//===-- LLParser.cpp - Parser Class ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the parser class for .ll files. // //===----------------------------------------------------------------------===// #include "llvm/AsmParser/LLParser.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/AsmParser/LLToken.h" #include "llvm/AsmParser/SlotMapping.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/IR/Argument.h" #include "llvm/IR/AutoUpgrade.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Comdat.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalIFunc.h" #include "llvm/IR/GlobalObject.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/ModRef.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include using namespace llvm; static cl::opt AllowIncompleteIR( "allow-incomplete-ir", cl::init(false), cl::Hidden, cl::desc( "Allow incomplete IR on a best effort basis (references to unknown " "metadata will be dropped)")); static std::string getTypeString(Type *T) { std::string Result; raw_string_ostream Tmp(Result); Tmp << *T; return Tmp.str(); } /// Run: module ::= toplevelentity* bool LLParser::Run(bool UpgradeDebugInfo, DataLayoutCallbackTy DataLayoutCallback) { // Prime the lexer. Lex.Lex(); if (Context.shouldDiscardValueNames()) return error( Lex.getLoc(), "Can't read textual IR with a Context that discards named Values"); if (M) { if (parseTargetDefinitions(DataLayoutCallback)) return true; } return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || validateEndOfIndex(); } bool LLParser::parseStandaloneConstantValue(Constant *&C, const SlotMapping *Slots) { restoreParsingState(Slots); Lex.Lex(); Type *Ty = nullptr; if (parseType(Ty) || parseConstantValue(Ty, C)) return true; if (Lex.getKind() != lltok::Eof) return error(Lex.getLoc(), "expected end of string"); return false; } bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, const SlotMapping *Slots) { restoreParsingState(Slots); Lex.Lex(); Read = 0; SMLoc Start = Lex.getLoc(); Ty = nullptr; if (parseType(Ty)) return true; SMLoc End = Lex.getLoc(); Read = End.getPointer() - Start.getPointer(); return false; } void LLParser::restoreParsingState(const SlotMapping *Slots) { if (!Slots) return; NumberedVals = Slots->GlobalValues; NumberedMetadata = Slots->MetadataNodes; for (const auto &I : Slots->NamedTypes) NamedTypes.insert( std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); for (const auto &I : Slots->Types) NumberedTypes.insert( std::make_pair(I.first, std::make_pair(I.second, LocTy()))); } static void dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst *II) { // White-list intrinsics that are safe to drop. if (!isa(II) && II->getIntrinsicID() != Intrinsic::experimental_noalias_scope_decl) return; SmallVector MVs; for (Value *V : II->args()) if (auto *MV = dyn_cast(V)) if (auto *MD = dyn_cast(MV->getMetadata())) if (MD->isTemporary()) MVs.push_back(MV); if (!MVs.empty()) { assert(II->use_empty() && "Cannot have uses"); II->eraseFromParent(); // Also remove no longer used MetadataAsValue wrappers. for (MetadataAsValue *MV : MVs) if (MV->use_empty()) delete MV; } } void LLParser::dropUnknownMetadataReferences() { auto Pred = [](unsigned MDKind, MDNode *Node) { return Node->isTemporary(); }; for (Function &F : *M) { F.eraseMetadataIf(Pred); for (Instruction &I : make_early_inc_range(instructions(F))) { I.eraseMetadataIf(Pred); if (auto *II = dyn_cast(&I)) dropIntrinsicWithUnknownMetadataArgument(II); } } for (GlobalVariable &GV : M->globals()) GV.eraseMetadataIf(Pred); for (const auto &[ID, Info] : make_early_inc_range(ForwardRefMDNodes)) { // Check whether there is only a single use left, which would be in our // own NumberedMetadata. if (Info.first->getNumTemporaryUses() == 1) { NumberedMetadata.erase(ID); ForwardRefMDNodes.erase(ID); } } } /// validateEndOfModule - Do final validity and basic correctness checks at the /// end of the module. bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { if (!M) return false; // Handle any function attribute group forward references. for (const auto &RAG : ForwardRefAttrGroups) { Value *V = RAG.first; const std::vector &Attrs = RAG.second; AttrBuilder B(Context); for (const auto &Attr : Attrs) { auto R = NumberedAttrBuilders.find(Attr); if (R != NumberedAttrBuilders.end()) B.merge(R->second); } if (Function *Fn = dyn_cast(V)) { AttributeList AS = Fn->getAttributes(); AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); AS = AS.removeFnAttributes(Context); FnAttrs.merge(B); // If the alignment was parsed as an attribute, move to the alignment // field. if (MaybeAlign A = FnAttrs.getAlignment()) { Fn->setAlignment(*A); FnAttrs.removeAttribute(Attribute::Alignment); } AS = AS.addFnAttributes(Context, FnAttrs); Fn->setAttributes(AS); } else if (CallInst *CI = dyn_cast(V)) { AttributeList AS = CI->getAttributes(); AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); AS = AS.removeFnAttributes(Context); FnAttrs.merge(B); AS = AS.addFnAttributes(Context, FnAttrs); CI->setAttributes(AS); } else if (InvokeInst *II = dyn_cast(V)) { AttributeList AS = II->getAttributes(); AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); AS = AS.removeFnAttributes(Context); FnAttrs.merge(B); AS = AS.addFnAttributes(Context, FnAttrs); II->setAttributes(AS); } else if (CallBrInst *CBI = dyn_cast(V)) { AttributeList AS = CBI->getAttributes(); AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); AS = AS.removeFnAttributes(Context); FnAttrs.merge(B); AS = AS.addFnAttributes(Context, FnAttrs); CBI->setAttributes(AS); } else if (auto *GV = dyn_cast(V)) { AttrBuilder Attrs(M->getContext(), GV->getAttributes()); Attrs.merge(B); GV->setAttributes(AttributeSet::get(Context,Attrs)); } else { llvm_unreachable("invalid object with forward attribute group reference"); } } // If there are entries in ForwardRefBlockAddresses at this point, the // function was never defined. if (!ForwardRefBlockAddresses.empty()) return error(ForwardRefBlockAddresses.begin()->first.Loc, "expected function name in blockaddress"); auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef, GlobalValue *FwdRef) { GlobalValue *GV = nullptr; if (GVRef.Kind == ValID::t_GlobalName) { GV = M->getNamedValue(GVRef.StrVal); } else if (GVRef.UIntVal < NumberedVals.size()) { GV = dyn_cast(NumberedVals[GVRef.UIntVal]); } if (!GV) return error(GVRef.Loc, "unknown function '" + GVRef.StrVal + "' referenced by dso_local_equivalent"); if (!GV->getValueType()->isFunctionTy()) return error(GVRef.Loc, "expected a function, alias to function, or ifunc " "in dso_local_equivalent"); auto *Equiv = DSOLocalEquivalent::get(GV); FwdRef->replaceAllUsesWith(Equiv); FwdRef->eraseFromParent(); return false; }; // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this // point, they are references after the function was defined. Resolve those // now. for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) { if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) return true; } for (auto &Iter : ForwardRefDSOLocalEquivalentNames) { if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) return true; } ForwardRefDSOLocalEquivalentIDs.clear(); ForwardRefDSOLocalEquivalentNames.clear(); for (const auto &NT : NumberedTypes) if (NT.second.second.isValid()) return error(NT.second.second, "use of undefined type '%" + Twine(NT.first) + "'"); for (StringMap >::iterator I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) if (I->second.second.isValid()) return error(I->second.second, "use of undefined type named '" + I->getKey() + "'"); if (!ForwardRefComdats.empty()) return error(ForwardRefComdats.begin()->second, "use of undefined comdat '$" + ForwardRefComdats.begin()->first + "'"); // Automatically create declarations for intrinsics. Intrinsics can only be // called directly, so the call function type directly determines the // declaration function type. for (const auto &[Name, Info] : make_early_inc_range(ForwardRefVals)) { if (!StringRef(Name).starts_with("llvm.")) continue; // Don't do anything if the intrinsic is called with different function // types. This would result in a verifier error anyway. auto GetCommonFunctionType = [](Value *V) -> FunctionType * { FunctionType *FTy = nullptr; for (User *U : V->users()) { auto *CB = dyn_cast(U); if (!CB || (FTy && FTy != CB->getFunctionType())) return nullptr; FTy = CB->getFunctionType(); } return FTy; }; if (FunctionType *FTy = GetCommonFunctionType(Info.first)) { Function *Fn = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M); Info.first->replaceAllUsesWith(Fn); Info.first->eraseFromParent(); ForwardRefVals.erase(Name); } } if (!ForwardRefVals.empty()) return error(ForwardRefVals.begin()->second.second, "use of undefined value '@" + ForwardRefVals.begin()->first + "'"); if (!ForwardRefValIDs.empty()) return error(ForwardRefValIDs.begin()->second.second, "use of undefined value '@" + Twine(ForwardRefValIDs.begin()->first) + "'"); if (AllowIncompleteIR && !ForwardRefMDNodes.empty()) dropUnknownMetadataReferences(); if (!ForwardRefMDNodes.empty()) return error(ForwardRefMDNodes.begin()->second.second, "use of undefined metadata '!" + Twine(ForwardRefMDNodes.begin()->first) + "'"); // Resolve metadata cycles. for (auto &N : NumberedMetadata) { if (N.second && !N.second->isResolved()) N.second->resolveCycles(); } for (auto *Inst : InstsWithTBAATag) { MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); // With incomplete IR, the tbaa metadata may have been dropped. if (!AllowIncompleteIR) assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); if (MD) { auto *UpgradedMD = UpgradeTBAANode(*MD); if (MD != UpgradedMD) Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); } } // Look for intrinsic functions and CallInst that need to be upgraded. We use // make_early_inc_range here because we may remove some functions. for (Function &F : llvm::make_early_inc_range(*M)) UpgradeCallsToIntrinsic(&F); if (UpgradeDebugInfo) llvm::UpgradeDebugInfo(*M); UpgradeModuleFlags(*M); UpgradeSectionAttributes(*M); if (!Slots) return false; // Initialize the slot mapping. // Because by this point we've parsed and validated everything, we can "steal" // the mapping from LLParser as it doesn't need it anymore. Slots->GlobalValues = std::move(NumberedVals); Slots->MetadataNodes = std::move(NumberedMetadata); for (const auto &I : NamedTypes) Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); for (const auto &I : NumberedTypes) Slots->Types.insert(std::make_pair(I.first, I.second.first)); return false; } /// Do final validity and basic correctness checks at the end of the index. bool LLParser::validateEndOfIndex() { if (!Index) return false; if (!ForwardRefValueInfos.empty()) return error(ForwardRefValueInfos.begin()->second.front().second, "use of undefined summary '^" + Twine(ForwardRefValueInfos.begin()->first) + "'"); if (!ForwardRefAliasees.empty()) return error(ForwardRefAliasees.begin()->second.front().second, "use of undefined summary '^" + Twine(ForwardRefAliasees.begin()->first) + "'"); if (!ForwardRefTypeIds.empty()) return error(ForwardRefTypeIds.begin()->second.front().second, "use of undefined type id summary '^" + Twine(ForwardRefTypeIds.begin()->first) + "'"); return false; } //===----------------------------------------------------------------------===// // Top-Level Entities //===----------------------------------------------------------------------===// bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) { // Delay parsing of the data layout string until the target triple is known. // Then, pass both the the target triple and the tentative data layout string // to DataLayoutCallback, allowing to override the DL string. // This enables importing modules with invalid DL strings. std::string TentativeDLStr = M->getDataLayoutStr(); LocTy DLStrLoc; bool Done = false; while (!Done) { switch (Lex.getKind()) { case lltok::kw_target: if (parseTargetDefinition(TentativeDLStr, DLStrLoc)) return true; break; case lltok::kw_source_filename: if (parseSourceFileName()) return true; break; default: Done = true; } } // Run the override callback to potentially change the data layout string, and // parse the data layout string. if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) { TentativeDLStr = *LayoutOverride; DLStrLoc = {}; } Expected MaybeDL = DataLayout::parse(TentativeDLStr); if (!MaybeDL) return error(DLStrLoc, toString(MaybeDL.takeError())); M->setDataLayout(MaybeDL.get()); return false; } bool LLParser::parseTopLevelEntities() { // If there is no Module, then parse just the summary index entries. if (!M) { while (true) { switch (Lex.getKind()) { case lltok::Eof: return false; case lltok::SummaryID: if (parseSummaryEntry()) return true; break; case lltok::kw_source_filename: if (parseSourceFileName()) return true; break; default: // Skip everything else Lex.Lex(); } } } while (true) { switch (Lex.getKind()) { default: return tokError("expected top-level entity"); case lltok::Eof: return false; case lltok::kw_declare: if (parseDeclare()) return true; break; case lltok::kw_define: if (parseDefine()) return true; break; case lltok::kw_module: if (parseModuleAsm()) return true; break; case lltok::LocalVarID: if (parseUnnamedType()) return true; break; case lltok::LocalVar: if (parseNamedType()) return true; break; case lltok::GlobalID: if (parseUnnamedGlobal()) return true; break; case lltok::GlobalVar: if (parseNamedGlobal()) return true; break; case lltok::ComdatVar: if (parseComdat()) return true; break; case lltok::exclaim: if (parseStandaloneMetadata()) return true; break; case lltok::SummaryID: if (parseSummaryEntry()) return true; break; case lltok::MetadataVar: if (parseNamedMetadata()) return true; break; case lltok::kw_attributes: if (parseUnnamedAttrGrp()) return true; break; case lltok::kw_uselistorder: if (parseUseListOrder()) return true; break; case lltok::kw_uselistorder_bb: if (parseUseListOrderBB()) return true; break; } } } /// toplevelentity /// ::= 'module' 'asm' STRINGCONSTANT bool LLParser::parseModuleAsm() { assert(Lex.getKind() == lltok::kw_module); Lex.Lex(); std::string AsmStr; if (parseToken(lltok::kw_asm, "expected 'module asm'") || parseStringConstant(AsmStr)) return true; M->appendModuleInlineAsm(AsmStr); return false; } /// toplevelentity /// ::= 'target' 'triple' '=' STRINGCONSTANT /// ::= 'target' 'datalayout' '=' STRINGCONSTANT bool LLParser::parseTargetDefinition(std::string &TentativeDLStr, LocTy &DLStrLoc) { assert(Lex.getKind() == lltok::kw_target); std::string Str; switch (Lex.Lex()) { default: return tokError("unknown target property"); case lltok::kw_triple: Lex.Lex(); if (parseToken(lltok::equal, "expected '=' after target triple") || parseStringConstant(Str)) return true; M->setTargetTriple(Str); return false; case lltok::kw_datalayout: Lex.Lex(); if (parseToken(lltok::equal, "expected '=' after target datalayout")) return true; DLStrLoc = Lex.getLoc(); if (parseStringConstant(TentativeDLStr)) return true; return false; } } /// toplevelentity /// ::= 'source_filename' '=' STRINGCONSTANT bool LLParser::parseSourceFileName() { assert(Lex.getKind() == lltok::kw_source_filename); Lex.Lex(); if (parseToken(lltok::equal, "expected '=' after source_filename") || parseStringConstant(SourceFileName)) return true; if (M) M->setSourceFileName(SourceFileName); return false; } /// parseUnnamedType: /// ::= LocalVarID '=' 'type' type bool LLParser::parseUnnamedType() { LocTy TypeLoc = Lex.getLoc(); unsigned TypeID = Lex.getUIntVal(); Lex.Lex(); // eat LocalVarID; if (parseToken(lltok::equal, "expected '=' after name") || parseToken(lltok::kw_type, "expected 'type' after '='")) return true; Type *Result = nullptr; if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) return true; if (!isa(Result)) { std::pair &Entry = NumberedTypes[TypeID]; if (Entry.first) return error(TypeLoc, "non-struct types may not be recursive"); Entry.first = Result; Entry.second = SMLoc(); } return false; } /// toplevelentity /// ::= LocalVar '=' 'type' type bool LLParser::parseNamedType() { std::string Name = Lex.getStrVal(); LocTy NameLoc = Lex.getLoc(); Lex.Lex(); // eat LocalVar. if (parseToken(lltok::equal, "expected '=' after name") || parseToken(lltok::kw_type, "expected 'type' after name")) return true; Type *Result = nullptr; if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) return true; if (!isa(Result)) { std::pair &Entry = NamedTypes[Name]; if (Entry.first) return error(NameLoc, "non-struct types may not be recursive"); Entry.first = Result; Entry.second = SMLoc(); } return false; } /// toplevelentity /// ::= 'declare' FunctionHeader bool LLParser::parseDeclare() { assert(Lex.getKind() == lltok::kw_declare); Lex.Lex(); std::vector> MDs; while (Lex.getKind() == lltok::MetadataVar) { unsigned MDK; MDNode *N; if (parseMetadataAttachment(MDK, N)) return true; MDs.push_back({MDK, N}); } Function *F; SmallVector UnnamedArgNums; if (parseFunctionHeader(F, false, UnnamedArgNums)) return true; for (auto &MD : MDs) F->addMetadata(MD.first, *MD.second); return false; } /// toplevelentity /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... bool LLParser::parseDefine() { assert(Lex.getKind() == lltok::kw_define); Lex.Lex(); Function *F; SmallVector UnnamedArgNums; return parseFunctionHeader(F, true, UnnamedArgNums) || parseOptionalFunctionMetadata(*F) || parseFunctionBody(*F, UnnamedArgNums); } /// parseGlobalType /// ::= 'constant' /// ::= 'global' bool LLParser::parseGlobalType(bool &IsConstant) { if (Lex.getKind() == lltok::kw_constant) IsConstant = true; else if (Lex.getKind() == lltok::kw_global) IsConstant = false; else { IsConstant = false; return tokError("expected 'global' or 'constant'"); } Lex.Lex(); return false; } bool LLParser::parseOptionalUnnamedAddr( GlobalVariable::UnnamedAddr &UnnamedAddr) { if (EatIfPresent(lltok::kw_unnamed_addr)) UnnamedAddr = GlobalValue::UnnamedAddr::Global; else if (EatIfPresent(lltok::kw_local_unnamed_addr)) UnnamedAddr = GlobalValue::UnnamedAddr::Local; else UnnamedAddr = GlobalValue::UnnamedAddr::None; return false; } /// parseUnnamedGlobal: /// OptionalVisibility (ALIAS | IFUNC) ... /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility /// OptionalDLLStorageClass /// ... -> global variable /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier /// OptionalVisibility /// OptionalDLLStorageClass /// ... -> global variable bool LLParser::parseUnnamedGlobal() { unsigned VarID = NumberedVals.size(); std::string Name; LocTy NameLoc = Lex.getLoc(); // Handle the GlobalID form. if (Lex.getKind() == lltok::GlobalID) { if (Lex.getUIntVal() != VarID) return error(Lex.getLoc(), "variable expected to be numbered '%" + Twine(VarID) + "'"); Lex.Lex(); // eat GlobalID; if (parseToken(lltok::equal, "expected '=' after name")) return true; } bool HasLinkage; unsigned Linkage, Visibility, DLLStorageClass; bool DSOLocal; GlobalVariable::ThreadLocalMode TLM; GlobalVariable::UnnamedAddr UnnamedAddr; if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, DSOLocal) || parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) return true; switch (Lex.getKind()) { default: return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, DLLStorageClass, DSOLocal, TLM, UnnamedAddr); case lltok::kw_alias: case lltok::kw_ifunc: return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, DLLStorageClass, DSOLocal, TLM, UnnamedAddr); } } /// parseNamedGlobal: /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier /// OptionalVisibility OptionalDLLStorageClass /// ... -> global variable bool LLParser::parseNamedGlobal() { assert(Lex.getKind() == lltok::GlobalVar); LocTy NameLoc = Lex.getLoc(); std::string Name = Lex.getStrVal(); Lex.Lex(); bool HasLinkage; unsigned Linkage, Visibility, DLLStorageClass; bool DSOLocal; GlobalVariable::ThreadLocalMode TLM; GlobalVariable::UnnamedAddr UnnamedAddr; if (parseToken(lltok::equal, "expected '=' in global variable") || parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, DSOLocal) || parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) return true; switch (Lex.getKind()) { default: return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, DLLStorageClass, DSOLocal, TLM, UnnamedAddr); case lltok::kw_alias: case lltok::kw_ifunc: return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, DLLStorageClass, DSOLocal, TLM, UnnamedAddr); } } bool LLParser::parseComdat() { assert(Lex.getKind() == lltok::ComdatVar); std::string Name = Lex.getStrVal(); LocTy NameLoc = Lex.getLoc(); Lex.Lex(); if (parseToken(lltok::equal, "expected '=' here")) return true; if (parseToken(lltok::kw_comdat, "expected comdat keyword")) return tokError("expected comdat type"); Comdat::SelectionKind SK; switch (Lex.getKind()) { default: return tokError("unknown selection kind"); case lltok::kw_any: SK = Comdat::Any; break; case lltok::kw_exactmatch: SK = Comdat::ExactMatch; break; case lltok::kw_largest: SK = Comdat::Largest; break; case lltok::kw_nodeduplicate: SK = Comdat::NoDeduplicate; break; case lltok::kw_samesize: SK = Comdat::SameSize; break; } Lex.Lex(); // See if the comdat was forward referenced, if so, use the comdat. Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) return error(NameLoc, "redefinition of comdat '$" + Name + "'"); Comdat *C; if (I != ComdatSymTab.end()) C = &I->second; else C = M->getOrInsertComdat(Name); C->setSelectionKind(SK); return false; } // MDString: // ::= '!' STRINGCONSTANT bool LLParser::parseMDString(MDString *&Result) { std::string Str; if (parseStringConstant(Str)) return true; Result = MDString::get(Context, Str); return false; } // MDNode: // ::= '!' MDNodeNumber bool LLParser::parseMDNodeID(MDNode *&Result) { // !{ ..., !42, ... } LocTy IDLoc = Lex.getLoc(); unsigned MID = 0; if (parseUInt32(MID)) return true; // If not a forward reference, just return it now. if (NumberedMetadata.count(MID)) { Result = NumberedMetadata[MID]; return false; } // Otherwise, create MDNode forward reference. auto &FwdRef = ForwardRefMDNodes[MID]; FwdRef = std::make_pair(MDTuple::getTemporary(Context, std::nullopt), IDLoc); Result = FwdRef.first.get(); NumberedMetadata[MID].reset(Result); return false; } /// parseNamedMetadata: /// !foo = !{ !1, !2 } bool LLParser::parseNamedMetadata() { assert(Lex.getKind() == lltok::MetadataVar); std::string Name = Lex.getStrVal(); Lex.Lex(); if (parseToken(lltok::equal, "expected '=' here") || parseToken(lltok::exclaim, "Expected '!' here") || parseToken(lltok::lbrace, "Expected '{' here")) return true; NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); if (Lex.getKind() != lltok::rbrace) do { MDNode *N = nullptr; // parse DIExpressions inline as a special case. They are still MDNodes, // so they can still appear in named metadata. Remove this logic if they // become plain Metadata. if (Lex.getKind() == lltok::MetadataVar && Lex.getStrVal() == "DIExpression") { if (parseDIExpression(N, /*IsDistinct=*/false)) return true; // DIArgLists should only appear inline in a function, as they may // contain LocalAsMetadata arguments which require a function context. } else if (Lex.getKind() == lltok::MetadataVar && Lex.getStrVal() == "DIArgList") { return tokError("found DIArgList outside of function"); } else if (parseToken(lltok::exclaim, "Expected '!' here") || parseMDNodeID(N)) { return true; } NMD->addOperand(N); } while (EatIfPresent(lltok::comma)); return parseToken(lltok::rbrace, "expected end of metadata node"); } /// parseStandaloneMetadata: /// !42 = !{...} bool LLParser::parseStandaloneMetadata() { assert(Lex.getKind() == lltok::exclaim); Lex.Lex(); unsigned MetadataID = 0; MDNode *Init; if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) return true; // Detect common error, from old metadata syntax. if (Lex.getKind() == lltok::Type) return tokError("unexpected type in metadata definition"); bool IsDistinct = EatIfPresent(lltok::kw_distinct); if (Lex.getKind() == lltok::MetadataVar) { if (parseSpecializedMDNode(Init, IsDistinct)) return true; } else if (parseToken(lltok::exclaim, "Expected '!' here") || parseMDTuple(Init, IsDistinct)) return true; // See if this was forward referenced, if so, handle it. auto FI = ForwardRefMDNodes.find(MetadataID); if (FI != ForwardRefMDNodes.end()) { auto *ToReplace = FI->second.first.get(); // DIAssignID has its own special forward-reference "replacement" for // attachments (the temporary attachments are never actually attached). if (isa(Init)) { for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) { assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) && "Inst unexpectedly already has DIAssignID attachment"); Inst->setMetadata(LLVMContext::MD_DIAssignID, Init); } } ToReplace->replaceAllUsesWith(Init); ForwardRefMDNodes.erase(FI); assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); } else { if (NumberedMetadata.count(MetadataID)) return tokError("Metadata id is already used"); NumberedMetadata[MetadataID].reset(Init); } return false; } // Skips a single module summary entry. bool LLParser::skipModuleSummaryEntry() { // Each module summary entry consists of a tag for the entry // type, followed by a colon, then the fields which may be surrounded by // nested sets of parentheses. The "tag:" looks like a Label. Once parsing // support is in place we will look for the tokens corresponding to the // expected tags. if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && Lex.getKind() != lltok::kw_blockcount) return tokError( "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " "start of summary entry"); if (Lex.getKind() == lltok::kw_flags) return parseSummaryIndexFlags(); if (Lex.getKind() == lltok::kw_blockcount) return parseBlockCount(); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' at start of summary entry") || parseToken(lltok::lparen, "expected '(' at start of summary entry")) return true; // Now walk through the parenthesized entry, until the number of open // parentheses goes back down to 0 (the first '(' was parsed above). unsigned NumOpenParen = 1; do { switch (Lex.getKind()) { case lltok::lparen: NumOpenParen++; break; case lltok::rparen: NumOpenParen--; break; case lltok::Eof: return tokError("found end of file while parsing summary entry"); default: // Skip everything in between parentheses. break; } Lex.Lex(); } while (NumOpenParen > 0); return false; } /// SummaryEntry /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry bool LLParser::parseSummaryEntry() { assert(Lex.getKind() == lltok::SummaryID); unsigned SummaryID = Lex.getUIntVal(); // For summary entries, colons should be treated as distinct tokens, // not an indication of the end of a label token. Lex.setIgnoreColonInIdentifiers(true); Lex.Lex(); if (parseToken(lltok::equal, "expected '=' here")) return true; // If we don't have an index object, skip the summary entry. if (!Index) return skipModuleSummaryEntry(); bool result = false; switch (Lex.getKind()) { case lltok::kw_gv: result = parseGVEntry(SummaryID); break; case lltok::kw_module: result = parseModuleEntry(SummaryID); break; case lltok::kw_typeid: result = parseTypeIdEntry(SummaryID); break; case lltok::kw_typeidCompatibleVTable: result = parseTypeIdCompatibleVtableEntry(SummaryID); break; case lltok::kw_flags: result = parseSummaryIndexFlags(); break; case lltok::kw_blockcount: result = parseBlockCount(); break; default: result = error(Lex.getLoc(), "unexpected summary kind"); break; } Lex.setIgnoreColonInIdentifiers(false); return result; } static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; } static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) { return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass; } // If there was an explicit dso_local, update GV. In the absence of an explicit // dso_local we keep the default value. static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { if (DSOLocal) GV.setDSOLocal(true); } /// parseAliasOrIFunc: /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier /// OptionalVisibility OptionalDLLStorageClass /// OptionalThreadLocal OptionalUnnamedAddr /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* /// /// AliaseeOrResolver /// ::= TypeAndValue /// /// SymbolAttrs /// ::= ',' 'partition' StringConstant /// /// Everything through OptionalUnnamedAddr has already been parsed. /// bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, unsigned DLLStorageClass, bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, GlobalVariable::UnnamedAddr UnnamedAddr) { bool IsAlias; if (Lex.getKind() == lltok::kw_alias) IsAlias = true; else if (Lex.getKind() == lltok::kw_ifunc) IsAlias = false; else llvm_unreachable("Not an alias or ifunc!"); Lex.Lex(); GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) return error(NameLoc, "invalid linkage type for alias"); if (!isValidVisibilityForLinkage(Visibility, L)) return error(NameLoc, "symbol with local linkage must have default visibility"); if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L)) return error(NameLoc, "symbol with local linkage cannot have a DLL storage class"); Type *Ty; LocTy ExplicitTypeLoc = Lex.getLoc(); if (parseType(Ty) || parseToken(lltok::comma, "expected comma after alias or ifunc's type")) return true; Constant *Aliasee; LocTy AliaseeLoc = Lex.getLoc(); if (Lex.getKind() != lltok::kw_bitcast && Lex.getKind() != lltok::kw_getelementptr && Lex.getKind() != lltok::kw_addrspacecast && Lex.getKind() != lltok::kw_inttoptr) { if (parseGlobalTypeAndValue(Aliasee)) return true; } else { // The bitcast dest type is not present, it is implied by the dest type. ValID ID; if (parseValID(ID, /*PFS=*/nullptr)) return true; if (ID.Kind != ValID::t_Constant) return error(AliaseeLoc, "invalid aliasee"); Aliasee = ID.ConstantVal; } Type *AliaseeType = Aliasee->getType(); auto *PTy = dyn_cast(AliaseeType); if (!PTy) return error(AliaseeLoc, "An alias or ifunc must have pointer type"); unsigned AddrSpace = PTy->getAddressSpace(); GlobalValue *GVal = nullptr; // See if the alias was forward referenced, if so, prepare to replace the // forward reference. if (!Name.empty()) { auto I = ForwardRefVals.find(Name); if (I != ForwardRefVals.end()) { GVal = I->second.first; ForwardRefVals.erase(Name); } else if (M->getNamedValue(Name)) { return error(NameLoc, "redefinition of global '@" + Name + "'"); } } else { auto I = ForwardRefValIDs.find(NumberedVals.size()); if (I != ForwardRefValIDs.end()) { GVal = I->second.first; ForwardRefValIDs.erase(I); } } // Okay, create the alias/ifunc but do not insert it into the module yet. std::unique_ptr GA; std::unique_ptr GI; GlobalValue *GV; if (IsAlias) { GA.reset(GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage, Name, Aliasee, /*Parent*/ nullptr)); GV = GA.get(); } else { GI.reset(GlobalIFunc::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage, Name, Aliasee, /*Parent*/ nullptr)); GV = GI.get(); } GV->setThreadLocalMode(TLM); GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); GV->setUnnamedAddr(UnnamedAddr); maybeSetDSOLocal(DSOLocal, *GV); // At this point we've parsed everything except for the IndirectSymbolAttrs. // Now parse them if there are any. while (Lex.getKind() == lltok::comma) { Lex.Lex(); if (Lex.getKind() == lltok::kw_partition) { Lex.Lex(); GV->setPartition(Lex.getStrVal()); if (parseToken(lltok::StringConstant, "expected partition string")) return true; } else { return tokError("unknown alias or ifunc property!"); } } if (Name.empty()) NumberedVals.push_back(GV); if (GVal) { // Verify that types agree. if (GVal->getType() != GV->getType()) return error( ExplicitTypeLoc, "forward reference and definition of alias have different types"); // If they agree, just RAUW the old value with the alias and remove the // forward ref info. GVal->replaceAllUsesWith(GV); GVal->eraseFromParent(); } // Insert into the module, we know its name won't collide now. if (IsAlias) M->insertAlias(GA.release()); else M->insertIFunc(GI.release()); assert(GV->getName() == Name && "Should not be a name conflict!"); return false; } static bool isSanitizer(lltok::Kind Kind) { switch (Kind) { case lltok::kw_no_sanitize_address: case lltok::kw_no_sanitize_hwaddress: case lltok::kw_sanitize_memtag: case lltok::kw_sanitize_address_dyninit: return true; default: return false; } } bool LLParser::parseSanitizer(GlobalVariable *GV) { using SanitizerMetadata = GlobalValue::SanitizerMetadata; SanitizerMetadata Meta; if (GV->hasSanitizerMetadata()) Meta = GV->getSanitizerMetadata(); switch (Lex.getKind()) { case lltok::kw_no_sanitize_address: Meta.NoAddress = true; break; case lltok::kw_no_sanitize_hwaddress: Meta.NoHWAddress = true; break; case lltok::kw_sanitize_memtag: Meta.Memtag = true; break; case lltok::kw_sanitize_address_dyninit: Meta.IsDynInit = true; break; default: return tokError("non-sanitizer token passed to LLParser::parseSanitizer()"); } GV->setSanitizerMetadata(Meta); Lex.Lex(); return false; } /// parseGlobal /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier /// OptionalVisibility OptionalDLLStorageClass /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type /// Const OptionalAttrs /// /// Everything up to and including OptionalUnnamedAddr has been parsed /// already. /// bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, unsigned Linkage, bool