD.TypeEmissionLevel; } CodeViewDebug &CVD; }; std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope, StringRef Name) { // Ensure types in the scope chain are emitted as soon as possible. // This can create otherwise a situation where S_UDTs are emitted while // looping in emitDebugInfoForUDTs. TypeLoweringScope S(*this); SmallVector QualifiedNameComponents; collectParentScopeNames(Scope, QualifiedNameComponents); return formatNestedName(QualifiedNameComponents, Name); } std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) { const DIScope *Scope = Ty->getScope(); return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); } TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { // No scope means global scope and that uses the zero index. // // We also use zero index when the scope is a DISubprogram // to suppress the emission of LF_STRING_ID for the function, // which can trigger a link-time error with the linker in // VS2019 version 16.11.2 or newer. // Note, however, skipping the debug info emission for the DISubprogram // is a temporary fix. The root issue here is that we need to figure out // the proper way to encode a function nested in another function // (as introduced by the Fortran 'contains' keyword) in CodeView. if (!Scope || isa(Scope) || isa(Scope)) return TypeIndex(); assert(!isa(Scope) && "shouldn't make a namespace scope for a type"); // Check if we've already translated this scope. auto I = TypeIndices.find({Scope, nullptr}); if (I != TypeIndices.end()) return I->second; // Build the fully qualified name of the scope. std::string ScopeName = getFullyQualifiedName(Scope); StringIdRecord SID(TypeIndex(), ScopeName); auto TI = TypeTable.writeLeafType(SID); return recordTypeIndexForDINode(Scope, TI); } static StringRef removeTemplateArgs(StringRef Name) { // Remove template args from the display name. Assume that the template args // are the last thing in the name. if (Name.empty() || Name.back() != '>') return Name; int OpenBrackets = 0; for (int i = Name.size() - 1; i >= 0; --i) { if (Name[i] == '>') ++OpenBrackets; else if (Name[i] == '<') { --OpenBrackets; if (OpenBrackets == 0) return Name.substr(0, i); } } return Name; } TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { assert(SP); // Check if we've already translated this subprogram. auto I = TypeIndices.find({SP, nullptr}); if (I != TypeIndices.end()) return I->second; // The display name includes function template arguments. Drop them to match // MSVC. We need to have the template arguments in the DISubprogram name // because they are used in other symbol records, such as S_GPROC32_IDs. StringRef DisplayName = removeTemplateArgs(SP->getName()); const DIScope *Scope = SP->getScope(); TypeIndex TI; if (const auto *Class = dyn_cast_or_null(Scope)) { // If the scope is a DICompositeType, then this must be a method. Member // function types take some special handling, and require access to the // subprogram. TypeIndex ClassType = getTypeIndex(Class); MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), DisplayName); TI = TypeTable.writeLeafType(MFuncId); } else { // Otherwise, this must be a free function. TypeIndex ParentScope = getScopeIndex(Scope); FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); TI = TypeTable.writeLeafType(FuncId); } return recordTypeIndexForDINode(SP, TI); } static bool isNonTrivial(const DICompositeType *DCTy) { return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); } static FunctionOptions getFunctionOptions(const DISubroutineType *Ty, const DICompositeType *ClassTy = nullptr, StringRef SPName = StringRef("")) { FunctionOptions FO = FunctionOptions::None; const DIType *ReturnTy = nullptr; if (auto TypeArray = Ty->getTypeArray()) { if (TypeArray.size()) ReturnTy = TypeArray[0]; } // Add CxxReturnUdt option to functions that return nontrivial record types // or methods that return record types. if (auto *ReturnDCTy = dyn_cast_or_null(ReturnTy)) if (isNonTrivial(ReturnDCTy) || ClassTy) FO |= FunctionOptions::CxxReturnUdt; // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { FO |= FunctionOptions::Constructor; // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. } return FO; } TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, const DICompositeType *Class) { // Always use the method declaration as the key for the function type. The // method declaration contains the this adjustment. if (SP->getDeclaration()) SP = SP->getDeclaration(); assert(!SP->getDeclaration() && "should use declaration as key"); // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. auto I = TypeIndices.find({SP, Class}); if (I != TypeIndices.end()) return I->second; // Make sure complete type info for the class is emitted *after* the member // function type, as the complete class type is likely to reference this // member function type. TypeLoweringScope S(*this); const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); TypeIndex TI = lowerTypeMemberFunction( SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); return recordTypeIndexForDINode(SP, TI, Class); } TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, TypeIndex TI, const DIType *ClassTy) { auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); (void)InsertResult; assert(InsertResult.second && "DINode was already assigned a type index"); return TI; } unsigned CodeViewDebug::getPointerSizeInBytes() { return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; } void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, const LexicalScope *LS) { if (const DILocation *InlinedAt = LS->getInlinedAt()) { // This variable was inlined. Associate it with the InlineSite. const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); InlineSite &Site = getInlineSite(InlinedAt, Inlinee); Site.InlinedLocals.emplace_back(std::move(Var)); } else { // This variable goes into the corresponding lexical scope. ScopeVariables[LS].emplace_back(std::move(Var)); } } static void addLocIfNotPresent(SmallVectorImpl &Locs, const DILocation *Loc) { if (!llvm::is_contained(Locs, Loc)) Locs.push_back(Loc); } void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, const MachineFunction *MF) { // Skip this instruction if it has the same location as the previous one. if (!DL || DL == PrevInstLoc) return; const DIScope *Scope = DL->getScope(); if (!Scope) return; // Skip this line if it is longer than the maximum we can record. LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || LI.isNeverStepInto()) return; ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); if (CI.getStartColumn() != DL.getCol()) return; if (!CurFn->HaveLineInfo) CurFn->HaveLineInfo = true; unsigned FileId = 0; if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) FileId = CurFn->LastFileId; else FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); PrevInstLoc = DL; unsigned FuncId = CurFn->FuncId; if (const DILocation *SiteLoc = DL->getInlinedAt()) { const DILocation *Loc = DL.get(); // If this location was actually inlined from somewhere else, give it the ID // of the inline call site. FuncId = getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; // Ensure we have links in the tree of inline call sites. bool FirstLoc = true; while ((SiteLoc = Loc->getInlinedAt())) { InlineSite &Site = getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); if (!FirstLoc) addLocIfNotPresent(Site.ChildSites, Loc); FirstLoc = false; Loc = SiteLoc; } addLocIfNotPresent(CurFn->ChildSites, Loc); } OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), /*PrologueEnd=*/false, /*IsStmt=*/false, DL->getFilename(), SMLoc()); } void CodeViewDebug::emitCodeViewMagicVersion() { OS.emitValueToAlignment(Align(4)); OS.AddComment("Debug section magic"); OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); } static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { switch (DWLang) { case dwarf::DW_LANG_C: case dwarf::DW_LANG_C89: case dwarf::DW_LANG_C99: case dwarf::DW_LANG_C11: return SourceLanguage::C; case dwarf::DW_LANG_C_plus_plus: case dwarf::DW_LANG_C_plus_plus_03: case dwarf::DW_LANG_C_plus_plus_11: case dwarf::DW_LANG_C_plus_plus_14: return SourceLanguage::Cpp; case dwarf::DW_LANG_Fortran77: case dwarf::DW_LANG_Fortran90: case dwarf::DW_LANG_Fortran95: case dwarf::DW_LANG_Fortran03: case dwarf::DW_LANG_Fortran08: return SourceLanguage::Fortran; case dwarf::DW_LANG_Pascal83: return SourceLanguage::Pascal; case dwarf::DW_LANG_Cobol74: case dwarf::DW_LANG_Cobol85: return SourceLanguage::Cobol; case dwarf::DW_LANG_Java: return SourceLanguage::Java; case dwarf::DW_LANG_D: return SourceLanguage::D; case dwarf::DW_LANG_Swift: return SourceLanguage::Swift; case dwarf::DW_LANG_Rust: return SourceLanguage::Rust; case dwarf::DW_LANG_ObjC: return SourceLanguage::ObjC; case dwarf::DW_LANG_ObjC_plus_plus: return SourceLanguage::ObjCpp; default: // There's no CodeView representation for this language, and CV doesn't // have an "unknown" option for the language field, so we'll use MASM, // as it's very low level. return SourceLanguage::Masm; } } void CodeViewDebug::beginModule(Module *M) { // If module doesn't have named metadata anchors or COFF debug section // is not available, skip any debug info related stuff. if (!MMI->hasDebugInfo() || !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) { Asm = nullptr; return; } TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch()); // Get the current source language. const MDNode *Node = *M->debug_compile_units_begin(); const auto *CU = cast(Node); CurrentSourceLanguage = MapDWLangToCVLang(CU->getSourceLanguage()); collectGlobalVariableInfo(); // Check if we should emit type record hashes. ConstantInt *GH = mdconst::extract_or_null(M->getModuleFlag("CodeViewGHash")); EmitDebugGlobalHashes = GH && !GH->isZero(); } void CodeViewDebug::endModule() { if (!Asm || !MMI->hasDebugInfo()) return; // The COFF .debug$S section consists of several subsections, each starting // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length // of the payload followed by the payload itself. The subsections are 4-byte // aligned. // Use the generic .debug$S section, and make a subsection for all the inlined // subprograms. switchToDebugSectionForSymbol(nullptr); MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); emitObjName(); emitCompilerInformation(); endCVSubsection(CompilerInfo); emitInlineeLinesSubsection(); // Emit per-function debug information. for (auto &P : FnDebugInfo) if (!P.first->isDeclarationForLinker()) emitDebugInfoForFunction(P.first, *P.second); // Get types used by globals without emitting anything. // This is meant to collect all static const data members so they can be // emitted as globals. collectDebugInfoForGlobals(); // Emit retained types. emitDebugInfoForRetainedTypes(); // Emit global variable debug information. setCurrentSubprogram(nullptr); emitDebugInfoForGlobals(); // Switch back to the generic .debug$S section after potentially processing // comdat symbol sections. switchToDebugSectionForSymbol(nullptr); // Emit UDT records for any types used by global variables. if (!GlobalUDTs.empty()) { MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); emitDebugInfoForUDTs(GlobalUDTs); endCVSubsection(SymbolsEnd); } // This subsection holds a file index to offset in string table table. OS.AddComment("File index to string table offset subsection"); OS.emitCVFileChecksumsDirective(); // This subsection holds the string table. OS.AddComment("String table"); OS.emitCVStringTableDirective(); // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol // subsection in the generic .debug$S section at the end. There is no // particular reason for this ordering other than to match MSVC. emitBuildInfo(); // Emit type information and hashes last, so that any types we translate while // emitting function info are included. emitTypeInformation(); if (EmitDebugGlobalHashes) emitTypeGlobalHashes(); clear(); } static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, unsigned MaxFixedRecordLength = 0xF00) { // The maximum CV record length is 0xFF00. Most of the strings we emit appear // after a fixed length portion of the record. The fixed length portion should // always be less than 0xF00 (3840) bytes, so truncate the string so that the // overall