HasLinkage, unsigned Visibility, unsigned DLLStorageClass, bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, GlobalVariable::UnnamedAddr UnnamedAddr) { if (!isValidVisibilityForLinkage(Visibility, Linkage)) return error(NameLoc, "symbol with local linkage must have default visibility"); if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) return error(NameLoc, "symbol with local linkage cannot have a DLL storage class"); unsigned AddrSpace; bool IsConstant, IsExternallyInitialized; LocTy IsExternallyInitializedLoc; LocTy TyLoc; Type *Ty = nullptr; if (parseOptionalAddrSpace(AddrSpace) || parseOptionalToken(lltok::kw_externally_initialized, IsExternallyInitialized, &IsExternallyInitializedLoc) || parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) return true; // If the linkage is specified and is external, then no initializer is // present. Constant *Init = nullptr; if (!HasLinkage || !GlobalValue::isValidDeclarationLinkage( (GlobalValue::LinkageTypes)Linkage)) { if (parseGlobalValue(Ty, Init)) return true; } if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) return error(TyLoc, "invalid type for global variable"); GlobalValue *GVal = nullptr; // See if the global was forward referenced, if so, use the global. if (!Name.empty()) { auto I = ForwardRefVals.find(Name); if (I != ForwardRefVals.end()) { GVal = I->second.first; ForwardRefVals.erase(I); } else if (M->getNamedValue(Name)) { return error(NameLoc, "redefinition of global '@" + Name + "'"); } } else { auto I = ForwardRefValIDs.find(NumberedVals.size()); if (I != ForwardRefValIDs.end()) { GVal = I->second.first; ForwardRefValIDs.erase(I); } } GlobalVariable *GV = new GlobalVariable( *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, GlobalVariable::NotThreadLocal, AddrSpace); if (Name.empty()) NumberedVals.push_back(GV); // Set the parsed properties on the global. if (Init) GV->setInitializer(Init); GV->setConstant(IsConstant); GV->setLinkage((GlobalValue::LinkageTypes)Linkage); maybeSetDSOLocal(DSOLocal, *GV); GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); GV->setExternallyInitialized(IsExternallyInitialized); GV->setThreadLocalMode(TLM); GV->setUnnamedAddr(UnnamedAddr); if (GVal) { if (GVal->getAddressSpace() != AddrSpace) return error( TyLoc, "forward reference and definition of global have different types"); GVal->replaceAllUsesWith(GV); GVal->eraseFromParent(); } // parse attributes on the global. while (Lex.getKind() == lltok::comma) { Lex.Lex(); if (Lex.getKind() == lltok::kw_section) { Lex.Lex(); GV->setSection(Lex.getStrVal()); if (parseToken(lltok::StringConstant, "expected global section string")) return true; } else if (Lex.getKind() == lltok::kw_partition) { Lex.Lex(); GV->setPartition(Lex.getStrVal()); if (parseToken(lltok::StringConstant, "expected partition string")) return true; } else if (Lex.getKind() == lltok::kw_align) { MaybeAlign Alignment; if (parseOptionalAlignment(Alignment)) return true; if (Alignment) GV->setAlignment(*Alignment); } else if (Lex.getKind() == lltok::kw_code_model) { CodeModel::Model CodeModel; if (parseOptionalCodeModel(CodeModel)) return true; GV->setCodeModel(CodeModel); } else if (Lex.getKind() == lltok::MetadataVar) { if (parseGlobalObjectMetadataAttachment(*GV)) return true; } else if (isSanitizer(Lex.getKind())) { if (parseSanitizer(GV)) return true; } else { Comdat *C; if (parseOptionalComdat(Name, C)) return true; if (C) GV->setComdat(C); else return tokError("unknown global variable property!"); } } AttrBuilder Attrs(M->getContext()); LocTy BuiltinLoc; std::vector FwdRefAttrGrps; if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) return true; if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { GV->setAttributes(AttributeSet::get(Context, Attrs)); ForwardRefAttrGroups[GV] = FwdRefAttrGrps; } return false; } /// parseUnnamedAttrGrp /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' bool LLParser::parseUnnamedAttrGrp() { assert(Lex.getKind() == lltok::kw_attributes); LocTy AttrGrpLoc = Lex.getLoc(); Lex.Lex(); if (Lex.getKind() != lltok::AttrGrpID) return tokError("expected attribute group id"); unsigned VarID = Lex.getUIntVal(); std::vector unused; LocTy BuiltinLoc; Lex.Lex(); if (parseToken(lltok::equal, "expected '=' here") || parseToken(lltok::lbrace, "expected '{' here")) return true; auto R = NumberedAttrBuilders.find(VarID); if (R == NumberedAttrBuilders.end()) R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first; if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) || parseToken(lltok::rbrace, "expected end of attribute group")) return true; if (!R->second.hasAttributes()) return error(AttrGrpLoc, "attribute group has no attributes"); return false; } static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { switch (Kind) { #define GET_ATTR_NAMES #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ case lltok::kw_##DISPLAY_NAME: \ return Attribute::ENUM_NAME; #include "llvm/IR/Attributes.inc" default: return Attribute::None; } } bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, bool InAttrGroup) { if (Attribute::isTypeAttrKind(Attr)) return parseRequiredTypeAttr(B, Lex.getKind(), Attr); switch (Attr) { case Attribute::Alignment: { MaybeAlign Alignment; if (InAttrGroup) { uint32_t Value = 0; Lex.Lex(); if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) return true; Alignment = Align(Value); } else { if (parseOptionalAlignment(Alignment, true)) return true; } B.addAlignmentAttr(Alignment); return false; } case Attribute::StackAlignment: { unsigned Alignment; if (InAttrGroup) { Lex.Lex(); if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Alignment)) return true; } else { if (parseOptionalStackAlignment(Alignment)) return true; } B.addStackAlignmentAttr(Alignment); return false; } case Attribute::AllocSize: { unsigned ElemSizeArg; std::optional NumElemsArg; if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) return true; B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); return false; } case Attribute::VScaleRange: { unsigned MinValue, MaxValue; if (parseVScaleRangeArguments(MinValue, MaxValue)) return true; B.addVScaleRangeAttr(MinValue, MaxValue > 0 ? MaxValue : std::optional()); return false; } case Attribute::Dereferenceable: { uint64_t Bytes; if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) return true; B.addDereferenceableAttr(Bytes); return false; } case Attribute::DereferenceableOrNull: { uint64_t Bytes; if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) return true; B.addDereferenceableOrNullAttr(Bytes); return false; } case Attribute::UWTable: { UWTableKind Kind; if (parseOptionalUWTableKind(Kind)) return true; B.addUWTableAttr(Kind); return false; } case Attribute::AllocKind: { AllocFnKind Kind = AllocFnKind::Unknown; if (parseAllocKind(Kind)) return true; B.addAllocKindAttr(Kind); return false; } case Attribute::Memory: { std::optional ME = parseMemoryAttr(); if (!ME) return true; B.addMemoryAttr(*ME); return false; } case Attribute::NoFPClass: { if (FPClassTest NoFPClass = static_cast(parseNoFPClassAttr())) { B.addNoFPClassAttr(NoFPClass); return false; } return true; } default: B.addAttribute(Attr); Lex.Lex(); return false; } } static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) { switch (Kind) { case lltok::kw_readnone: ME &= MemoryEffects::none(); return true; case lltok::kw_readonly: ME &= MemoryEffects::readOnly(); return true; case lltok::kw_writeonly: ME &= MemoryEffects::writeOnly(); return true; case lltok::kw_argmemonly: ME &= MemoryEffects::argMemOnly(); return true; case lltok::kw_inaccessiblememonly: ME &= MemoryEffects::inaccessibleMemOnly(); return true; case lltok::kw_inaccessiblemem_or_argmemonly: ME &= MemoryEffects::inaccessibleOrArgMemOnly(); return true; default: return false; } } /// parseFnAttributeValuePairs /// ::= | '=' bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, std::vector &FwdRefAttrGrps, bool InAttrGrp, LocTy &BuiltinLoc) { bool HaveError = false; B.clear(); MemoryEffects ME = MemoryEffects::unknown(); while (true) { lltok::Kind Token = Lex.getKind(); if (Token == lltok::rbrace) break; // Finished. if (Token == lltok::StringConstant) { if (parseStringAttribute(B)) return true; continue; } if (Token == lltok::AttrGrpID) { // Allow a function to reference an attribute group: // // define void @foo() #1 { ... } if (InAttrGrp) { HaveError |= error( Lex.getLoc(), "cannot have an attribute group reference in an attribute group"); } else { // Save the reference to the attribute group. We'll fill it in later. FwdRefAttrGrps.push_back(Lex.getUIntVal()); } Lex.Lex(); continue; } SMLoc Loc = Lex.getLoc(); if (Token == lltok::kw_builtin) BuiltinLoc = Loc; if (upgradeMemoryAttr(ME, Token)) { Lex.Lex(); continue; } Attribute::AttrKind Attr = tokenToAttribute(Token); if (Attr == Attribute::None) { if (!InAttrGrp) break; return error(Lex.getLoc(), "unterminated attribute group"); } if (parseEnumAttribute(Attr, B, InAttrGrp)) return true; // As a hack, we allow function alignment to be initially parsed as an // attribute on a function declaration/definition or added to an attribute // group and later moved to the alignment field. if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) HaveError |= error(Loc, "this attribute does not apply to functions"); } if (ME != MemoryEffects::unknown()) B.addMemoryAttr(ME); return HaveError; } //===----------------------------------------------------------------------===// // GlobalValue Reference/Resolution Routines. //===----------------------------------------------------------------------===// static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { // The used global type does not matter. We will later RAUW it with a // global/function of the correct type. return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, GlobalValue::ExternalWeakLinkage, nullptr, "", nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace()); } Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, Value *Val) { Type *ValTy = Val->getType(); if (ValTy == Ty) return Val; if (Ty->isLabelTy()) error(Loc, "'" + Name + "' is not a basic block"); else error(Loc, "'" + Name + "' defined with type '" + getTypeString(Val->getType()) + "' but expected '" + getTypeString(Ty) + "'"); return nullptr; } /// getGlobalVal - Get a value with the specified name or ID, creating a /// forward reference record if needed. This can return null if the value /// exists but does not have the right type. GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, LocTy Loc) { PointerType *PTy = dyn_cast(Ty); if (!PTy) { error(Loc, "global variable reference must have pointer type"); return nullptr; } // Look this name up in the normal function symbol table. GlobalValue *Val = cast_or_null(M->getValueSymbolTable().lookup(Name)); // If this is a forward reference for the value, see if we already created a // forward ref record. if (!Val) { auto I = ForwardRefVals.find(Name); if (I != ForwardRefVals.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) return cast_or_null( checkValidVariableType(Loc, "@" + Name, Ty, Val)); // Otherwise, create a new forward reference for this value and remember it. GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); return FwdVal; } GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { PointerType *PTy = dyn_cast(Ty); if (!PTy) { error(Loc, "global variable reference must have pointer type"); return nullptr; } GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; // If this is a forward reference for the value, see if we already created a // forward ref record. if (!Val) { auto I = ForwardRefValIDs.find(ID); if (I != ForwardRefValIDs.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) return cast_or_null( checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); // Otherwise, create a new forward reference for this value and remember it. GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); return FwdVal; } //===----------------------------------------------------------------------===// // Comdat Reference/Resolution Routines. //===----------------------------------------------------------------------===// Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { // Look this name up in the comdat symbol table. Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); if (I != ComdatSymTab.end()) return &I->second; // Otherwise, create a new forward reference for this value and remember it. Comdat *C = M->getOrInsertComdat(Name); ForwardRefComdats[Name] = Loc; return C; } //===----------------------------------------------------------------------===// // Helper Routines. //===----------------------------------------------------------------------===// /// parseToken - If the current token has the specified kind, eat it and return /// success. Otherwise, emit the specified error and return failure. bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { if (Lex.getKind() != T) return tokError(ErrMsg); Lex.Lex(); return false; } /// parseStringConstant /// ::= StringConstant bool LLParser::parseStringConstant(std::string &Result) { if (Lex.getKind() != lltok::StringConstant) return tokError("expected string constant"); Result = Lex.getStrVal(); Lex.Lex(); return false; } /// parseUInt32 /// ::= uint32 bool LLParser::parseUInt32(uint32_t &Val) { if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) return tokError("expected integer"); uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); if (Val64 != unsigned(Val64)) return tokError("expected 32-bit integer (too large)"); Val = Val64; Lex.Lex(); return false; } /// parseUInt64 /// ::= uint64 bool LLParser::parseUInt64(uint64_t &Val) { if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) return tokError("expected integer"); Val = Lex.getAPSIntVal().getLimitedValue(); Lex.Lex(); return false; } /// parseTLSModel /// := 'localdynamic' /// := 'initialexec' /// := 'localexec' bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { switch (Lex.getKind()) { default: return tokError("expected localdynamic, initialexec or localexec"); case lltok::kw_localdynamic: TLM = GlobalVariable::LocalDynamicTLSModel; break; case lltok::kw_initialexec: TLM = GlobalVariable::InitialExecTLSModel; break; case lltok::kw_localexec: TLM = GlobalVariable::LocalExecTLSModel; break; } Lex.Lex(); return false; } /// parseOptionalThreadLocal /// := /*empty*/ /// := 'thread_local' /// := 'thread_local' '(' tlsmodel ')' bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { TLM = GlobalVariable::NotThreadLocal; if (!EatIfPresent(lltok::kw_thread_local)) return false; TLM = GlobalVariable::GeneralDynamicTLSModel; if (Lex.getKind() == lltok::lparen) { Lex.Lex(); return parseTLSModel(TLM) || parseToken(lltok::rparen, "expected ')' after thread local model"); } return false; } /// parseOptionalAddrSpace /// := /*empty*/ /// := 'addrspace' '(' uint32 ')' bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { AddrSpace = DefaultAS; if (!EatIfPresent(lltok::kw_addrspace)) return false; auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool { if (Lex.getKind() == lltok::StringConstant) { auto AddrSpaceStr = Lex.getStrVal(); if (AddrSpaceStr == "A") { AddrSpace = M->getDataLayout().getAllocaAddrSpace(); } else if (AddrSpaceStr == "G") { AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace(); } else if (AddrSpaceStr == "P") { AddrSpace = M->getDataLayout().getProgramAddressSpace(); } else { return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'"); } Lex.Lex(); return false; } if (Lex.getKind() != lltok::APSInt) return tokError("expected integer or string constant"); SMLoc Loc = Lex.getLoc(); if (parseUInt32(AddrSpace)) return true; if (!isUInt<24>(AddrSpace)) return error(Loc, "invalid address space, must be a 24-bit integer"); return false; }; return parseToken(lltok::lparen, "expected '(' in address space") || ParseAddrspaceValue(AddrSpace) || parseToken(lltok::rparen, "expected ')' in address space"); } /// parseStringAttribute /// := StringConstant /// := StringConstant '=' StringConstant bool LLParser::parseStringAttribute(AttrBuilder &B) { std::string Attr = Lex.getStrVal(); Lex.Lex(); std::string Val; if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) return true; B.addAttribute(Attr, Val); return false; } /// Parse a potentially empty list of parameter or return attributes. bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { bool HaveError = false; B.clear(); while (true) { lltok::Kind Token = Lex.getKind(); if (Token == lltok::StringConstant) { if (parseStringAttribute(B)) return true; continue; } SMLoc Loc = Lex.getLoc(); Attribute::AttrKind Attr = tokenToAttribute(Token); if (Attr == Attribute::None) return HaveError; if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) return true; if (IsParam && !Attribute::canUseAsParamAttr(Attr)) HaveError |= error(Loc, "this attribute does not apply to parameters"); if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) HaveError |= error(Loc, "this attribute does not apply to return values"); } } static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { HasLinkage = true; switch (Kind) { default: HasLinkage = false; return GlobalValue::ExternalLinkage; case lltok::kw_private: return GlobalValue::PrivateLinkage; case lltok::kw_internal: return GlobalValue::InternalLinkage; case lltok::kw_weak: return GlobalValue::WeakAnyLinkage; case lltok::kw_weak_odr: return GlobalValue::WeakODRLinkage; case lltok::kw_linkonce: return GlobalValue::LinkOnceAnyLinkage; case lltok::kw_linkonce_odr: return GlobalValue::LinkOnceODRLinkage; case lltok::kw_available_externally: return GlobalValue::AvailableExternallyLinkage; case lltok::kw_appending: return GlobalValue::AppendingLinkage; case lltok::kw_common: return GlobalValue::CommonLinkage; case lltok::kw_extern_weak: return GlobalValue::ExternalWeakLinkage; case lltok::kw_external: return GlobalValue::ExternalLinkage; } } /// parseOptionalLinkage /// ::= /*empty*/ /// ::= 'private' /// ::= 'internal' /// ::= 'weak' /// ::= 'weak_odr' /// ::= 'linkonce' /// ::= 'linkonce_odr' /// ::= 'available_externally' /// ::= 'appending' /// ::= 'common' /// ::= 'extern_weak' /// ::= 'external' bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, unsigned &Visibility, unsigned &DLLStorageClass, bool &DSOLocal) { Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); if (HasLinkage) Lex.Lex(); parseOptionalDSOLocal(DSOLocal); parseOptionalVisibility(Visibility); parseOptionalDLLStorageClass(DLLStorageClass); if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); } return false; } void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { switch (Lex.getKind()) { default: DSOLocal = false; break; case lltok::kw_dso_local: DSOLocal = true; Lex.Lex(); break; case lltok::kw_dso_preemptable: DSOLocal = false; Lex.Lex(); break; } } /// parseOptionalVisibility /// ::= /*empty*/ /// ::= 'default' /// ::= 'hidden' /// ::= 'protected' /// void LLParser::parseOptionalVisibility(unsigned &Res) { switch (Lex.getKind()) { default: Res = GlobalValue::DefaultVisibility; return; case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; } Lex.Lex(); } /// parseOptionalDLLStorageClass /// ::= /*empty*/ /// ::= 'dllimport' /// ::= 'dllexport' /// void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { switch (Lex.getKind()) { default: Res = GlobalValue::DefaultStorageClass; return; case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break; case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break; } Lex.Lex(); } /// parseOptionalCallingConv /// ::= /*empty*/ /// ::= 'ccc' /// ::= 'fastcc' /// ::= 'intel_ocl_bicc' /// ::= 'coldcc' /// ::= 'cfguard_checkcc' /// ::= 'x86_stdcallcc' /// ::= 'x86_fastcallcc' /// ::= 'x86_thiscallcc' /// ::= 'x86_vectorcallcc' /// ::= 'arm_apcscc' /// ::= 'arm_aapcscc' /// ::= 'arm_aapcs_vfpcc' /// ::= 'aarch64_vector_pcs' /// ::= 'aarch64_sve_vector_pcs' /// ::= 'aarch64_sme_preservemost_from_x0' /// ::= 'aarch64_sme_preservemost_from_x2' /// ::= 'msp430_intrcc' /// ::= 'avr_intrcc' /// ::= 'avr_signalcc' /// ::= 'ptx_kernel' /// ::= 'ptx_device' /// ::= 'spir_func' /// ::= 'spir_kernel' /// ::= 'x86_64_sysvcc' /// ::= 'win64cc' /// ::= 'anyregcc' /// ::= 'preserve_mostcc' /// ::= 'preserve_allcc' /// ::= 'ghccc' /// ::= 'swiftcc' /// ::= 'swifttailcc' /// ::= 'x86_intrcc' /// ::= 'hhvmcc' /// ::= 'hhvm_ccc' /// ::= 'cxx_fast_tlscc' /// ::= 'amdgpu_vs' /// ::= 'amdgpu_ls' /// ::= 'amdgpu_hs' /// ::= 'amdgpu_es' /// ::= 'amdgpu_gs' /// ::= 'amdgpu_ps' /// ::= 'amdgpu_cs' /// ::= 'amdgpu_cs_chain' /// ::= 'amdgpu_cs_chain_preserve' /// ::= 'amdgpu_kernel' /// ::= 'tailcc' /// ::= 'm68k_rtdcc' /// ::= 'graalcc' /// ::= 'cc' UINT /// bool LLParser::parseOptionalCallingConv(unsigned &CC) { switch (Lex.getKind()) { default: CC = CallingConv::C; return false; case lltok::kw_ccc: CC = CallingConv::C; break; case lltok::kw_fastcc: CC = CallingConv::Fast; break; case lltok::kw_coldcc: CC = CallingConv::Cold; break; case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; case lltok::kw_aarch64_sve_vector_pcs: CC = CallingConv::AArch64_SVE_VectorCall; break; case lltok::kw_aarch64_sme_preservemost_from_x0: CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0; break; case lltok::kw_aarch64_sme_preservemost_from_x2: CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2; break; case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; case lltok::kw_win64cc: CC = CallingConv::Win64; break; case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; case lltok::kw_ghccc: CC = CallingConv::GHC; break; case lltok::kw_swiftcc: CC = CallingConv::Swift; break; case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; case lltok::kw_hhvmcc: CC = CallingConv::DUMMY_HHVM; break; case lltok::kw_hhvm_ccc: CC = CallingConv::DUMMY_HHVM_C; break; case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; case lltok::kw_amdgpu_cs_chain: CC = CallingConv::AMDGPU_CS_Chain; break; case lltok::kw_amdgpu_cs_chain_preserve: CC = CallingConv::AMDGPU_CS_ChainPreserve; break; case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; case lltok::kw_tailcc: CC = CallingConv::Tail; break; case lltok::kw_m68k_rtdcc: CC = CallingConv::M68k_RTD; break; case lltok::kw_graalcc: CC = CallingConv::GRAAL; break; case lltok::kw_cc: { Lex.Lex(); return parseUInt32(CC); } } Lex.Lex(); return false; } /// parseMetadataAttachment /// ::= !dbg !42 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); std::string Name = Lex.getStrVal(); Kind = M->getMDKindID(Name); Lex.Lex(); return parseMDNode(MD); } /// parseInstructionMetadata /// ::= !dbg !42 (',' !dbg !57)* bool LLParser::parseInstructionMetadata(Instruction &Inst) { do { if (Lex.getKind() != lltok::MetadataVar) return tokError("expected metadata after comma"); unsigned MDK; MDNode *N; if (parseMetadataAttachment(MDK, N)) return true; if (MDK == LLVMContext::MD_DIAssignID) TempDIAssignIDAttachments[N].push_back(&Inst); else Inst.setMetadata(MDK, N); if (MDK == LLVMContext::MD_tbaa) InstsWithTBAATag.push_back(&Inst); // If this is the end of the list, we're done. } while (EatIfPresent(lltok::comma)); return false; } /// parseGlobalObjectMetadataAttachment /// ::= !dbg !57 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { unsigned MDK; MDNode *N; if (parseMetadataAttachment(MDK, N)) return true; GO.addMetadata(MDK, *N); return false; } /// parseOptionalFunctionMetadata /// ::= (!dbg !57)* bool LLParser::parseOptionalFunctionMetadata(Function &F) { while (Lex.getKind() == lltok::MetadataVar) if (parseGlobalObjectMetadataAttachment(F)) return true; return false; } /// parseOptionalAlignment /// ::= /* empty */ /// ::= 'align' 4 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { Alignment = std::nullopt; if (!EatIfPresent(lltok::kw_align)) return false; LocTy AlignLoc = Lex.getLoc(); uint64_t Value = 0; LocTy ParenLoc = Lex.getLoc(); bool HaveParens = false; if (AllowParens) { if (EatIfPresent(lltok::lparen)) HaveParens = true; } if (parseUInt64(Value)) return true; if (HaveParens && !EatIfPresent(lltok::rparen)) return error(ParenLoc, "expected ')'"); if (!isPowerOf2_64(Value)) return error(AlignLoc, "alignment is not a power of two"); if (Value > Value::MaximumAlignment) return error(AlignLoc, "huge alignments are not supported yet"); Alignment = Align(Value); return false; } /// parseOptionalCodeModel /// ::= /* empty */ /// ::= 'code_model' "large" bool LLParser::parseOptionalCodeModel(CodeModel::Model &model) { Lex.Lex(); auto StrVal = Lex.getStrVal(); auto ErrMsg = "expected global code model string"; if (StrVal == "tiny") model = CodeModel::Tiny; else if (StrVal == "small") model = CodeModel::Small; else if (StrVal == "kernel") model = CodeModel::Kernel; else if (StrVal == "medium") model = CodeModel::Medium; else if (StrVal == "large") model = CodeModel::Large; else return tokError(ErrMsg); if (parseToken(lltok::StringConstant, ErrMsg)) return true; return false; } /// parseOptionalDerefAttrBytes /// ::= /* empty */ /// ::= AttrKind '(' 4 ')' /// /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, uint64_t &Bytes) { assert((AttrKind == lltok::kw_dereferenceable || AttrKind == lltok::kw_dereferenceable_or_null) && "contract!"); Bytes = 0; if (!EatIfPresent(AttrKind)) return false; LocTy ParenLoc = Lex.getLoc(); if (!EatIfPresent(lltok::lparen)) return error(ParenLoc, "expected '('"); LocTy DerefLoc = Lex.getLoc(); if (parseUInt64(Bytes)) return true; ParenLoc = Lex.getLoc(); if (!EatIfPresent(lltok::rparen)) return error(ParenLoc, "expected ')'"); if (!Bytes) return error(DerefLoc, "dereferenceable bytes must be non-zero"); return false; } bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) { Lex.Lex(); Kind = UWTableKind::Default; if (!EatIfPresent(lltok::lparen)) return false; LocTy KindLoc = Lex.getLoc(); if (Lex.getKind() == lltok::kw_sync) Kind = UWTableKind::Sync; else if (Lex.getKind() == lltok::kw_async) Kind = UWTableKind::Async; else return error(KindLoc, "expected unwind table kind"); Lex.Lex(); return parseToken(lltok::rparen, "expected ')'"); } bool LLParser::parseAllocKind(AllocFnKind &Kind) { Lex.Lex(); LocTy ParenLoc = Lex.getLoc(); if (!EatIfPresent(lltok::lparen)) return error(ParenLoc, "expected '('"); LocTy KindLoc = Lex.getLoc(); std::string Arg; if (parseStringConstant(Arg)) return error(KindLoc, "expected allockind value"); for (StringRef A : llvm::split(Arg, ",")) { if (A == "alloc") { Kind |= AllocFnKind::Alloc; } else if (A == "realloc") { Kind |= AllocFnKind::Realloc; } else if (A == "free") { Kind |= AllocFnKind::Free; } else if (A == "uninitialized") { Kind |= AllocFnKind::Uninitialized; } else if (A == "zeroed") { Kind |= AllocFnKind::Zeroed; } else if (A == "aligned") { Kind |= AllocFnKind::Aligned; } else { return error(KindLoc, Twine("unknown allockind ") + A); } } ParenLoc = Lex.getLoc(); if (!EatIfPresent(lltok::rparen)) return error(ParenLoc, "expected ')'"); if (Kind == AllocFnKind::Unknown) return error(KindLoc, "expected allockind value"); return false; } static std::optional keywordToLoc(lltok::Kind Tok) { switch (Tok) { case lltok::kw_argmem: return IRMemLocation::ArgMem; case lltok::kw_inaccessiblemem: return IRMemLocation::InaccessibleMem; default: return std::nullopt; } } static std::optional keywordToModRef(lltok::Kind Tok) { switch (Tok) { case lltok::kw_none: return ModRefInfo::NoModRef; case lltok::kw_read: return ModRefInfo::Ref; case lltok::kw_write: return ModRefInfo::Mod; case lltok::kw_readwrite: return ModRefInfo::ModRef; default: return std::nullopt; } } std::optional LLParser::parseMemoryAttr() { MemoryEffects ME = MemoryEffects::none(); // We use syntax like memory(argmem: read), so the colon should not be // interpreted as a label terminator. Lex.setIgnoreColonInIdentifiers(true); auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); }); Lex.Lex(); if (!EatIfPresent(lltok::lparen)) { tokError("expected '('"); return std::nullopt; } bool SeenLoc = false; do { std::optional Loc = keywordToLoc(Lex.getKind()); if (Loc) { Lex.Lex(); if (!EatIfPresent(lltok::colon)) { tokError("expected ':' after location"); return std::nullopt; } } std::optional MR = keywordToModRef(Lex.getKind()); if (!MR) { if (!Loc) tokError("expected memory location (argmem, inaccessiblemem) " "or access kind (none, read, write, readwrite)"); else tokError("expected access kind (none, read, write, readwrite)"); return std::nullopt; } Lex.Lex(); if (Loc) { SeenLoc = true; ME = ME.getWithModRef(*Loc, *MR); } else { if (SeenLoc) { tokError("default access kind must be specified first"); return std::nullopt; } ME = MemoryEffects(*MR); } if (EatIfPresent(lltok::rparen)) return ME; } while (EatIfPresent(lltok::comma)); tokError("unterminated memory attribute"); return std::nullopt; } static unsigned keywordToFPClassTest(lltok::Kind Tok) { switch (Tok) { case lltok::kw_all: return fcAllFlags; case lltok::kw_nan: return fcNan; case lltok::kw_snan: return fcSNan; case lltok::kw_qnan: return fcQNan; case lltok::kw_inf: return fcInf; case lltok::kw_ninf: return fcNegInf; case lltok::kw_pinf: return fcPosInf; case lltok::kw_norm: return fcNormal; case lltok::kw_nnorm: return fcNegNormal; case lltok::kw_pnorm: return fcPosNormal; case lltok::kw_sub: return fcSubnormal; case lltok::kw_nsub: return fcNegSubnormal; case lltok::kw_psub: return fcPosSubnormal; case lltok::kw_zero: return fcZero; case lltok::kw_nzero: return fcNegZero; case lltok::kw_pzero: return fcPosZero; default: return 0; } } unsigned LLParser::parseNoFPClassAttr() { unsigned Mask = fcNone; Lex.Lex(); if (!EatIfPresent(lltok::lparen)) { tokError("expected '('"); return 0; } do { uint64_t Value = 0; unsigned TestMask = keywordToFPClassTest(Lex.getKind()); if (TestMask != 0) { Mask |= TestMask; // TODO: Disallow overlapping masks to avoid copy paste errors } else if (Mask == 0 && Lex.getKind() == lltok::APSInt && !parseUInt64(Value)) { if (Value == 0 || (Value & ~static_cast(fcAllFlags)) != 0) { error(Lex.getLoc(), "invalid mask value for 'nofpclass'"); return 0; } if (!EatIfPresent(lltok::rparen)) { error(Lex.getLoc(), "expected ')'"); return 0; } return Value; } else { error(Lex.getLoc(), "expected nofpclass test mask"); return 0; } Lex.Lex(); if (EatIfPresent(lltok::rparen)) return Mask; } while (1); llvm_unreachable("unterminated nofpclass attribute"); } /// parseOptionalCommaAlign /// ::= /// ::= ',' align 4 /// /// This returns with AteExtraComma set to true if it ate an excess comma at the /// end. bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, bool &AteExtraComma) { AteExtraComma = false; while (EatIfPresent(lltok::comma)) { // Metadata at the end is an early exit. if (Lex.getKind() == lltok::MetadataVar) { AteExtraComma = true; return false; } if (Lex.getKind() != lltok::kw_align) return error(Lex.getLoc(), "expected metadata or 'align'"); if (parseOptionalAlignment(Alignment)) return true; } return false; } /// parseOptionalCommaAddrSpace /// ::= /// ::= ',' addrspace(1) /// /// This returns with AteExtraComma set to true if it ate an excess comma at the /// end. bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, bool &AteExtraComma) { AteExtraComma = false; while (EatIfPresent(lltok::comma)) { // Metadata at the end is an early exit. if (Lex.getKind() == lltok::MetadataVar) { AteExtraComma = true; return false; } Loc = Lex.getLoc(); if (Lex.getKind() != lltok::kw_addrspace) return error(Lex.getLoc(), "expected metadata or 'addrspace'"); if (parseOptionalAddrSpace(AddrSpace)) return true; } return false; } bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, std::optional &HowManyArg) { Lex.Lex(); auto StartParen = Lex.getLoc(); if (!EatIfPresent(lltok::lparen)) return error(StartParen, "expected '('"); if (parseUInt32(BaseSizeArg)) return true; if (EatIfPresent(lltok::comma)) { auto HowManyAt = Lex.getLoc(); unsigned HowMany; if (parseUInt32(HowMany)) return true; if (HowMany == BaseSizeArg) return error(HowManyAt, "'allocsize' indices can't refer to the same parameter"); HowManyArg = HowMany; } else HowManyArg = std::nullopt; auto EndParen = Lex.getLoc(); if (!EatIfPresent(lltok::rparen)) return error(EndParen, "expected ')'"); return false; } bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, unsigned &MaxValue) { Lex.Lex(); auto StartParen = Lex.getLoc(); if (!EatIfPresent(lltok::lparen)) return error(StartParen, "expected '('"); if (parseUInt32(MinValue)) return true; if (EatIfPresent(lltok::comma)) { if (parseUInt32(MaxValue)) return true; } else MaxValue = MinValue; auto EndParen = Lex.getLoc(); if (!EatIfPresent(lltok::rparen)) return error(EndParen, "expected ')'"); return false; } /// parseScopeAndOrdering /// if isAtomic: ::= SyncScope? AtomicOrdering /// else: ::= /// /// This sets Scope and Ordering to the parsed values. bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, AtomicOrdering &Ordering) { if (!IsAtomic) return false; return parseScope(SSID) || parseOrdering(Ordering); } /// parseScope /// ::= syncscope("singlethread" | "")? /// /// This sets synchronization scope ID to the ID of the parsed value. bool LLParser::parseScope(SyncScope::ID &SSID) { SSID = SyncScope::System; if (EatIfPresent(lltok::kw_syncscope)) { auto StartParenAt = Lex.getLoc(); if (!EatIfPresent(lltok::lparen)) return error(StartParenAt, "Expected '(' in syncscope"); std::string SSN; auto SSNAt = Lex.getLoc(); if (parseStringConstant(SSN)) return error(SSNAt, "Expected synchronization scope name"); auto EndParenAt = Lex.getLoc(); if (!EatIfPresent(lltok::rparen)) return error(EndParenAt, "Expected ')' in syncscope"); SSID = Context.getOrInsertSyncScopeID(SSN); } return false; } /// parseOrdering /// ::= AtomicOrdering /// /// This sets Ordering to the parsed value. bool LLParser::parseOrdering(AtomicOrdering &Ordering) { switch (Lex.getKind()) { default: return tokError("Expected ordering on atomic instruction"); case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; // Not specified yet: // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; case lltok::kw_release: Ordering = AtomicOrdering::Release; break; case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; case lltok::kw_seq_cst: Ordering = AtomicOrdering::SequentiallyConsistent; break; } Lex.Lex(); return false; } /// parseOptionalStackAlignment /// ::= /* empty */ /// ::= 'alignstack' '(' 4 ')' bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { Alignment = 0; if (!EatIfPresent(lltok::kw_alignstack)) return false; LocTy ParenLoc = Lex.getLoc(); if (!EatIfPresent(lltok::lparen)) return error(ParenLoc, "expected '('"); LocTy AlignLoc = Lex.getLoc(); if (parseUInt32(Alignment)) return true; ParenLoc = Lex.getLoc(); if (!EatIfPresent(lltok::rparen)) return error(ParenLoc, "expected ')'"); if (!isPowerOf2_32(Alignment)) return error(AlignLoc, "stack alignment is not a power of two"); return false; } /// parseIndexList - This parses the index list for an insert/extractvalue /// instruction. This sets AteExtraComma in the case where we eat an extra /// comma at the end of the line and find that it is followed by metadata. /// Clients that don't allow metadata can call the version of this function that /// only takes one argument. /// /// parseIndexList /// ::= (',' uint32)+ /// bool LLParser::parseIndexList(SmallVectorImpl &Indices, bool &AteExtraComma) { AteExtraComma = false; if (Lex.getKind() != lltok::comma) return tokError("expected ',' as start of index list"); while (EatIfPresent(lltok::comma)) { if (Lex.getKind() == lltok::MetadataVar) { if (Indices.empty()) return tokError("expected index"); AteExtraComma = true; return false; } unsigned Idx = 0; if (parseUInt32(Idx)) return true; Indices.push_back(Idx); } return false; } //===----------------------------------------------------------------------===// // Type Parsing. //===----------------------------------------------------------------------===// /// parseType - parse a type. bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { SMLoc TypeLoc = Lex.getLoc(); switch (Lex.getKind()) { default: return tokError(Msg); case lltok::Type: // Type ::= 'float' | 'void' (etc) Result = Lex.getTyVal(); Lex.Lex(); // Handle "ptr" opaque pointer type. // // Type ::= ptr ('addrspace' '(' uint32 ')')? if (Result->isPointerTy()) { unsigned AddrSpace; if (parseOptionalAddrSpace(AddrSpace)) return true; Result = PointerType::get(getContext(), AddrSpace); // Give a nice error for 'ptr*'. if (Lex.getKind() == lltok::star) return tokError("ptr* is invalid - use ptr instead"); // Fall through to parsing the type suffixes only if this 'ptr' is a // function return. Otherwise, return success, implicitly rejecting other // suffixes. if (Lex.getKind() != lltok::lparen) return false; } break; case lltok::kw_target: { // Type ::= TargetExtType if (parseTargetExtType(Result)) return true; break; } case lltok::lbrace: // Type ::= StructType if (parseAnonStructType(Result, false)) return true; break; case lltok::lsquare: // Type ::= '[' ... ']' Lex.Lex(); // eat the lsquare. if (parseArrayVectorType(Result, false)) return true; break; case lltok::less: // Either vector or packed struct. // Type ::= '<' ... '>' Lex.Lex(); if (Lex.getKind() == lltok::lbrace) { if (parseAnonStructType(Result, true) || parseToken(lltok::greater, "expected '>' at end of packed struct")) return true; } else if (parseArrayVectorType(Result, true)) return true; break; case lltok::LocalVar: { // Type ::= %foo std::pair &Entry = NamedTypes[Lex.getStrVal()]; // If the type hasn't been defined yet, create a forward definition and // remember where that forward def'n was seen (in case it never is defined). if (!Entry.first) { Entry.first = StructType::create(Context, Lex.getStrVal()); Entry.second = Lex.getLoc(); } Result = Entry.first; Lex.Lex(); break; } case lltok::LocalVarID: { // Type ::= %4 std::pair &Entry = NumberedTypes[Lex.getUIntVal()]; // If the type hasn't been defined yet, create a forward definition and // remember where that forward def'n was seen (in case it never is defined). if (!Entry.first) { Entry.first = StructType::create(Context); Entry.second = Lex.getLoc(); } Result = Entry.first; Lex.Lex(); break; } } // parse the type suffixes. while (true) { switch (Lex.getKind()) { // End of type. default: if (!AllowVoid && Result->isVoidTy()) return error(TypeLoc, "void type only allowed for function results"); return false; // Type ::= Type '*' case lltok::star: if (Result->isLabelTy()) return tokError("basic block pointers are invalid"); if (Result->isVoidTy()) return tokError("pointers to void are invalid - use i8* instead"); if (!PointerType::isValidElementType(Result)) return tokError("pointer to this type is invalid"); Result = PointerType::getUnqual(Result); Lex.Lex(); break; // Type ::= Type 'addrspace' '(' uint32 ')' '*' case lltok::kw_addrspace: { if (Result->isLabelTy()) return tokError("basic block pointers are invalid"); if (Result->isVoidTy()) return tokError("pointers to void are invalid; use i8* instead"); if (!PointerType::isValidElementType(Result)) return tokError("pointer to this type is invalid"); unsigned AddrSpace; if (parseOptionalAddrSpace(AddrSpace) || parseToken(lltok::star, "expected '*' in address space")) return true; Result = PointerType::get(Result, AddrSpace); break; } /// Types '(' ArgTypeListI ')' OptFuncAttrs case lltok::lparen: if (parseFunctionType(Result)) return true; break; } } } /// parseParameterList /// ::= '(' ')' /// ::= '(' Arg (',' Arg)* ')' /// Arg /// ::= Type OptionalAttributes Value OptionalAttributes bool LLParser::parseParameterList(SmallVectorImpl &ArgList, PerFunctionState &PFS, bool IsMustTailCall, bool InVarArgsFunc) { if (parseToken(lltok::lparen, "expected '(' in call")) return true; while (Lex.getKind() != lltok::rparen) { // If this isn't the first argument, we need a comma. if (!ArgList.empty() && parseToken(lltok::comma, "expected ',' in argument list")) return true; // parse an ellipsis if this is a musttail call in a variadic function. if (Lex.getKind() == lltok::dotdotdot) { const char *Msg = "unexpected ellipsis in argument list for "; if (!IsMustTailCall) return tokError(Twine(Msg) + "non-musttail call"); if (!InVarArgsFunc) return tokError(Twine(Msg) + "musttail call in non-varargs function"); Lex.Lex(); // Lex the '...', it is purely for readability. return parseToken(lltok::rparen, "expected ')' at end of argument list"); } // parse the argument. LocTy ArgLoc; Type *ArgTy = nullptr; Value *V; if (parseType(ArgTy, ArgLoc)) return true; AttrBuilder ArgAttrs(M->getContext()); if (ArgTy->isMetadataTy()) { if (parseMetadataAsValue(V, PFS)) return true; } else { // Otherwise, handle normal operands. if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) return true; } ArgList.push_back(ParamInfo( ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); } if (IsMustTailCall && InVarArgsFunc) return tokError("expected '...' at end of argument list for musttail call " "in varargs function"); Lex.Lex(); // Lex the ')'. return false; } /// parseRequiredTypeAttr /// ::= attrname() bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, Attribute::AttrKind AttrKind) { Type *Ty = nullptr; if (!EatIfPresent(AttrToken)) return true; if (!EatIfPresent(lltok::lparen)) return error(Lex.getLoc(), "expected '('"); if (parseType(Ty)) return true; if (!EatIfPresent(lltok::rparen)) return error(Lex.getLoc(), "expected ')'"); B.addTypeAttr(AttrKind, Ty); return false; } /// parseOptionalOperandBundles /// ::= /*empty*/ /// ::= '[' OperandBundle [, OperandBundle ]* ']' /// /// OperandBundle /// ::= bundle-tag '(' ')' /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' /// /// bundle-tag ::= String Constant bool LLParser::parseOptionalOperandBundles( SmallVectorImpl &BundleList, PerFunctionState &PFS) { LocTy BeginLoc = Lex.getLoc(); if (!EatIfPresent(lltok::lsquare)) return false; while (Lex.getKind() != lltok::rsquare) { // If this isn't the first operand bundle, we need a comma. if (!BundleList.empty() && parseToken(lltok::comma, "expected ',' in input list")) return true; std::string Tag; if (parseStringConstant(Tag)) return true; if (parseToken(lltok::lparen, "expected '(' in operand bundle")) return true; std::vector Inputs; while (Lex.getKind() != lltok::rparen) { // If this isn't the first input, we need a comma. if (!Inputs.empty() && parseToken(lltok::comma, "expected ',' in input list")) return true; Type *Ty = nullptr; Value *Input = nullptr; if (parseType(Ty) || parseValue(Ty, Input, PFS)) return true; Inputs.push_back(Input); } BundleList.emplace_back(std::move(Tag), std::move(Inputs)); Lex.Lex(); // Lex the ')'. } if (BundleList.empty()) return error(BeginLoc, "operand bundle set must not be empty"); Lex.Lex(); // Lex the ']'. return false; } bool LLParser::checkValueID(LocTy Loc, StringRef Kind, StringRef Prefix, unsigned NextID, unsigned ID) const { if (ID < NextID) return error(Loc, Kind + " expected to be numbered '" + Prefix + Twine(NextID) + "' or greater"); return false; } /// parseArgumentList - parse the argument list for a function type or function /// prototype. /// ::= '(' ArgTypeListI ')' /// ArgTypeListI /// ::= /*empty*/ /// ::= '...' /// ::= ArgTypeList ',' '...' /// ::= ArgType (',' ArgType)* /// bool LLParser::parseArgumentList(SmallVectorImpl &ArgList, SmallVectorImpl &UnnamedArgNums, bool &IsVarArg) { unsigned CurValID = 0; IsVarArg = false; assert(Lex.getKind() == lltok::lparen); Lex.Lex(); // eat the (. if (Lex.getKind() != lltok::rparen) { do { // Handle ... at end of arg list. if (EatIfPresent(lltok::dotdotdot)) { IsVarArg = true; break; } // Otherwise must be an argument type. LocTy TypeLoc = Lex.getLoc(); Type *ArgTy = nullptr; AttrBuilder Attrs(M->getContext()); if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) return true; if (ArgTy->isVoidTy()) return error(TypeLoc, "argument can not have void type"); std::string Name; if (Lex.getKind() == lltok::LocalVar) { Name = Lex.getStrVal(); Lex.Lex(); } else { unsigned ArgID; if (Lex.getKind() == lltok::LocalVarID) { ArgID = Lex.getUIntVal(); if (checkValueID(TypeLoc, "argument", "%", CurValID, ArgID)) return true; Lex.Lex(); } else { ArgID = CurValID; } UnnamedArgNums.push_back(ArgID); CurValID = ArgID + 1; } if (!ArgTy->isFirstClassType()) return error(TypeLoc, "invalid type for function argument"); ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), Attrs), std::move(Name)); } while (EatIfPresent(lltok::comma)); } return parseToken(lltok::rparen, "expected ')' at end of argument list"); } /// parseFunctionType /// ::= Type ArgumentList OptionalAttrs bool LLParser::parseFunctionType(Type *&Result) { assert(Lex.getKind() == lltok::lparen); if (!FunctionType::isValidReturnType(Result)) return tokError("invalid function return type"); SmallVector ArgList; bool IsVarArg; SmallVector UnnamedArgNums; if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg)) return true; // Reject names on the arguments lists. for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { if (!ArgList[i].Name.empty()) return error(ArgList[i].Loc, "argument name invalid in function type"); if (ArgList[i].Attrs.hasAttributes()) return error(ArgList[i].Loc, "argument attributes invalid in function type"); } SmallVector ArgListTy; for (unsigned i = 0, e = ArgList.size(); i != e; ++i) ArgListTy.push_back(ArgList[i].Ty); Result = FunctionType::get(Result, ArgListTy, IsVarArg); return false; } /// parseAnonStructType - parse an anonymous struct type, which is inlined into /// other structs. bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { SmallVector Elts; if (parseStructBody(Elts)) return true; Result = StructType::get(Context, Elts, Packed); return false; } /// parseStructDefinition - parse a struct in a 'type' definition. bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, std::pair &Entry, Type *&ResultTy) { // If the type was already defined, diagnose the redefinition. if (Entry.first && !Entry.second.isValid()) return error(TypeLoc, "redefinition of type"); // If we have opaque, just return without filling in the definition for the // struct. This counts as a definition as far as the .ll file goes. if (EatIfPresent(lltok::kw_opaque)) { // This type is being defined, so clear the location to indicate this. Entry.second = SMLoc(); // If this type number has never been uttered, create it. if (!Entry.first) Entry.first = StructType::create(Context, Name); ResultTy = Entry.first; return false; } // If the type starts with '<', then it is either a packed struct or a vector. bool isPacked = EatIfPresent(lltok::less); // If we don't have a struct, then we have a random type alias, which we // accept for compatibility with old files. These types are not allowed to be // forward referenced and not allowed to be recursive. if (Lex.getKind() != lltok::lbrace) { if (Entry.first) return error(TypeLoc, "forward references to non-struct type"); ResultTy = nullptr; if (isPacked) return parseArrayVectorType(ResultTy, true); return parseType(ResultTy); } // This type is being defined, so clear the location to indicate this. Entry.second = SMLoc(); // If this type number has never been uttered, create it. if (!Entry.first) Entry.first = StructType::create(Context, Name); StructType *STy = cast(Entry.first); SmallVector Body; if (parseStructBody(Body) || (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) return true; STy->setBody(Body, isPacked); ResultTy = STy; return false; } /// parseStructType: Handles packed and unpacked types. parsed elsewhere. /// StructType /// ::= '{' '}' /// ::= '{' Type (',' Type)* '}' /// ::= '<' '{' '}' '>' /// ::= '<' '{' Type (',' Type)* '}' '>' bool LLParser::parseStructBody(SmallVectorImpl &Body) { assert(Lex.getKind() == lltok::lbrace); Lex.Lex(); // Consume the '{' // Handle the empty struct. if (EatIfPresent(lltok::rbrace)) return false; LocTy EltTyLoc = Lex.getLoc(); Type *Ty = nullptr; if (parseType(Ty)) return true; Body.push_back(Ty); if (!StructType::isValidElementType(Ty)) return error(EltTyLoc, "invalid element type for struct"); while (EatIfPresent(lltok::comma)) { EltTyLoc = Lex.getLoc(); if (parseType(Ty)) return true; if (!StructType::isValidElementType(Ty)) return error(EltTyLoc, "invalid element type for struct"); Body.push_back(Ty); } return parseToken(lltok::rbrace, "expected '}' at end of struct"); } /// parseArrayVectorType - parse an array or vector type, assuming the first /// token has already been consumed. /// Type /// ::= '[' APSINTVAL 'x' Types ']' /// ::= '<' APSINTVAL 'x' Types '>' /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { bool Scalable = false; if (IsVector && Lex.getKind() == lltok::kw_vscale) { Lex.Lex(); // consume the 'vscale' if (parseToken(lltok::kw_x, "expected 'x' after vscale")) return true; Scalable = true; } if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || Lex.getAPSIntVal().getBitWidth() > 64) return tokError("expected number in address space"); LocTy SizeLoc = Lex.getLoc(); uint64_t Size = Lex.getAPSIntVal().getZExtValue(); Lex.Lex(); if (parseToken(lltok::kw_x, "expected 'x' after element count")) return true; LocTy TypeLoc = Lex.getLoc(); Type *EltTy = nullptr; if (parseType(EltTy)) return true; if (parseToken(IsVector ? lltok::greater : lltok::rsquare, "expected end of sequential type")) return true; if (IsVector) { if (Size == 0) return error(SizeLoc, "zero element vector is illegal"); if ((unsigned)Size != Size) return error(SizeLoc, "size too large for vector"); if (!VectorType::isValidElementType(EltTy)) return error(TypeLoc, "invalid vector element type"); Result = VectorType::get(EltTy, unsigned(Size), Scalable); } else { if (!ArrayType::isValidElementType(EltTy)) return error(TypeLoc, "invalid array element type"); Result = ArrayType::get(EltTy, Size); } return false; } /// parseTargetExtType - handle target extension type syntax /// TargetExtType /// ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')' /// /// TargetExtTypeParams /// ::= /*empty*/ /// ::= ',' Type TargetExtTypeParams /// /// TargetExtIntParams /// ::= /*empty*/ /// ::= ',' uint32 TargetExtIntParams bool LLParser::parseTargetExtType(Type *&Result) { Lex.Lex(); // Eat the 'target' keyword. // Get the mandatory type name. std::string TypeName; if (parseToken(lltok::lparen, "expected '(' in target extension type") || parseStringConstant(TypeName)) return true; // Parse all of the integer and type parameters at the same time; the use of // SeenInt will allow us to catch cases where type parameters follow integer // parameters. SmallVector TypeParams; SmallVector IntParams; bool SeenInt = false; while (Lex.getKind() == lltok::comma) { Lex.Lex(); // Eat the comma. if (Lex.getKind() == lltok::APSInt) { SeenInt = true; unsigned IntVal; if (parseUInt32(IntVal)) return true; IntParams.push_back(IntVal); } else if (SeenInt) { // The only other kind of parameter we support is type parameters, which // must precede the integer parameters. This is therefore an error. return tokError("expected uint32 param"); } else { Type *TypeParam; if (parseType(TypeParam, /*AllowVoid=*/true)) return true; TypeParams.push_back(TypeParam); } } if (parseToken(lltok::rparen, "expected ')' in target extension type")) return true; Result = TargetExtType::get(Context, TypeName, TypeParams, IntParams); return false; } //===----------------------------------------------------------------------===// // Function Semantic Analysis. //===----------------------------------------------------------------------===// LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, int functionNumber, ArrayRef UnnamedArgNums) : P(p), F(f), FunctionNumber(functionNumber) { // Insert unnamed arguments into the NumberedVals list. auto It = UnnamedArgNums.begin(); for (Argument &A : F.args()) { if (!A.hasName()) { unsigned ArgNum = *It++; NumberedVals.add(ArgNum, &A); } } } LLParser::PerFunctionState::~PerFunctionState() { // If there were any forward referenced non-basicblock values, delete them. for (const auto &P : ForwardRefVals) { if (isa(P.second.first)) continue; P.second.first->replaceAllUsesWith( UndefValue::get(P.second.first->getType())); P.second.first->deleteValue(); } for (const auto &P : ForwardRefValIDs) { if (isa(P.second.first)) continue; P.second.first->replaceAllUsesWith( UndefValue::get(P.second.first->getType())); P.second.first->deleteValue(); } } bool LLParser::PerFunctionState::finishFunction() { if (!ForwardRefVals.empty()) return P.error(ForwardRefVals.begin()->second.second, "use of undefined value '%" + ForwardRefVals.begin()->first + "'"); if (!ForwardRefValIDs.empty()) return P.error(ForwardRefValIDs.begin()->second.second, "use of undefined value '%" + Twine(ForwardRefValIDs.begin()->first) + "'"); return false; } /// getVal - Get a value with the specified name or ID, creating a /// forward reference record if needed. This can return null if the value /// exists but does not have the right type. Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, LocTy Loc) { // Look this name up in the normal function symbol table. Value *Val = F.getValueSymbolTable()->lookup(Name); // If this is a forward reference for the value, see if we already created a // forward ref record. if (!Val) { auto I = ForwardRefVals.find(Name); if (I != ForwardRefVals.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); // Don't make placeholders with invalid type. if (!Ty->isFirstClassType()) { P.error(Loc, "invalid use of a non-first-class type"); return nullptr; } // Otherwise, create a new forward reference for this value and remember it. Value *FwdVal; if (Ty->isLabelTy()) { FwdVal = BasicBlock::Create(F.getContext(), Name, &F); } else { FwdVal = new Argument(Ty, Name); } if (FwdVal->getName() != Name) { P.error(Loc, "name is too long which can result in name collisions, " "consider making the name shorter or " "increasing -non-global-value-max-name-size"); return nullptr; } ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); return FwdVal; } Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { // Look this name up in the normal function symbol table. Value *Val = NumberedVals.get(ID); // If this is a forward reference for the value, see if we already created a // forward ref record. if (!Val) { auto I = ForwardRefValIDs.find(ID); if (I != ForwardRefValIDs.end()) Val = I->second.first; } // If we have the value in the symbol table or fwd-ref table, return it. if (Val) return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); if (!Ty->isFirstClassType()) { P.error(Loc, "invalid use of a non-first-class type"); return nullptr; } // Otherwise, create a new forward reference for this value and remember it. Value *FwdVal; if (Ty->isLabelTy()) { FwdVal = BasicBlock::Create(F.getContext(), "", &F); } else { FwdVal = new Argument(Ty); } ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); return FwdVal; } /// setInstName - After an instruction is parsed and inserted into its /// basic block, this installs its name. bool LLParser::PerFunctionState::setInstName(int NameID, const std::string &NameStr, LocTy NameLoc, Instruction *Inst) { // If this instruction has void type, it cannot have a name or ID specified. if (Inst->getType()->isVoidTy()) { if (NameID != -1 || !NameStr.empty()) return P.error(NameLoc, "instructions returning void cannot have a name"); return false; } // If this was a numbered instruction, verify that the instruction is the // expected value and resolve any forward references. if (NameStr.empty()) { // If neither a name nor an ID was specified, just use the next ID. if (NameID == -1) NameID = NumberedVals.getNext(); if (P.checkValueID(NameLoc, "instruction", "%", NumberedVals.getNext(), NameID)) return true; auto FI = ForwardRefValIDs.find(NameID); if (FI != ForwardRefValIDs.end()) { Value *Sentinel = FI->second.first; if (Sentinel->getType() != Inst->getType()) return P.error(NameLoc, "instruction forward referenced with type '" + getTypeString(FI->second.first->getType()) + "'"); Sentinel->replaceAllUsesWith(Inst); Sentinel->deleteValue(); ForwardRefValIDs.erase(FI); } NumberedVals.add(NameID, Inst); return false; } // Otherwise, the instruction had a name. Resolve forward refs and set it. auto FI = ForwardRefVals.find(NameStr); if (FI != ForwardRefVals.end()) { Value *Sentinel = FI->second.first; if (Sentinel->getType() != Inst->getType()) return P.error(NameLoc, "instruction forward referenced with type '" + getTypeString(FI->second.first->getType()) + "'"); Sentinel->replaceAllUsesWith(Inst); Sentinel->deleteValue(); ForwardRefVals.erase(FI); } // Set the name on the instruction. Inst->setName(NameStr); if (Inst->getName() != NameStr) return P.error(NameLoc, "multiple definition of local value named '" + NameStr + "'"); return false; } /// getBB - Get a basic block with the specified name or ID, creating a /// forward reference record if needed. BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, LocTy Loc) { return dyn_cast_or_null( getVal(Name, Type::getLabelTy(F.getContext()), Loc)); } BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { return dyn_cast_or_null( getVal(ID, Type::getLabelTy(F.getContext()), Loc)); } /// defineBB - Define the specified basic block, which is either named or /// unnamed. If there is an error, this returns null otherwise it returns /// the block being defined. BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, int NameID, LocTy Loc) { BasicBlock *BB; if (Name.empty()) { if (NameID != -1) { if (P.checkValueID(Loc, "label", "", NumberedVals.getNext(), NameID)) return nullptr; } else { NameID = NumberedVals.getNext(); } BB = getBB(NameID, Loc); if (!BB) { P.error(Loc, "unable to create block numbered '" + Twine(NameID) + "'"); return nullptr; } } else { BB = getBB(Name, Loc); if (!BB) { P.error(Loc, "unable to create block named '" + Name + "'"); return nullptr; } } // Move the block to the end of the function. Forward ref'd blocks are // inserted wherever they happen to be referenced. F.splice(F.end(), &F, BB->getIterator()); // Remove the block from forward ref sets. if (Name.empty()) { ForwardRefValIDs.erase(NameID); NumberedVals.add(NameID, BB); } else { // BB forward references are already in the function symbol table. ForwardRefVals.erase(Name); } return BB; } //===----------------------------------------------------------------------===// // Constants. //===----------------------------------------------------------------------===// /// parseValID - parse an abstract value that doesn't necessarily have a /// type implied. For example, if we parse "4" we don't know what integer type /// it has. The value will later be combined with its type and checked for /// basic correctness. PFS is used to convert function-local operands of /// metadata (since metadata operands are not just parsed here but also /// converted to values). PFS can be null when we are not parsing metadata /// values inside a function. bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { ID.Loc = Lex.getLoc(); switch (Lex.getKind()) { default: return tokError("expected value token"); case lltok::GlobalID: // @42 ID.UIntVal = Lex.getUIntVal(); ID.Kind = ValID::t_GlobalID; break; case lltok::GlobalVar: // @foo ID.StrVal = Lex.getStrVal(); ID.Kind = ValID::t_GlobalName; break; case lltok::LocalVarID: // %42 ID.UIntVal = Lex.getUIntVal(); ID.Kind = ValID::t_LocalID; break; case lltok::LocalVar: // %foo ID.StrVal = Lex.getStrVal(); ID.Kind = ValID::t_LocalName; break; case lltok::APSInt: ID.APSIntVal = Lex.getAPSIntVal(); ID.Kind = ValID::t_APSInt; break; case lltok::APFloat: ID.APFloatVal = Lex.getAPFloatVal(); ID.Kind = ValID::t_APFloat; break; case lltok::kw_true: ID.ConstantVal = ConstantInt::getTrue(Context); ID.Kind = ValID::t_Constant; break; case lltok::kw_false: ID.ConstantVal = ConstantInt::getFalse(Context); ID.Kind = ValID::t_Constant; break; case lltok::kw_null: ID.Kind = ValID::t_Null; break; case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; case lltok::kw_none: ID.Kind = ValID::t_None; break; case lltok::lbrace: { // ValID ::= '{' ConstVector '}' Lex.Lex(); SmallVector Elts; if (parseGlobalValueVector(Elts) || parseToken(lltok::rbrace, "expected end of struct constant")) return true; ID.ConstantStructElts = std::make_unique(Elts.size()); ID.UIntVal = Elts.size(); memcpy(ID.ConstantStructElts.get(), Elts.data(), Elts.size() * sizeof(Elts[0])); ID.Kind = ValID::t_ConstantStruct; return false; } case lltok::less: { // ValID ::= '<' ConstVector '>' --> Vector. // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. Lex.Lex(); bool isPackedStruct = EatIfPresent(lltok::lbrace); SmallVector Elts; LocTy FirstEltLoc = Lex.getLoc(); if (parseGlobalValueVector(Elts) || (isPackedStruct && parseToken(lltok::rbrace, "expected end of packed struct")) || parseToken(lltok::greater, "expected end of constant")) return true; if (isPackedStruct) { ID.ConstantStructElts = std::make_unique(Elts.size()); memcpy(ID.ConstantStructElts.get(), Elts.data(), Elts.size() * sizeof(Elts[0])); ID.UIntVal = Elts.size(); ID.Kind = ValID::t_PackedConstantStruct; return false; } if (Elts.empty()) return error(ID.Loc, "constant vector must not be empty"); if (!Elts[0]->getType()->isIntegerTy() && !Elts[0]->getType()->isFloatingPointTy() && !Elts[0]->getType()->isPointerTy()) return error( FirstEltLoc, "vector elements must have integer, pointer or floating point type"); // Verify that all the vector elements have the same type. for (unsigned i = 1, e = Elts.size(); i != e; ++i) if (Elts[i]->getType() != Elts[0]->getType()) return error(FirstEltLoc, "vector element #" + Twine(i) + " is not of type '" + getTypeString(Elts[0]->getType())); ID.ConstantVal = ConstantVector::get(Elts); ID.Kind = ValID::t_Constant; return false; } case lltok::lsquare: { // Array Constant Lex.Lex(); SmallVector Elts; LocTy FirstEltLoc = Lex.getLoc(); if (parseGlobalValueVector(Elts) || parseToken(lltok::rsquare, "expected end of array constant")) return true; // Handle empty element. if (Elts.empty()) { // Use undef instead of an array because it's inconvenient to determine // the element type at this point, there being no elements to examine. ID.Kind = ValID::t_EmptyArray; return false; } if (!Elts[0]->getType()->isFirstClassType()) return error(FirstEltLoc, "invalid array element type: " + getTypeString(Elts[0]->getType())); ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); // Verify all elements are correct type! for (unsigned i = 0, e = Elts.size(); i != e; ++i) { if (Elts[i]->getType() != Elts[0]->getType()) return error(FirstEltLoc, "array element #" + Twine(i) + " is not of type '" + getTypeString(Elts[0]->getType())); } ID.ConstantVal = ConstantArray::get(ATy, Elts); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_c: // c "foo" Lex.Lex(); ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), false); if (parseToken(lltok::StringConstant, "expected string")) return true; ID.Kind = ValID::t_Constant; return false; case lltok::kw_asm: { // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' // STRINGCONSTANT bool HasSideEffect, AlignStack, AsmDialect, CanThrow; Lex.Lex(); if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || parseOptionalToken(lltok::kw_alignstack, AlignStack) || parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || parseOptionalToken(lltok::kw_unwind, CanThrow) || parseStringConstant(ID.StrVal) || parseToken(lltok::comma, "expected comma in inline asm expression") || parseToken(lltok::StringConstant, "expected constraint string")) return true; ID.StrVal2 = Lex.getStrVal(); ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); ID.Kind = ValID::t_InlineAsm; return false; } case lltok::kw_blockaddress: { // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' Lex.Lex(); ValID Fn, Label; if (parseToken(lltok::lparen, "expected '(' in block address expression") || parseValID(Fn, PFS) || parseToken(lltok::comma, "expected comma in block address expression") || parseValID(Label, PFS) || parseToken(lltok::rparen, "expected ')' in block address expression")) return true; if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) return error(Fn.Loc, "expected function name in blockaddress"); if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) return error(Label.Loc, "expected basic block name in blockaddress"); // Try to find the function (but skip it if it's forward-referenced). GlobalValue *GV = nullptr; if (Fn.Kind == ValID::t_GlobalID) { if (Fn.UIntVal < NumberedVals.size()) GV = NumberedVals[Fn.UIntVal]; } else if (!ForwardRefVals.count(Fn.StrVal)) { GV = M->getNamedValue(Fn.StrVal); } Function *F = nullptr; if (GV) { // Confirm that it's actually a function with a definition. if (!isa(GV)) return error(Fn.Loc, "expected function name in blockaddress"); F = cast(GV); if (F->isDeclaration()) return error(Fn.Loc, "cannot take blockaddress inside a declaration"); } if (!F) { // Make a global variable as a placeholder for this reference. GlobalValue *&FwdRef = ForwardRefBlockAddresses.insert(std::make_pair( std::move(Fn), std::map())) .first->second.insert(std::make_pair(std::move(Label), nullptr)) .first->second; if (!FwdRef) { unsigned FwdDeclAS; if (ExpectedTy) { // If we know the type that the blockaddress is being assigned to, // we can use the address space of that type. if (!ExpectedTy->isPointerTy()) return error(ID.Loc, "type of blockaddress must be a pointer and not '" + getTypeString(ExpectedTy) + "'"); FwdDeclAS = ExpectedTy->getPointerAddressSpace(); } else if (PFS) { // Otherwise, we default the address space of the current function. FwdDeclAS = PFS->getFunction().getAddressSpace(); } else { llvm_unreachable("Unknown address space for blockaddress"); } FwdRef = new GlobalVariable( *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); } ID.ConstantVal = FwdRef; ID.Kind = ValID::t_Constant; return false; } // We found the function; now find the basic block. Don't use PFS, since we // might be inside a constant expression. BasicBlock *BB; if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { if (Label.Kind == ValID::t_LocalID) BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); else BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); if (!BB) return error(Label.Loc, "referenced value is not a basic block"); } else { if (Label.Kind == ValID::t_LocalID) return error(Label.Loc, "cannot take address of numeric label after " "the function is defined"); BB = dyn_cast_or_null( F->getValueSymbolTable()->lookup(Label.StrVal)); if (!BB) return error(Label.Loc, "referenced value is not a basic block"); } ID.ConstantVal = BlockAddress::get(F, BB); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_dso_local_equivalent: { // ValID ::= 'dso_local_equivalent' @foo Lex.Lex(); ValID Fn; if (parseValID(Fn, PFS)) return true; if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) return error(Fn.Loc, "expected global value name in dso_local_equivalent"); // Try to find the function (but skip it if it's forward-referenced). GlobalValue *GV = nullptr; if (Fn.Kind == ValID::t_GlobalID) { if (Fn.UIntVal < NumberedVals.size()) GV = NumberedVals[Fn.UIntVal]; } else if (!ForwardRefVals.count(Fn.StrVal)) { GV = M->getNamedValue(Fn.StrVal); } if (!GV) { // Make a placeholder global variable as a placeholder for this reference. auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID) ? ForwardRefDSOLocalEquivalentIDs : ForwardRefDSOLocalEquivalentNames; GlobalValue *&FwdRef = FwdRefMap.try_emplace(Fn, nullptr).first->second; if (!FwdRef) { FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, nullptr, "", nullptr, GlobalValue::NotThreadLocal); } ID.ConstantVal = FwdRef; ID.Kind = ValID::t_Constant; return false; } if (!GV->getValueType()->isFunctionTy()) return error(Fn.Loc, "expected a function, alias to function, or ifunc " "in dso_local_equivalent"); ID.ConstantVal = DSOLocalEquivalent::get(GV); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_no_cfi: { // ValID ::= 'no_cfi' @foo Lex.Lex(); if (parseValID(ID, PFS)) return true; if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName) return error(ID.Loc, "expected global value name in no_cfi"); ID.NoCFI = true; return false; } case lltok::kw_trunc: case lltok::kw_bitcast: case lltok::kw_addrspacecast: case lltok::kw_inttoptr: case lltok::kw_ptrtoint: { unsigned Opc = Lex.getUIntVal(); Type *DestTy = nullptr; Constant *SrcVal; Lex.Lex(); if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || parseGlobalTypeAndValue(SrcVal) || parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || parseType(DestTy) || parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) return true; if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) return error(ID.Loc, "invalid cast opcode for cast from '" + getTypeString(SrcVal->getType()) + "' to '" + getTypeString(DestTy) + "'"); ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal, DestTy); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_extractvalue: return error(ID.Loc, "extractvalue constexprs are no longer supported"); case lltok::kw_insertvalue: return error(ID.Loc, "insertvalue constexprs are no longer supported"); case lltok::kw_udiv: return error(ID.Loc, "udiv constexprs are no longer supported"); case lltok::kw_sdiv: return error(ID.Loc, "sdiv constexprs are no longer supported"); case lltok::kw_urem: return error(ID.Loc, "urem constexprs are no longer supported"); case lltok::kw_srem: return error(ID.Loc, "srem constexprs are no longer supported"); case lltok::kw_fadd: return error(ID.Loc, "fadd constexprs are no longer supported"); case lltok::kw_fsub: return error(ID.Loc, "fsub constexprs are no longer supported"); case lltok::kw_fmul: return error(ID.Loc, "fmul constexprs are no longer supported"); case lltok::kw_fdiv: return error(ID.Loc, "fdiv constexprs are no longer supported"); case lltok::kw_frem: return error(ID.Loc, "frem constexprs are no longer supported"); case lltok::kw_and: return error(ID.Loc, "and constexprs are no longer supported"); case lltok::kw_or: return error(ID.Loc, "or constexprs are no longer supported"); case lltok::kw_lshr: return error(ID.Loc, "lshr constexprs are no longer supported"); case lltok::kw_ashr: return error(ID.Loc, "ashr constexprs are no longer supported"); case lltok::kw_fneg: return error(ID.Loc, "fneg constexprs are no longer supported"); case lltok::kw_select: return error(ID.Loc, "select constexprs are no longer supported"); case lltok::kw_zext: return error(ID.Loc, "zext constexprs are no longer supported"); case lltok::kw_sext: return error(ID.Loc, "sext constexprs are no longer supported"); case lltok::kw_fptrunc: return error(ID.Loc, "fptrunc constexprs are no longer supported"); case lltok::kw_fpext: return error(ID.Loc, "fpext constexprs are no longer supported"); case lltok::kw_uitofp: return error(ID.Loc, "uitofp constexprs are no longer supported"); case lltok::kw_sitofp: return error(ID.Loc, "sitofp constexprs are no longer supported"); case lltok::kw_fptoui: return error(ID.Loc, "fptoui constexprs are no longer supported"); case lltok::kw_fptosi: return error(ID.Loc, "fptosi constexprs are no longer supported"); case lltok::kw_icmp: case lltok::kw_fcmp: { unsigned PredVal, Opc = Lex.getUIntVal(); Constant *Val0, *Val1; Lex.Lex(); if (parseCmpPredicate(PredVal, Opc) || parseToken(lltok::lparen, "expected '(' in compare constantexpr") || parseGlobalTypeAndValue(Val0) || parseToken(lltok::comma, "expected comma in compare constantexpr") || parseGlobalTypeAndValue(Val1) || parseToken(lltok::rparen, "expected ')' in compare constantexpr")) return true; if (Val0->getType() != Val1->getType()) return error(ID.Loc, "compare operands must have the same type"); CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; if (Opc == Instruction::FCmp) { if (!Val0->getType()->isFPOrFPVectorTy()) return error(ID.Loc, "fcmp requires floating point operands"); ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); } else { assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); if (!Val0->getType()->isIntOrIntVectorTy() && !Val0->getType()->isPtrOrPtrVectorTy()) return error(ID.Loc, "icmp requires pointer or integer operands"); ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); } ID.Kind = ValID::t_Constant; return false; } // Binary Operators. case lltok::kw_add: case lltok::kw_sub: case lltok::kw_mul: case lltok::kw_shl: case lltok::kw_xor: { bool NUW = false; bool NSW = false; unsigned Opc = Lex.getUIntVal(); Constant *Val0, *Val1; Lex.Lex(); if (Opc == Instruction::Add || Opc == Instruction::Sub || Opc == Instruction::Mul || Opc == Instruction::Shl) { if (EatIfPresent(lltok::kw_nuw)) NUW = true; if (EatIfPresent(lltok::kw_nsw)) { NSW = true; if (EatIfPresent(lltok::kw_nuw)) NUW = true; } } if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || parseGlobalTypeAndValue(Val0) || parseToken(lltok::comma, "expected comma in binary constantexpr") || parseGlobalTypeAndValue(Val1) || parseToken(lltok::rparen, "expected ')' in binary constantexpr")) return true; if (Val0->getType() != Val1->getType()) return error(ID.Loc, "operands of constexpr must have same type"); // Check that the type is valid for the operator. if (!Val0->getType()->isIntOrIntVectorTy()) return error(ID.Loc, "constexpr requires integer or integer vector operands"); unsigned Flags = 0; if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1, Flags); ID.Kind = ValID::t_Constant; return false; } case lltok::kw_splat: { Lex.Lex(); if (parseToken(lltok::lparen, "expected '(' after vector splat")) return true; Constant *C; if (parseGlobalTypeAndValue(C)) return true; if (parseToken(lltok::rparen, "expected ')' at end of vector splat")) return true; ID.ConstantVal = C; ID.Kind = ValID::t_ConstantSplat; return false; } case lltok::kw_getelementptr: case lltok::kw_shufflevector: case lltok::kw_insertelement: case lltok::kw_extractelement: { unsigned Opc = Lex.getUIntVal(); SmallVector Elts; bool InBounds = false; Type *Ty; Lex.Lex(); if (Opc == Instruction::GetElementPtr) InBounds = EatIfPresent(lltok::kw_inbounds); if (parseToken(lltok::lparen, "expected '(' in constantexpr")) return true; if (Opc == Instruction::GetElementPtr) { if (parseType(Ty) || parseToken(lltok::comma, "expected comma after getelementptr's type")) return true; } std::optional InRangeOp; if (parseGlobalValueVector( Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || parseToken(lltok::rparen, "expected ')' in constantexpr")) return true; if (Opc == Instruction::GetElementPtr) { if (Elts.size() == 0 || !Elts[0]->getType()->isPtrOrPtrVectorTy()) return error(ID.Loc, "base of getelementptr must be a pointer"); Type *BaseType = Elts[0]->getType(); unsigned GEPWidth = BaseType->isVectorTy() ? cast(BaseType)->getNumElements() : 0; ArrayRef Indices(Elts.begin() + 1, Elts.end()); for (Constant *Val : Indices) { Type *ValTy = Val->getType(); if (!ValTy->isIntOrIntVectorTy()) return error(ID.Loc, "getelementptr index must be an integer"); if (auto *ValVTy = dyn_cast(ValTy)) { unsigned ValNumEl = cast(ValVTy)->getNumElements(); if (GEPWidth && (ValNumEl != GEPWidth)) return error( ID.Loc, "getelementptr vector index has a wrong number of elements"); // GEPWidth may have been unknown because the base is a scalar, // but it is known now. GEPWidth = ValNumEl; } } SmallPtrSet Visited; if (!Indices.empty() && !Ty->isSized(&Visited)) return error(ID.Loc, "base element of getelementptr must be sized"); if (!GetElementPtrInst::getIndexedType(Ty, Indices)) return error(ID.Loc, "invalid getelementptr indices"); if (InRangeOp) { if (*InRangeOp == 0) return error(ID.Loc, "inrange keyword may not appear on pointer operand"); --*InRangeOp; } ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds, InRangeOp); } else if (Opc == Instruction::ShuffleVector) { if (Elts.size() != 3) return error(ID.Loc, "expected three operands to shufflevector"); if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) return error(ID.Loc, "invalid operands to shufflevector"); SmallVector Mask; ShuffleVectorInst::getShuffleMask(cast(Elts[2]), Mask); ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); } else if (Opc == Instruction::ExtractElement) { if (Elts.size() != 2) return error(ID.Loc, "expected two operands to extractelement"); if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) return error(ID.Loc, "invalid extractelement operands"); ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); } else { assert(Opc == Instruction::InsertElement && "Unknown opcode"); if (Elts.size() != 3) return error(ID.Loc, "expected three operands to insertelement"); if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) return error(ID.Loc, "invalid insertelement operands"); ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); } ID.Kind = ValID::t_Constant; return false; } } Lex.Lex(); return false; } /// parseGlobalValue - parse a global value with the specified type. bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { C = nullptr; ValID ID; Value *V = nullptr; bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || convertValIDToValue(Ty, ID, V, nullptr); if (V && !(C = dyn_cast(V))) return error(ID.Loc, "global values must be constants"); return Parsed; } bool LLParser::parseGlobalTypeAndValue(Constant *&V) { Type *Ty = nullptr; return parseType(Ty) || parseGlobalValue(Ty, V); } bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { C = nullptr; LocTy KwLoc = Lex.getLoc(); if (!EatIfPresent(lltok::kw_comdat)) return false; if (EatIfPresent(lltok::lparen)) { if (Lex.getKind() != lltok::ComdatVar) return tokError("expected comdat variable"); C = getComdat(Lex.getStrVal(), Lex.getLoc()); Lex.Lex(); if (parseToken(lltok::rparen, "expected ')' after comdat var")) return true; } else { if (GlobalName.empty()) return tokError("comdat cannot be unnamed"); C = getComdat(std::string(GlobalName), KwLoc); } return false; } /// parseGlobalValueVector /// ::= /*empty*/ /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* bool LLParser::parseGlobalValueVector(SmallVectorImpl &Elts, std::optional *InRangeOp) { // Empty list. if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::rsquare || Lex.getKind() == lltok::greater || Lex.getKind() == lltok::rparen) return false; do { if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) *InRangeOp = Elts.size(); Constant *C; if (parseGlobalTypeAndValue(C)) return true; Elts.push_back(C); } while (EatIfPresent(lltok::comma)); return false; } bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { SmallVector Elts; if (parseMDNodeVector(Elts)) return true; MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); return false; } /// MDNode: /// ::= !{ ... } /// ::= !7 /// ::= !DILocation(...) bool LLParser::parseMDNode(MDNode *&N) { if (Lex.getKind() == lltok::MetadataVar) return parseSpecializedMDNode(N); return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); } bool LLParser::parseMDNodeTail(MDNode *&N) { // !{ ... } if (Lex.getKind() == lltok::lbrace) return parseMDTuple(N); // !42 return parseMDNodeID(N); } namespace { /// Structure to represent an optional metadata field. template struct MDFieldImpl { typedef MDFieldImpl ImplTy; FieldTy Val; bool Seen; void assign(FieldTy Val) { Seen = true; this->Val = std::move(Val); } explicit MDFieldImpl(FieldTy Default) : Val(std::move(Default)), Seen(false) {} }; /// Structure to represent an optional metadata field that /// can be of either type (A or B) and encapsulates the /// MDField and MDField structs, so not /// to reimplement the specifics for representing each Field. template struct MDEitherFieldImpl { typedef MDEitherFieldImpl ImplTy; FieldTypeA A; FieldTypeB B; bool Seen; enum { IsInvalid = 0, IsTypeA = 1, IsTypeB = 2 } WhatIs; void assign(FieldTypeA A) { Seen = true; this->A = std::move(A); WhatIs = IsTypeA; } void assign(FieldTypeB B) { Seen = true; this->B = std::move(B); WhatIs = IsTypeB; } explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), WhatIs(IsInvalid) {} }; struct MDUnsignedField : public MDFieldImpl { uint64_t Max; MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) : ImplTy(Default), Max(Max) {} }; struct LineField : public MDUnsignedField { LineField() : MDUnsignedField(0, UINT32_MAX) {} }; struct ColumnField : public MDUnsignedField { ColumnField() : MDUnsignedField(0, UINT16_MAX) {} }; struct DwarfTagField : public MDUnsignedField { DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} DwarfTagField(dwarf::Tag DefaultTag) : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} }; struct DwarfMacinfoTypeField : public MDUnsignedField { DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} }; struct DwarfAttEncodingField : public MDUnsignedField { DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} }; struct DwarfVirtualityField : public MDUnsignedField { DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} }; struct DwarfLangField : public MDUnsignedField { DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} }; struct DwarfCCField : public MDUnsignedField { DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} }; struct EmissionKindField : public MDUnsignedField { EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} }; struct NameTableKindField : public MDUnsignedField { NameTableKindField() : MDUnsignedField( 0, (unsigned) DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} }; struct DIFlagField : public MDFieldImpl { DIFlagField() : MDFieldImpl(DINode::FlagZero) {} }; struct DISPFlagField : public MDFieldImpl { DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} }; struct MDAPSIntField : public MDFieldImpl { MDAPSIntField() : ImplTy(APSInt()) {} }; struct MDSignedField : public MDFieldImpl { int64_t Min = INT64_MIN; int64_t Max = INT64_MAX; MDSignedField(int64_t Default = 0) : ImplTy(Default) {} MDSignedField(int64_t Default, int64_t Min, int64_t Max) : ImplTy(Default), Min(Min), Max(Max) {} }; struct MDBoolField : public MDFieldImpl { MDBoolField(bool Default = false) : ImplTy(Default) {} }; struct MDField : public MDFieldImpl { bool AllowNull; MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} }; struct MDStringField : public MDFieldImpl { bool AllowEmpty; MDStringField(bool AllowEmpty = true) : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} }; struct MDFieldList : public MDFieldImpl> { MDFieldList() : ImplTy(SmallVector()) {} }; struct ChecksumKindField : public MDFieldImpl { ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} }; struct MDSignedOrMDField : MDEitherFieldImpl { MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, bool AllowNull = true) : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} bool isMDSignedField() const { return WhatIs == IsTypeA; } bool isMDField() const { return WhatIs == IsTypeB; } int64_t getMDSignedValue() const { assert(isMDSignedField() && "Wrong field type"); return A.Val; } Metadata *getMDFieldValue() const { assert(isMDField() && "Wrong field type"); return B.Val; } }; } // end anonymous namespace namespace llvm { template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { if (Lex.getKind() != lltok::APSInt) return tokError("expected integer"); Result.assign(Lex.getAPSIntVal()); Lex.Lex(); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDUnsignedField &Result) { if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) return tokError("expected unsigned integer"); auto &U = Lex.getAPSIntVal(); if (U.ugt(Result.Max)) return tokError("value for '" + Name + "' too large, limit is " + Twine(Result.Max)); Result.assign(U.getZExtValue()); assert(Result.Val <= Result.Max && "Expected value in range"); Lex.Lex(); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { return parseMDField(Loc, Name, static_cast(Result)); } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { return parseMDField(Loc, Name, static_cast(Result)); } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { if (Lex.getKind() == lltok::APSInt) return parseMDField(Loc, Name, static_cast(Result)); if (Lex.getKind() != lltok::DwarfTag) return tokError("expected DWARF tag"); unsigned Tag = dwarf::getTag(Lex.getStrVal()); if (Tag == dwarf::DW_TAG_invalid) return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); assert(Tag <= Result.Max && "Expected valid DWARF tag"); Result.assign(Tag); Lex.Lex(); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfMacinfoTypeField &Result) { if (Lex.getKind() == lltok::APSInt) return parseMDField(Loc, Name, static_cast(Result)); if (Lex.getKind() != lltok::DwarfMacinfo) return tokError("expected DWARF macinfo type"); unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); if (Macinfo == dwarf::DW_MACINFO_invalid) return tokError("invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); Result.assign(Macinfo); Lex.Lex(); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfVirtualityField &Result) { if (Lex.getKind() == lltok::APSInt) return parseMDField(Loc, Name, static_cast(Result)); if (Lex.getKind() != lltok::DwarfVirtuality) return tokError("expected DWARF virtuality code"); unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); if (Virtuality == dwarf::DW_VIRTUALITY_invalid) return tokError("invalid DWARF virtuality code" + Twine(" '") + Lex.getStrVal() + "'"); assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); Result.assign(Virtuality); Lex.Lex(); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { if (Lex.getKind() == lltok::APSInt) return parseMDField(Loc, Name, static_cast(Result)); if (Lex.getKind() != lltok::DwarfLang) return tokError("expected DWARF language"); unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); if (!Lang) return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + "'"); assert(Lang <= Result.Max && "Expected valid DWARF language"); Result.assign(Lang); Lex.Lex(); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { if (Lex.getKind() == lltok::APSInt) return parseMDField(Loc, Name, static_cast(Result)); if (Lex.getKind() != lltok::DwarfCC) return tokError("expected DWARF calling convention"); unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); if (!CC) return tokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + "'"); assert(CC <= Result.Max && "Expected valid DWARF calling convention"); Result.assign(CC); Lex.Lex(); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { if (Lex.getKind() == lltok::APSInt) return parseMDField(Loc, Name, static_cast(Result)); if (Lex.getKind() != lltok::EmissionKind) return tokError("expected emission kind"); auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); if (!Kind) return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + "'"); assert(*Kind <= Result.Max && "Expected valid emission kind"); Result.assign(*Kind); Lex.Lex(); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, NameTableKindField &Result) { if (Lex.getKind() == lltok::APSInt) return parseMDField(Loc, Name, static_cast(Result)); if (Lex.getKind() != lltok::NameTableKind) return tokError("expected nameTable kind"); auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); if (!Kind) return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + "'"); assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); Result.assign((unsigned)*Kind); Lex.Lex(); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfAttEncodingField &Result) { if (Lex.getKind() == lltok::APSInt) return parseMDField(Loc, Name, static_cast(Result)); if (Lex.getKind() != lltok::DwarfAttEncoding) return tokError("expected DWARF type attribute encoding"); unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); if (!Encoding) return tokError("invalid DWARF type attribute encoding" + Twine(" '") + Lex.getStrVal() + "'"); assert(Encoding <= Result.Max && "Expected valid DWARF language"); Result.assign(Encoding); Lex.Lex(); return false; } /// DIFlagField /// ::= uint32 /// ::= DIFlagVector /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { // parser for a single flag. auto parseFlag = [&](DINode::DIFlags &Val) { if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { uint32_t TempVal = static_cast(Val); bool Res = parseUInt32(TempVal); Val = static_cast(TempVal); return Res; } if (Lex.getKind() != lltok::DIFlag) return tokError("expected debug info flag"); Val = DINode::getFlag(Lex.getStrVal()); if (!Val) return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() + "'"); Lex.Lex(); return false; }; // parse the flags and combine them together. DINode::DIFlags Combined = DINode::FlagZero; do { DINode::DIFlags Val; if (parseFlag(Val)) return true; Combined |= Val; } while (EatIfPresent(lltok::bar)); Result.assign(Combined); return false; } /// DISPFlagField /// ::= uint32 /// ::= DISPFlagVector /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { // parser for a single flag. auto parseFlag = [&](DISubprogram::DISPFlags &Val) { if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { uint32_t TempVal = static_cast(Val); bool Res = parseUInt32(TempVal); Val = static_cast(TempVal); return Res; } if (Lex.getKind() != lltok::DISPFlag) return tokError("expected debug info flag"); Val = DISubprogram::getFlag(Lex.getStrVal()); if (!Val) return tokError(Twine("invalid subprogram debug info flag '") + Lex.getStrVal() + "'"); Lex.Lex(); return false; }; // parse the flags and combine them together. DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; do { DISubprogram::DISPFlags Val; if (parseFlag(Val)) return true; Combined |= Val; } while (EatIfPresent(lltok::bar)); Result.assign(Combined); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { if (Lex.getKind() != lltok::APSInt) return tokError("expected signed integer"); auto &S = Lex.getAPSIntVal(); if (S < Result.Min) return tokError("value for '" + Name + "' too small, limit is " + Twine(Result.Min)); if (S > Result.Max) return tokError("value for '" + Name + "' too large, limit is " + Twine(Result.Max)); Result.assign(S.getExtValue()); assert(Result.Val >= Result.Min && "Expected value in range"); assert(Result.Val <= Result.Max && "Expected value in range"); Lex.Lex(); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { switch (Lex.getKind()) { default: return tokError("expected 'true' or 'false'"); case lltok::kw_true: Result.assign(true); break; case lltok::kw_false: Result.assign(false); break; } Lex.Lex(); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { if (Lex.getKind() == lltok::kw_null) { if (!Result.AllowNull) return tokError("'" + Name + "' cannot be null"); Lex.Lex(); Result.assign(nullptr); return false; } Metadata *MD; if (parseMetadata(MD, nullptr)) return true; Result.assign(MD); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedOrMDField &Result) { // Try to parse a signed int. if (Lex.getKind() == lltok::APSInt) { MDSignedField Res = Result.A; if (!parseMDField(Loc, Name, Res)) { Result.assign(Res); return false; } return true; } // Otherwise, try to parse as an MDField. MDField Res = Result.B; if (!parseMDField(Loc, Name, Res)) { Result.assign(Res); return false; } return true; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { LocTy ValueLoc = Lex.getLoc(); std::string S; if (parseStringConstant(S)) return true; if (!Result.AllowEmpty && S.empty()) return error(ValueLoc, "'" + Name + "' cannot be empty"); Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { SmallVector MDs; if (parseMDNodeVector(MDs)) return true; Result.assign(std::move(MDs)); return false; } template <> bool LLParser::parseMDField(LocTy Loc, StringRef Name, ChecksumKindField &Result) { std::optional CSKind = DIFile::getChecksumKind(Lex.getStrVal()); if (Lex.getKind() != lltok::ChecksumKind || !CSKind) return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); Result.assign(*CSKind); Lex.Lex(); return false; } } // end namespace llvm template bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { do { if (Lex.getKind() != lltok::LabelStr) return tokError("expected field label here"); if (ParseField()) return true; } while (EatIfPresent(lltok::comma)); return false; } template bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); Lex.Lex(); if (parseToken(lltok::lparen, "expected '(' here")) return true; if (Lex.getKind() != lltok::rparen) if (parseMDFieldsImplBody(ParseField)) return true; ClosingLoc = Lex.getLoc(); return parseToken(lltok::rparen, "expected ')' here"); } template bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { if (Result.Seen) return tokError("field '" + Name + "' cannot be specified more than once"); LocTy Loc = Lex.getLoc(); Lex.Lex(); return parseMDField(Loc, Name, Result); } bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ if (Lex.getStrVal() == #CLASS) \ return parse##CLASS(N, IsDistinct); #include "llvm/IR/Metadata.def" return tokError("expected metadata type"); } #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT #define NOP_FIELD(NAME, TYPE, INIT) #define REQUIRE_FIELD(NAME, TYPE, INIT) \ if (!NAME.Seen) \ return error(ClosingLoc, "missing required field '" #NAME "'"); #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ if (Lex.getStrVal() == #NAME) \ return parseMDField(#NAME, NAME); #define PARSE_MD_FIELDS() \ VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ do { \ LocTy ClosingLoc; \ if (parseMDFieldsImpl( \ [&]() -> bool { \ VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ return tokError(Twine("invalid field '") + Lex.getStrVal() + \ "'"); \ }, \ ClosingLoc)) \ return true; \ VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ } while (false) #define GET_OR_DISTINCT(CLASS, ARGS) \ (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) /// parseDILocationFields: /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, /// isImplicitCode: true) bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(line, LineField, ); \ OPTIONAL(column, ColumnField, ); \ REQUIRED(scope, MDField, (/* AllowNull */ false)); \ OPTIONAL(inlinedAt, MDField, ); \ OPTIONAL(isImplicitCode, MDBoolField, (false)); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val, isImplicitCode.Val)); return false; } /// parseDIAssignID: /// ::= distinct !DIAssignID() bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) { if (!IsDistinct) return Lex.Error("missing 'distinct', required for !DIAssignID()"); Lex.Lex(); // Now eat the parens. if (parseToken(lltok::lparen, "expected '(' here")) return true; if (parseToken(lltok::rparen, "expected ')' here")) return true; Result = DIAssignID::getDistinct(Context); return false; } /// parseGenericDINode: /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(tag, DwarfTagField, ); \ OPTIONAL(header, MDStringField, ); \ OPTIONAL(operands, MDFieldList, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(GenericDINode, (Context, tag.Val, header.Val, operands.Val)); return false; } /// parseDISubrange: /// ::= !DISubrange(count: 30, lowerBound: 2) /// ::= !DISubrange(count: !node, lowerBound: 2) /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ OPTIONAL(lowerBound, MDSignedOrMDField, ); \ OPTIONAL(upperBound, MDSignedOrMDField, ); \ OPTIONAL(stride, MDSignedOrMDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Metadata *Count = nullptr; Metadata *LowerBound = nullptr; Metadata *UpperBound = nullptr; Metadata *Stride = nullptr; auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { if (Bound.isMDSignedField()) return ConstantAsMetadata::get(ConstantInt::getSigned( Type::getInt64Ty(Context), Bound.getMDSignedValue())); if (Bound.isMDField()) return Bound.getMDFieldValue(); return nullptr; }; Count = convToMetadata(count); LowerBound = convToMetadata(lowerBound); UpperBound = convToMetadata(upperBound); Stride = convToMetadata(stride); Result = GET_OR_DISTINCT(DISubrange, (Context, Count, LowerBound, UpperBound, Stride)); return false; } /// parseDIGenericSubrange: /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: /// !node3) bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(count, MDSignedOrMDField, ); \ OPTIONAL(lowerBound, MDSignedOrMDField, ); \ OPTIONAL(upperBound, MDSignedOrMDField, ); \ OPTIONAL(stride, MDSignedOrMDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { if (Bound.isMDSignedField()) return DIExpression::get( Context, {dwarf::DW_OP_consts, static_cast(Bound.getMDSignedValue())}); if (Bound.isMDField()) return Bound.getMDFieldValue(); return nullptr; }; Metadata *Count = ConvToMetadata(count); Metadata *LowerBound = ConvToMetadata(lowerBound); Metadata *UpperBound = ConvToMetadata(upperBound); Metadata *Stride = ConvToMetadata(stride); Result = GET_OR_DISTINCT(DIGenericSubrange, (Context, Count, LowerBound, UpperBound, Stride)); return false; } /// parseDIEnumerator: /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(name, MDStringField, ); \ REQUIRED(value, MDAPSIntField, ); \ OPTIONAL(isUnsigned, MDBoolField, (false)); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS if (isUnsigned.Val && value.Val.isNegative()) return tokError("unsigned enumerator with negative value"); APSInt Value(value.Val); // Add a leading zero so that unsigned values with the msb set are not // mistaken for negative values when used for signed enumerators. if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) Value = Value.zext(Value.getBitWidth() + 1); Result = GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); return false; } /// parseDIBasicType: /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, /// encoding: DW_ATE_encoding, flags: 0) bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ OPTIONAL(name, MDStringField, ); \ OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ OPTIONAL(encoding, DwarfAttEncodingField, ); \ OPTIONAL(flags, DIFlagField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, align.Val, encoding.Val, flags.Val)); return false; } /// parseDIStringType: /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ OPTIONAL(name, MDStringField, ); \ OPTIONAL(stringLength, MDField, ); \ OPTIONAL(stringLengthExpression, MDField, ); \ OPTIONAL(stringLocationExpression, MDField, ); \ OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ OPTIONAL(encoding, DwarfAttEncodingField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT( DIStringType, (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val, stringLocationExpression.Val, size.Val, align.Val, encoding.Val)); return false; } /// parseDIDerivedType: /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, /// line: 7, scope: !1, baseType: !2, size: 32, /// align: 32, offset: 0, flags: 0, extraData: !3, /// dwarfAddressSpace: 3) bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(tag, DwarfTagField, ); \ OPTIONAL(name, MDStringField, ); \ OPTIONAL(file, MDField, ); \ OPTIONAL(line, LineField, ); \ OPTIONAL(scope, MDField, ); \ REQUIRED(baseType, MDField, ); \ OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ OPTIONAL(flags, DIFlagField, ); \ OPTIONAL(extraData, MDField, ); \ OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ OPTIONAL(annotations, MDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS std::optional DWARFAddressSpace; if (dwarfAddressSpace.Val != UINT32_MAX) DWARFAddressSpace = dwarfAddressSpace.Val; Result = GET_OR_DISTINCT(DIDerivedType, (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, size.Val, align.Val, offset.Val, DWARFAddressSpace, flags.Val, extraData.Val, annotations.Val)); return false; } bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(tag, DwarfTagField, ); \ OPTIONAL(name, MDStringField, ); \ OPTIONAL(file, MDField, ); \ OPTIONAL(line, LineField, ); \ OPTIONAL(scope, MDField, ); \ OPTIONAL(baseType, MDField, ); \ OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ OPTIONAL(flags, DIFlagField, ); \ OPTIONAL(elements, MDField, ); \ OPTIONAL(runtimeLang, DwarfLangField, ); \ OPTIONAL(vtableHolder, MDField, ); \ OPTIONAL(templateParams, MDField, ); \ OPTIONAL(identifier, MDStringField, ); \ OPTIONAL(discriminator, MDField, ); \ OPTIONAL(dataLocation, MDField, ); \ OPTIONAL(associated, MDField, ); \ OPTIONAL(allocated, MDField, ); \ OPTIONAL(rank, MDSignedOrMDField, ); \ OPTIONAL(annotations, MDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Metadata *Rank = nullptr; if (rank.isMDSignedField()) Rank = ConstantAsMetadata::get(ConstantInt::getSigned( Type::getInt64Ty(Context), rank.getMDSignedValue())); else if (rank.isMDField()) Rank = rank.getMDFieldValue(); // If this has an identifier try to build an ODR type. if (identifier.Val) if (auto *CT = DICompositeType::buildODRType( Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, annotations.Val)) { Result = CT; return false; } // Create a new node, and save it in the context if it belongs in the type // map. Result = GET_OR_DISTINCT( DICompositeType, (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, annotations.Val)); return false; } bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(flags, DIFlagField, ); \ OPTIONAL(cc, DwarfCCField, ); \ REQUIRED(types, MDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, cc.Val, types.Val)); return false; } /// parseDIFileType: /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", /// checksumkind: CSK_MD5, /// checksum: "000102030405060708090a0b0c0d0e0f", /// source: "source file contents") bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { // The default constructed value for checksumkind is required, but will never // be used, as the parser checks if the field was actually Seen before using // the Val. #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(filename, MDStringField, ); \ REQUIRED(directory, MDStringField, ); \ OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ OPTIONAL(checksum, MDStringField, ); \ OPTIONAL(source, MDStringField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS std::optional> OptChecksum; if (checksumkind.Seen && checksum.Seen) OptChecksum.emplace(checksumkind.Val, checksum.Val); else if (checksumkind.Seen || checksum.Seen) return Lex.Error("'checksumkind' and 'checksum' must be provided together"); MDString *Source = nullptr; if (source.Seen) Source = source.Val; Result = GET_OR_DISTINCT( DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source)); return false; } /// parseDICompileUnit: /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", /// isOptimized: true, flags: "-O2", runtimeVersion: 1, /// splitDebugFilename: "abc.debug", /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, /// sysroot: "/", sdk: "MacOSX.sdk") bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { if (!IsDistinct) return Lex.Error("missing 'distinct', required for !DICompileUnit"); #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(language, DwarfLangField, ); \ REQUIRED(file, MDField, (/* AllowNull */ false)); \ OPTIONAL(producer, MDStringField, ); \ OPTIONAL(isOptimized, MDBoolField, ); \ OPTIONAL(flags, MDStringField, ); \ OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ OPTIONAL(splitDebugFilename, MDStringField, ); \ OPTIONAL(emissionKind, EmissionKindField, ); \ OPTIONAL(enums, MDField, ); \ OPTIONAL(retainedTypes, MDField, ); \ OPTIONAL(globals, MDField, ); \ OPTIONAL(imports, MDField, ); \ OPTIONAL(macros, MDField, ); \ OPTIONAL(dwoId, MDUnsignedField, ); \ OPTIONAL(splitDebugInlining, MDBoolField, = true); \ OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ OPTIONAL(nameTableKind, NameTableKindField, ); \ OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ OPTIONAL(sysroot, MDStringField, ); \ OPTIONAL(sdk, MDStringField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = DICompileUnit::getDistinct( Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, rangesBaseAddress.Val, sysroot.Val, sdk.Val); return false; } /// parseDISubprogram: /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", /// file: !1, line: 7, type: !2, isLocal: false, /// isDefinition: true, scopeLine: 8, containingType: !3, /// virtuality: DW_VIRTUALTIY_pure_virtual, /// virtualIndex: 10, thisAdjustment: 4, flags: 11, /// spFlags: 10, isOptimized: false, templateParams: !4, /// declaration: !5, retainedNodes: !6, thrownTypes: !7, /// annotations: !8) bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { auto Loc = Lex.getLoc(); #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(scope, MDField, ); \ OPTIONAL(name, MDStringField, ); \ OPTIONAL(linkageName, MDStringField, ); \ OPTIONAL(file, MDField, ); \ OPTIONAL(line, LineField, ); \ OPTIONAL(type, MDField, ); \ OPTIONAL(isLocal, MDBoolField, ); \ OPTIONAL(isDefinition, MDBoolField, (true)); \ OPTIONAL(scopeLine, LineField, ); \ OPTIONAL(containingType, MDField, ); \ OPTIONAL(virtuality, DwarfVirtualityField, ); \ OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ OPTIONAL(flags, DIFlagField, ); \ OPTIONAL(spFlags, DISPFlagField, ); \ OPTIONAL(isOptimized, MDBoolField, ); \ OPTIONAL(unit, MDField, ); \ OPTIONAL(templateParams, MDField, ); \ OPTIONAL(declaration, MDField, ); \ OPTIONAL(retainedNodes, MDField, ); \ OPTIONAL(thrownTypes, MDField, ); \ OPTIONAL(annotations, MDField, ); \ OPTIONAL(targetFuncName, MDStringField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS // An explicit spFlags field takes precedence over individual fields in // older IR versions. DISubprogram::DISPFlags SPFlags = spFlags.Seen ? spFlags.Val : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, isOptimized.Val, virtuality.Val); if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) return Lex.Error( Loc, "missing 'distinct', required for !DISubprogram that is a Definition"); Result = GET_OR_DISTINCT( DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val, targetFuncName.Val)); return false; } /// parseDILexicalBlock: /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(scope, MDField, (/* AllowNull */ false)); \ OPTIONAL(file, MDField, ); \ OPTIONAL(line, LineField, ); \ OPTIONAL(column, ColumnField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT( DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); return false; } /// parseDILexicalBlockFile: /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(scope, MDField, (/* AllowNull */ false)); \ OPTIONAL(file, MDField, ); \ REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DILexicalBlockFile, (Context, scope.Val, file.Val, discriminator.Val)); return false; } /// parseDICommonBlock: /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(scope, MDField, ); \ OPTIONAL(declaration, MDField, ); \ OPTIONAL(name, MDStringField, ); \ OPTIONAL(file, MDField, ); \ OPTIONAL(line, LineField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DICommonBlock, (Context, scope.Val, declaration.Val, name.Val, file.Val, line.Val)); return false; } /// parseDINamespace: /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(scope, MDField, ); \ OPTIONAL(name, MDStringField, ); \ OPTIONAL(exportSymbols, MDBoolField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DINamespace, (Context, scope.Val, name.Val, exportSymbols.Val)); return false; } /// parseDIMacro: /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: /// "SomeValue") bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(type, DwarfMacinfoTypeField, ); \ OPTIONAL(line, LineField, ); \ REQUIRED(name, MDStringField, ); \ OPTIONAL(value, MDStringField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DIMacro, (Context, type.Val, line.Val, name.Val, value.Val)); return false; } /// parseDIMacroFile: /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ OPTIONAL(line, LineField, ); \ REQUIRED(file, MDField, ); \ OPTIONAL(nodes, MDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DIMacroFile, (Context, type.Val, line.Val, file.Val, nodes.Val)); return false; } /// parseDIModule: /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", /// file: !1, line: 4, isDecl: false) bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(scope, MDField, ); \ REQUIRED(name, MDStringField, ); \ OPTIONAL(configMacros, MDStringField, ); \ OPTIONAL(includePath, MDStringField, ); \ OPTIONAL(apinotes, MDStringField, ); \ OPTIONAL(file, MDField, ); \ OPTIONAL(line, LineField, ); \ OPTIONAL(isDecl, MDBoolField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, configMacros.Val, includePath.Val, apinotes.Val, line.Val, isDecl.Val)); return false; } /// parseDITemplateTypeParameter: /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(name, MDStringField, ); \ REQUIRED(type, MDField, ); \ OPTIONAL(defaulted, MDBoolField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val, defaulted.Val)); return false; } /// parseDITemplateValueParameter: /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, /// name: "V", type: !1, defaulted: false, /// value: i32 7) bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ OPTIONAL(name, MDStringField, ); \ OPTIONAL(type, MDField, ); \ OPTIONAL(defaulted, MDBoolField, ); \ REQUIRED(value, MDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT( DITemplateValueParameter, (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); return false; } /// parseDIGlobalVariable: /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", /// file: !1, line: 7, type: !2, isLocal: false, /// isDefinition: true, templateParams: !3, /// declaration: !4, align: 8) bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \ OPTIONAL(scope, MDField, ); \ OPTIONAL(linkageName, MDStringField, ); \ OPTIONAL(file, MDField, ); \ OPTIONAL(line, LineField, ); \ OPTIONAL(type, MDField, ); \ OPTIONAL(isLocal, MDBoolField, ); \ OPTIONAL(isDefinition, MDBoolField, (true)); \ OPTIONAL(templateParams, MDField, ); \ OPTIONAL(declaration, MDField, ); \ OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ OPTIONAL(annotations, MDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DIGlobalVariable, (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, type.Val, isLocal.Val, isDefinition.Val, declaration.Val, templateParams.Val, align.Val, annotations.Val)); return false; } /// parseDILocalVariable: /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", /// file: !1, line: 7, type: !2, arg: 2, flags: 7, /// align: 8) /// ::= !DILocalVariable(scope: !0, name: "foo", /// file: !1, line: 7, type: !2, arg: 2, flags: 7, /// align: 8) bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(scope, MDField, (/* AllowNull */ false)); \ OPTIONAL(name, MDStringField, ); \ OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ OPTIONAL(file, MDField, ); \ OPTIONAL(line, LineField, ); \ OPTIONAL(type, MDField, ); \ OPTIONAL(flags, DIFlagField, ); \ OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ OPTIONAL(annotations, MDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DILocalVariable, (Context, scope.Val, name.Val, file.Val, line.Val, type.Val, arg.Val, flags.Val, align.Val, annotations.Val)); return false; } /// parseDILabel: /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(scope, MDField, (/* AllowNull */ false)); \ REQUIRED(name, MDStringField, ); \ REQUIRED(file, MDField, ); \ REQUIRED(line, LineField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DILabel, (Context, scope.Val, name.Val, file.Val, line.Val)); return false; } /// parseDIExpression: /// ::= !DIExpression(0, 7, -1) bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); Lex.Lex(); if (parseToken(lltok::lparen, "expected '(' here")) return true; SmallVector Elements; if (Lex.getKind() != lltok::rparen) do { if (Lex.getKind() == lltok::DwarfOp) { if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { Lex.Lex(); Elements.push_back(Op); continue; } return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); } if (Lex.getKind() == lltok::DwarfAttEncoding) { if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { Lex.Lex(); Elements.push_back(Op); continue; } return tokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); } if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) return tokError("expected unsigned integer"); auto &U = Lex.getAPSIntVal(); if (U.ugt(UINT64_MAX)) return tokError("element too large, limit is " + Twine(UINT64_MAX)); Elements.push_back(U.getZExtValue()); Lex.Lex(); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' here")) return true; Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); return false; } /// ParseDIArgList: /// ::= !DIArgList(i32 7, i64 %0) bool LLParser::parseDIArgList(Metadata *&MD, PerFunctionState *PFS) { assert(PFS && "Expected valid function state"); assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); Lex.Lex(); if (parseToken(lltok::lparen, "expected '(' here")) return true; SmallVector Args; if (Lex.getKind() != lltok::rparen) do { Metadata *MD; if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) return true; Args.push_back(dyn_cast(MD)); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' here")) return true; MD = DIArgList::get(Context, Args); return false; } /// parseDIGlobalVariableExpression: /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(var, MDField, ); \ REQUIRED(expr, MDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); return false; } /// parseDIObjCProperty: /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", /// getter: "getFoo", attributes: 7, type: !2) bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ OPTIONAL(name, MDStringField, ); \ OPTIONAL(file, MDField, ); \ OPTIONAL(line, LineField, ); \ OPTIONAL(setter, MDStringField, ); \ OPTIONAL(getter, MDStringField, ); \ OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ OPTIONAL(type, MDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DIObjCProperty, (Context, name.Val, file.Val, line.Val, setter.Val, getter.Val, attributes.Val, type.Val)); return false; } /// parseDIImportedEntity: /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, /// line: 7, name: "foo", elements: !2) bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ REQUIRED(tag, DwarfTagField, ); \ REQUIRED(scope, MDField, ); \ OPTIONAL(entity, MDField, ); \ OPTIONAL(file, MDField, ); \ OPTIONAL(line, LineField, ); \ OPTIONAL(name, MDStringField, ); \ OPTIONAL(elements, MDField, ); PARSE_MD_FIELDS(); #undef VISIT_MD_FIELDS Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val, elements.Val)); return false; } #undef PARSE_MD_FIELD #undef NOP_FIELD #undef REQUIRE_FIELD #undef DECLARE_FIELD /// parseMetadataAsValue /// ::= metadata i32 %local /// ::= metadata i32 @global /// ::= metadata i32 7 /// ::= metadata !0 /// ::= metadata !{...} /// ::= metadata !"string" bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { // Note: the type 'metadata' has already been parsed. Metadata *MD; if (parseMetadata(MD, &PFS)) return true; V = MetadataAsValue::get(Context, MD); return false; } /// parseValueAsMetadata /// ::= i32 %local /// ::= i32 @global /// ::= i32 7 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, PerFunctionState *PFS) { Type *Ty; LocTy Loc; if (parseType(Ty, TypeMsg, Loc)) return true; if (Ty->isMetadataTy()) return error(Loc, "invalid metadata-value-metadata roundtrip"); Value *V; if (parseValue(Ty, V, PFS)) return true; MD = ValueAsMetadata::get(V); return false; } /// parseMetadata /// ::= i32 %local /// ::= i32 @global /// ::= i32 7 /// ::= !42 /// ::= !{...} /// ::= !"string" /// ::= !DILocation(...) bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { if (Lex.getKind() == lltok::MetadataVar) { // DIArgLists are a special case, as they are a list of ValueAsMetadata and // so parsing this requires a Function State. if (Lex.getStrVal() == "DIArgList") { Metadata *AL; if (parseDIArgList(AL, PFS)) return true; MD = AL; return false; } MDNode *N; if (parseSpecializedMDNode(N)) { return true; } MD = N; return false; } // ValueAsMetadata: // if (Lex.getKind() != lltok::exclaim) return parseValueAsMetadata(MD, "expected metadata operand", PFS); // '!'. assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); Lex.Lex(); // MDString: // ::= '!' STRINGCONSTANT if (Lex.getKind() == lltok::StringConstant) { MDString *S; if (parseMDString(S)) return true; MD = S; return false; } // MDNode: // !{ ... } // !7 MDNode *N; if (parseMDNodeTail(N)) return true; MD = N; return false; } //===----------------------------------------------------------------------===// // Function Parsing. //===----------------------------------------------------------------------===// bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, PerFunctionState *PFS) { if (Ty->isFunctionTy()) return error(ID.Loc, "functions are not values, refer to them as pointers"); switch (ID.Kind) { case ValID::t_LocalID: if (!PFS) return error(ID.Loc, "invalid use of function-local name"); V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); return V == nullptr; case ValID::t_LocalName: if (!PFS) return error(ID.Loc, "invalid use of function-local name"); V = PFS->getVal(ID.StrVal, Ty, ID.Loc); return V == nullptr; case ValID::t_InlineAsm: { if (!ID.FTy) return error(ID.Loc, "invalid type for inline asm constraint string"); if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2)) return error(ID.Loc, toString(std::move(Err))); V = InlineAsm::get( ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); return false; } case ValID::t_GlobalName: V = getGlobalVal(ID.StrVal, Ty, ID.Loc); if (V && ID.NoCFI) V = NoCFIValue::get(cast(V)); return V == nullptr; case ValID::t_GlobalID: V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); if (V && ID.NoCFI) V = NoCFIValue::get(cast(V)); return V == nullptr; case ValID::t_APSInt: if (!Ty->isIntegerTy()) return error(ID.Loc, "integer constant must have integer type"); ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); V = ConstantInt::get(Context, ID.APSIntVal); return false; case ValID::t_APFloat: if (!Ty->isFloatingPointTy() || !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) return error(ID.Loc, "floating point constant invalid for type"); // The lexer has no type info, so builds all half, bfloat, float, and double // FP constants as double. Fix this here. Long double does not need this. if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { // Check for signaling before potentially converting and losing that info. bool IsSNAN = ID.APFloatVal.isSignaling(); bool Ignored; if (Ty->isHalfTy()) ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); else if (Ty->isBFloatTy()) ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &Ignored); else if (Ty->isFloatTy()) ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &Ignored); if (IsSNAN) { // The convert call above may quiet an SNaN, so manufacture another // SNaN. The bitcast works because the payload (significand) parameter // is truncated to fit. APInt Payload = ID.APFloatVal.bitcastToAPInt(); ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), ID.APFloatVal.isNegative(), &Payload); } } V = ConstantFP::get(Context, ID.APFloatVal); if (V->getType() != Ty) return error(ID.Loc, "floating point constant does not have type '" + getTypeString(Ty) + "'"); return false; case ValID::t_Null: if (!Ty->isPointerTy()) return error(ID.Loc, "null must be a pointer type"); V = ConstantPointerNull::get(cast(Ty)); return false; case ValID::t_Undef: // FIXME: LabelTy should not be a first-class type. if (!Ty->isFirstClassType() || Ty->isLabelTy()) return error(ID.Loc, "invalid type for undef constant"); V = UndefValue::get(Ty); return false; case ValID::t_EmptyArray: if (!Ty->isArrayTy() || cast(Ty)->getNumElements() != 0) return error(ID.Loc, "invalid empty array initializer"); V = UndefValue::get(Ty); return false; case ValID::t_Zero: // FIXME: LabelTy should not be a first-class type. if (!Ty->isFirstClassType() || Ty->isLabelTy()) return error(ID.Loc, "invalid type for null constant"); if (auto *TETy = dyn_cast(Ty)) if (!TETy->hasProperty(TargetExtType::HasZeroInit)) return error(ID.Loc, "invalid type for null constant"); V = Constant::getNullValue(Ty); return false; case ValID::t_None: if (!Ty->isTokenTy()) return error(ID.Loc, "invalid type for none constant"); V = Constant::getNullValue(Ty); return false; case ValID::t_Poison: // FIXME: LabelTy should not be a first-class type. if (!Ty->isFirstClassType() || Ty->isLabelTy()) return error(ID.Loc, "invalid type for poison constant"); V = PoisonValue::get(Ty); return false; case ValID::t_Constant: if (ID.ConstantVal->getType() != Ty) return error(ID.Loc, "constant expression type mismatch: got type '" + getTypeString(ID.ConstantVal->getType()) + "' but expected '" + getTypeString(Ty) + "'"); V = ID.ConstantVal; return false; case ValID::t_ConstantSplat: if (!Ty->isVectorTy()) return error(ID.Loc, "vector constant must have vector type"); if (ID.ConstantVal->getType() != Ty->getScalarType()) return error(ID.Loc, "constant expression type mismatch: got type '" + getTypeString(ID.ConstantVal->getType()) + "' but expected '" + getTypeString(Ty->getScalarType()) + "'"); V = ConstantVector::getSplat(cast(Ty)->getElementCount(), ID.ConstantVal); return false; case ValID::t_ConstantStruct: case ValID::t_PackedConstantStruct: if (StructType *ST = dyn_cast(Ty)) { if (ST->getNumElements() != ID.UIntVal) return error(ID.Loc, "initializer with struct type has wrong # elements"); if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) return error(ID.Loc, "packed'ness of initializer and type don't match"); // Verify that the elements are compatible with the structtype. for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) return error( ID.Loc, "element " + Twine(i) + " of struct initializer doesn't match struct element type"); V = ConstantStruct::get( ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); } else return error(ID.Loc, "constant expression type mismatch"); return false; } llvm_unreachable("Invalid ValID"); } bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { C = nullptr; ValID ID; auto Loc = Lex.getLoc(); if (parseValID(ID, /*PFS=*/nullptr)) return true; switch (ID.Kind) { case ValID::t_APSInt: case ValID::t_APFloat: case ValID::t_Undef: case ValID::t_Constant: case ValID::t_ConstantSplat: case ValID::t_ConstantStruct: case ValID::t_PackedConstantStruct: { Value *V; if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) return true; assert(isa(V) && "Expected a constant value"); C = cast(V); return false; } case ValID::t_Null: C = Constant::getNullValue(Ty); return false; default: return error(Loc, "expected a constant value"); } } bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { V = nullptr; ValID ID; return parseValID(ID, PFS, Ty) || convertValIDToValue(Ty, ID, V, PFS); } bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { Type *Ty = nullptr; return parseType(Ty) || parseValue(Ty, V, PFS); } bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, PerFunctionState &PFS) { Value *V; Loc = Lex.getLoc(); if (parseTypeAndValue(V, PFS)) return true; if (!isa(V)) return error(Loc, "expected a basic block"); BB = cast(V); return false; } /// FunctionHeader /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine, SmallVectorImpl &UnnamedArgNums) { // parse the linkage. LocTy LinkageLoc = Lex.getLoc(); unsigned Linkage; unsigned Visibility; unsigned DLLStorageClass; bool DSOLocal; AttrBuilder RetAttrs(M->getContext()); unsigned CC; bool HasLinkage; Type *RetType = nullptr; LocTy RetTypeLoc = Lex.getLoc(); if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, DSOLocal) || parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || parseType(RetType, RetTypeLoc, true /*void allowed*/)) return true; // Verify that the linkage is ok. switch ((GlobalValue::LinkageTypes)Linkage) { case GlobalValue::ExternalLinkage: break; // always ok. case GlobalValue::ExternalWeakLinkage: if (IsDefine) return error(LinkageLoc, "invalid linkage for function definition"); break; case GlobalValue::PrivateLinkage: case GlobalValue::InternalLinkage: case GlobalValue::AvailableExternallyLinkage: case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: case GlobalValue::WeakAnyLinkage: case GlobalValue::WeakODRLinkage: if (!IsDefine) return error(LinkageLoc, "invalid linkage for function declaration"); break; case GlobalValue::AppendingLinkage: case GlobalValue::CommonLinkage: return error(LinkageLoc, "invalid function linkage type"); } if (!isValidVisibilityForLinkage(Visibility, Linkage)) return error(LinkageLoc, "symbol with local linkage must have default visibility"); if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) return error(LinkageLoc, "symbol with local linkage cannot have a DLL storage class"); if (!FunctionType::isValidReturnType(RetType)) return error(RetTypeLoc, "invalid function return type"); LocTy NameLoc = Lex.getLoc(); std::string FunctionName; if (Lex.getKind() == lltok::GlobalVar) { FunctionName = Lex.getStrVal(); } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. unsigned NameID = Lex.getUIntVal(); if (NameID != NumberedVals.size()) return tokError("function expected to be numbered '%" + Twine(NumberedVals.size()) + "'"); } else { return tokError("expected function name"); } Lex.Lex(); if (Lex.getKind() != lltok::lparen) return tokError("expected '(' in function argument list"); SmallVector ArgList; bool IsVarArg; AttrBuilder FuncAttrs(M->getContext()); std::vector FwdRefAttrGrps; LocTy BuiltinLoc; std::string Section; std::string Partition; MaybeAlign Alignment; std::string GC; GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; unsigned AddrSpace = 0; Constant *Prefix = nullptr; Constant *Prologue = nullptr; Constant *PersonalityFn = nullptr; Comdat *C; if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg) || parseOptionalUnnamedAddr(UnnamedAddr) || parseOptionalProgramAddrSpace(AddrSpace) || parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, BuiltinLoc) || (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || parseOptionalComdat(FunctionName, C) || parseOptionalAlignment(Alignment) || (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || (EatIfPresent(lltok::kw_personality) && parseGlobalTypeAndValue(PersonalityFn))) return true; if (FuncAttrs.contains(Attribute::Builtin)) return error(BuiltinLoc, "'builtin' attribute not valid on function"); // If the alignment was parsed as an attribute, move to the alignment field. if (MaybeAlign A = FuncAttrs.getAlignment()) { Alignment = A; FuncAttrs.removeAttribute(Attribute::Alignment); } // Okay, if we got here, the function is syntactically valid. Convert types // and do semantic checks. std::vector ParamTypeList; SmallVector Attrs; for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { ParamTypeList.push_back(ArgList[i].Ty); Attrs.push_back(ArgList[i].Attrs); } AttributeList PAL = AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), AttributeSet::get(Context, RetAttrs), Attrs); if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) return error(RetTypeLoc, "functions with 'sret' argument must return void"); FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); PointerType *PFT = PointerType::get(FT, AddrSpace); Fn = nullptr; GlobalValue *FwdFn = nullptr; if (!FunctionName.empty()) { // If this was a definition of a forward reference, remove the definition // from the forward reference table and fill in the forward ref. auto FRVI = ForwardRefVals.find(FunctionName); if (FRVI != ForwardRefVals.end()) { FwdFn = FRVI->second.first; if (FwdFn->getType() != PFT) return error(FRVI->second.second, "invalid forward reference to " "function '" + FunctionName + "' with wrong type: " "expected '" + getTypeString(PFT) + "' but was '" + getTypeString(FwdFn->getType()) + "'"); ForwardRefVals.erase(FRVI); } else if ((Fn = M->getFunction(FunctionName))) { // Reject redefinitions. return error(NameLoc, "invalid redefinition of function '" + FunctionName + "'"); } else if (M->getNamedValue(FunctionName)) { return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); } } else { // If this is a definition of a forward referenced function, make sure the // types agree. auto I = ForwardRefValIDs.find(NumberedVals.size()); if (I != ForwardRefValIDs.end()) { FwdFn = I->second.first; if (FwdFn->getType() != PFT) return error(NameLoc, "type of definition and forward reference of '@" + Twine(NumberedVals.size()) + "' disagree: " "expected '" + getTypeString(PFT) + "' but was '" + getTypeString(FwdFn->getType()) + "'"); ForwardRefValIDs.erase(I); } } Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, FunctionName, M); assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); if (FunctionName.empty()) NumberedVals.push_back(Fn); Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); maybeSetDSOLocal(DSOLocal, *Fn); Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); Fn->setCallingConv(CC); Fn->setAttributes(PAL); Fn->setUnnamedAddr(UnnamedAddr); if (Alignment) Fn->setAlignment(*Alignment); Fn->setSection(Section); Fn->setPartition(Partition); Fn->setComdat(C); Fn->setPersonalityFn(PersonalityFn); if (!GC.empty()) Fn->setGC(GC); Fn->setPrefixData(Prefix); Fn->setPrologueData(Prologue); ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; // Add all of the arguments we parsed to the function. Function::arg_iterator ArgIt = Fn->arg_begin(); for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { // If the argument has a name, insert it into the argument symbol table. if (ArgList[i].Name.empty()) continue; // Set the name, if it conflicted, it will be auto-renamed. ArgIt->setName(ArgList[i].Name); if (ArgIt->getName() != ArgList[i].Name) return error(ArgList[i].Loc, "redefinition of argument '%" + ArgList[i].Name + "'"); } if (FwdFn) { FwdFn->replaceAllUsesWith(Fn); FwdFn->eraseFromParent(); } if (IsDefine) return false; // Check the declaration has no block address forward references. ValID ID; if (FunctionName.empty()) { ID.Kind = ValID::t_GlobalID; ID.UIntVal = NumberedVals.size() - 1; } else { ID.Kind = ValID::t_GlobalName; ID.StrVal = FunctionName; } auto Blocks = ForwardRefBlockAddresses.find(ID); if (Blocks != ForwardRefBlockAddresses.end()) return error(Blocks->first.Loc, "cannot take blockaddress inside a declaration"); return false; } bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { ValID ID; if (FunctionNumber == -1) { ID.Kind = ValID::t_GlobalName; ID.StrVal = std::string(F.getName()); } else { ID.Kind = ValID::t_GlobalID; ID.UIntVal = FunctionNumber; } auto Blocks = P.ForwardRefBlockAddresses.find(ID); if (Blocks == P.ForwardRefBlockAddresses.end()) return false; for (const auto &I : Blocks->second) { const ValID &BBID = I.first; GlobalValue *GV = I.second; assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && "Expected local id or name"); BasicBlock *BB; if (BBID.Kind == ValID::t_LocalName) BB = getBB(BBID.StrVal, BBID.Loc); else BB = getBB(BBID.UIntVal, BBID.Loc); if (!BB) return P.error(BBID.Loc, "referenced value is not a basic block"); Value *ResolvedVal = BlockAddress::get(&F, BB); ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), ResolvedVal); if (!ResolvedVal) return true; GV->replaceAllUsesWith(ResolvedVal); GV->eraseFromParent(); } P.ForwardRefBlockAddresses.erase(Blocks); return false; } /// parseFunctionBody /// ::= '{' BasicBlock+ UseListOrderDirective* '}' bool LLParser::parseFunctionBody(Function &Fn, ArrayRef UnnamedArgNums) { if (Lex.getKind() != lltok::lbrace) return tokError("expected '{' in function body"); Lex.Lex(); // eat the {. int FunctionNumber = -1; if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; PerFunctionState PFS(*this, Fn, FunctionNumber, UnnamedArgNums); // Resolve block addresses and allow basic blocks to be forward-declared // within this function. if (PFS.resolveForwardRefBlockAddresses()) return true; SaveAndRestore ScopeExit(BlockAddressPFS, &PFS); // We need at least one basic block. if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) return tokError("function body requires at least one basic block"); while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_uselistorder) if (parseBasicBlock(PFS)) return true; while (Lex.getKind() != lltok::rbrace) if (parseUseListOrder(&PFS)) return true; // Eat the }. Lex.Lex(); // Verify function is ok. return PFS.finishFunction(); } /// parseBasicBlock /// ::= (LabelStr|LabelID)? Instruction* bool LLParser::parseBasicBlock(PerFunctionState &PFS) { // If this basic block starts out with a name, remember it. std::string Name; int NameID = -1; LocTy NameLoc = Lex.getLoc(); if (Lex.getKind() == lltok::LabelStr) { Name = Lex.getStrVal(); Lex.Lex(); } else if (Lex.getKind() == lltok::LabelID) { NameID = Lex.getUIntVal(); Lex.Lex(); } BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); if (!BB) return true; std::string NameStr; // parse the instructions in this block until we get a terminator. Instruction *Inst; do { // This instruction may have three possibilities for a name: a) none // specified, b) name specified "%foo =", c) number specified: "%4 =". LocTy NameLoc = Lex.getLoc(); int NameID = -1; NameStr = ""; if (Lex.getKind() == lltok::LocalVarID) { NameID = Lex.getUIntVal(); Lex.Lex(); if (parseToken(lltok::equal, "expected '=' after instruction id")) return true; } else if (Lex.getKind() == lltok::LocalVar) { NameStr = Lex.getStrVal(); Lex.Lex(); if (parseToken(lltok::equal, "expected '=' after instruction name")) return true; } switch (parseInstruction(Inst, BB, PFS)) { default: llvm_unreachable("Unknown parseInstruction result!"); case