record size is less than the maximum allowed. SmallString<32> NullTerminatedString( S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); NullTerminatedString.push_back('\0'); OS.emitBytes(NullTerminatedString); } void CodeViewDebug::emitTypeInformation() { if (TypeTable.empty()) return; // Start the .debug$T or .debug$P section with 0x4. OS.switchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); emitCodeViewMagicVersion(); TypeTableCollection Table(TypeTable.records()); TypeVisitorCallbackPipeline Pipeline; // To emit type record using Codeview MCStreamer adapter CVMCAdapter CVMCOS(OS, Table); TypeRecordMapping typeMapping(CVMCOS); Pipeline.addCallbackToPipeline(typeMapping); std::optional B = Table.getFirst(); while (B) { // This will fail if the record data is invalid. CVType Record = Table.getType(*B); Error E = codeview::visitTypeRecord(Record, *B, Pipeline); if (E) { logAllUnhandledErrors(std::move(E), errs(), "error: "); llvm_unreachable("produced malformed type record"); } B = Table.getNext(*B); } } void CodeViewDebug::emitTypeGlobalHashes() { if (TypeTable.empty()) return; // Start the .debug$H section with the version and hash algorithm, currently // hardcoded to version 0, SHA1. OS.switchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); OS.emitValueToAlignment(Align(4)); OS.AddComment("Magic"); OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); OS.AddComment("Section Version"); OS.emitInt16(0); OS.AddComment("Hash Algorithm"); OS.emitInt16(uint16_t(GlobalTypeHashAlg::BLAKE3)); TypeIndex TI(TypeIndex::FirstNonSimpleIndex); for (const auto &GHR : TypeTable.hashes()) { if (OS.isVerboseAsm()) { // Emit an EOL-comment describing which TypeIndex this hash corresponds // to, as well as the stringified SHA1 hash. SmallString<32> Comment; raw_svector_ostream CommentOS(Comment); CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); OS.AddComment(Comment); ++TI; } assert(GHR.Hash.size() == 8); StringRef S(reinterpret_cast(GHR.Hash.data()), GHR.Hash.size()); OS.emitBinaryData(S); } } void CodeViewDebug::emitObjName() { MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_OBJNAME); StringRef PathRef(Asm->TM.Options.ObjectFilenameForDebug); llvm::SmallString<256> PathStore(PathRef); if (PathRef.empty() || PathRef == "-") { // Don't emit the filename if we're writing to stdout or to /dev/null. PathRef = {}; } else { PathRef = PathStore; } OS.AddComment("Signature"); OS.emitIntValue(0, 4); OS.AddComment("Object name"); emitNullTerminatedSymbolName(OS, PathRef); endSymbolRecord(CompilerEnd); } namespace { struct Version { int Part[4]; }; } // end anonymous namespace // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out // the version number. static Version parseVersion(StringRef Name) { Version V = {{0}}; int N = 0; for (const char C : Name) { if (isdigit(C)) { V.Part[N] *= 10; V.Part[N] += C - '0'; V.Part[N] = std::min(V.Part[N], std::numeric_limits::max()); } else if (C == '.') { ++N; if (N >= 4) return V; } else if (N > 0) return V; } return V; } void CodeViewDebug::emitCompilerInformation() { MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); uint32_t Flags = 0; // The low byte of the flags indicates the source language. Flags = CurrentSourceLanguage; // TODO: Figure out which other flags need to be set. if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) { Flags |= static_cast(CompileSym3Flags::PGO); } using ArchType = llvm::Triple::ArchType; ArchType Arch = Triple(MMI->getModule()->getTargetTriple()).getArch(); if (Asm->TM.Options.Hotpatch || Arch == ArchType::thumb || Arch == ArchType::aarch64) { Flags |= static_cast(CompileSym3Flags::HotPatch); } OS.AddComment("Flags and language"); OS.emitInt32(Flags); OS.AddComment("CPUType"); OS.emitInt16(static_cast(TheCPU)); NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); const MDNode *Node = *CUs->operands().begin(); const auto *CU = cast(Node); StringRef CompilerVersion = CU->getProducer(); Version FrontVer = parseVersion(CompilerVersion); OS.AddComment("Frontend version"); for (int N : FrontVer.Part) { OS.emitInt16(N); } // Some Microsoft tools, like Binscope, expect a backend version number of at // least 8.something, so we'll coerce the LLVM version into a form that // guarantees it'll be big enough without really lying about the version. int Major = 1000 * LLVM_VERSION_MAJOR + 10 * LLVM_VERSION_MINOR + LLVM_VERSION_PATCH; // Clamp it for builds that use unusually large version numbers. Major = std::min(Major, std::numeric_limits::max()); Version BackVer = {{ Major, 0, 0, 0 }}; OS.AddComment("Backend version"); for (int N : BackVer.Part) OS.emitInt16(N); OS.AddComment("Null-terminated compiler version string"); emitNullTerminatedSymbolName(OS, CompilerVersion); endSymbolRecord(CompilerEnd); } static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, StringRef S) { StringIdRecord SIR(TypeIndex(0x0), S); return TypeTable.writeLeafType(SIR); } static std::string flattenCommandLine(ArrayRef Args, StringRef MainFilename) { std::string FlatCmdLine; raw_string_ostream OS(FlatCmdLine); bool PrintedOneArg = false; if (!StringRef(Args[0]).contains("-cc1")) { llvm::sys::printArg(OS, "-cc1", /*Quote=*/true); PrintedOneArg = true; } for (unsigned i = 0; i < Args.size(); i++) { StringRef Arg = Args[i]; if (Arg.empty()) continue; if (Arg == "-main-file-name" || Arg == "-o") { i++; // Skip this argument and next one. continue; } if (Arg.startswith("-object-file-name") || Arg == MainFilename) continue; // Skip fmessage-length for reproduciability. if (Arg.startswith("-fmessage-length")) continue; if (PrintedOneArg) OS << " "; llvm::sys::printArg(OS, Arg, /*Quote=*/true); PrintedOneArg = true; } OS.flush(); return FlatCmdLine; } void CodeViewDebug::emitBuildInfo() { // First, make LF_BUILDINFO. It's a sequence of strings with various bits of // build info. The known prefix is: // - Absolute path of current directory // - Compiler path // - Main source file path, relative to CWD or absolute // - Type server PDB file // - Canonical compiler command line // If frontend and backend compilation are separated (think llc or LTO), it's // not clear if the compiler path should refer to the executable for the // frontend or the backend. Leave it blank for now. TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. const auto *CU = cast(Node); const DIFile *MainSourceFile = CU->getFile(); BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); BuildInfoArgs[BuildInfoRecord::SourceFile] = getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); // FIXME: PDB is intentionally blank unless we implement /Zi type servers. BuildInfoArgs[BuildInfoRecord::TypeServerPDB] = getStringIdTypeIdx(TypeTable, ""); if (Asm->TM.Options.MCOptions.Argv0 != nullptr) { BuildInfoArgs[BuildInfoRecord::BuildTool] = getStringIdTypeIdx(TypeTable, Asm->TM.Options.MCOptions.Argv0); BuildInfoArgs[BuildInfoRecord::CommandLine] = getStringIdTypeIdx( TypeTable, flattenCommandLine(Asm->TM.Options.MCOptions.CommandLineArgs, MainSourceFile->getFilename())); } BuildInfoRecord BIR(BuildInfoArgs); TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); // Make a new .debug$S subsection for the S_BUILDINFO record, which points // from the module symbols into the type stream. MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); OS.AddComment("LF_BUILDINFO index"); OS.emitInt32(BuildInfoIndex.getIndex()); endSymbolRecord(BIEnd); endCVSubsection(BISubsecEnd); } void CodeViewDebug::emitInlineeLinesSubsection() { if (InlinedSubprograms.empty()) return; OS.AddComment("Inlinee lines subsection"); MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); // We emit the checksum info for files. This is used by debuggers to // determine if a pdb matches the source before loading it. Visual Studio, // for instance, will display a warning that the breakpoints are not valid if // the pdb does not match the source. OS.AddComment("Inlinee lines signature"); OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); for (const DISubprogram *SP : InlinedSubprograms) { assert(TypeIndices.count({SP, nullptr})); TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; OS.addBlankLine(); unsigned FileId = maybeRecordFile(SP->getFile()); OS.AddComment("Inlined function " + SP->getName() + " starts at " + SP->getFilename() + Twine(':') + Twine(SP->getLine())); OS.addBlankLine(); OS.AddComment("Type index of inlined function"); OS.emitInt32(InlineeIdx.getIndex()); OS.AddComment("Offset into filechecksum table"); OS.emitCVFileChecksumOffsetDirective(FileId); OS.AddComment("Starting line number"); OS.emitInt32(SP->getLine()); } endCVSubsection(InlineEnd); } void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, const DILocation *InlinedAt, const InlineSite &Site) { assert(TypeIndices.count({Site.Inlinee, nullptr})); TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; // SymbolRecord MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); OS.AddComment("PtrParent"); OS.emitInt32(0); OS.AddComment("PtrEnd"); OS.emitInt32(0); OS.AddComment("Inlinee type index"); OS.emitInt32(InlineeIdx.getIndex()); unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); unsigned StartLineNum = Site.Inlinee->getLine(); OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, FI.Begin, FI.End); endSymbolRecord(InlineEnd); emitLocalVariableList(FI, Site.InlinedLocals); // Recurse on child inlined call sites before closing the scope. for (const DILocation *ChildSite : Site.ChildSites) { auto I = FI.InlineSites.find(ChildSite); assert(I != FI.InlineSites.end() && "child site not in function inline site map"); emitInlinedCallSite(FI, ChildSite, I->second); } // Close the scope. emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); } void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { // If we have a symbol, it may be in a section that is COMDAT. If so, find the // comdat key. A section may be comdat because of -ffunction-sections or // because it is comdat in the IR. MCSectionCOFF *GVSec = GVSym ? dyn_cast(&GVSym->getSection()) : nullptr; const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; MCSectionCOFF *DebugSec = cast( Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); OS.switchSection(DebugSec); // Emit the magic version number if this is the first time we've switched to // this section. if (ComdatDebugSections.insert(DebugSec).second) emitCodeViewMagicVersion(); } // Emit an S_THUNK32/S_END symbol pair for a thunk routine. // The only supported thunk ordinal is currently the standard type. void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, FunctionInfo &FI, const MCSymbol *Fn) { std::string FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. OS.AddComment("Symbol subsection for " + Twine(FuncName)); MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); // Emit S_THUNK32 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); OS.AddComment("PtrParent"); OS.emitInt32(0); OS.AddComment("PtrEnd"); OS.emitInt32(0); OS.AddComment("PtrNext"); OS.emitInt32(0); OS.AddComment("Thunk section relative address"); OS.emitCOFFSecRel32(Fn, /*Offset=*/0); OS.AddComment("Thunk section index"); OS.emitCOFFSectionIndex(Fn); OS.AddComment("Code size"); OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); OS.AddComment("Ordinal"); OS.emitInt8(unsigned(ordinal)); OS.AddComment("Function name"); emitNullTerminatedSymbolName(OS, FuncName); // Additional fields specific to the thunk ordinal would go here. endSymbolRecord(ThunkRecordEnd); // Local variables/inlined routines are purposely omitted here. The point of // marking this as a thunk is so Visual Studio will NOT stop in this routine. // Emit S_PROC_ID_END emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); endCVSubsection(SymbolsEnd); } void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, FunctionInfo &FI) { // For each function there is a separate subsection which holds the PC to // file:line table. const MCSymbol *Fn = Asm->getSymbol(GV); assert(Fn); // Switch to the to a comdat section, if appropriate. switchToDebugSectionForSymbol(Fn); std::string FuncName; auto *SP = GV->getSubprogram(); assert(SP); setCurrentSubprogram(SP); if (SP->isThunk()) { emitDebugInfoForThunk(GV, FI, Fn); return; } // If we have a display