InstError: return true; case InstNormal: Inst->insertInto(BB, BB->end()); // With a normal result, we check to see if the instruction is followed by // a comma and metadata. if (EatIfPresent(lltok::comma)) if (parseInstructionMetadata(*Inst)) return true; break; case InstExtraComma: Inst->insertInto(BB, BB->end()); // If the instruction parser ate an extra comma at the end of it, it // *must* be followed by metadata. if (parseInstructionMetadata(*Inst)) return true; break; } // Set the name on the instruction. if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) return true; } while (!Inst->isTerminator()); return false; } //===----------------------------------------------------------------------===// // Instruction Parsing. //===----------------------------------------------------------------------===// /// parseInstruction - parse one of the many different instructions. /// int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, PerFunctionState &PFS) { lltok::Kind Token = Lex.getKind(); if (Token == lltok::Eof) return tokError("found end of file when expecting more instructions"); LocTy Loc = Lex.getLoc(); unsigned KeywordVal = Lex.getUIntVal(); Lex.Lex(); // Eat the keyword. switch (Token) { default: return error(Loc, "expected instruction opcode"); // Terminator Instructions. case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; case lltok::kw_ret: return parseRet(Inst, BB, PFS); case lltok::kw_br: return parseBr(Inst, PFS); case lltok::kw_switch: return parseSwitch(Inst, PFS); case lltok::kw_indirectbr: return parseIndirectBr(Inst, PFS); case lltok::kw_invoke: return parseInvoke(Inst, PFS); case lltok::kw_resume: return parseResume(Inst, PFS); case lltok::kw_cleanupret: return parseCleanupRet(Inst, PFS); case lltok::kw_catchret: return parseCatchRet(Inst, PFS); case lltok::kw_catchswitch: return parseCatchSwitch(Inst, PFS); case lltok::kw_catchpad: return parseCatchPad(Inst, PFS); case lltok::kw_cleanuppad: return parseCleanupPad(Inst, PFS); case lltok::kw_callbr: return parseCallBr(Inst, PFS); // Unary Operators. case lltok::kw_fneg: { FastMathFlags FMF = EatFastMathFlagsIfPresent(); int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); if (Res != 0) return Res; if (FMF.any()) Inst->setFastMathFlags(FMF); return false; } // Binary Operators. case lltok::kw_add: case lltok::kw_sub: case lltok::kw_mul: case lltok::kw_shl: { bool NUW = EatIfPresent(lltok::kw_nuw); bool NSW = EatIfPresent(lltok::kw_nsw); if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) return true; if (NUW) cast(Inst)->setHasNoUnsignedWrap(true); if (NSW) cast(Inst)->setHasNoSignedWrap(true); return false; } case lltok::kw_fadd: case lltok::kw_fsub: case lltok::kw_fmul: case lltok::kw_fdiv: case lltok::kw_frem: { FastMathFlags FMF = EatFastMathFlagsIfPresent(); int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); if (Res != 0) return Res; if (FMF.any()) Inst->setFastMathFlags(FMF); return 0; } case lltok::kw_sdiv: case lltok::kw_udiv: case lltok::kw_lshr: case lltok::kw_ashr: { bool Exact = EatIfPresent(lltok::kw_exact); if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) return true; if (Exact) cast(Inst)->setIsExact(true); return false; } case lltok::kw_urem: case lltok::kw_srem: return parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false); case lltok::kw_or: { bool Disjoint = EatIfPresent(lltok::kw_disjoint); if (parseLogical(Inst, PFS, KeywordVal)) return true; if (Disjoint) cast(Inst)->setIsDisjoint(true); return false; } case lltok::kw_and: case lltok::kw_xor: return parseLogical(Inst, PFS, KeywordVal); case lltok::kw_icmp: return parseCompare(Inst, PFS, KeywordVal); case lltok::kw_fcmp: { FastMathFlags FMF = EatFastMathFlagsIfPresent(); int Res = parseCompare(Inst, PFS, KeywordVal); if (Res != 0) return Res; if (FMF.any()) Inst->setFastMathFlags(FMF); return 0; } // Casts. case lltok::kw_zext: { bool NonNeg = EatIfPresent(lltok::kw_nneg); bool Res = parseCast(Inst, PFS, KeywordVal); if (Res != 0) return Res; if (NonNeg) Inst->setNonNeg(); return 0; } case lltok::kw_trunc: case lltok::kw_sext: case lltok::kw_fptrunc: case lltok::kw_fpext: case lltok::kw_bitcast: case lltok::kw_addrspacecast: case lltok::kw_uitofp: case lltok::kw_sitofp: case lltok::kw_fptoui: case lltok::kw_fptosi: case lltok::kw_inttoptr: case lltok::kw_ptrtoint: return parseCast(Inst, PFS, KeywordVal); // Other. case lltok::kw_select: { FastMathFlags FMF = EatFastMathFlagsIfPresent(); int Res = parseSelect(Inst, PFS); if (Res != 0) return Res; if (FMF.any()) { if (!isa(Inst)) return error(Loc, "fast-math-flags specified for select without " "floating-point scalar or vector return type"); Inst->setFastMathFlags(FMF); } return 0; } case lltok::kw_va_arg: return parseVAArg(Inst, PFS); case lltok::kw_extractelement: return parseExtractElement(Inst, PFS); case lltok::kw_insertelement: return parseInsertElement(Inst, PFS); case lltok::kw_shufflevector: return parseShuffleVector(Inst, PFS); case lltok::kw_phi: { FastMathFlags FMF = EatFastMathFlagsIfPresent(); int Res = parsePHI(Inst, PFS); if (Res != 0) return Res; if (FMF.any()) { if (!isa(Inst)) return error(Loc, "fast-math-flags specified for phi without " "floating-point scalar or vector return type"); Inst->setFastMathFlags(FMF); } return 0; } case lltok::kw_landingpad: return parseLandingPad(Inst, PFS); case lltok::kw_freeze: return parseFreeze(Inst, PFS); // Call. case lltok::kw_call: return parseCall(Inst, PFS, CallInst::TCK_None); case lltok::kw_tail: return parseCall(Inst, PFS, CallInst::TCK_Tail); case lltok::kw_musttail: return parseCall(Inst, PFS, CallInst::TCK_MustTail); case lltok::kw_notail: return parseCall(Inst, PFS, CallInst::TCK_NoTail); // Memory. case lltok::kw_alloca: return parseAlloc(Inst, PFS); case lltok::kw_load: return parseLoad(Inst, PFS); case lltok::kw_store: return parseStore(Inst, PFS); case lltok::kw_cmpxchg: return parseCmpXchg(Inst, PFS); case lltok::kw_atomicrmw: return parseAtomicRMW(Inst, PFS); case lltok::kw_fence: return parseFence(Inst, PFS); case lltok::kw_getelementptr: return parseGetElementPtr(Inst, PFS); case lltok::kw_extractvalue: return parseExtractValue(Inst, PFS); case lltok::kw_insertvalue: return parseInsertValue(Inst, PFS); } } /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { if (Opc == Instruction::FCmp) { switch (Lex.getKind()) { default: return tokError("expected fcmp predicate (e.g. 'oeq')"); case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; case lltok::kw_one: P = CmpInst::FCMP_ONE; break; case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; case lltok::kw_une: P = CmpInst::FCMP_UNE; break; case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; } } else { switch (Lex.getKind()) { default: return tokError("expected icmp predicate (e.g. 'eq')"); case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; case lltok::kw_ne: P = CmpInst::ICMP_NE; break; case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; } } Lex.Lex(); return false; } //===----------------------------------------------------------------------===// // Terminator Instructions. //===----------------------------------------------------------------------===// /// parseRet - parse a return instruction. /// ::= 'ret' void (',' !dbg, !1)* /// ::= 'ret' TypeAndValue (',' !dbg, !1)* bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, PerFunctionState &PFS) { SMLoc TypeLoc = Lex.getLoc(); Type *Ty = nullptr; if (parseType(Ty, true /*void allowed*/)) return true; Type *ResType = PFS.getFunction().getReturnType(); if (Ty->isVoidTy()) { if (!ResType->isVoidTy()) return error(TypeLoc, "value doesn't match function result type '" + getTypeString(ResType) + "'"); Inst = ReturnInst::Create(Context); return false; } Value *RV; if (parseValue(Ty, RV, PFS)) return true; if (ResType != RV->getType()) return error(TypeLoc, "value doesn't match function result type '" + getTypeString(ResType) + "'"); Inst = ReturnInst::Create(Context, RV); return false; } /// parseBr /// ::= 'br' TypeAndValue /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc, Loc2; Value *Op0; BasicBlock *Op1, *Op2; if (parseTypeAndValue(Op0, Loc, PFS)) return true; if (BasicBlock *BB = dyn_cast(Op0)) { Inst = BranchInst::Create(BB); return false; } if (Op0->getType() != Type::getInt1Ty(Context)) return error(Loc, "branch condition must have 'i1' type"); if (parseToken(lltok::comma, "expected ',' after branch condition") || parseTypeAndBasicBlock(Op1, Loc, PFS) || parseToken(lltok::comma, "expected ',' after true destination") || parseTypeAndBasicBlock(Op2, Loc2, PFS)) return true; Inst = BranchInst::Create(Op1, Op2, Op0); return false; } /// parseSwitch /// Instruction /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' /// JumpTable /// ::= (TypeAndValue ',' TypeAndValue)* bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { LocTy CondLoc, BBLoc; Value *Cond; BasicBlock *DefaultBB; if (parseTypeAndValue(Cond, CondLoc, PFS) || parseToken(lltok::comma, "expected ',' after switch condition") || parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || parseToken(lltok::lsquare, "expected '[' with switch table")) return true; if (!Cond->getType()->isIntegerTy()) return error(CondLoc, "switch condition must have integer type"); // parse the jump table pairs. SmallPtrSet SeenCases; SmallVector, 32> Table; while (Lex.getKind() != lltok::rsquare) { Value *Constant; BasicBlock *DestBB; if (parseTypeAndValue(Constant, CondLoc, PFS) || parseToken(lltok::comma, "expected ',' after case value") || parseTypeAndBasicBlock(DestBB, PFS)) return true; if (!SeenCases.insert(Constant).second) return error(CondLoc, "duplicate case value in switch"); if (!isa(Constant)) return error(CondLoc, "case value is not a constant integer"); Table.push_back(std::make_pair(cast(Constant), DestBB)); } Lex.Lex(); // Eat the ']'. SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); for (unsigned i = 0, e = Table.size(); i != e; ++i) SI->addCase(Table[i].first, Table[i].second); Inst = SI; return false; } /// parseIndirectBr /// Instruction /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { LocTy AddrLoc; Value *Address; if (parseTypeAndValue(Address, AddrLoc, PFS) || parseToken(lltok::comma, "expected ',' after indirectbr address") || parseToken(lltok::lsquare, "expected '[' with indirectbr")) return true; if (!Address->getType()->isPointerTy()) return error(AddrLoc, "indirectbr address must have pointer type"); // parse the destination list. SmallVector DestList; if (Lex.getKind() != lltok::rsquare) { BasicBlock *DestBB; if (parseTypeAndBasicBlock(DestBB, PFS)) return true; DestList.push_back(DestBB); while (EatIfPresent(lltok::comma)) { if (parseTypeAndBasicBlock(DestBB, PFS)) return true; DestList.push_back(DestBB); } } if (parseToken(lltok::rsquare, "expected ']' at end of block list")) return true; IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); for (unsigned i = 0, e = DestList.size(); i != e; ++i) IBI->addDestination(DestList[i]); Inst = IBI; return false; } // If RetType is a non-function pointer type, then this is the short syntax // for the call, which means that RetType is just the return type. Infer the // rest of the function argument types from the arguments that are present. bool LLParser::resolveFunctionType(Type *RetType, const SmallVector &ArgList, FunctionType *&FuncTy) { FuncTy = dyn_cast(RetType); if (!FuncTy) { // Pull out the types of all of the arguments... std::vector ParamTypes; for (unsigned i = 0, e = ArgList.size(); i != e; ++i) ParamTypes.push_back(ArgList[i].V->getType()); if (!FunctionType::isValidReturnType(RetType)) return true; FuncTy = FunctionType::get(RetType, ParamTypes, false); } return false; } /// parseInvoke /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { LocTy CallLoc = Lex.getLoc(); AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); std::vector FwdRefAttrGrps; LocTy NoBuiltinLoc; unsigned CC; unsigned InvokeAddrSpace; Type *RetType = nullptr; LocTy RetTypeLoc; ValID CalleeID; SmallVector ArgList; SmallVector BundleList; BasicBlock *NormalBB, *UnwindBB; if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || parseOptionalProgramAddrSpace(InvokeAddrSpace) || parseType(RetType, RetTypeLoc, true /*void allowed*/) || parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, NoBuiltinLoc) || parseOptionalOperandBundles(BundleList, PFS) || parseToken(lltok::kw_to, "expected 'to' in invoke") || parseTypeAndBasicBlock(NormalBB, PFS) || parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || parseTypeAndBasicBlock(UnwindBB, PFS)) return true; // If RetType is a non-function pointer type, then this is the short syntax // for the call, which means that RetType is just the return type. Infer the // rest of the function argument types from the arguments that are present. FunctionType *Ty; if (resolveFunctionType(RetType, ArgList, Ty)) return error(RetTypeLoc, "Invalid result type for LLVM function"); CalleeID.FTy = Ty; // Look up the callee. Value *Callee; if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, Callee, &PFS)) return true; // Set up the Attribute for the function. SmallVector Args; SmallVector ArgAttrs; // Loop through FunctionType's arguments and ensure they are specified // correctly. Also, gather any parameter attributes. FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { Type *ExpectedTy = nullptr; if (I != E) { ExpectedTy = *I++; } else if (!Ty->isVarArg()) { return error(ArgList[i].Loc, "too many arguments specified"); } if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) return error(ArgList[i].Loc, "argument is not of expected type '" + getTypeString(ExpectedTy) + "'"); Args.push_back(ArgList[i].V); ArgAttrs.push_back(ArgList[i].Attrs); } if (I != E) return error(CallLoc, "not enough parameters specified for call"); // Finish off the Attribute and check them AttributeList PAL = AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), AttributeSet::get(Context, RetAttrs), ArgAttrs); InvokeInst *II = InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); II->setCallingConv(CC); II->setAttributes(PAL); ForwardRefAttrGroups[II] = FwdRefAttrGrps; Inst = II; return false; } /// parseResume /// ::= 'resume' TypeAndValue bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { Value *Exn; LocTy ExnLoc; if (parseTypeAndValue(Exn, ExnLoc, PFS)) return true; ResumeInst *RI = ResumeInst::Create(Exn); Inst = RI; return false; } bool LLParser::parseExceptionArgs(SmallVectorImpl &Args, PerFunctionState &PFS) { if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) return true; while (Lex.getKind() != lltok::rsquare) { // If this isn't the first argument, we need a comma. if (!Args.empty() && parseToken(lltok::comma, "expected ',' in argument list")) return true; // parse the argument. LocTy ArgLoc; Type *ArgTy = nullptr; if (parseType(ArgTy, ArgLoc)) return true; Value *V; if (ArgTy->isMetadataTy()) { if (parseMetadataAsValue(V, PFS)) return true; } else { if (parseValue(ArgTy, V, PFS)) return true; } Args.push_back(V); } Lex.Lex(); // Lex the ']'. return false; } /// parseCleanupRet /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { Value *CleanupPad = nullptr; if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) return true; if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) return true; if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) return true; BasicBlock *UnwindBB = nullptr; if (Lex.getKind() == lltok::kw_to) { Lex.Lex(); if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) return true; } else { if (parseTypeAndBasicBlock(UnwindBB, PFS)) { return true; } } Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); return false; } /// parseCatchRet /// ::= 'catchret' from Parent Value 'to' TypeAndValue bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { Value *CatchPad = nullptr; if (parseToken(lltok::kw_from, "expected 'from' after catchret")) return true; if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) return true; BasicBlock *BB; if (parseToken(lltok::kw_to, "expected 'to' in catchret") || parseTypeAndBasicBlock(BB, PFS)) return true; Inst = CatchReturnInst::Create(CatchPad, BB); return false; } /// parseCatchSwitch /// ::= 'catchswitch' within Parent bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { Value *ParentPad; if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) return true; if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) return tokError("expected scope value for catchswitch"); if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) return true; if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) return true; SmallVector Table; do { BasicBlock *DestBB; if (parseTypeAndBasicBlock(DestBB, PFS)) return true; Table.push_back(DestBB); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) return true; if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) return true; BasicBlock *UnwindBB = nullptr; if (EatIfPresent(lltok::kw_to)) { if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) return true; } else { if (parseTypeAndBasicBlock(UnwindBB, PFS)) return true; } auto *CatchSwitch = CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); for (BasicBlock *DestBB : Table) CatchSwitch->addHandler(DestBB); Inst = CatchSwitch; return false; } /// parseCatchPad /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { Value *CatchSwitch = nullptr; if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) return true; if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) return tokError("expected scope value for catchpad"); if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) return true; SmallVector Args; if (parseExceptionArgs(Args, PFS)) return true; Inst = CatchPadInst::Create(CatchSwitch, Args); return false; } /// parseCleanupPad /// ::= 'cleanuppad' within Parent ParamList bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { Value *ParentPad = nullptr; if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) return true; if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) return tokError("expected scope value for cleanuppad"); if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) return true; SmallVector Args; if (parseExceptionArgs(Args, PFS)) return true; Inst = CleanupPadInst::Create(ParentPad, Args); return false; } //===----------------------------------------------------------------------===// // Unary Operators. //===----------------------------------------------------------------------===// /// parseUnaryOp /// ::= UnaryOp TypeAndValue ',' Value /// /// If IsFP is false, then any integer operand is allowed, if it is true, any fp /// operand is allowed. bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc, bool IsFP) { LocTy Loc; Value *LHS; if (parseTypeAndValue(LHS, Loc, PFS)) return true; bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() : LHS->getType()->isIntOrIntVectorTy(); if (!Valid) return error(Loc, "invalid operand type for instruction"); Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); return false; } /// parseCallBr /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue /// '[' LabelList ']' bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { LocTy CallLoc = Lex.getLoc(); AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); std::vector FwdRefAttrGrps; LocTy NoBuiltinLoc; unsigned CC; Type *RetType = nullptr; LocTy RetTypeLoc; ValID CalleeID; SmallVector ArgList; SmallVector BundleList; BasicBlock *DefaultDest; if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || parseType(RetType, RetTypeLoc, true /*void allowed*/) || parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, NoBuiltinLoc) || parseOptionalOperandBundles(BundleList, PFS) || parseToken(lltok::kw_to, "expected 'to' in callbr") || parseTypeAndBasicBlock(DefaultDest, PFS) || parseToken(lltok::lsquare, "expected '[' in callbr")) return true; // parse the destination list. SmallVector IndirectDests; if (Lex.getKind() != lltok::rsquare) { BasicBlock *DestBB; if (parseTypeAndBasicBlock(DestBB, PFS)) return true; IndirectDests.push_back(DestBB); while (EatIfPresent(lltok::comma)) { if (parseTypeAndBasicBlock(DestBB, PFS)) return true; IndirectDests.push_back(DestBB); } } if (parseToken(lltok::rsquare, "expected ']' at end of block list")) return true; // If RetType is a non-function pointer type, then this is the short syntax // for the call, which means that RetType is just the return type. Infer the // rest of the function argument types from the arguments that are present. FunctionType *Ty; if (resolveFunctionType(RetType, ArgList, Ty)) return error(RetTypeLoc, "Invalid result type for LLVM function"); CalleeID.FTy = Ty; // Look up the callee. Value *Callee; if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) return true; // Set up the Attribute for the function. SmallVector Args; SmallVector ArgAttrs; // Loop through FunctionType's arguments and ensure they are specified // correctly. Also, gather any parameter attributes. FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { Type *ExpectedTy = nullptr; if (I != E) { ExpectedTy = *I++; } else if (!Ty->isVarArg()) { return error(ArgList[i].Loc, "too many arguments specified"); } if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) return error(ArgList[i].Loc, "argument is not of expected type '" + getTypeString(ExpectedTy) + "'"); Args.push_back(ArgList[i].V); ArgAttrs.push_back(ArgList[i].Attrs); } if (I != E) return error(CallLoc, "not enough parameters specified for call"); // Finish off the Attribute and check them AttributeList PAL = AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), AttributeSet::get(Context, RetAttrs), ArgAttrs); CallBrInst *CBI = CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, BundleList); CBI->setCallingConv(CC); CBI->setAttributes(PAL); ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; Inst = CBI; return false; } //===----------------------------------------------------------------------===// // Binary Operators. //===----------------------------------------------------------------------===// /// parseArithmetic /// ::= ArithmeticOps TypeAndValue ',' Value /// /// If IsFP is false, then any integer operand is allowed, if it is true, any fp /// operand is allowed. bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc, bool IsFP) { LocTy Loc; Value *LHS, *RHS; if (parseTypeAndValue(LHS, Loc, PFS) || parseToken(lltok::comma, "expected ',' in arithmetic operation") || parseValue(LHS->getType(), RHS, PFS)) return true; bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() : LHS->getType()->isIntOrIntVectorTy(); if (!Valid) return error(Loc, "invalid operand type for instruction"); Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); return false; } /// parseLogical /// ::= ArithmeticOps TypeAndValue ',' Value { bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc) { LocTy Loc; Value *LHS, *RHS; if (parseTypeAndValue(LHS, Loc, PFS) || parseToken(lltok::comma, "expected ',' in logical operation") || parseValue(LHS->getType(), RHS, PFS)) return true; if (!LHS->getType()->isIntOrIntVectorTy()) return error(Loc, "instruction requires integer or integer vector operands"); Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); return false; } /// parseCompare /// ::= 'icmp' IPredicates TypeAndValue ',' Value /// ::= 'fcmp' FPredicates TypeAndValue ',' Value bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc) { // parse the integer/fp comparison predicate. LocTy Loc; unsigned Pred; Value *LHS, *RHS; if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || parseToken(lltok::comma, "expected ',' after compare value") || parseValue(LHS->getType(), RHS, PFS)) return true; if (Opc == Instruction::FCmp) { if (!LHS->getType()->isFPOrFPVectorTy()) return error(Loc, "fcmp requires floating point operands"); Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); } else { assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); if (!LHS->getType()->isIntOrIntVectorTy() && !LHS->getType()->isPtrOrPtrVectorTy()) return error(Loc, "icmp requires integer operands"); Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); } return false; } //===----------------------------------------------------------------------===// // Other Instructions. //===----------------------------------------------------------------------===// /// parseCast /// ::= CastOpc TypeAndValue 'to' Type bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc) { LocTy Loc; Value *Op; Type *DestTy = nullptr; if (parseTypeAndValue(Op, Loc, PFS) || parseToken(lltok::kw_to, "expected 'to' after cast value") || parseType(DestTy)) return true; if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); return error(Loc, "invalid cast opcode for cast from '" + getTypeString(Op->getType()) + "' to '" + getTypeString(DestTy) + "'"); } Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); return false; } /// parseSelect /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1, *Op2; if (parseTypeAndValue(Op0, Loc, PFS) || parseToken(lltok::comma, "expected ',' after select condition") || parseTypeAndValue(Op1, PFS) || parseToken(lltok::comma, "expected ',' after select value") || parseTypeAndValue(Op2, PFS)) return true; if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) return error(Loc, Reason); Inst = SelectInst::Create(Op0, Op1, Op2); return false; } /// parseVAArg /// ::= 'va_arg' TypeAndValue ',' Type bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { Value *Op; Type *EltTy = nullptr; LocTy TypeLoc; if (parseTypeAndValue(Op, PFS) || parseToken(lltok::comma, "expected ',' after vaarg operand") || parseType(EltTy, TypeLoc)) return true; if (!EltTy->isFirstClassType()) return error(TypeLoc, "va_arg requires operand with first class type"); Inst = new VAArgInst(Op, EltTy); return false; } /// parseExtractElement /// ::= 'extractelement' TypeAndValue ',' TypeAndValue bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1; if (parseTypeAndValue(Op0, Loc, PFS) || parseToken(lltok::comma, "expected ',' after extract value") || parseTypeAndValue(Op1, PFS)) return true; if (!ExtractElementInst::isValidOperands(Op0, Op1)) return error(Loc, "invalid extractelement operands"); Inst = ExtractElementInst::Create(Op0, Op1); return false; } /// parseInsertElement /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1, *Op2; if (parseTypeAndValue(Op0, Loc, PFS) || parseToken(lltok::comma, "expected ',' after insertelement value") || parseTypeAndValue(Op1, PFS) || parseToken(lltok::comma, "expected ',' after insertelement value") || parseTypeAndValue(Op2, PFS)) return true; if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) return error(Loc, "invalid insertelement operands"); Inst = InsertElementInst::Create(Op0, Op1, Op2); return false; } /// parseShuffleVector /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op0, *Op1, *Op2; if (parseTypeAndValue(Op0, Loc, PFS) || parseToken(lltok::comma, "expected ',' after shuffle mask") || parseTypeAndValue(Op1, PFS) || parseToken(lltok::comma, "expected ',' after shuffle value") || parseTypeAndValue(Op2, PFS)) return true; if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) return error(Loc, "invalid shufflevector operands"); Inst = new ShuffleVectorInst(Op0, Op1, Op2); return false; } /// parsePHI /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { Type *Ty = nullptr; LocTy TypeLoc; Value *Op0, *Op1; if (parseType(Ty, TypeLoc)) return true; if (!Ty->isFirstClassType()) return error(TypeLoc, "phi node must have first class type"); bool First = true; bool AteExtraComma = false; SmallVector, 16> PHIVals; while (true) { if (First) { if (Lex.getKind() != lltok::lsquare) break; First = false; } else if (!EatIfPresent(lltok::comma)) break; if (Lex.getKind() == lltok::MetadataVar) { AteExtraComma = true; break; } if (parseToken(lltok::lsquare, "expected '[' in phi value list") || parseValue(Ty, Op0, PFS) || parseToken(lltok::comma, "expected ',' after insertelement value") || parseValue(Type::getLabelTy(Context), Op1, PFS) || parseToken(lltok::rsquare, "expected ']' in phi value list")) return true; PHIVals.push_back(std::make_pair(Op0, cast(Op1))); } PHINode *PN = PHINode::Create(Ty, PHIVals.size()); for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) PN->addIncoming(PHIVals[i].first, PHIVals[i].second); Inst = PN; return AteExtraComma ? InstExtraComma : InstNormal; } /// parseLandingPad /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ /// Clause /// ::= 'catch' TypeAndValue /// ::= 'filter' /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { Type *Ty = nullptr; LocTy TyLoc; if (parseType(Ty, TyLoc)) return true; std::unique_ptr LP(LandingPadInst::Create(Ty, 0)); LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ LandingPadInst::ClauseType CT; if (EatIfPresent(lltok::kw_catch)) CT = LandingPadInst::Catch; else if (EatIfPresent(lltok::kw_filter)) CT = LandingPadInst::Filter; else return tokError("expected 'catch' or 'filter' clause type"); Value *V; LocTy VLoc; if (parseTypeAndValue(V, VLoc, PFS)) return true; // A 'catch' type expects a non-array constant. A filter clause expects an // array constant. if (CT == LandingPadInst::Catch) { if (isa(V->getType())) error(VLoc, "'catch' clause has an invalid type"); } else { if (!isa(V->getType())) error(VLoc, "'filter' clause has an invalid type"); } Constant *CV = dyn_cast(V); if (!CV) return error(VLoc, "clause argument must be a constant"); LP->addClause(CV); } Inst = LP.release(); return false; } /// parseFreeze /// ::= 'freeze' Type Value bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { LocTy Loc; Value *Op; if (parseTypeAndValue(Op, Loc, PFS)) return true; Inst = new FreezeInst(Op); return false; } /// parseCall /// ::= 'call' OptionalFastMathFlags OptionalCallingConv /// OptionalAttrs Type Value ParameterList OptionalAttrs /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv /// OptionalAttrs Type Value ParameterList OptionalAttrs /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv /// OptionalAttrs Type Value ParameterList OptionalAttrs /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv /// OptionalAttrs Type Value ParameterList OptionalAttrs bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, CallInst::TailCallKind TCK) { AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); std::vector FwdRefAttrGrps; LocTy BuiltinLoc; unsigned CallAddrSpace; unsigned CC; Type *RetType = nullptr; LocTy RetTypeLoc; ValID CalleeID; SmallVector ArgList; SmallVector BundleList; LocTy CallLoc = Lex.getLoc(); if (TCK != CallInst::TCK_None && parseToken(lltok::kw_call, "expected 'tail call', 'musttail call', or 'notail call'")) return true; FastMathFlags FMF = EatFastMathFlagsIfPresent(); if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || parseOptionalProgramAddrSpace(CallAddrSpace) || parseType(RetType, RetTypeLoc, true /*void allowed*/) || parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, PFS.getFunction().isVarArg()) || parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || parseOptionalOperandBundles(BundleList, PFS)) return true; // If RetType is a non-function pointer type, then this is the short syntax // for the call, which means that RetType is just the return type. Infer the // rest of the function argument types from the arguments that are present. FunctionType *Ty; if (resolveFunctionType(RetType, ArgList, Ty)) return error(RetTypeLoc, "Invalid result type for LLVM function"); CalleeID.FTy = Ty; // Look up the callee. Value *Callee; if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, &PFS)) return true; // Set up the Attribute for the function. SmallVector Attrs; SmallVector Args; // Loop through FunctionType's arguments and ensure they are specified // correctly. Also, gather any parameter attributes. FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { Type *ExpectedTy = nullptr; if (I != E) { ExpectedTy = *I++; } else if (!Ty->isVarArg()) { return error(ArgList[i].Loc, "too many arguments specified"); } if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) return error(ArgList[i].Loc, "argument is not of expected type '" + getTypeString(ExpectedTy) + "'"); Args.push_back(ArgList[i].V); Attrs.push_back(ArgList[i].Attrs); } if (I != E) return error(CallLoc, "not enough parameters specified for call"); // Finish off the Attribute and check them AttributeList PAL = AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), AttributeSet::get(Context, RetAttrs), Attrs); CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); CI->setTailCallKind(TCK); CI->setCallingConv(CC); if (FMF.any()) { if (!isa(CI)) { CI->deleteValue(); return error(CallLoc, "fast-math-flags specified for call without " "floating-point scalar or vector return type"); } CI->setFastMathFlags(FMF); } CI->setAttributes(PAL); ForwardRefAttrGroups[CI] = FwdRefAttrGrps; Inst = CI; return false; } //===----------------------------------------------------------------------===// // Memory Instructions. //===----------------------------------------------------------------------===// /// parseAlloc /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? /// (',' 'align' i32)? (',', 'addrspace(n))? int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { Value *Size = nullptr; LocTy SizeLoc, TyLoc, ASLoc; MaybeAlign Alignment; unsigned AddrSpace = 0; Type *Ty = nullptr; bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); if (parseType(Ty, TyLoc)) return true; if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) return error(TyLoc, "invalid type for alloca"); bool AteExtraComma = false; if (EatIfPresent(lltok::comma)) { if (Lex.getKind() == lltok::kw_align) { if (parseOptionalAlignment(Alignment)) return true; if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) return true; } else if (Lex.getKind() == lltok::kw_addrspace) { ASLoc = Lex.getLoc(); if (parseOptionalAddrSpace(AddrSpace)) return true; } else if (Lex.getKind() == lltok::MetadataVar) { AteExtraComma = true; } else { if (parseTypeAndValue(Size, SizeLoc, PFS)) return true; if (EatIfPresent(lltok::comma)) { if (Lex.getKind() == lltok::kw_align) { if (parseOptionalAlignment(Alignment)) return true; if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) return true; } else if (Lex.getKind() == lltok::kw_addrspace) { ASLoc = Lex.getLoc(); if (parseOptionalAddrSpace(AddrSpace)) return true; } else if (Lex.getKind() == lltok::MetadataVar) { AteExtraComma = true; } } } } if (Size && !Size->getType()->isIntegerTy()) return error(SizeLoc, "element count must have integer type"); SmallPtrSet Visited; if (!Alignment && !Ty->isSized(&Visited)) return error(TyLoc, "Cannot allocate unsized type"); if (!Alignment) Alignment = M->getDataLayout().getPrefTypeAlign(Ty); AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); AI->setUsedWithInAlloca(IsInAlloca); AI->setSwiftError(IsSwiftError); Inst = AI; return AteExtraComma ? InstExtraComma : InstNormal; } /// parseLoad /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? /// ::= 'load' 'atomic' 'volatile'? TypeAndValue /// 'singlethread'? AtomicOrdering (',' 'align' i32)? int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { Value *Val; LocTy Loc; MaybeAlign Alignment; bool AteExtraComma = false; bool isAtomic = false; AtomicOrdering Ordering = AtomicOrdering::NotAtomic; SyncScope::ID SSID = SyncScope::System; if (Lex.getKind() == lltok::kw_atomic) { isAtomic = true; Lex.Lex(); } bool isVolatile = false; if (Lex.getKind() == lltok::kw_volatile) { isVolatile = true; Lex.Lex(); } Type *Ty; LocTy ExplicitTypeLoc = Lex.getLoc(); if (parseType(Ty) || parseToken(lltok::comma, "expected comma after load's type") || parseTypeAndValue(Val, Loc, PFS) || parseScopeAndOrdering(isAtomic, SSID, Ordering) || parseOptionalCommaAlign(Alignment, AteExtraComma)) return true; if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) return error(Loc, "load operand must be a pointer to a first class type"); if (isAtomic && !Alignment) return error(Loc, "atomic load must have explicit non-zero alignment"); if (Ordering == AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease) return error(Loc, "atomic load cannot use Release ordering"); SmallPtrSet Visited; if (!Alignment && !Ty->isSized(&Visited)) return error(ExplicitTypeLoc, "loading unsized types is not allowed"); if (!Alignment) Alignment = M->getDataLayout().getABITypeAlign(Ty); Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); return AteExtraComma ? InstExtraComma : InstNormal; } /// parseStore /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue /// 'singlethread'? AtomicOrdering (',' 'align' i32)? int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { Value *Val, *Ptr; LocTy Loc, PtrLoc; MaybeAlign Alignment; bool AteExtraComma = false; bool isAtomic = false; AtomicOrdering Ordering = AtomicOrdering::NotAtomic; SyncScope::ID SSID = SyncScope::System; if (Lex.getKind() == lltok::kw_atomic) { isAtomic = true; Lex.Lex(); } bool isVolatile = false; if (Lex.getKind() == lltok::kw_volatile) { isVolatile = true; Lex.Lex(); } if (parseTypeAndValue(Val, Loc, PFS) || parseToken(lltok::comma, "expected ',' after store operand") || parseTypeAndValue(Ptr, PtrLoc, PFS) || parseScopeAndOrdering(isAtomic, SSID, Ordering) || parseOptionalCommaAlign(Alignment, AteExtraComma)) return true; if (!Ptr->getType()->isPointerTy()) return error(PtrLoc, "store operand must be a pointer"); if (!Val->getType()->isFirstClassType()) return error(Loc, "store operand must be a first class value"); if (isAtomic && !Alignment) return error(Loc, "atomic store must have explicit non-zero alignment"); if (Ordering == AtomicOrdering::Acquire || Ordering == AtomicOrdering::AcquireRelease) return error(Loc, "atomic store cannot use Acquire ordering"); SmallPtrSet Visited; if (!Alignment && !Val->getType()->isSized(&Visited)) return error(Loc, "storing unsized types is not allowed"); if (!Alignment) Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); return AteExtraComma ? InstExtraComma : InstNormal; } /// parseCmpXchg /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' /// 'Align'? int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; bool AteExtraComma = false; AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; SyncScope::ID SSID = SyncScope::System; bool isVolatile = false; bool isWeak = false; MaybeAlign Alignment; if (EatIfPresent(lltok::kw_weak)) isWeak = true; if (EatIfPresent(lltok::kw_volatile)) isVolatile = true; if (parseTypeAndValue(Ptr, PtrLoc, PFS) || parseToken(lltok::comma, "expected ',' after cmpxchg address") || parseTypeAndValue(Cmp, CmpLoc, PFS) || parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || parseTypeAndValue(New, NewLoc, PFS) || parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || parseOrdering(FailureOrdering) || parseOptionalCommaAlign(Alignment, AteExtraComma)) return true; if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) return tokError("invalid cmpxchg success ordering"); if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) return tokError("invalid cmpxchg failure ordering"); if (!Ptr->getType()->isPointerTy()) return error(PtrLoc, "cmpxchg operand must be a pointer"); if (Cmp->getType() != New->getType()) return error(NewLoc, "compare value and new value type do not match"); if (!New->getType()->isFirstClassType()) return error(NewLoc, "cmpxchg operand must be a first class value"); const Align DefaultAlignment( PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( Cmp->getType())); AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment), SuccessOrdering, FailureOrdering, SSID); CXI->setVolatile(isVolatile); CXI->setWeak(isWeak); Inst = CXI; return AteExtraComma ? InstExtraComma : InstNormal; } /// parseAtomicRMW /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue /// 'singlethread'? AtomicOrdering int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { Value *Ptr, *Val; LocTy PtrLoc, ValLoc; bool AteExtraComma = false; AtomicOrdering Ordering = AtomicOrdering::NotAtomic; SyncScope::ID SSID = SyncScope::System; bool isVolatile = false; bool IsFP = false; AtomicRMWInst::BinOp Operation; MaybeAlign Alignment; if (EatIfPresent(lltok::kw_volatile)) isVolatile = true; switch (Lex.getKind()) { default: return tokError("expected binary operation in atomicrmw"); case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; case lltok::kw_add: Operation = AtomicRMWInst::Add; break; case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; case lltok::kw_and: Operation = AtomicRMWInst::And; break; case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; case lltok::kw_or: Operation = AtomicRMWInst::Or; break; case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; case lltok::kw_max: Operation = AtomicRMWInst::Max; break; case lltok::kw_min: Operation = AtomicRMWInst::Min; break; case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; case lltok::kw_uinc_wrap: Operation = AtomicRMWInst::UIncWrap; break; case lltok::kw_udec_wrap: Operation = AtomicRMWInst::UDecWrap; break; case lltok::kw_fadd: Operation = AtomicRMWInst::FAdd; IsFP = true; break; case lltok::kw_fsub: Operation = AtomicRMWInst::FSub; IsFP = true; break; case lltok::kw_fmax: Operation = AtomicRMWInst::FMax; IsFP = true; break; case lltok::kw_fmin: Operation = AtomicRMWInst::FMin; IsFP = true; break; } Lex.Lex(); // Eat the operation. if (parseTypeAndValue(Ptr, PtrLoc, PFS) || parseToken(lltok::comma, "expected ',' after atomicrmw address") || parseTypeAndValue(Val, ValLoc, PFS) || parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || parseOptionalCommaAlign(Alignment, AteExtraComma)) return true; if (Ordering == AtomicOrdering::Unordered) return tokError("atomicrmw cannot be unordered"); if (!Ptr->getType()->isPointerTy()) return error(PtrLoc, "atomicrmw operand must be a pointer"); if (Operation == AtomicRMWInst::Xchg) { if (!Val->getType()->isIntegerTy() && !Val->getType()->isFloatingPointTy() && !Val->getType()->isPointerTy()) { return error( ValLoc, "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + " operand must be an integer, floating point, or pointer type"); } } else if (IsFP) { if (!Val->getType()->isFloatingPointTy()) { return error(ValLoc, "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + " operand must be a floating point type"); } } else { if (!Val->getType()->isIntegerTy()) { return error(ValLoc, "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + " operand must be an integer"); } } unsigned Size = PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits( Val->getType()); if (Size < 8 || (Size & (Size - 1))) return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" " integer"); const Align DefaultAlignment( PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( Val->getType())); AtomicRMWInst *RMWI = new AtomicRMWInst(Operation, Ptr, Val, Alignment.value_or(DefaultAlignment), Ordering, SSID); RMWI->setVolatile(isVolatile); Inst = RMWI; return AteExtraComma ? InstExtraComma : InstNormal; } /// parseFence /// ::= 'fence' 'singlethread'? AtomicOrdering int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { AtomicOrdering Ordering = AtomicOrdering::NotAtomic; SyncScope::ID SSID = SyncScope::System; if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) return true; if (Ordering == AtomicOrdering::Unordered) return tokError("fence cannot be unordered"); if (Ordering == AtomicOrdering::Monotonic) return tokError("fence cannot be monotonic"); Inst = new FenceInst(Context, Ordering, SSID); return InstNormal; } /// parseGetElementPtr /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { Value *Ptr = nullptr; Value *Val = nullptr; LocTy Loc, EltLoc; bool InBounds = EatIfPresent(lltok::kw_inbounds); Type *Ty = nullptr; if (parseType(Ty) || parseToken(lltok::comma, "expected comma after getelementptr's type") || parseTypeAndValue(Ptr, Loc, PFS)) return true; Type *BaseType = Ptr->getType(); PointerType *BasePointerType = dyn_cast(BaseType->getScalarType()); if (!BasePointerType) return error(Loc, "base of getelementptr must be a pointer"); SmallVector Indices; bool AteExtraComma = false; // GEP returns a vector of pointers if at least one of parameters is a vector. // All vector parameters should have the same vector width. ElementCount GEPWidth = BaseType->isVectorTy() ? cast(BaseType)->getElementCount() : ElementCount::getFixed(0); while (EatIfPresent(lltok::comma)) { if (Lex.getKind() == lltok::MetadataVar) { AteExtraComma = true; break; } if (parseTypeAndValue(Val, EltLoc, PFS)) return true; if (!Val->getType()->isIntOrIntVectorTy()) return error(EltLoc, "getelementptr index must be an integer"); if (auto *ValVTy = dyn_cast(Val->getType())) { ElementCount ValNumEl = ValVTy->getElementCount(); if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) return error( EltLoc, "getelementptr vector index has a wrong number of elements"); GEPWidth = ValNumEl; } Indices.push_back(Val); } SmallPtrSet Visited; if (!Indices.empty() && !Ty->isSized(&Visited)) return error(Loc, "base element of getelementptr must be sized"); auto *STy = dyn_cast(Ty); if (STy && STy->containsScalableVectorType()) return error(Loc, "getelementptr cannot target structure that contains " "scalable vector type"); if (!GetElementPtrInst::getIndexedType(Ty, Indices)) return error(Loc, "invalid getelementptr indices"); Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); if (InBounds) cast(Inst)->setIsInBounds(true); return AteExtraComma ? InstExtraComma : InstNormal; } /// parseExtractValue /// ::= 'extractvalue' TypeAndValue (',' uint32)+ int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { Value *Val; LocTy Loc; SmallVector Indices; bool AteExtraComma; if (parseTypeAndValue(Val, Loc, PFS) || parseIndexList(Indices, AteExtraComma)) return true; if (!Val->getType()->isAggregateType()) return error(Loc, "extractvalue operand must be aggregate type"); if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) return error(Loc, "invalid indices for extractvalue"); Inst = ExtractValueInst::Create(Val, Indices); return AteExtraComma ? InstExtraComma : InstNormal; } /// parseInsertValue /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { Value *Val0, *Val1; LocTy Loc0, Loc1; SmallVector Indices; bool AteExtraComma; if (parseTypeAndValue(Val0, Loc0, PFS) || parseToken(lltok::comma, "expected comma after insertvalue operand") || parseTypeAndValue(Val1, Loc1, PFS) || parseIndexList(Indices, AteExtraComma)) return true; if (!Val0->getType()->isAggregateType()) return error(Loc0, "insertvalue operand must be aggregate type"); Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); if (!IndexedType) return error(Loc0, "invalid indices for insertvalue"); if (IndexedType != Val1->getType()) return error(Loc1, "insertvalue operand and field disagree in type: '" + getTypeString(Val1->getType()) + "' instead of '" + getTypeString(IndexedType) + "'"); Inst = InsertValueInst::Create(Val0, Val1, Indices); return AteExtraComma ? InstExtraComma : InstNormal; } //===----------------------------------------------------------------------===// // Embedded metadata. //===----------------------------------------------------------------------===// /// parseMDNodeVector /// ::= { Element (',' Element)* } /// Element /// ::= 'null' | TypeAndValue bool LLParser::parseMDNodeVector(SmallVectorImpl &Elts) { if (parseToken(lltok::lbrace, "expected '{' here")) return true; // Check for an empty list. if (EatIfPresent(lltok::rbrace)) return false; do { // Null is a special case since it is typeless. if (EatIfPresent(lltok::kw_null)) { Elts.push_back(nullptr); continue; } Metadata *MD; if (parseMetadata(MD, nullptr)) return true; Elts.push_back(MD); } while (EatIfPresent(lltok::comma)); return parseToken(lltok::rbrace, "expected end of metadata node"); } //===----------------------------------------------------------------------===// // Use-list order directives. //===----------------------------------------------------------------------===// bool LLParser::sortUseListOrder(Value *V, ArrayRef Indexes, SMLoc Loc) { if (V->use_empty()) return error(Loc, "value has no uses"); unsigned NumUses = 0; SmallDenseMap Order; for (const Use &U : V->uses()) { if (++NumUses > Indexes.size()) break; Order[&U] = Indexes[NumUses - 1]; } if (NumUses < 2) return error(Loc, "value only has one use"); if (Order.size() != Indexes.size() || NumUses > Indexes.size()) return error(Loc, "wrong number of indexes, expected " + Twine(V->getNumUses())); V->sortUseList([&](const Use &L, const Use &R) { return Order.lookup(&L) < Order.lookup(&R); }); return false; } /// parseUseListOrderIndexes /// ::= '{' uint32 (',' uint32)+ '}' bool LLParser::parseUseListOrderIndexes(SmallVectorImpl &Indexes) { SMLoc Loc = Lex.getLoc(); if (parseToken(lltok::lbrace, "expected '{' here")) return true; if (Lex.getKind() == lltok::rbrace) return Lex.Error("expected non-empty list of uselistorder indexes"); // Use Offset, Max, and IsOrdered to check consistency of indexes. The // indexes should be distinct numbers in the range [0, size-1], and should // not be in order. unsigned Offset = 0; unsigned Max = 0; bool IsOrdered = true; assert(Indexes.empty() && "Expected empty order vector"); do { unsigned Index; if (parseUInt32(Index)) return true; // Update consistency checks. Offset += Index - Indexes.size(); Max = std::max(Max, Index); IsOrdered &= Index == Indexes.size(); Indexes.push_back(Index); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rbrace, "expected '}' here")) return true; if (Indexes.size() < 2) return error(Loc, "expected >= 2 uselistorder indexes"); if (Offset != 0 || Max >= Indexes.size()) return error(Loc, "expected distinct uselistorder indexes in range [0, size)"); if (IsOrdered) return error(Loc, "expected uselistorder indexes to change the order"); return false; } /// parseUseListOrder /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes bool LLParser::parseUseListOrder(PerFunctionState *PFS) { SMLoc Loc = Lex.getLoc(); if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) return true; Value *V; SmallVector Indexes; if (parseTypeAndValue(V, PFS) || parseToken(lltok::comma, "expected comma in uselistorder directive") || parseUseListOrderIndexes(Indexes)) return true; return sortUseListOrder(V, Indexes, Loc); } /// parseUseListOrderBB /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes bool LLParser::parseUseListOrderBB() { assert(Lex.getKind() == lltok::kw_uselistorder_bb); SMLoc Loc = Lex.getLoc(); Lex.Lex(); ValID Fn, Label; SmallVector Indexes; if (parseValID(Fn, /*PFS=*/nullptr) || parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || parseValID(Label, /*PFS=*/nullptr) || parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || parseUseListOrderIndexes(Indexes)) return true; // Check the function. GlobalValue *GV; if (Fn.Kind == ValID::t_GlobalName) GV = M->getNamedValue(Fn.StrVal); else if (Fn.Kind == ValID::t_GlobalID) GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; else return error(Fn.Loc, "expected function name in uselistorder_bb"); if (!GV) return error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); auto *F = dyn_cast(GV); if (!F) return error(Fn.Loc, "expected function name in uselistorder_bb"); if (F->isDeclaration()) return error(Fn.Loc, "invalid declaration in uselistorder_bb"); // Check the basic block. if (Label.Kind == ValID::t_LocalID) return error(Label.Loc, "invalid numeric label in uselistorder_bb"); if (Label.Kind != ValID::t_LocalName) return error(Label.Loc, "expected basic block name in uselistorder_bb"); Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); if (!V) return error(Label.Loc, "invalid basic block in uselistorder_bb"); if (!isa(V)) return error(Label.Loc, "expected basic block in uselistorder_bb"); return sortUseListOrder(V, Indexes, Loc); } /// ModuleEntry /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' bool LLParser::parseModuleEntry(unsigned ID) { assert(Lex.getKind() == lltok::kw_module); Lex.Lex(); std::string Path; if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here") || parseToken(lltok::kw_path, "expected 'path' here") || parseToken(lltok::colon, "expected ':' here") || parseStringConstant(Path) || parseToken(lltok::comma, "expected ',' here") || parseToken(lltok::kw_hash, "expected 'hash' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; ModuleHash Hash; if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || parseUInt32(Hash[4])) return true; if (parseToken(lltok::rparen, "expected ')' here") || parseToken(lltok::rparen, "expected ')' here")) return true; auto ModuleEntry = Index->addModule(Path, Hash); ModuleIdMap[ID] = ModuleEntry->first(); return false; } /// TypeIdEntry /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' bool LLParser::parseTypeIdEntry(unsigned ID) { assert(Lex.getKind() == lltok::kw_typeid); Lex.Lex(); std::string Name; if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here") || parseToken(lltok::kw_name, "expected 'name' here") || parseToken(lltok::colon, "expected ':' here") || parseStringConstant(Name)) return true; TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); if (parseToken(lltok::comma, "expected ',' here") || parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) return true; // Check if this ID was forward referenced, and if so, update the // corresponding GUIDs. auto FwdRefTIDs = ForwardRefTypeIds.find(ID); if (FwdRefTIDs != ForwardRefTypeIds.end()) { for (auto TIDRef : FwdRefTIDs->second) { assert(!*TIDRef.first && "Forward referenced type id GUID expected to be 0"); *TIDRef.first = GlobalValue::getGUID(Name); } ForwardRefTypeIds.erase(FwdRefTIDs); } return false; } /// TypeIdSummary /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { if (parseToken(lltok::kw_summary, "expected 'summary' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here") || parseTypeTestResolution(TIS.TTRes)) return true; if (EatIfPresent(lltok::comma)) { // Expect optional wpdResolutions field if (parseOptionalWpdResolutions(TIS.WPDRes)) return true; } if (parseToken(lltok::rparen, "expected ')' here")) return true; return false; } static ValueInfo EmptyVI = ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); /// TypeIdCompatibleVtableEntry /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' /// TypeIdCompatibleVtableInfo /// ')' bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); Lex.Lex(); std::string Name; if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here") || parseToken(lltok::kw_name, "expected 'name' here") || parseToken(lltok::colon, "expected ':' here") || parseStringConstant(Name)) return true; TypeIdCompatibleVtableInfo &TI = Index->getOrInsertTypeIdCompatibleVtableSummary(Name); if (parseToken(lltok::comma, "expected ',' here") || parseToken(lltok::kw_summary, "expected 'summary' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; IdToIndexMapType IdToIndexMap; // parse each call edge do { uint64_t Offset; if (parseToken(lltok::lparen, "expected '(' here") || parseToken(lltok::kw_offset, "expected 'offset' here") || parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || parseToken(lltok::comma, "expected ',' here")) return true; LocTy Loc = Lex.getLoc(); unsigned GVId; ValueInfo VI; if (parseGVReference(VI, GVId)) return true; // Keep track of the TypeIdCompatibleVtableInfo array index needing a // forward reference. We will save the location of the ValueInfo needing an // update, but can only do so once the std::vector is finalized. if (VI == EmptyVI) IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); TI.push_back({Offset, VI}); if (parseToken(lltok::rparen, "expected ')' in call")) return true; } while (EatIfPresent(lltok::comma)); // Now that the TI vector is finalized, it is safe to save the locations // of any forward GV references that need updating later. for (auto I : IdToIndexMap) { auto &Infos = ForwardRefValueInfos[I.first]; for (auto P : I.second) { assert(TI[P.first].VTableVI == EmptyVI && "Forward referenced ValueInfo expected to be empty"); Infos.emplace_back(&TI[P.first].VTableVI, P.second); } } if (parseToken(lltok::rparen, "expected ')' here") || parseToken(lltok::rparen, "expected ')' here")) return true; // Check if this ID was forward referenced, and if so, update the // corresponding GUIDs. auto FwdRefTIDs = ForwardRefTypeIds.find(ID); if (FwdRefTIDs != ForwardRefTypeIds.end()) { for (auto TIDRef : FwdRefTIDs->second) { assert(!*TIDRef.first && "Forward referenced type id GUID expected to be 0"); *TIDRef.first = GlobalValue::getGUID(Name); } ForwardRefTypeIds.erase(FwdRefTIDs); } return false; } /// TypeTestResolution /// ::= 'typeTestRes' ':' '(' 'kind' ':' /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? /// [',' 'inlinesBits' ':' UInt64]? ')' bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here") || parseToken(lltok::kw_kind, "expected 'kind' here") || parseToken(lltok::colon, "expected ':' here")) return true; switch (Lex.getKind()) { case lltok::kw_unknown: TTRes.TheKind = TypeTestResolution::Unknown; break; case lltok::kw_unsat: TTRes.TheKind = TypeTestResolution::Unsat; break; case lltok::kw_byteArray: TTRes.TheKind = TypeTestResolution::ByteArray; break; case lltok::kw_inline: TTRes.TheKind = TypeTestResolution::Inline; break; case lltok::kw_single: TTRes.TheKind = TypeTestResolution::Single; break; case lltok::kw_allOnes: TTRes.TheKind = TypeTestResolution::AllOnes; break; default: return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); } Lex.Lex(); if (parseToken(lltok::comma, "expected ',' here") || parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || parseToken(lltok::colon, "expected ':' here") || parseUInt32(TTRes.SizeM1BitWidth)) return true; // parse optional fields while (EatIfPresent(lltok::comma)) { switch (Lex.getKind()) { case lltok::kw_alignLog2: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.AlignLog2)) return true; break; case lltok::kw_sizeM1: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) return true; break; case lltok::kw_bitMask: { unsigned Val; Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) return true; assert(Val <= 0xff); TTRes.BitMask = (uint8_t)Val; break; } case lltok::kw_inlineBits: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.InlineBits)) return true; break; default: return error(Lex.getLoc(), "expected optional TypeTestResolution field"); } } if (parseToken(lltok::rparen, "expected ')' here")) return true; return false; } /// OptionalWpdResolutions /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' bool LLParser::parseOptionalWpdResolutions( std::map &WPDResMap) { if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; do { uint64_t Offset; WholeProgramDevirtResolution WPDRes; if (parseToken(lltok::lparen, "expected '(' here") || parseToken(lltok::kw_offset, "expected 'offset' here") || parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || parseToken(lltok::rparen, "expected ')' here")) return true; WPDResMap[Offset] = WPDRes; } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' here")) return true; return false; } /// WpdRes /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' /// [',' OptionalResByArg]? ')' /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' /// ',' 'singleImplName' ':' STRINGCONSTANT ',' /// [',' OptionalResByArg]? ')' /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' /// [',' OptionalResByArg]? ')' bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here") || parseToken(lltok::kw_kind, "expected 'kind' here") || parseToken(lltok::colon, "expected ':' here")) return true; switch (Lex.getKind()) { case lltok::kw_indir: WPDRes.TheKind = WholeProgramDevirtResolution::Indir; break; case lltok::kw_singleImpl: WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; break; case lltok::kw_branchFunnel: WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; break; default: return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); } Lex.Lex(); // parse optional fields while (EatIfPresent(lltok::comma)) { switch (Lex.getKind()) { case lltok::kw_singleImplName: Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseStringConstant(WPDRes.SingleImplName)) return true; break; case lltok::kw_resByArg: if (parseOptionalResByArg(WPDRes.ResByArg)) return true; break; default: return error(Lex.getLoc(), "expected optional WholeProgramDevirtResolution field"); } } if (parseToken(lltok::rparen, "expected ')' here")) return true; return false; } /// OptionalResByArg /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | /// 'virtualConstProp' ) /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? /// [',' 'bit' ':' UInt32]? ')' bool LLParser::parseOptionalResByArg( std::map, WholeProgramDevirtResolution::ByArg> &ResByArg) { if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; do { std::vector Args; if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || parseToken(lltok::kw_byArg, "expected 'byArg here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here") || parseToken(lltok::kw_kind, "expected 'kind' here") || parseToken(lltok::colon, "expected ':' here")) return true; WholeProgramDevirtResolution::ByArg ByArg; switch (Lex.getKind()) { case lltok::kw_indir: ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; break; case lltok::kw_uniformRetVal: ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; break; case lltok::kw_uniqueRetVal: ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; break; case lltok::kw_virtualConstProp: ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; break; default: return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution::ByArg kind"); } Lex.Lex(); // parse optional fields while (EatIfPresent(lltok::comma)) { switch (Lex.getKind()) { case lltok::kw_info: Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(ByArg.Info)) return true; break; case lltok::kw_byte: Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseUInt32(ByArg.Byte)) return true; break; case lltok::kw_bit: Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseUInt32(ByArg.Bit)) return true; break; default: return error(Lex.getLoc(), "expected optional whole program devirt field"); } } if (parseToken(lltok::rparen, "expected ')' here")) return true; ResByArg[Args] = ByArg; } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' here")) return true; return false; } /// OptionalResByArg /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' bool LLParser::parseArgs(std::vector &Args) { if (parseToken(lltok::kw_args, "expected 'args' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; do { uint64_t Val; if (parseUInt64(Val)) return true; Args.push_back(Val); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' here")) return true; return false; } static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { bool ReadOnly = Fwd->isReadOnly(); bool WriteOnly = Fwd->isWriteOnly(); assert(!