name, build the fully qualified name by walking the // chain of scopes. if (!SP->getName().empty()) FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); // If our DISubprogram name is empty, use the mangled name. if (FuncName.empty()) FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); // Emit FPO data, but only on 32-bit x86. No other platforms use it. if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) OS.emitCVFPOData(Fn); // Emit a symbol subsection, required by VS2012+ to find function boundaries. OS.AddComment("Symbol subsection for " + Twine(FuncName)); MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); { SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID : SymbolKind::S_GPROC32_ID; MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); // These fields are filled in by tools like CVPACK which run after the fact. OS.AddComment("PtrParent"); OS.emitInt32(0); OS.AddComment("PtrEnd"); OS.emitInt32(0); OS.AddComment("PtrNext"); OS.emitInt32(0); // This is the important bit that tells the debugger where the function // code is located and what's its size: OS.AddComment("Code size"); OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); OS.AddComment("Offset after prologue"); OS.emitInt32(0); OS.AddComment("Offset before epilogue"); OS.emitInt32(0); OS.AddComment("Function type index"); OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); OS.AddComment("Function section relative address"); OS.emitCOFFSecRel32(Fn, /*Offset=*/0); OS.AddComment("Function section index"); OS.emitCOFFSectionIndex(Fn); OS.AddComment("Flags"); ProcSymFlags ProcFlags = ProcSymFlags::HasOptimizedDebugInfo; if (FI.HasFramePointer) ProcFlags |= ProcSymFlags::HasFP; if (GV->hasFnAttribute(Attribute::NoReturn)) ProcFlags |= ProcSymFlags::IsNoReturn; if (GV->hasFnAttribute(Attribute::NoInline)) ProcFlags |= ProcSymFlags::IsNoInline; OS.emitInt8(static_cast(ProcFlags)); // Emit the function display name as a null-terminated string. OS.AddComment("Function name"); // Truncate the name so we won't overflow the record length field. emitNullTerminatedSymbolName(OS, FuncName); endSymbolRecord(ProcRecordEnd); MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); // Subtract out the CSR size since MSVC excludes that and we include it. OS.AddComment("FrameSize"); OS.emitInt32(FI.FrameSize - FI.CSRSize); OS.AddComment("Padding"); OS.emitInt32(0); OS.AddComment("Offset of padding"); OS.emitInt32(0); OS.AddComment("Bytes of callee saved registers"); OS.emitInt32(FI.CSRSize); OS.AddComment("Exception handler offset"); OS.emitInt32(0); OS.AddComment("Exception handler section"); OS.emitInt16(0); OS.AddComment("Flags (defines frame register)"); OS.emitInt32(uint32_t(FI.FrameProcOpts)); endSymbolRecord(FrameProcEnd); emitLocalVariableList(FI, FI.Locals); emitGlobalVariableList(FI.Globals); emitLexicalBlockList(FI.ChildBlocks, FI); // Emit inlined call site information. Only emit functions inlined directly // into the parent function. We'll emit the other sites recursively as part // of their parent inline site. for (const DILocation *InlinedAt : FI.ChildSites) { auto I = FI.InlineSites.find(InlinedAt); assert(I != FI.InlineSites.end() && "child site not in function inline site map"); emitInlinedCallSite(FI, InlinedAt, I->second); } for (auto Annot : FI.Annotations) { MCSymbol *Label = Annot.first; MDTuple *Strs = cast(Annot.second); MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); OS.emitCOFFSecRel32(Label, /*Offset=*/0); // FIXME: Make sure we don't overflow the max record size. OS.emitCOFFSectionIndex(Label); OS.emitInt16(Strs->getNumOperands()); for (Metadata *MD : Strs->operands()) { // MDStrings are null terminated, so we can do EmitBytes and get the // nice .asciz directive. StringRef Str = cast(MD)->getString(); assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); } endSymbolRecord(AnnotEnd); } for (auto HeapAllocSite : FI.HeapAllocSites) { const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); const DIType *DITy = std::get<2>(HeapAllocSite); MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); OS.AddComment("Call site offset"); OS.emitCOFFSecRel32(BeginLabel, /*Offset=*/0); OS.AddComment("Call site section index"); OS.emitCOFFSectionIndex(BeginLabel); OS.AddComment("Call instruction length"); OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); OS.AddComment("Type index"); OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); endSymbolRecord(HeapAllocEnd); } if (SP != nullptr) emitDebugInfoForUDTs(LocalUDTs); // We're done with this function. emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); } endCVSubsection(SymbolsEnd); // We have an assembler directive that takes care of the whole line table. OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End); } CodeViewDebug::LocalVarDef CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { LocalVarDef DR; DR.InMemory = -1; DR.DataOffset = Offset; assert(DR.DataOffset == Offset && "truncation"); DR.IsSubfield = 0; DR.StructOffset = 0; DR.CVRegister = CVRegister; return DR; } void CodeViewDebug::collectVariableInfoFromMFTable( DenseSet &Processed) { const MachineFunction &MF = *Asm->MF; const TargetSubtargetInfo &TSI = MF.getSubtarget(); const TargetFrameLowering *TFI = TSI.getFrameLowering(); const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); for (const MachineFunction::VariableDbgInfo &VI : MF.getInStackSlotVariableDbgInfo()) { if (!VI.Var) continue; assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && "Expected inlined-at fields to agree"); Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); // If variable scope is not found then skip this variable. if (!Scope) continue; // If the variable has an attached offset expression, extract it. // FIXME: Try to handle DW_OP_deref as well. int64_t ExprOffset = 0; bool Deref = false; if (VI.Expr) { // If there is one DW_OP_deref element, use offset of 0 and keep going. if (VI.Expr->getNumElements() == 1 && VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) Deref = true; else if (!VI.Expr->extractIfOffset(ExprOffset)) continue; } // Get the frame register used and the offset. Register FrameReg; StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.getStackSlot(), FrameReg); uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); assert(!FrameOffset.getScalable() && "Frame offsets with a scalable component are not supported"); // Calculate the label ranges. LocalVarDef DefRange = createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset); LocalVariable Var; Var.DIVar = VI.Var; for (const InsnRange &Range : Scope->getRanges()) { const MCSymbol *Begin = getLabelBeforeInsn(Range.first); const MCSymbol *End = getLabelAfterInsn(Range.second); End = End ? End : Asm->getFunctionEnd(); Var.DefRanges[DefRange].emplace_back(Begin, End); } if (Deref) Var.UseReferenceType = true; recordLocalVariable(std::move(Var), Scope); } } static bool canUseReferenceType(const DbgVariableLocation &Loc) { return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; } static bool needsReferenceType(const DbgVariableLocation &Loc) { return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; } void CodeViewDebug::calculateRanges( LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); // Calculate the definition ranges. for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { const auto &Entry = *I; if (!Entry.isDbgValue()) continue; const MachineInstr *DVInst = Entry.getInstr(); assert(DVInst->isDebugValue() && "Invalid History entry"); // FIXME: Find a way to represent constant variables, since they are // relatively common. std::optional Location = DbgVariableLocation::extractFromMachineInstruction(*DVInst); if (!Location) { // When we don't have a location this is usually because LLVM has // transformed it into a constant and we only have an llvm.dbg.value. We // can't represent these well in CodeView since S_LOCAL only works on // registers and memory locations. Instead, we will pretend this to be a // constant value to at least have it show up in the debugger. auto Op = DVInst->getDebugOperand(0); if (Op.isImm()) Var.ConstantValue = APSInt(APInt(64, Op.getImm()), false); continue; } // CodeView can only express variables in register and variables in memory // at a constant offset from a register. However, for variables passed // indirectly by pointer, it is common for that pointer to be spilled to a // stack location. For the special case of one offseted load followed by a // zero offset load (a pointer spilled to the stack), we change the type of // the local variable from a value type to a reference type. This tricks the // debugger into doing the load for us. if (Var.UseReferenceType) { // We're using a reference type. Drop the last zero offset load. if (canUseReferenceType(*Location)) Location->LoadChain.pop_back(); else continue; } else if (needsReferenceType(*Location)) { // This location can't be expressed without switching to a reference type. // Start over using that. Var.UseReferenceType = true; Var.DefRanges.clear(); calculateRanges(Var, Entries); return; } // We can only handle a register or an offseted load of a register. if (Location->Register == 0 || Location->LoadChain.size() > 1) continue; LocalVarDef DR; DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); DR.InMemory = !Location->LoadChain.empty(); DR.DataOffset = !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; if (Location->FragmentInfo) { DR.IsSubfield = true; DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; } else { DR.IsSubfield = false; DR.StructOffset = 0; } // Compute the label range. const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); const MCSymbol *End; if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { auto &EndingEntry = Entries[Entry.getEndIndex()]; End = EndingEntry.isDbgValue() ? getLabelBeforeInsn(EndingEntry.getInstr()) : getLabelAfterInsn(EndingEntry.getInstr()); } else End = Asm->getFunctionEnd(); // If the last range end is our begin, just extend the last range. // Otherwise make a new range. SmallVectorImpl> &R = Var.DefRanges[DR]; if (!R.empty() && R.back().second == Begin) R.back().second = End; else R.emplace_back(Begin, End); // FIXME: Do more range combining. } } void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { DenseSet Processed; // Grab the variable info that was squirreled away in the MMI side-table. collectVariableInfoFromMFTable(Processed); for (const auto &I : DbgValues) { InlinedEntity IV = I.first; if (Processed.count(IV)) continue; const DILocalVariable *DIVar = cast(IV.first); const DILocation *InlinedAt = IV.second; // Instruction ranges, specifying where IV is accessible. const auto &Entries = I.second; LexicalScope *Scope = nullptr; if (InlinedAt) Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); else Scope = LScopes.findLexicalScope(DIVar->getScope()); // If variable scope is not found then skip this variable. if (!Scope) continue; LocalVariable Var; Var.DIVar = DIVar; calculateRanges(Var, Entries); recordLocalVariable(std::move(Var), Scope); } } void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { const TargetSubtargetInfo &TSI = MF->getSubtarget(); const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); const MachineFrameInfo &MFI = MF->getFrameInfo(); const Function &GV = MF->getFunction(); auto Insertion = FnDebugInfo.insert({&GV, std::make_unique()}); assert(Insertion.second && "function already has info"); CurFn = Insertion.first->second.get(); CurFn->FuncId = NextFuncId++; CurFn->Begin = Asm->getFunctionBegin(); // The S_FRAMEPROC record reports the stack size, and how many bytes of // callee-saved registers were used. For targets that don't use a PUSH // instruction (AArch64), this will be zero. CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); CurFn->FrameSize = MFI.getStackSize(); CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF); // For this function S_FRAMEPROC record, figure out which codeview register // will be the frame pointer. CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. if (CurFn->FrameSize > 0) { if (!TSI.getFrameLowering()->hasFP(*MF)) { CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; } else { CurFn->HasFramePointer = true; // If there is an FP, parameters