(ReadOnly && WriteOnly)); *Fwd = Resolved; if (ReadOnly) Fwd->setReadOnly(); if (WriteOnly) Fwd->setWriteOnly(); } /// Stores the given Name/GUID and associated summary into the Index. /// Also updates any forward references to the associated entry ID. bool LLParser::addGlobalValueToIndex( std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, unsigned ID, std::unique_ptr Summary, LocTy Loc) { // First create the ValueInfo utilizing the Name or GUID. ValueInfo VI; if (GUID != 0) { assert(Name.empty()); VI = Index->getOrInsertValueInfo(GUID); } else { assert(!Name.empty()); if (M) { auto *GV = M->getNamedValue(Name); if (!GV) return error(Loc, "Reference to undefined global \"" + Name + "\""); VI = Index->getOrInsertValueInfo(GV); } else { assert( (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && "Need a source_filename to compute GUID for local"); GUID = GlobalValue::getGUID( GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); } } // Resolve forward references from calls/refs auto FwdRefVIs = ForwardRefValueInfos.find(ID); if (FwdRefVIs != ForwardRefValueInfos.end()) { for (auto VIRef : FwdRefVIs->second) { assert(VIRef.first->getRef() == FwdVIRef && "Forward referenced ValueInfo expected to be empty"); resolveFwdRef(VIRef.first, VI); } ForwardRefValueInfos.erase(FwdRefVIs); } // Resolve forward references from aliases auto FwdRefAliasees = ForwardRefAliasees.find(ID); if (FwdRefAliasees != ForwardRefAliasees.end()) { for (auto AliaseeRef : FwdRefAliasees->second) { assert(!AliaseeRef.first->hasAliasee() && "Forward referencing alias already has aliasee"); assert(Summary && "Aliasee must be a definition"); AliaseeRef.first->setAliasee(VI, Summary.get()); } ForwardRefAliasees.erase(FwdRefAliasees); } // Add the summary if one was provided. if (Summary) Index->addGlobalValueSummary(VI, std::move(Summary)); // Save the associated ValueInfo for use in later references by ID. if (ID == NumberedValueInfos.size()) NumberedValueInfos.push_back(VI); else { // Handle non-continuous numbers (to make test simplification easier). if (ID > NumberedValueInfos.size()) NumberedValueInfos.resize(ID + 1); NumberedValueInfos[ID] = VI; } return false; } /// parseSummaryIndexFlags /// ::= 'flags' ':' UInt64 bool LLParser::parseSummaryIndexFlags() { assert(Lex.getKind() == lltok::kw_flags); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here")) return true; uint64_t Flags; if (parseUInt64(Flags)) return true; if (Index) Index->setFlags(Flags); return false; } /// parseBlockCount /// ::= 'blockcount' ':' UInt64 bool LLParser::parseBlockCount() { assert(Lex.getKind() == lltok::kw_blockcount); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here")) return true; uint64_t BlockCount; if (parseUInt64(BlockCount)) return true; if (Index) Index->setBlockCount(BlockCount); return false; } /// parseGVEntry /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' bool LLParser::parseGVEntry(unsigned ID) { assert(Lex.getKind() == lltok::kw_gv); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; LocTy Loc = Lex.getLoc(); std::string Name; GlobalValue::GUID GUID = 0; switch (Lex.getKind()) { case lltok::kw_name: Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseStringConstant(Name)) return true; // Can't create GUID/ValueInfo until we have the linkage. break; case lltok::kw_guid: Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) return true; break; default: return error(Lex.getLoc(), "expected name or guid tag"); } if (!EatIfPresent(lltok::comma)) { // No summaries. Wrap up. if (parseToken(lltok::rparen, "expected ')' here")) return true; // This was created for a call to an external or indirect target. // A GUID with no summary came from a VALUE_GUID record, dummy GUID // created for indirect calls with VP. A Name with no GUID came from // an external definition. We pass ExternalLinkage since that is only // used when the GUID must be computed from Name, and in that case // the symbol must have external linkage. return addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, nullptr, Loc); } // Have a list of summaries if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; do { switch (Lex.getKind()) { case lltok::kw_function: if (parseFunctionSummary(Name, GUID, ID)) return true; break; case lltok::kw_variable: if (parseVariableSummary(Name, GUID, ID)) return true; break; case lltok::kw_alias: if (parseAliasSummary(Name, GUID, ID)) return true; break; default: return error(Lex.getLoc(), "expected summary type"); } } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' here") || parseToken(lltok::rparen, "expected ')' here")) return true; return false; } /// FunctionSummary /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? /// [',' OptionalRefs]? ')' bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, unsigned ID) { LocTy Loc = Lex.getLoc(); assert(Lex.getKind() == lltok::kw_function); Lex.Lex(); StringRef ModulePath; GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, /*NotEligibleToImport=*/false, /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); unsigned InstCount; std::vector Calls; FunctionSummary::TypeIdInfo TypeIdInfo; std::vector ParamAccesses; std::vector Refs; std::vector Callsites; std::vector Allocs; // Default is all-zeros (conservative values). FunctionSummary::FFlags FFlags = {}; if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here") || parseModuleReference(ModulePath) || parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || parseToken(lltok::comma, "expected ',' here") || parseToken(lltok::kw_insts, "expected 'insts' here") || parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) return true; // parse optional fields while (EatIfPresent(lltok::comma)) { switch (Lex.getKind()) { case lltok::kw_funcFlags: if (parseOptionalFFlags(FFlags)) return true; break; case lltok::kw_calls: if (parseOptionalCalls(Calls)) return true; break; case lltok::kw_typeIdInfo: if (parseOptionalTypeIdInfo(TypeIdInfo)) return true; break; case lltok::kw_refs: if (parseOptionalRefs(Refs)) return true; break; case lltok::kw_params: if (parseOptionalParamAccesses(ParamAccesses)) return true; break; case lltok::kw_allocs: if (parseOptionalAllocs(Allocs)) return true; break; case lltok::kw_callsites: if (parseOptionalCallsites(Callsites)) return true; break; default: return error(Lex.getLoc(), "expected optional function summary field"); } } if (parseToken(lltok::rparen, "expected ')' here")) return true; auto FS = std::make_unique( GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), std::move(Calls), std::move(TypeIdInfo.TypeTests), std::move(TypeIdInfo.TypeTestAssumeVCalls), std::move(TypeIdInfo.TypeCheckedLoadVCalls), std::move(TypeIdInfo.TypeTestAssumeConstVCalls), std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), std::move(ParamAccesses), std::move(Callsites), std::move(Allocs)); FS->setModulePath(ModulePath); return addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, std::move(FS), Loc); } /// VariableSummary /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags /// [',' OptionalRefs]? ')' bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, unsigned ID) { LocTy Loc = Lex.getLoc(); assert(Lex.getKind() == lltok::kw_variable); Lex.Lex(); StringRef ModulePath; GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, /*NotEligibleToImport=*/false, /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, /* WriteOnly */ false, /* Constant */ false, GlobalObject::VCallVisibilityPublic); std::vector Refs; VTableFuncList VTableFuncs; if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here") || parseModuleReference(ModulePath) || parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || parseToken(lltok::comma, "expected ',' here") || parseGVarFlags(GVarFlags)) return true; // parse optional fields while (EatIfPresent(lltok::comma)) { switch (Lex.getKind()) { case lltok::kw_vTableFuncs: if (parseOptionalVTableFuncs(VTableFuncs)) return true; break; case lltok::kw_refs: if (parseOptionalRefs(Refs)) return true; break; default: return error(Lex.getLoc(), "expected optional variable summary field"); } } if (parseToken(lltok::rparen, "expected ')' here")) return true; auto GS = std::make_unique(GVFlags, GVarFlags, std::move(Refs)); GS->setModulePath(ModulePath); GS->setVTableFuncs(std::move(VTableFuncs)); return addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, std::move(GS), Loc); } /// AliasSummary /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' /// 'aliasee' ':' GVReference ')' bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, unsigned ID) { assert(Lex.getKind() == lltok::kw_alias); LocTy Loc = Lex.getLoc(); Lex.Lex(); StringRef ModulePath; GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, /*NotEligibleToImport=*/false, /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here") || parseModuleReference(ModulePath) || parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || parseToken(lltok::comma, "expected ',' here") || parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || parseToken(lltok::colon, "expected ':' here")) return true; ValueInfo AliaseeVI; unsigned GVId; if (parseGVReference(AliaseeVI, GVId)) return true; if (parseToken(lltok::rparen, "expected ')' here")) return true; auto AS = std::make_unique(GVFlags); AS->setModulePath(ModulePath); // Record forward reference if the aliasee is not parsed yet. if (AliaseeVI.getRef() == FwdVIRef) { ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); } else { auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); assert(Summary && "Aliasee must be a definition"); AS->setAliasee(AliaseeVI, Summary); } return addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, std::move(AS), Loc); } /// Flag /// ::= [0|1] bool LLParser::parseFlag(unsigned &Val) { if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) return tokError("expected integer"); Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); Lex.Lex(); return false; } /// OptionalFFlags /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? /// [',' 'returnDoesNotAlias' ':' Flag]? ')' /// [',' 'noInline' ':' Flag]? ')' /// [',' 'alwaysInline' ':' Flag]? ')' /// [',' 'noUnwind' ':' Flag]? ')' /// [',' 'mayThrow' ':' Flag]? ')' /// [',' 'hasUnknownCall' ':' Flag]? ')' /// [',' 'mustBeUnreachable' ':' Flag]? ')' bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { assert(Lex.getKind() == lltok::kw_funcFlags); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' in funcFlags") || parseToken(lltok::lparen, "expected '(' in funcFlags")) return true; do { unsigned Val = 0; switch (Lex.getKind()) { case lltok::kw_readNone: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) return true; FFlags.ReadNone = Val; break; case lltok::kw_readOnly: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) return true; FFlags.ReadOnly = Val; break; case lltok::kw_noRecurse: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) return true; FFlags.NoRecurse = Val; break; case lltok::kw_returnDoesNotAlias: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) return true; FFlags.ReturnDoesNotAlias = Val; break; case lltok::kw_noInline: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) return true; FFlags.NoInline = Val; break; case lltok::kw_alwaysInline: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) return true; FFlags.AlwaysInline = Val; break; case lltok::kw_noUnwind: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) return true; FFlags.NoUnwind = Val; break; case lltok::kw_mayThrow: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) return true; FFlags.MayThrow = Val; break; case lltok::kw_hasUnknownCall: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) return true; FFlags.HasUnknownCall = Val; break; case lltok::kw_mustBeUnreachable: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) return true; FFlags.MustBeUnreachable = Val; break; default: return error(Lex.getLoc(), "expected function flag type"); } } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' in funcFlags")) return true; return false; } /// OptionalCalls /// := 'calls' ':' '(' Call [',' Call]* ')' /// Call ::= '(' 'callee' ':' GVReference /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? /// [ ',' 'tail' ]? ')' bool LLParser::parseOptionalCalls(std::vector &Calls) { assert(Lex.getKind() == lltok::kw_calls); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' in calls") || parseToken(lltok::lparen, "expected '(' in calls")) return true; IdToIndexMapType IdToIndexMap; // parse each call edge do { ValueInfo VI; if (parseToken(lltok::lparen, "expected '(' in call") || parseToken(lltok::kw_callee, "expected 'callee' in call") || parseToken(lltok::colon, "expected ':'")) return true; LocTy Loc = Lex.getLoc(); unsigned GVId; if (parseGVReference(VI, GVId)) return true; CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; unsigned RelBF = 0; unsigned HasTailCall = false; // parse optional fields while (EatIfPresent(lltok::comma)) { switch (Lex.getKind()) { case lltok::kw_hotness: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) return true; break; case lltok::kw_relbf: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) return true; break; case lltok::kw_tail: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(HasTailCall)) return true; break; default: return error(Lex.getLoc(), "expected hotness, relbf, or tail"); } } if (Hotness != CalleeInfo::HotnessType::Unknown && RelBF > 0) return tokError("Expected only one of hotness or relbf"); // Keep track of the Call array index needing a forward reference. // We will save the location of the ValueInfo needing an update, but // can only do so once the std::vector is finalized. if (VI.getRef() == FwdVIRef) IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); Calls.push_back( FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, HasTailCall, RelBF)}); if (parseToken(lltok::rparen, "expected ')' in call")) return true; } while (EatIfPresent(lltok::comma)); // Now that the Calls vector is finalized, it is safe to save the locations // of any forward GV references that need updating later. for (auto I : IdToIndexMap) { auto &Infos = ForwardRefValueInfos[I.first]; for (auto P : I.second) { assert(Calls[P.first].first.getRef() == FwdVIRef && "Forward referenced ValueInfo expected to be empty"); Infos.emplace_back(&Calls[P.first].first, P.second); } } if (parseToken(lltok::rparen, "expected ')' in calls")) return true; return false; } /// Hotness /// := ('unknown'|'cold'|'none'|'hot'|'critical') bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { switch (Lex.getKind()) { case lltok::kw_unknown: Hotness = CalleeInfo::HotnessType::Unknown; break; case lltok::kw_cold: Hotness = CalleeInfo::HotnessType::Cold; break; case lltok::kw_none: Hotness = CalleeInfo::HotnessType::None; break; case lltok::kw_hot: Hotness = CalleeInfo::HotnessType::Hot; break; case lltok::kw_critical: Hotness = CalleeInfo::HotnessType::Critical; break; default: return error(Lex.getLoc(), "invalid call edge hotness"); } Lex.Lex(); return false; } /// OptionalVTableFuncs /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { assert(Lex.getKind() == lltok::kw_vTableFuncs); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || parseToken(lltok::lparen, "expected '(' in vTableFuncs")) return true; IdToIndexMapType IdToIndexMap; // parse each virtual function pair do { ValueInfo VI; if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || parseToken(lltok::colon, "expected ':'")) return true; LocTy Loc = Lex.getLoc(); unsigned GVId; if (parseGVReference(VI, GVId)) return true; uint64_t Offset; if (parseToken(lltok::comma, "expected comma") || parseToken(lltok::kw_offset, "expected offset") || parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) return true; // Keep track of the VTableFuncs array index needing a forward reference. // We will save the location of the ValueInfo needing an update, but // can only do so once the std::vector is finalized. if (VI == EmptyVI) IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); VTableFuncs.push_back({VI, Offset}); if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) return true; } while (EatIfPresent(lltok::comma)); // Now that the VTableFuncs vector is finalized, it is safe to save the // locations of any forward GV references that need updating later. for (auto I : IdToIndexMap) { auto &Infos = ForwardRefValueInfos[I.first]; for (auto P : I.second) { assert(VTableFuncs[P.first].FuncVI == EmptyVI && "Forward referenced ValueInfo expected to be empty"); Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); } } if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) return true; return false; } /// ParamNo := 'param' ':' UInt64 bool LLParser::parseParamNo(uint64_t &ParamNo) { if (parseToken(lltok::kw_param, "expected 'param' here") || parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) return true; return false; } /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' bool LLParser::parseParamAccessOffset(ConstantRange &Range) { APSInt Lower; APSInt Upper; auto ParseAPSInt = [&](APSInt &Val) { if (Lex.getKind() != lltok::APSInt) return tokError("expected integer"); Val = Lex.getAPSIntVal(); Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); Val.setIsSigned(true); Lex.Lex(); return false; }; if (parseToken(lltok::kw_offset, "expected 'offset' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || parseToken(lltok::rsquare, "expected ']' here")) return true; ++Upper; Range = (Lower == Upper && !Lower.isMaxValue()) ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) : ConstantRange(Lower, Upper); return false; } /// ParamAccessCall /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, IdLocListType &IdLocList) { if (parseToken(lltok::lparen, "expected '(' here") || parseToken(lltok::kw_callee, "expected 'callee' here") || parseToken(lltok::colon, "expected ':' here")) return true; unsigned GVId; ValueInfo VI; LocTy Loc = Lex.getLoc(); if (parseGVReference(VI, GVId)) return true; Call.Callee = VI; IdLocList.emplace_back(GVId, Loc); if (parseToken(lltok::comma, "expected ',' here") || parseParamNo(Call.ParamNo) || parseToken(lltok::comma, "expected ',' here") || parseParamAccessOffset(Call.Offsets)) return true; if (parseToken(lltok::rparen, "expected ')' here")) return true; return false; } /// ParamAccess /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, IdLocListType &IdLocList) { if (parseToken(lltok::lparen, "expected '(' here") || parseParamNo(Param.ParamNo) || parseToken(lltok::comma, "expected ',' here") || parseParamAccessOffset(Param.Use)) return true; if (EatIfPresent(lltok::comma)) { if (parseToken(lltok::kw_calls, "expected 'calls' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; do { FunctionSummary::ParamAccess::Call Call; if (parseParamAccessCall(Call, IdLocList)) return true; Param.Calls.push_back(Call); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' here")) return true; } if (parseToken(lltok::rparen, "expected ')' here")) return true; return false; } /// OptionalParamAccesses /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' bool LLParser::parseOptionalParamAccesses( std::vector &Params) { assert(Lex.getKind() == lltok::kw_params); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; IdLocListType VContexts; size_t CallsNum = 0; do { FunctionSummary::ParamAccess ParamAccess; if (parseParamAccess(ParamAccess, VContexts)) return true; CallsNum += ParamAccess.Calls.size(); assert(VContexts.size() == CallsNum); (void)CallsNum; Params.emplace_back(std::move(ParamAccess)); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' here")) return true; // Now that the Params is finalized, it is safe to save the locations // of any forward GV references that need updating later. IdLocListType::const_iterator ItContext = VContexts.begin(); for (auto &PA : Params) { for (auto &C : PA.Calls) { if (C.Callee.getRef() == FwdVIRef) ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, ItContext->second); ++ItContext; } } assert(ItContext == VContexts.end()); return false; } /// OptionalRefs /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' bool LLParser::parseOptionalRefs(std::vector &Refs) { assert(Lex.getKind() == lltok::kw_refs); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' in refs") || parseToken(lltok::lparen, "expected '(' in refs")) return true; struct ValueContext { ValueInfo VI; unsigned GVId; LocTy Loc; }; std::vector VContexts; // parse each ref edge do { ValueContext VC; VC.Loc = Lex.getLoc(); if (parseGVReference(VC.VI, VC.GVId)) return true; VContexts.push_back(VC); } while (EatIfPresent(lltok::comma)); // Sort value contexts so that ones with writeonly // and readonly ValueInfo are at the end of VContexts vector. // See FunctionSummary::specialRefCounts() llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); }); IdToIndexMapType IdToIndexMap; for (auto &VC : VContexts) { // Keep track of the Refs array index needing a forward reference. // We will save the location of the ValueInfo needing an update, but // can only do so once the std::vector is finalized. if (VC.VI.getRef() == FwdVIRef) IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); Refs.push_back(VC.VI); } // Now that the Refs vector is finalized, it is safe to save the locations // of any forward GV references that need updating later. for (auto I : IdToIndexMap) { auto &Infos = ForwardRefValueInfos[I.first]; for (auto P : I.second) { assert(Refs[P.first].getRef() == FwdVIRef && "Forward referenced ValueInfo expected to be empty"); Infos.emplace_back(&Refs[P.first], P.second); } } if (parseToken(lltok::rparen, "expected ')' in refs")) return true; return false; } /// OptionalTypeIdInfo /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? /// [',' TypeCheckedLoadConstVCalls]? ')' bool LLParser::parseOptionalTypeIdInfo( FunctionSummary::TypeIdInfo &TypeIdInfo) { assert(Lex.getKind() == lltok::kw_typeIdInfo); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' in typeIdInfo")) return true; do { switch (Lex.getKind()) { case lltok::kw_typeTests: if (parseTypeTests(TypeIdInfo.TypeTests)) return true; break; case lltok::kw_typeTestAssumeVCalls: if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, TypeIdInfo.TypeTestAssumeVCalls)) return true; break; case lltok::kw_typeCheckedLoadVCalls: if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, TypeIdInfo.TypeCheckedLoadVCalls)) return true; break; case lltok::kw_typeTestAssumeConstVCalls: if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, TypeIdInfo.TypeTestAssumeConstVCalls)) return true; break; case lltok::kw_typeCheckedLoadConstVCalls: if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, TypeIdInfo.TypeCheckedLoadConstVCalls)) return true; break; default: return error(Lex.getLoc(), "invalid typeIdInfo list type"); } } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) return true; return false; } /// TypeTests /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) /// [',' (SummaryID | UInt64)]* ')' bool LLParser::parseTypeTests(std::vector &TypeTests) { assert(Lex.getKind() == lltok::kw_typeTests); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' in typeIdInfo")) return true; IdToIndexMapType IdToIndexMap; do { GlobalValue::GUID GUID = 0; if (Lex.getKind() == lltok::SummaryID) { unsigned ID = Lex.getUIntVal(); LocTy Loc = Lex.getLoc(); // Keep track of the TypeTests array index needing a forward reference. // We will save the location of the GUID needing an update, but // can only do so once the std::vector is finalized. IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); Lex.Lex(); } else if (parseUInt64(GUID)) return true; TypeTests.push_back(GUID); } while (EatIfPresent(lltok::comma)); // Now that the TypeTests vector is finalized, it is safe to save the // locations of any forward GV references that need updating later. for (auto I : IdToIndexMap) { auto &Ids = ForwardRefTypeIds[I.first]; for (auto P : I.second) { assert(TypeTests[P.first] == 0 && "Forward referenced type id GUID expected to be 0"); Ids.emplace_back(&TypeTests[P.first], P.second); } } if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) return true; return false; } /// VFuncIdList /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' bool LLParser::parseVFuncIdList( lltok::Kind Kind, std::vector &VFuncIdList) { assert(Lex.getKind() == Kind); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; IdToIndexMapType IdToIndexMap; do { FunctionSummary::VFuncId VFuncId; if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) return true; VFuncIdList.push_back(VFuncId); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' here")) return true; // Now that the VFuncIdList vector is finalized, it is safe to save the // locations of any forward GV references that need updating later. for (auto I : IdToIndexMap) { auto &Ids = ForwardRefTypeIds[I.first]; for (auto P : I.second) { assert(VFuncIdList[P.first].GUID == 0 && "Forward referenced type id GUID expected to be 0"); Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); } } return false; } /// ConstVCallList /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' bool LLParser::parseConstVCallList( lltok::Kind Kind, std::vector &ConstVCallList) { assert(Lex.getKind() == Kind); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; IdToIndexMapType IdToIndexMap; do { FunctionSummary::ConstVCall ConstVCall; if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) return true; ConstVCallList.push_back(ConstVCall); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' here")) return true; // Now that the ConstVCallList vector is finalized, it is safe to save the // locations of any forward GV references that need updating later. for (auto I : IdToIndexMap) { auto &Ids = ForwardRefTypeIds[I.first]; for (auto P : I.second) { assert(ConstVCallList[P.first].VFunc.GUID == 0 && "Forward referenced type id GUID expected to be 0"); Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); } } return false; } /// ConstVCall /// ::= '(' VFuncId ',' Args ')' bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, IdToIndexMapType &IdToIndexMap, unsigned Index) { if (parseToken(lltok::lparen, "expected '(' here") || parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) return true; if (EatIfPresent(lltok::comma)) if (parseArgs(ConstVCall.Args)) return true; if (parseToken(lltok::rparen, "expected ')' here")) return true; return false; } /// VFuncId /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' /// 'offset' ':' UInt64 ')' bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, IdToIndexMapType &IdToIndexMap, unsigned Index) { assert(Lex.getKind() == lltok::kw_vFuncId); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; if (Lex.getKind() == lltok::SummaryID) { VFuncId.GUID = 0; unsigned ID = Lex.getUIntVal(); LocTy Loc = Lex.getLoc(); // Keep track of the array index needing a forward reference. // We will save the location of the GUID needing an update, but // can only do so once the caller's std::vector is finalized. IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); Lex.Lex(); } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || parseToken(lltok::colon, "expected ':' here") || parseUInt64(VFuncId.GUID)) return true; if (parseToken(lltok::comma, "expected ',' here") || parseToken(lltok::kw_offset, "expected 'offset' here") || parseToken(lltok::colon, "expected ':' here") || parseUInt64(VFuncId.Offset) || parseToken(lltok::rparen, "expected ')' here")) return true; return false; } /// GVFlags /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' /// 'canAutoHide' ':' Flag ',' ')' bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { assert(Lex.getKind() == lltok::kw_flags); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; do { unsigned Flag = 0; switch (Lex.getKind()) { case lltok::kw_linkage: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'")) return true; bool HasLinkage; GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); assert(HasLinkage && "Linkage not optional in summary entry"); Lex.Lex(); break; case lltok::kw_visibility: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'")) return true; parseOptionalVisibility(Flag); GVFlags.Visibility = Flag; break; case lltok::kw_notEligibleToImport: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) return true; GVFlags.NotEligibleToImport = Flag; break; case lltok::kw_live: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) return true; GVFlags.Live = Flag; break; case lltok::kw_dsoLocal: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) return true; GVFlags.DSOLocal = Flag; break; case lltok::kw_canAutoHide: Lex.Lex(); if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) return true; GVFlags.CanAutoHide = Flag; break; default: return error(Lex.getLoc(), "expected gv flag type"); } } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' here")) return true; return false; } /// GVarFlags /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag /// ',' 'writeonly' ':' Flag /// ',' 'constant' ':' Flag ')' bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { assert(Lex.getKind() == lltok::kw_varFlags); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::lparen, "expected '(' here")) return true; auto ParseRest = [this](unsigned int &Val) { Lex.Lex(); if (parseToken(lltok::colon, "expected ':'")) return true; return parseFlag(Val); }; do { unsigned Flag = 0; switch (Lex.getKind()) { case lltok::kw_readonly: if (ParseRest(Flag)) return true; GVarFlags.MaybeReadOnly = Flag; break; case lltok::kw_writeonly: if (ParseRest(Flag)) return true; GVarFlags.MaybeWriteOnly = Flag; break; case lltok::kw_constant: if (ParseRest(Flag)) return true; GVarFlags.Constant = Flag; break; case lltok::kw_vcall_visibility: if (ParseRest(Flag)) return true; GVarFlags.VCallVisibility = Flag; break; default: return error(Lex.getLoc(), "expected gvar flag type"); } } while (EatIfPresent(lltok::comma)); return parseToken(lltok::rparen, "expected ')' here"); } /// ModuleReference /// ::= 'module' ':' UInt bool LLParser::parseModuleReference(StringRef &ModulePath) { // parse module id. if (parseToken(lltok::kw_module, "expected 'module' here") || parseToken(lltok::colon, "expected ':' here") || parseToken(lltok::SummaryID, "expected module ID")) return true; unsigned ModuleID = Lex.getUIntVal(); auto I = ModuleIdMap.find(ModuleID); // We should have already parsed all module IDs assert(I != ModuleIdMap.end()); ModulePath = I->second; return false; } /// GVReference /// ::= SummaryID bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); if (!ReadOnly) WriteOnly = EatIfPresent(lltok::kw_writeonly); if (parseToken(lltok::SummaryID, "expected GV ID")) return true; GVId = Lex.getUIntVal(); // Check if we already have a VI for this GV if (GVId < NumberedValueInfos.size() && NumberedValueInfos[GVId]) { assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); VI = NumberedValueInfos[GVId]; } else // We will create a forward reference to the stored location. VI = ValueInfo(false, FwdVIRef); if (ReadOnly) VI.setReadOnly(); if (WriteOnly) VI.setWriteOnly(); return false; } /// OptionalAllocs /// := 'allocs' ':' '(' Alloc [',' Alloc]* ')' /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')' /// ',' MemProfs ')' /// Version ::= UInt32 bool LLParser::parseOptionalAllocs(std::vector &Allocs) { assert(Lex.getKind() == lltok::kw_allocs); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' in allocs") || parseToken(lltok::lparen, "expected '(' in allocs")) return true; // parse each alloc do { if (parseToken(lltok::lparen, "expected '(' in alloc") || parseToken(lltok::kw_versions, "expected 'versions' in alloc") || parseToken(lltok::colon, "expected ':'") || parseToken(lltok::lparen, "expected '(' in versions")) return true; SmallVector Versions; do { uint8_t V = 0; if (parseAllocType(V)) return true; Versions.push_back(V); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' in versions") || parseToken(lltok::comma, "expected ',' in alloc")) return true; std::vector MIBs; if (parseMemProfs(MIBs)) return true; Allocs.push_back({Versions, MIBs}); if (parseToken(lltok::rparen, "expected ')' in alloc")) return true; } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' in allocs")) return true; return false; } /// MemProfs /// := 'memProf' ':' '(' MemProf [',' MemProf]* ')' /// MemProf ::= '(' 'type' ':' AllocType /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' /// StackId ::= UInt64 bool LLParser::parseMemProfs(std::vector &MIBs) { assert(Lex.getKind() == lltok::kw_memProf); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' in memprof") || parseToken(lltok::lparen, "expected '(' in memprof")) return true; // parse each MIB do { if (parseToken(lltok::lparen, "expected '(' in memprof") || parseToken(lltok::kw_type, "expected 'type' in memprof") || parseToken(lltok::colon, "expected ':'")) return true; uint8_t AllocType; if (parseAllocType(AllocType)) return true; if (parseToken(lltok::comma, "expected ',' in memprof") || parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") || parseToken(lltok::colon, "expected ':'") || parseToken(lltok::lparen, "expected '(' in stackIds")) return true; SmallVector StackIdIndices; do { uint64_t StackId = 0; if (parseUInt64(StackId)) return true; StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' in stackIds")) return true; MIBs.push_back({(AllocationType)AllocType, StackIdIndices}); if (parseToken(lltok::rparen, "expected ')' in memprof")) return true; } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' in memprof")) return true; return false; } /// AllocType /// := ('none'|'notcold'|'cold'|'hot') bool LLParser::parseAllocType(uint8_t &AllocType) { switch (Lex.getKind()) { case lltok::kw_none: AllocType = (uint8_t)AllocationType::None; break; case lltok::kw_notcold: AllocType = (uint8_t)AllocationType::NotCold; break; case lltok::kw_cold: AllocType = (uint8_t)AllocationType::Cold; break; case lltok::kw_hot: AllocType = (uint8_t)AllocationType::Hot; break; default: return error(Lex.getLoc(), "invalid alloc type"); } Lex.Lex(); return false; } /// OptionalCallsites /// := 'callsites' ':' '(' Callsite [',' Callsite]* ')' /// Callsite ::= '(' 'callee' ':' GVReference /// ',' 'clones' ':' '(' Version [',' Version]* ')' /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' /// Version ::= UInt32 /// StackId ::= UInt64 bool LLParser::parseOptionalCallsites(std::vector &Callsites) { assert(Lex.getKind() == lltok::kw_callsites); Lex.Lex(); if (parseToken(lltok::colon, "expected ':' in callsites") || parseToken(lltok::lparen, "expected '(' in callsites")) return true; IdToIndexMapType IdToIndexMap; // parse each callsite do { if (parseToken(lltok::lparen, "expected '(' in callsite") || parseToken(lltok::kw_callee, "expected 'callee' in callsite") || parseToken(lltok::colon, "expected ':'")) return true; ValueInfo VI; unsigned GVId = 0; LocTy Loc = Lex.getLoc(); if (!EatIfPresent(lltok::kw_null)) { if (parseGVReference(VI, GVId)) return true; } if (parseToken(lltok::comma, "expected ',' in callsite") || parseToken(lltok::kw_clones, "expected 'clones' in callsite") || parseToken(lltok::colon, "expected ':'") || parseToken(lltok::lparen, "expected '(' in clones")) return true; SmallVector Clones; do { unsigned V = 0; if (parseUInt32(V)) return true; Clones.push_back(V); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' in clones") || parseToken(lltok::comma, "expected ',' in callsite") || parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") || parseToken(lltok::colon, "expected ':'") || parseToken(lltok::lparen, "expected '(' in stackIds")) return true; SmallVector StackIdIndices; do { uint64_t StackId = 0; if (parseUInt64(StackId)) return true; StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); } while (EatIfPresent(lltok::comma)); if (parseToken(lltok::rparen, "expected ')' in stackIds")) return true; // Keep track of the Callsites array index needing a forward reference. // We will save the location of the ValueInfo needing an update, but // can only do so once the SmallVector is finalized. if (VI.getRef() == FwdVIRef) IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc)); Callsites.push_back({VI, Clones, StackIdIndices}); if (parseToken(lltok::rparen, "expected ')' in callsite")) return true; } while (EatIfPresent(lltok::comma)); // Now that the Callsites vector is finalized, it is safe to save the // locations of any forward GV references that need updating later. for (auto I : IdToIndexMap) { auto &Infos = ForwardRefValueInfos[I.first]; for (auto P : I.second) { assert(Callsites[P.first].Callee.getRef() == FwdVIRef && "Forward referenced ValueInfo expected to be empty"); Infos.emplace_back(&Callsites[P.first].Callee, P.second); } } if (parseToken(lltok::rparen, "expected ')' in callsites")) return true; return false; }