are always relative to it. CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; if (CurFn->HasStackRealignment) { // If the stack needs realignment, locals are relative to SP or VFRAME. CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; } else { // Otherwise, locals are relative to EBP, and we probably have VLAs or // other stack adjustments. CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; } } } // Compute other frame procedure options. FrameProcedureOptions FPO = FrameProcedureOptions::None; if (MFI.hasVarSizedObjects()) FPO |= FrameProcedureOptions::HasAlloca; if (MF->exposesReturnsTwice()) FPO |= FrameProcedureOptions::HasSetJmp; // FIXME: Set HasLongJmp if we ever track that info. if (MF->hasInlineAsm()) FPO |= FrameProcedureOptions::HasInlineAssembly; if (GV.hasPersonalityFn()) { if (isAsynchronousEHPersonality( classifyEHPersonality(GV.getPersonalityFn()))) FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; else FPO |= FrameProcedureOptions::HasExceptionHandling; } if (GV.hasFnAttribute(Attribute::InlineHint)) FPO |= FrameProcedureOptions::MarkedInline; if (GV.hasFnAttribute(Attribute::Naked)) FPO |= FrameProcedureOptions::Naked; if (MFI.hasStackProtectorIndex()) { FPO |= FrameProcedureOptions::SecurityChecks; if (GV.hasFnAttribute(Attribute::StackProtectStrong) || GV.hasFnAttribute(Attribute::StackProtectReq)) { FPO |= FrameProcedureOptions::StrictSecurityChecks; } } else if (!GV.hasStackProtectorFnAttr()) { // __declspec(safebuffers) disables stack guards. FPO |= FrameProcedureOptions::SafeBuffers; } FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.hasOptSize() && !GV.hasOptNone()) FPO |= FrameProcedureOptions::OptimizedForSpeed; if (GV.hasProfileData()) { FPO |= FrameProcedureOptions::ValidProfileCounts; FPO |= FrameProcedureOptions::ProfileGuidedOptimization; } // FIXME: Set GuardCfg when it is implemented. CurFn->FrameProcOpts = FPO; OS.emitCVFuncIdDirective(CurFn->FuncId); // Find the end of the function prolog. First known non-DBG_VALUE and // non-frame setup location marks the beginning of the function body. // FIXME: is there a simpler a way to do this? Can we just search // for the first instruction of the function, not the last of the prolog? DebugLoc PrologEndLoc; bool EmptyPrologue = true; for (const auto &MBB : *MF) { for (const auto &MI : MBB) { if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && MI.getDebugLoc()) { PrologEndLoc = MI.getDebugLoc(); break; } else if (!MI.isMetaInstruction()) { EmptyPrologue = false; } } } // Record beginning of function if we have a non-empty prologue. if (PrologEndLoc && !EmptyPrologue) { DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); maybeRecordLocation(FnStartDL, MF); } // Find heap alloc sites and emit labels around them. for (const auto &MBB : *MF) { for (const auto &MI : MBB) { if (MI.getHeapAllocMarker()) { requestLabelBeforeInsn(&MI); requestLabelAfterInsn(&MI); } } } } static bool shouldEmitUdt(const DIType *T) { if (!T) return false; // MSVC does not emit UDTs for typedefs that are scoped to classes. if (T->getTag() == dwarf::DW_TAG_typedef) { if (DIScope *Scope = T->getScope()) { switch (Scope->getTag()) { case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_union_type: return false; default: // do nothing. ; } } } while (true) { if (!T || T->isForwardDecl()) return false; const DIDerivedType *DT = dyn_cast(T); if (!DT) return true; T = DT->getBaseType(); } return true; } void CodeViewDebug::addToUDTs(const DIType *Ty) { // Don't record empty UDTs. if (Ty->getName().empty()) return; if (!shouldEmitUdt(Ty)) return; SmallVector ParentScopeNames; const DISubprogram *ClosestSubprogram = collectParentScopeNames(Ty->getScope(), ParentScopeNames); std::string FullyQualifiedName = formatNestedName(ParentScopeNames, getPrettyScopeName(Ty)); if (ClosestSubprogram == nullptr) { GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); } else if (ClosestSubprogram == CurrentSubprogram) { LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); } // TODO: What if the ClosestSubprogram is neither null or the current // subprogram? Currently, the UDT just gets dropped on the floor. // // The current behavior is not desirable. To get maximal fidelity, we would // need to perform all type translation before beginning emission of .debug$S // and then make LocalUDTs a member of FunctionInfo } TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { // Generic dispatch for lowering an unknown type. switch (Ty->getTag()) { case dwarf::DW_TAG_array_type: return lowerTypeArray(cast(Ty)); case dwarf::DW_TAG_typedef: return lowerTypeAlias(cast(Ty)); case dwarf::DW_TAG_base_type: return lowerTypeBasic(cast(Ty)); case dwarf::DW_TAG_pointer_type: if (cast(Ty)->getName() == "__vtbl_ptr_type") return lowerTypeVFTableShape(cast(Ty)); [[fallthrough]]; case dwarf::DW_TAG_reference_type: case dwarf::DW_TAG_rvalue_reference_type: return lowerTypePointer(cast(Ty)); case dwarf::DW_TAG_ptr_to_member_type: return lowerTypeMemberPointer(cast(Ty)); case dwarf::DW_TAG_restrict_type: case dwarf::DW_TAG_const_type: case dwarf::DW_TAG_volatile_type: // TODO: add support for DW_TAG_atomic_type here return lowerTypeModifier(cast(Ty)); case dwarf::DW_TAG_subroutine_type: if (ClassTy) { // The member function type of a member function pointer has no // ThisAdjustment. return lowerTypeMemberFunction(cast(Ty), ClassTy, /*ThisAdjustment=*/0, /*IsStaticMethod=*/false); } return lowerTypeFunction(cast(Ty)); case dwarf::DW_TAG_enumeration_type: return lowerTypeEnum(cast(Ty)); case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_structure_type: return lowerTypeClass(cast(Ty)); case dwarf::DW_TAG_union_type: return lowerTypeUnion(cast(Ty)); case dwarf::DW_TAG_string_type: return lowerTypeString(cast(Ty)); case dwarf::DW_TAG_unspecified_type: if (Ty->getName() == "decltype(nullptr)") return TypeIndex::NullptrT(); return TypeIndex::None(); default: // Use the null type index. return TypeIndex(); } } TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); StringRef TypeName = Ty->getName(); addToUDTs(Ty); if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && TypeName == "HRESULT") return TypeIndex(SimpleTypeKind::HResult); if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && TypeName == "wchar_t") return TypeIndex(SimpleTypeKind::WideCharacter); return UnderlyingTypeIndex; } TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { const DIType *ElementType = Ty->getBaseType(); TypeIndex ElementTypeIndex = getTypeIndex(ElementType); // IndexType is size_t, which depends on the bitness of the target. TypeIndex IndexType = getPointerSizeInBytes() == 8 ? TypeIndex(SimpleTypeKind::UInt64Quad) : TypeIndex(SimpleTypeKind::UInt32Long); uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; // Add subranges to array type. DINodeArray Elements = Ty->getElements(); for (int i = Elements.size() - 1; i >= 0; --i) { const DINode *Element = Elements[i]; assert(Element->getTag() == dwarf::DW_TAG_subrange_type); const DISubrange *Subrange = cast(Element); int64_t Count = -1; // If Subrange has a Count field, use it. // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1), // where lowerbound is from the LowerBound field of the Subrange, // or the language default lowerbound if that field is unspecified. if (auto *CI = dyn_cast_if_present(Subrange->getCount())) Count = CI->getSExtValue(); else if (auto *UI = dyn_cast_if_present( Subrange->getUpperBound())) { // Fortran uses 1 as the default lowerbound; other languages use 0. int64_t Lowerbound = (moduleIsInFortran()) ? 1 : 0; auto *LI = dyn_cast_if_present(Subrange->getLowerBound()); Lowerbound = (LI) ? LI->getSExtValue() : Lowerbound; Count = UI->getSExtValue() - Lowerbound + 1; } // Forward declarations of arrays without a size and VLAs use a count of -1. // Emit a count of zero in these cases to match what MSVC does for arrays // without a size. MSVC doesn't support VLAs, so it's not clear what we // should do for them even if we could distinguish them. if (Count == -1) Count = 0; // Update the element size and element type index for subsequent subranges. ElementSize *= Count; // If this is the outermost array, use the size from the array. It will be // more accurate if we had a VLA or an incomplete element type size. uint64_t ArraySize = (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; StringRef Name = (i == 0) ? Ty->getName() : ""; ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); ElementTypeIndex = TypeTable.writeLeafType(AR); } return ElementTypeIndex; } // This function lowers a Fortran character type (DIStringType). // Note that it handles only the character*n variant (using SizeInBits // field in DIString to describe the type size) at the moment. // Other variants (leveraging the StringLength and StringLengthExp // fields in DIStringType) remain TBD. TypeIndex CodeViewDebug::lowerTypeString(const DIStringType *Ty) { TypeIndex CharType = TypeIndex(SimpleTypeKind::NarrowCharacter); uint64_t ArraySize = Ty->getSizeInBits() >> 3; StringRef Name = Ty->getName(); // IndexType is size_t, which depends on the bitness of the target. TypeIndex IndexType = getPointerSizeInBytes() == 8 ? TypeIndex(SimpleTypeKind::UInt64Quad) : TypeIndex(SimpleTypeKind::UInt32Long); // Create a type of character array of ArraySize. ArrayRecord AR(CharType, IndexType, ArraySize, Name); return TypeTable.writeLeafType(AR); } TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { TypeIndex Index; dwarf::TypeKind Kind; uint32_t ByteSize; Kind = static_cast(Ty->getEncoding()); ByteSize = Ty->getSizeInBits() / 8; SimpleTypeKind STK = SimpleTypeKind::None; switch (Kind) { case dwarf::DW_ATE_address: // FIXME: Translate break; case dwarf::DW_ATE_boolean: switch (ByteSize) { case 1: STK = SimpleTypeKind::Boolean8; break; case 2: STK = SimpleTypeKind::Boolean16; break; case 4: STK = SimpleTypeKind::Boolean32; break; case 8: STK = SimpleTypeKind::Boolean64; break; case 16: STK = SimpleTypeKind::Boolean128; break; } break; case dwarf::DW_ATE_complex_float: // The CodeView size for a complex represents the size of // an individual component. switch (ByteSize) { case 4: STK = SimpleTypeKind::Complex16; break; case 8: STK = SimpleTypeKind::Complex32; break; case 16: STK = SimpleTypeKind::Complex64; break; case 20: STK = SimpleTypeKind::Complex80; break; case 32: STK = SimpleTypeKind::Complex128; break; } break; case dwarf::DW_ATE_float: switch (ByteSize) { case 2: STK = SimpleTypeKind::Float16; break; case 4: STK = SimpleTypeKind::Float32; break; case 6: STK = SimpleTypeKind::Float48; break; case 8: STK = SimpleTypeKind::Float64; break; case 10: STK = SimpleTypeKind::Float80; break; case 16: STK = SimpleTypeKind::Float128; break; } break; case dwarf::DW_ATE_signed: switch (ByteSize) { case 1: STK = SimpleTypeKind::SignedCharacter; break; case 2: STK = SimpleTypeKind::Int16Short; break; case 4: STK = SimpleTypeKind::Int32; break; case 8: STK = SimpleTypeKind::Int64Quad; break; case 16: STK = SimpleTypeKind::Int128Oct; break; } break; case dwarf::DW_ATE_unsigned: switch (ByteSize) { case 1: STK = SimpleTypeKind::UnsignedCharacter; break; case 2: STK = SimpleTypeKind::UInt16Short; break; case 4: STK = SimpleTypeKind::UInt32; break; case 8: STK = SimpleTypeKind::UInt64Quad; break; case 16: STK = SimpleTypeKind::UInt128Oct; break; } break; case dwarf::DW_ATE_UTF: switch (ByteSize) { case 1: STK = SimpleTypeKind::Character8; break; case 2: STK = SimpleTypeKind::Character16; break; case 4: STK = SimpleTypeKind::Character32; break; } break; case dwarf::DW_ATE_signed_char: if (ByteSize == 1) STK = SimpleTypeKind::SignedCharacter; break; case dwarf::DW_ATE_unsigned_char: if (ByteSize == 1) STK = SimpleTypeKind::UnsignedCharacter; break; default: break; } // Apply some fixups based on the source-level type name. // Include some amount of canonicalization from an old naming scheme Clang // used to use for integer types (in an outdated effort to be compatible with // GCC's debug info/GDB's behavior, which has since been addressed). if (STK == SimpleTypeKind::Int32 && (Ty->getName() == "long int" || Ty->getName() == "long")) STK = SimpleTypeKind::Int32Long; if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" || Ty->getName() == "unsigned long")) STK = SimpleTypeKind::UInt32Long; if (STK == SimpleTypeKind::UInt16Short && (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) STK = SimpleTypeKind::WideCharacter; if ((STK == SimpleTypeKind::SignedCharacter || STK == SimpleTypeKind::UnsignedCharacter) && Ty->getName() == "char") STK = SimpleTypeKind::NarrowCharacter; return TypeIndex(STK); } TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, PointerOptions PO) { TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); // Pointers to simple types without any options can use SimpleTypeMode, rather // than having a dedicated pointer type record. if (PointeeTI.isSimple() && PO == PointerOptions::None && PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && Ty->getTag() == dwarf::DW_TAG_pointer_type) { SimpleTypeMode Mode = Ty->getSizeInBits() == 64 ? SimpleTypeMode::NearPointer64 : SimpleTypeMode::NearPointer32; return TypeIndex(PointeeTI.getSimpleKind(), Mode); } PointerKind PK = Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; PointerMode PM = PointerMode::Pointer; switch (Ty->getTag()) { default: llvm_unreachable("not a pointer tag type"); case dwarf::DW_TAG_pointer_type: PM = PointerMode::Pointer; break; case dwarf::DW_TAG_reference_type: PM = PointerMode::LValueReference; break; case dwarf::DW_TAG_rvalue_reference_type: PM = PointerMode::RValueReference; break; } if (Ty->isObjectPointer()) PO |= PointerOptions::Const; PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); return TypeTable.writeLeafType(PR); } static PointerToMemberRepresentation translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { // SizeInBytes being zero generally implies that the member pointer type was // incomplete, which can happen if it is part of a function prototype. In this // case, use the unknown model instead of the general model. if (IsPMF) { switch (Flags & DINode::FlagPtrToMemberRep) { case 0: return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown : PointerToMemberRepresentation::GeneralFunction; case DINode::FlagSingleInheritance: return PointerToMemberRepresentation::SingleInheritanceFunction; case DINode::FlagMultipleInheritance: return PointerToMemberRepresentation::MultipleInheritanceFunction; case DINode::FlagVirtualInheritance: return PointerToMemberRepresentation::VirtualInheritanceFunction; } } else { switch (Flags & DINode::FlagPtrToMemberRep) { case 0: return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown : PointerToMemberRepresentation::GeneralData; case DINode::FlagSingleInheritance: return PointerToMemberRepresentation::SingleInheritanceData; case DINode::FlagMultipleInheritance: return PointerToMemberRepresentation::MultipleInheritanceData; case DINode::FlagVirtualInheritance: return PointerToMemberRepresentation::VirtualInheritanceData; } } llvm_unreachable("invalid ptr to member representation"); } TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, PointerOptions PO) { assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); bool IsPMF = isa(Ty->getBaseType()); TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr); PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 : PointerKind::Near32; PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction : PointerMode::PointerToDataMember; assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); uint8_t SizeInBytes = Ty->getSizeInBits() / 8; MemberPointerInfo MPI( ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); return TypeTable.writeLeafType(PR); } /// Given a DWARF calling convention, get the CodeView equivalent. If we don't /// have a translation, use the NearC convention. static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { switch (DwarfCC) { case dwarf::DW_CC_normal: return CallingConvention::NearC; case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; } return CallingConvention::NearC; } TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { ModifierOptions Mods = ModifierOptions::None; PointerOptions PO = PointerOptions::None; bool IsModifier = true; const DIType *BaseTy = Ty; while (IsModifier && BaseTy) { // FIXME: Need to add DWARF tags for __unaligned and _Atomic switch (BaseTy->getTag()) { case dwarf::DW_TAG_const_type: Mods |= ModifierOptions::Const; PO |= PointerOptions::Const; break; case dwarf::DW_TAG_volatile_type: Mods |= ModifierOptions::Volatile; PO |= PointerOptions::Volatile; break; case dwarf::DW_TAG_restrict_type: // Only pointer types be marked with __restrict. There is no known flag // for __restrict in LF_MODIFIER records. PO |= PointerOptions::Restrict; break; default: IsModifier = false; break; } if (IsModifier) BaseTy = cast(BaseTy)->getBaseType(); } // Check if the inner type will use an LF_POINTER record. If so, the // qualifiers will go in the LF_POINTER record. This comes up for types like // 'int *const' and 'int *__restrict', not the more common cases like 'const // char *'. if (BaseTy) { switch (BaseTy->getTag()) { case dwarf::DW_TAG_pointer_type: case dwarf::DW_TAG_reference_type: case dwarf::DW_TAG_rvalue_reference_type: return lowerTypePointer(cast(BaseTy), PO); case dwarf::DW_TAG_ptr_to_member_type: return lowerTypeMemberPointer(cast(BaseTy), PO); default: break; } } TypeIndex ModifiedTI = getTypeIndex(BaseTy); // Return the base type index if there aren't any modifiers. For example, the // metadata could contain restrict wrappers around non-pointer types. if (Mods == ModifierOptions::None) return ModifiedTI; ModifierRecord MR(ModifiedTI, Mods); return TypeTable.writeLeafType(MR); } TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { SmallVector ReturnAndArgTypeIndices; for (const DIType *ArgType : Ty->getTypeArray()) ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); // MSVC uses type none for variadic argument. if (ReturnAndArgTypeIndices.size() > 1 && ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { ReturnAndArgTypeIndices.back() = TypeIndex::None(); } TypeIndex ReturnTypeIndex = TypeIndex::Void(); ArrayRef ArgTypeIndices = std::nullopt; if (!ReturnAndArgTypeIndices.empty()) { auto ReturnAndArgTypesRef = ArrayRef(ReturnAndArgTypeIndices); ReturnTypeIndex = ReturnAndArgTypesRef.front(); ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); } ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); FunctionOptions FO = getFunctionOptions(Ty); ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), ArgListIndex); return TypeTable.writeLeafType(Procedure); } TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, const DIType *ClassTy, int ThisAdjustment, bool IsStaticMethod, FunctionOptions FO) { // Lower the containing class type. TypeIndex ClassType = getTypeIndex(ClassTy); DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); unsigned Index = 0; SmallVector ArgTypeIndices; TypeIndex ReturnTypeIndex = TypeIndex::Void(); if (ReturnAndArgs.size() > Index) { ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); } // If the first argument is a pointer type and this isn't a static method, // treat it as the special 'this' parameter, which is encoded separately from // the arguments. TypeIndex ThisTypeIndex; if (!IsStaticMethod && ReturnAndArgs.size() > Index) { if (const DIDerivedType *PtrTy = dyn_cast_or_null(ReturnAndArgs[Index])) { if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); Index++; } } } while (Index < ReturnAndArgs.size()) ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); // MSVC uses type none for variadic argument. if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) ArgTypeIndices.back() = TypeIndex::None(); ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); return TypeTable.writeLeafType(MFR); } TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); SmallVector Slots(VSlotCount, VFTableSlotKind::Near); VFTableShapeRecord VFTSR(Slots); return TypeTable.writeLeafType(VFTSR); } static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { switch (Flags & DINode::FlagAccessibility) { case DINode::FlagPrivate: return MemberAccess::Private; case DINode::FlagPublic: return MemberAccess::Public; case DINode::FlagProtected: return MemberAccess::Protected; case 0: // If there was no explicit access control, provide the default for the tag. return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private : MemberAccess::Public; } llvm_unreachable("access flags are exclusive"); } static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { if (SP->isArtificial()) return MethodOptions::CompilerGenerated; // FIXME: Handle other MethodOptions. return MethodOptions::None; } static MethodKind translateMethodKindFlags(const DISubprogram *SP, bool Introduced) { if (SP->getFlags() & DINode::FlagStaticMember) return MethodKind::Static; switch (SP->getVirtuality()) { case dwarf::DW_VIRTUALITY_none: break; case dwarf::DW_VIRTUALITY_virtual: return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; case dwarf::DW_VIRTUALITY_pure_virtual: return Introduced ? MethodKind::PureIntroducingVirtual : MethodKind::PureVirtual; default: llvm_unreachable("unhandled virtuality case"); } return MethodKind::Vanilla; } static TypeRecordKind getRecordKind(const DICompositeType *Ty) { switch (Ty->getTag()) { case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; default: llvm_unreachable("unexpected tag"); } } /// Return ClassOptions that should be present on both the forward declaration /// and the defintion of a tag type. static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { ClassOptions CO = ClassOptions::None; // MSVC always sets this flag, even for local types. Clang doesn't always // appear to give every type a linkage name, which may be problematic for us. // FIXME: Investigate the consequences of not following them here. if (!Ty->getIdentifier().empty()) CO |= ClassOptions::HasUniqueName; // Put the Nested flag on a type if it appears immediately inside a tag type. // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass // here. That flag is only set on definitions, and not forward declarations. const DIScope *ImmediateScope = Ty->getScope(); if (ImmediateScope && isa(ImmediateScope)) CO |= ClassOptions::Nested; // Put the Scoped flag on function-local types. MSVC puts this flag for enum // type only when it has an immediate function scope. Clang never puts enums // inside DILexicalBlock scopes. Enum types, as generated by clang, are // always in function, class, or file scopes. if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { if (ImmediateScope && isa(ImmediateScope)) CO |= ClassOptions::Scoped; } else { for (const DIScope *Scope = ImmediateScope; Scope != nullptr; Scope = Scope->getScope()) { if (isa(Scope)) { CO |= ClassOptions::Scoped; break; } } } return CO; } void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { switch (Ty->getTag()) { case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_union_type: case dwarf::DW_TAG_enumeration_type: break; default: return; } if (const auto *File = Ty->getFile()) { StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); TypeIndex SIDI = TypeTable.writeLeafType(SIDR); UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); TypeTable.writeLeafType(USLR); } } TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { ClassOptions CO = getCommonClassOptions(Ty); TypeIndex FTI; unsigned EnumeratorCount = 0; if (Ty->isForwardDecl()) { CO |= ClassOptions::ForwardReference; } else { ContinuationRecordBuilder ContinuationBuilder; ContinuationBuilder.begin(ContinuationRecordKind::FieldList); for (const DINode *Element : Ty->getElements()) { // We assume that the frontend provides all members in source declaration // order, which is what MSVC does. if (auto *Enumerator = dyn_cast_or_null(Element)) { // FIXME: Is it correct to always emit these as unsigned here? EnumeratorRecord ER(MemberAccess::Public, APSInt(Enumerator->getValue(), true), Enumerator->getName()); ContinuationBuilder.writeMemberType(ER); EnumeratorCount++; } } FTI = TypeTable.insertRecord(ContinuationBuilder); } std::string FullName = getFullyQualifiedName(Ty); EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), getTypeIndex(Ty->getBaseType())); TypeIndex EnumTI = TypeTable.writeLeafType(ER); addUDTSrcLine(Ty, EnumTI); return EnumTI; } //===----------------------------------------------------------------------===// // ClassInfo //===----------------------------------------------------------------------===// struct llvm::ClassInfo { struct MemberInfo { const DIDerivedType *MemberTypeNode; uint64_t BaseOffset; }; // [MemberInfo] using MemberList = std::vector; using MethodsList = TinyPtrVector; // MethodName -> MethodsList using MethodsMap = MapVector; /// Base classes. std::vector Inheritance; /// Direct members. MemberList Members; // Direct overloaded methods gathered by name. MethodsMap Methods; TypeIndex VShapeTI; std::vector NestedTypes; }; void CodeViewDebug::clear() { assert(CurFn == nullptr); FileIdMap.clear(); FnDebugInfo.clear(); FileToFilepathMap.clear(); LocalUDTs.clear(); GlobalUDTs.clear(); TypeIndices.clear(); CompleteTypeIndices.clear(); ScopeGlobals.clear(); CVGlobalVariableOffsets.clear(); } void CodeViewDebug::collectMemberInfo(ClassInfo &Info, const DIDerivedType *DDTy) { if (!DDTy->getName().empty()) { Info.Members.push_back({DDTy, 0}); // Collect static const data members with values. if ((DDTy->getFlags() & DINode::FlagStaticMember) == DINode::FlagStaticMember) { if (DDTy->getConstant() && (isa(DDTy->getConstant()) || isa(DDTy->getConstant()))) StaticConstMembers.push_back(DDTy); } return; } // An unnamed member may represent a nested struct or union. Attempt to // interpret the unnamed member as a DICompositeType possibly wrapped in // qualifier types. Add all the indirect fields to the current record if that // succeeds, and drop the member if that fails. assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); uint64_t Offset = DDTy->getOffsetInBits(); const DIType *Ty = DDTy->getBaseType(); bool FullyResolved = false; while (!FullyResolved) { switch (Ty->getTag()) { case dwarf::DW_TAG_const_type: case dwarf::DW_TAG_volatile_type: // FIXME: we should apply the qualifier types to the indirect fields // rather than dropping them. Ty = cast(Ty)->getBaseType(); break; default: FullyResolved = true; break; } } const DICompositeType *DCTy = dyn_cast(Ty); if (!DCTy) return; ClassInfo NestedInfo = collectClassInfo(DCTy); for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) Info.Members.push_back( {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); } ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { ClassInfo Info; // Add elements to structure type. DINodeArray Elements = Ty->getElements(); for (auto *Element : Elements) { // We assume that the frontend provides all members in source declaration // order, which is what MSVC does. if (!Element) continue; if (auto *SP = dyn_cast(Element)) { Info.Methods[SP->getRawName()].push_back(SP); } else if (auto *DDTy = dyn_cast(Element)) { if (DDTy->getTag() == dwarf::DW_TAG_member) { collectMemberInfo(Info, DDTy); } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { Info.Inheritance.push_back(DDTy); } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && DDTy->getName() == "__vtbl_ptr_type") { Info.VShapeTI = getTypeIndex(DDTy); } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { Info.NestedTypes.push_back(DDTy); } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { // Ignore friend members. It appears that MSVC emitted info about // friends in the past, but modern versions do not. } } else if (auto *Composite = dyn_cast(Element)) { Info.NestedTypes.push_back(Composite); } // Skip other unrecognized kinds of elements. } return Info; } static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { // This routine is used by lowerTypeClass and lowerTypeUnion to determine // if a complete type should be emitted instead of a forward reference. return Ty->getName().empty() && Ty->getIdentifier().empty() && !Ty->isForwardDecl(); } TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { // Emit the complete type for unnamed structs. C++ classes with methods // which have a circular reference back to the class type are expected to // be named by the front-end and should not be "unnamed". C unnamed // structs should not have circular references. if (shouldAlwaysEmitCompleteClassType(Ty)) { // If this unnamed complete type is already in the process of being defined // then the description of the type is malformed and cannot be emitted // into CodeView correctly so report a fatal error. auto I = CompleteTypeIndices.find(Ty); if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) report_fatal_error("cannot debug circular reference to unnamed type"); return getCompleteTypeIndex(Ty); } // First, construct the forward decl. Don't look into Ty to compute the // forward decl options, since it might not be available in all TUs. TypeRecordKind Kind = getRecordKind(Ty); ClassOptions CO = ClassOptions::ForwardReference | getCommonClassOptions(Ty); std::string FullName = getFullyQualifiedName(Ty); ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()); TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); if (!Ty->isForwardDecl()) DeferredCompleteTypes.push_back(Ty); return FwdDeclTI; } TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { // Construct the field list and complete type record. TypeRecordKind Kind = getRecordKind(Ty); ClassOptions CO = getCommonClassOptions(Ty); TypeIndex FieldTI; TypeIndex VShapeTI; unsigned FieldCount; bool ContainsNestedClass; std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = lowerRecordFieldList(Ty); if (ContainsNestedClass) CO |= ClassOptions::ContainsNestedClass; // MSVC appears to set this flag by searching any destructor or method with // FunctionOptions::Constructor among the emitted members. Clang AST has all // the members, however special member functions are not yet emitted into // debug information. For now checking a class's non-triviality seems enough. // FIXME: not true for a nested unnamed struct. if (isNonTrivial(Ty)) CO |= ClassOptions::HasConstructorOrDestructor; std::string FullName = getFullyQualifiedName(Ty); uint64_t SizeInBytes = Ty->getSizeInBits() / 8; ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()); TypeIndex ClassTI = TypeTable.writeLeafType(CR); addUDTSrcLine(Ty, ClassTI); addToUDTs(Ty); return ClassTI; } TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { // Emit the complete type for unnamed unions. if (shouldAlwaysEmitCompleteClassType(Ty)) return getCompleteTypeIndex(Ty); ClassOptions CO = ClassOptions::ForwardReference | getCommonClassOptions(Ty); std::string FullName = getFullyQualifiedName(Ty); UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); if (!Ty->isForwardDecl()) DeferredCompleteTypes.push_back(Ty); return FwdDeclTI; } TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); TypeIndex FieldTI; unsigned FieldCount; bool ContainsNestedClass; std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = lowerRecordFieldList(Ty); if (ContainsNestedClass) CO |= ClassOptions::ContainsNestedClass; uint64_t SizeInBytes = Ty->getSizeInBits() / 8; std::string FullName = getFullyQualifiedName(Ty); UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, Ty->getIdentifier()); TypeIndex UnionTI = TypeTable.writeLeafType(UR); addUDTSrcLine(Ty, UnionTI); addToUDTs(Ty); return UnionTI; } std::tuple CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { // Manually count members. MSVC appears to count everything that generates a // field list record. Each individual overload in a method overload group // contributes to this count, even though the overload group is a single field // list record. unsigned MemberCount = 0; ClassInfo Info = collectClassInfo(Ty); ContinuationRecordBuilder ContinuationBuilder; ContinuationBuilder.begin(ContinuationRecordKind::FieldList); // Create base classes. for (const DIDerivedType *I : Info.Inheritance) { if (I->getFlags() & DINode::FlagVirtual) { // Virtual base. unsigned VBPtrOffset = I->getVBPtrOffset(); // FIXME: Despite the accessor name, the offset is really in bytes. unsigned VBTableIndex = I->getOffsetInBits() / 4; auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase ? TypeRecordKind::IndirectVirtualBaseClass : TypeRecordKind::VirtualBaseClass; VirtualBaseClassRecord VBCR( RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, VBTableIndex); ContinuationBuilder.writeMemberType(VBCR); MemberCount++; } else { assert(I->getOffsetInBits() % 8 == 0 && "bases must be on byte boundaries"); BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8); ContinuationBuilder.writeMemberType(BCR); MemberCount++; } } // Create members. for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { const DIDerivedType *Member = MemberInfo.MemberTypeNode; TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); StringRef MemberName = Member->getName(); MemberAccess Access = translateAccessFlags(Ty->getTag(), Member->getFlags()); if (Member->isStaticMember()) { StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); ContinuationBuilder.writeMemberType(SDMR); MemberCount++; continue; } // Virtual function pointer member. if ((Member->getFlags() & DINode::FlagArtificial) && Member->getName().startswith("_vptr$")) { VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); ContinuationBuilder.writeMemberType(VFPR); MemberCount++; continue; } // Data member. uint64_t MemberOffsetInBits = Member->getOffsetInBits() + MemberInfo.BaseOffset; if (Member->isBitField()) { uint64_t StartBitOffset = MemberOffsetInBits; if (const auto *CI = dyn_cast_or_null(Member->getStorageOffsetInBits())) { MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; } StartBitOffset -= MemberOffsetInBits; BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), StartBitOffset); MemberBaseType = TypeTable.writeLeafType(BFR); } uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, MemberName); ContinuationBuilder.writeMemberType(DMR); MemberCount++; } // Create methods for (auto &MethodItr : Info.Methods) { StringRef Name = MethodItr.first->getString(); std::vector Methods; for (const DISubprogram *SP : MethodItr.second) { TypeIndex MethodType = getMemberFunctionType(SP, Ty); bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; unsigned VFTableOffset = -1; if (Introduced) VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); Methods.push_back(OneMethodRecord( MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), translateMethodKindFlags(SP, Introduced), translateMethodOptionFlags(SP), VFTableOffset, Name)); MemberCount++; } assert(!Methods.empty() && "Empty methods map entry"); if (Methods.size() == 1) ContinuationBuilder.writeMemberType(Methods[0]); else { // FIXME: Make this use its own ContinuationBuilder so that // MethodOverloadList can be split correctly. MethodOverloadListRecord MOLR(Methods); TypeIndex MethodList = TypeTable.writeLeafType(MOLR); OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); ContinuationBuilder.writeMemberType(OMR); } } // Create nested classes. for (const DIType *Nested : Info.NestedTypes) { NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); ContinuationBuilder.writeMemberType(R); MemberCount++; } TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, !Info.NestedTypes.empty()); } TypeIndex CodeViewDebug::getVBPTypeIndex() { if (!VBPType.getIndex()) { // Make a 'const int *' type. ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 : PointerKind::Near32; PointerMode PM = PointerMode::Pointer; PointerOptions PO = PointerOptions::None; PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); VBPType = TypeTable.writeLeafType(PR); } return VBPType; } TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { // The null DIType is the void type. Don't try to hash it. if (!Ty) return TypeIndex::Void(); // Check if we've already translated this type. Don't try to do a // get-or-create style insertion that caches the hash lookup across the // lowerType call. It will update the TypeIndices map. auto I = TypeIndices.find({Ty, ClassTy}); if (I != TypeIndices.end()) return I->second; TypeLoweringScope S(*this); TypeIndex TI = lowerType(Ty, ClassTy); return recordTypeIndexForDINode(Ty, TI, ClassTy); } codeview::TypeIndex CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, const DISubroutineType *SubroutineTy) { assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && "this type must be a pointer type"); PointerOptions Options = PointerOptions::None; if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) Options = PointerOptions::LValueRefThisPointer; else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) Options = PointerOptions::RValueRefThisPointer; // Check if we've already translated this type. If there is no ref qualifier // on the function then we look up this pointer type with no associated class // so that the TypeIndex for the this pointer can be shared with the type // index for other pointers to this class type. If there is a ref qualifier // then we lookup the pointer using the subroutine as the parent type. auto I = TypeIndices.find({PtrTy, SubroutineTy}); if (I != TypeIndices.end()) return I->second; TypeLoweringScope S(*this); TypeIndex TI = lowerTypePointer(PtrTy, Options); return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); } TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { PointerRecord PR(getTypeIndex(Ty), getPointerSizeInBytes() == 8 ? PointerKind::Near64 : PointerKind::Near32, PointerMode::LValueReference, PointerOptions::None, Ty->getSizeInBits() / 8); return TypeTable.writeLeafType(PR); } TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { // The null DIType is the void type. Don't try to hash it. if (!Ty) return TypeIndex::Void(); // Look through typedefs when getting the complete type index. Call // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are // emitted only once. if (Ty->getTag() == dwarf::DW_TAG_typedef) (void)getTypeIndex(Ty); while (Ty->getTag() == dwarf::DW_TAG_typedef) Ty = cast(Ty)->getBaseType(); // If this is a non-record type, the complete type index is the same as the // normal type index. Just call getTypeIndex. switch (Ty->getTag()) { case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_union_type: break; default: return getTypeIndex(Ty); } const auto *CTy = cast(Ty); TypeLoweringScope S(*this); // Make sure the forward declaration is emitted first. It's unclear if this // is necessary, but MSVC does it, and we should follow suit until we can show // otherwise. // We only emit a forward declaration for named types. if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { TypeIndex FwdDeclTI = getTypeIndex(CTy); // Just use the forward decl if we don't have complete type info. This // might happen if the frontend is using modules and expects the complete // definition to be emitted elsewhere. if (CTy->isForwardDecl()) return FwdDeclTI; } // Check if we've already translated the complete record type. // Insert the type with a null TypeIndex to signify that the type is currently // being lowered. auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); if (!InsertResult.second) return InsertResult.first->second; TypeIndex TI; switch (CTy->getTag()) { case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_structure_type: TI = lowerCompleteTypeClass(CTy); break; case dwarf::DW_TAG_union_type: TI = lowerCompleteTypeUnion(CTy); break; default: llvm_unreachable("not a record"); } // Update the type index associated with this CompositeType. This cannot // use the 'InsertResult' iterator above because it is potentially // invalidated by map insertions which can occur while lowering the class // type above. CompleteTypeIndices[CTy] = TI; return TI; } /// Emit all the deferred complete record types. Try to do this in FIFO order, /// and do this until fixpoint, as each complete record type typically /// references /// many other record types. void CodeViewDebug::emitDeferredCompleteTypes() { SmallVector TypesToEmit; while (!DeferredCompleteTypes.empty()) { std::swap(DeferredCompleteTypes, TypesToEmit); for (const DICompositeType *RecordTy : TypesToEmit) getCompleteTypeIndex(RecordTy); TypesToEmit.clear(); } } void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, ArrayRef Locals) { // Get the sorted list of parameters and emit them first. SmallVector Params; for (const LocalVariable &L : Locals) if (L.DIVar->isParameter()) Params.push_back(&L); llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { return L->DIVar->getArg() < R->DIVar->getArg(); }); for (const LocalVariable *L : Params) emitLocalVariable(FI, *L); // Next emit all non-parameters in the order that we found them. for (const LocalVariable &L : Locals) { if (!L.DIVar->isParameter()) { if (L.ConstantValue) { // If ConstantValue is set we will emit it as a S_CONSTANT instead of a // S_LOCAL in order to be able to represent it at all. const DIType *Ty = L.DIVar->getType(); APSInt Val(*L.ConstantValue); emitConstantSymbolRecord(Ty, Val, std::string(L.DIVar->getName())); } else { emitLocalVariable(FI, L); } } } } void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, const LocalVariable &Var) { // LocalSym record, see SymbolRecord.h for more info. MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); LocalSymFlags Flags = LocalSymFlags::None; if (Var.DIVar->isParameter()) Flags |= LocalSymFlags::IsParameter; if (Var.DefRanges.empty()) Flags |= LocalSymFlags::IsOptimizedOut; OS.AddComment("TypeIndex"); TypeIndex TI = Var.UseReferenceType ? getTypeIndexForReferenceTo(Var.DIVar->getType()) : getCompleteTypeIndex(Var.DIVar->getType()); OS.emitInt32(TI.getIndex()); OS.AddComment("Flags"); OS.emitInt16(static_cast(Flags)); // Truncate the name so we won't overflow the record length field. emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); endSymbolRecord(LocalEnd); // Calculate the on disk prefix of the appropriate def range record. The // records and on disk formats are described in SymbolRecords.h. BytePrefix // should be big enough to hold all forms without memory allocation. SmallString<20> BytePrefix; for (const auto &Pair : Var.DefRanges) { LocalVarDef DefRange = Pair.first; const auto &Ranges = Pair.second; BytePrefix.clear(); if (DefRange.InMemory) { int Offset = DefRange.DataOffset; unsigned Reg = DefRange.CVRegister; // 32-bit x86 call sequences often use PUSH instructions, which disrupt // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, // instead. In frames without stack realignment, $T0 will be the CFA. if (RegisterId(Reg) == RegisterId::ESP) { Reg = unsigned(RegisterId::VFRAME); Offset += FI.OffsetAdjustment; } // If we can use the chosen frame pointer for the frame and this isn't a // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. // Otherwise, use S_DEFRANGE_REGISTER_REL. EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && (bool(Flags & LocalSymFlags::IsParameter) ? (EncFP == FI.EncodedParamFramePtrReg) : (EncFP == FI.EncodedLocalFramePtrReg))) { DefRangeFramePointerRelHeader DRHdr; DRHdr.Offset = Offset; OS.emitCVDefRangeDirective(Ranges, DRHdr); } else { uint16_t RegRelFlags = 0; if (DefRange.IsSubfield) { RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | (DefRange.StructOffset << DefRangeRegisterRelSym::OffsetInParentShift); } DefRangeRegisterRelHeader DRHdr; DRHdr.Register = Reg; DRHdr.Flags = RegRelFlags; DRHdr.BasePointerOffset = Offset; OS.emitCVDefRangeDirective(Ranges, DRHdr); } } else { assert(DefRange.DataOffset == 0 && "unexpected offset into register"); if (DefRange.IsSubfield) { DefRangeSubfieldRegisterHeader DRHdr; DRHdr.Register = DefRange.CVRegister; DRHdr.MayHaveNoName = 0; DRHdr.OffsetInParent = DefRange.StructOffset; OS.emitCVDefRangeDirective(Ranges, DRHdr); } else { DefRangeRegisterHeader DRHdr; DRHdr.Register = DefRange.CVRegister; DRHdr.MayHaveNoName = 0; OS.emitCVDefRangeDirective(Ranges, DRHdr); } } } } void CodeViewDebug::emitLexicalBlockList(ArrayRef Blocks, const FunctionInfo& FI) { for (LexicalBlock *Block : Blocks) emitLexicalBlock(*Block, FI); } /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a /// lexical block scope. void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, const FunctionInfo& FI) { MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); OS.AddComment("PtrParent"); OS.emitInt32(0); // PtrParent OS.AddComment("PtrEnd"); OS.emitInt32(0); // PtrEnd OS.AddComment("Code size"); OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size OS.AddComment("Function section relative address"); OS.emitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset OS.AddComment("Function section index"); OS.emitCOFFSectionIndex(FI.Begin); // Func Symbol OS.AddComment("Lexical block name"); emitNullTerminatedSymbolName(OS, Block.Name); // Name endSymbolRecord(RecordEnd); // Emit variables local to this lexical block. emitLocalVariableList(FI, Block.Locals); emitGlobalVariableList(Block.Globals); // Emit lexical blocks contained within this block. emitLexicalBlockList(Block.Children, FI); // Close the lexical block scope. emitEndSymbolRecord(SymbolKind::S_END); } /// Convenience routine for collecting lexical block information for a list /// of lexical scopes. void CodeViewDebug::collectLexicalBlockInfo( SmallVectorImpl &Scopes, SmallVectorImpl &Blocks, SmallVectorImpl &Locals, SmallVectorImpl &Globals) { for (LexicalScope *Scope : Scopes) collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); } /// Populate the lexical blocks and local variable lists of the parent with /// information about the specified lexical scope. void CodeViewDebug::collectLexicalBlockInfo( LexicalScope &Scope, SmallVectorImpl &ParentBlocks, SmallVectorImpl &ParentLocals, SmallVectorImpl &ParentGlobals) { if (Scope.isAbstractScope()) return; // Gather information about the lexical scope including local variables, // global variables, and address ranges. bool IgnoreScope = false; auto LI = ScopeVariables.find(&Scope); SmallVectorImpl *Locals = LI != ScopeVariables.end() ? &LI->second : nullptr; auto GI = ScopeGlobals.find(Scope.getScopeNode()); SmallVectorImpl *Globals = GI != ScopeGlobals.end() ? GI->second.get() : nullptr; const DILexicalBlock *DILB = dyn_cast(Scope.getScopeNode()); const SmallVectorImpl &Ranges = Scope.getRanges(); // Ignore lexical scopes which do not contain variables. if (!Locals && !Globals) IgnoreScope = true; // Ignore lexical scopes which are not lexical blocks. if (!DILB) IgnoreScope = true; // Ignore scopes which have too many address ranges to represent in the // current CodeView format or do not have a valid address range. // // For lexical scopes with multiple address ranges you may be tempted to // construct a single range covering every instruction where the block is // live and everything in between. Unfortunately, Visual Studio only // displays variables from the first matching lexical block scope. If the // first lexical block contains exception handling code or cold code which // is moved to the bottom of the routine creating a single range covering // nearly the entire routine, then it will hide all other lexical blocks // and the variables they contain. if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) IgnoreScope = true; if (IgnoreScope) { // This scope can be safely ignored and eliminating it will reduce the // size of the debug information. Be sure to collect any variable and scope // information from the this scope or any of its children and collapse them // into the parent scope. if (Locals) ParentLocals.append(Locals->begin(), Locals->end()); if (Globals) ParentGlobals.append(Globals->begin(), Globals->end()); collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals, ParentGlobals); return; } // Create a new CodeView lexical block for this lexical scope. If we've // seen this DILexicalBlock before then the scope tree is malformed and // we can handle this gracefully by not processing it a second time. auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); if (!BlockInsertion.second) return; // Create a lexical block containing the variables and collect the the // lexical block information for the children. const InsnRange &Range = Ranges.front(); assert(Range.first && Range.second); LexicalBlock &Block = BlockInsertion.first->second; Block.Begin = getLabelBeforeInsn(Range.first); Block.End = getLabelAfterInsn(Range.second); assert(Block.Begin && "missing label for scope begin"); assert(Block.End && "missing label for scope end"); Block.Name = DILB->getName(); if (Locals) Block.Locals = std::move(*Locals); if (Globals) Block.Globals = std::move(*Globals); ParentBlocks.push_back(&Block); collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals, Block.Globals); } void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { const Function &GV = MF->getFunction(); assert(FnDebugInfo.count(&GV)); assert(CurFn == FnDebugInfo[&GV].get()); collectVariableInfo(GV.getSubprogram()); // Build the lexical block structure to emit for this routine. if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals, CurFn->Globals); // Clear the scope and variable information from the map which will not be // valid after we have finished processing this routine. This also prepares // the map for the subsequent routine. ScopeVariables.clear(); // Don't emit anything if we don't have any line tables. // Thunks are compiler-generated and probably won't have source correlation. if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { FnDebugInfo.erase(&GV); CurFn = nullptr; return; } // Find heap alloc sites and add to list. for (const auto &MBB : *MF) { for (const auto &MI : MBB) { if (MDNode *MD = MI.getHeapAllocMarker()) { CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), getLabelAfterInsn(&MI), dyn_cast(MD))); } } } CurFn->Annotations = MF->getCodeViewAnnotations(); CurFn->End = Asm->getFunctionEnd(); CurFn = nullptr; } // Usable locations are valid with non-zero line numbers. A line number of zero // corresponds to optimized code that doesn't have a distinct source location. // In this case, we try to use the previous or next source location depending on // the context. static bool isUsableDebugLoc(DebugLoc DL) { return DL && DL.getLine() != 0; } void CodeViewDebug::beginInstruction(const MachineInstr *MI) { DebugHandlerBase::beginInstruction(MI); // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. if (!Asm || !CurFn || MI->isDebugInstr() || MI->getFlag(MachineInstr::FrameSetup)) return; // If the first instruction of a new MBB has no location, find the first // instruction with a location and use that. DebugLoc DL = MI->getDebugLoc(); if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { for (const auto &NextMI : *MI->getParent()) { if (NextMI.isDebugInstr()) continue; DL = NextMI.getDebugLoc(); if (isUsableDebugLoc(DL)) break; } // FIXME: Handle the case where the BB has no valid locations. This would // probably require doing a real dataflow analysis. } PrevInstBB = MI->getParent(); // If we still don't have a debug location, don't record a location. if (!isUsableDebugLoc(DL)) return; maybeRecordLocation(DL, Asm->MF); } MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), *EndLabel = MMI->getContext().createTempSymbol(); OS.emitInt32(unsigned(Kind)); OS.AddComment("Subsection size"); OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); OS.emitLabel(BeginLabel); return EndLabel; } void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { OS.emitLabel(EndLabel); // Every subsection must be aligned to a 4-byte boundary. OS.emitValueToAlignment(Align(4)); } static StringRef getSymbolName(SymbolKind SymKind) { for (const EnumEntry &EE : getSymbolTypeNames()) if (EE.Value == SymKind) return EE.Name; return ""; } MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), *EndLabel = MMI->getContext().createTempSymbol(); OS.AddComment("Record length"); OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); OS.emitLabel(BeginLabel); if (OS.isVerboseAsm()) OS.AddComment("Record kind: " + getSymbolName(SymKind)); OS.emitInt16(unsigned(SymKind)); return EndLabel; } void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid // an extra copy of every symbol record in LLD. This increases object file // size by less than 1% in the clang build, and is compatible with the Visual // C++ linker. OS.emitValueToAlignment(Align(4)); OS.emitLabel(SymEnd); } void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { OS.AddComment("Record length"); OS.emitInt16(2); if (OS.isVerboseAsm()) OS.AddComment("Record kind: " + getSymbolName(EndKind)); OS.emitInt16(uint16_t(EndKind)); // Record Kind } void CodeViewDebug::emitDebugInfoForUDTs( const std::vector> &UDTs) { #ifndef NDEBUG size_t OriginalSize = UDTs.size(); #endif for (const auto &UDT : UDTs) { const DIType *T = UDT.second; assert(shouldEmitUdt(T)); MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); OS.AddComment("Type"); OS.emitInt32(getCompleteTypeIndex(T).getIndex()); assert(OriginalSize == UDTs.size() && "getCompleteTypeIndex found new UDTs!"); emitNullTerminatedSymbolName(OS, UDT.first); endSymbolRecord(UDTRecordEnd); } } void CodeViewDebug::collectGlobalVariableInfo() { DenseMap GlobalMap; for (const GlobalVariable &GV : MMI->getModule()->globals()) { SmallVector GVEs; GV.getDebugInfo(GVEs); for (const auto *GVE : GVEs) GlobalMap[GVE] = &GV; } NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); for (const MDNode *Node : CUs->operands()) { const auto *CU = cast(Node); for (const auto *GVE : CU->getGlobalVariables()) { const DIGlobalVariable *DIGV = GVE->getVariable(); const DIExpression *DIE = GVE->getExpression(); // Don't emit string literals in CodeView, as the only useful parts are // generally the filename and line number, which isn't possible to output // in CodeView. String literals should be the only unnamed GlobalVariable // with debug info. if (DIGV->getName().empty()) continue; if ((DIE->getNumElements() == 2) && (DIE->getElement(0) == dwarf::DW_OP_plus_uconst)) // Record the constant offset for the variable. // // A Fortran common block uses this idiom to encode the offset // of a variable from the common block's starting address. CVGlobalVariableOffsets.insert( std::make_pair(DIGV, DIE->getElement(1))); // Emit constant global variables in a global symbol section. if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { CVGlobalVariable CVGV = {DIGV, DIE}; GlobalVariables.emplace_back(std::move(CVGV)); } const auto *GV = GlobalMap.lookup(GVE); if (!GV || GV->isDeclarationForLinker()) continue; DIScope *Scope = DIGV->getScope(); SmallVector *VariableList; if (Scope && isa(Scope)) { // Locate a global variable list for this scope, creating one if // necessary. auto Insertion = ScopeGlobals.insert( {Scope, std::unique_ptr()}); if (Insertion.second) Insertion.first->second = std::make_unique(); VariableList = Insertion.first->second.get(); } else if (GV->hasComdat()) // Emit this global variable into a COMDAT section. VariableList = &ComdatVariables; else // Emit this global variable in a single global symbol section. VariableList = &GlobalVariables; CVGlobalVariable CVGV = {DIGV, GV}; VariableList->emplace_back(std::move(CVGV)); } } } void CodeViewDebug::collectDebugInfoForGlobals() { for (const CVGlobalVariable &CVGV : GlobalVariables) { const DIGlobalVariable *DIGV = CVGV.DIGV; const DIScope *Scope = DIGV->getScope(); getCompleteTypeIndex(DIGV->getType()); getFullyQualifiedName(Scope, DIGV->getName()); } for (const CVGlobalVariable &CVGV : ComdatVariables) { const DIGlobalVariable *DIGV = CVGV.DIGV; const DIScope *Scope = DIGV->getScope(); getCompleteTypeIndex(DIGV->getType()); getFullyQualifiedName(Scope, DIGV->getName()); } } void CodeViewDebug::emitDebugInfoForGlobals() { // First, emit all globals that are not in a comdat in a single symbol // substream. MSVC doesn't like it if the substream is empty, so only open // it if we have at least one global to emit. switchToDebugSectionForSymbol(nullptr); if (!GlobalVariables.empty() || !StaticConstMembers.empty()) { OS.AddComment("Symbol subsection for globals"); MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); emitGlobalVariableList(GlobalVariables); emitStaticConstMemberList(); endCVSubsection(EndLabel); } // Second, emit each global that is in a comdat into its own .debug$S // section along with its own symbol substream. for (const CVGlobalVariable &CVGV : ComdatVariables) { const GlobalVariable *GV = cast(CVGV.GVInfo); MCSymbol *GVSym = Asm->getSymbol(GV); OS.AddComment("Symbol subsection for " + Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); switchToDebugSectionForSymbol(GVSym); MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. emitDebugInfoForGlobal(CVGV); endCVSubsection(EndLabel); } } void CodeViewDebug::emitDebugInfoForRetainedTypes() { NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); for (const MDNode *Node : CUs->operands()) { for (auto *Ty : cast(Node)->getRetainedTypes()) { if (DIType *RT = dyn_cast(Ty)) { getTypeIndex(RT); // FIXME: Add to global/local DTU list. } } } } // Emit each global variable in the specified array. void CodeViewDebug::emitGlobalVariableList(ArrayRef Globals) { for (const CVGlobalVariable &CVGV : Globals) { // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. emitDebugInfoForGlobal(CVGV); } } void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value, const std::string &QualifiedName) { MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); OS.AddComment("Type"); OS.emitInt32(getTypeIndex(DTy).getIndex()); OS.AddComment("Value"); // Encoded integers shouldn't need more than 10 bytes. uint8_t Data[10]; BinaryStreamWriter Writer(Data, llvm::support::endianness::little); CodeViewRecordIO IO(Writer); cantFail(IO.mapEncodedInteger(Value)); StringRef SRef((char *)Data, Writer.getOffset()); OS.emitBinaryData(SRef); OS.AddComment("Name"); emitNullTerminatedSymbolName(OS, QualifiedName); endSymbolRecord(SConstantEnd); } void CodeViewDebug::emitStaticConstMemberList() { for (const DIDerivedType *DTy : StaticConstMembers) { const DIScope *Scope = DTy->getScope(); APSInt Value; if (const ConstantInt *CI = dyn_cast_or_null(DTy->getConstant())) Value = APSInt(CI->getValue(), DebugHandlerBase::isUnsignedDIType(DTy->getBaseType())); else if (const ConstantFP *CFP = dyn_cast_or_null(DTy->getConstant())) Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true); else llvm_unreachable("cannot emit a constant without a value"); emitConstantSymbolRecord(DTy->getBaseType(), Value, getFullyQualifiedName(Scope, DTy->getName())); } } static bool isFloatDIType(const DIType *Ty) { if (isa(Ty)) return false; if (auto *DTy = dyn_cast(Ty)) { dwarf::Tag T = (dwarf::Tag)Ty->getTag(); if (T == dwarf::DW_TAG_pointer_type || T == dwarf::DW_TAG_ptr_to_member_type || T == dwarf::DW_TAG_reference_type || T == dwarf::DW_TAG_rvalue_reference_type) return false; assert(DTy->getBaseType() && "Expected valid base type"); return isFloatDIType(DTy->getBaseType()); } auto *BTy = cast(Ty); return (BTy->getEncoding() == dwarf::DW_ATE_float); } void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { const DIGlobalVariable *DIGV = CVGV.DIGV; const DIScope *Scope = DIGV->getScope(); // For static data members, get the scope from the declaration. if (const auto *MemberDecl = dyn_cast_or_null( DIGV->getRawStaticDataMemberDeclaration())) Scope = MemberDecl->getScope(); // For static local variables and Fortran, the scoping portion is elided // in its name so that we can reference the variable in the command line // of the VS debugger. std::string QualifiedName = (moduleIsInFortran() || (Scope && isa(Scope))) ? std::string(DIGV->getName()) : getFullyQualifiedName(Scope, DIGV->getName()); if (const GlobalVariable *GV = dyn_cast_if_present(CVGV.GVInfo)) { // DataSym record, see SymbolRecord.h for more info. Thread local data // happens to have the same format as global data. MCSymbol *GVSym = Asm->getSymbol(GV); SymbolKind DataSym = GV->isThreadLocal() ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 : SymbolKind::S_GTHREAD32) : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 : SymbolKind::S_GDATA32); MCSymbol *DataEnd = beginSymbolRecord(DataSym); OS.AddComment("Type"); OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex()); OS.AddComment("DataOffset"); uint64_t Offset = 0; if (CVGlobalVariableOffsets.contains(DIGV)) // Use the offset seen while collecting info on globals. Offset = CVGlobalVariableOffsets[DIGV]; OS.emitCOFFSecRel32(GVSym, Offset); OS.AddComment("Segment"); OS.emitCOFFSectionIndex(GVSym); OS.AddComment("Name"); const unsigned LengthOfDataRecord = 12; emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord); endSymbolRecord(DataEnd); } else { const DIExpression *DIE = cast(CVGV.GVInfo); assert(DIE->isConstant() && "Global constant variables must contain a constant expression."); // Use unsigned for floats. bool isUnsigned = isFloatDIType(DIGV->getType()) ? true : DebugHandlerBase::isUnsignedDIType(DIGV->getType()); APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned); emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName); } }