//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines vectorizer utilities. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/VectorUtils.h" #include "llvm/ADT/EquivalenceClasses.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/DemandedBits.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Value.h" #include "llvm/Support/CommandLine.h" #define DEBUG_TYPE "vectorutils" using namespace llvm; using namespace llvm::PatternMatch; /// Maximum factor for an interleaved memory access. static cl::opt MaxInterleaveGroupFactor( "max-interleave-group-factor", cl::Hidden, cl::desc("Maximum factor for an interleaved access group (default = 8)"), cl::init(8)); /// Return true if all of the intrinsic's arguments and return type are scalars /// for the scalar form of the intrinsic, and vectors for the vector form of the /// intrinsic (except operands that are marked as always being scalar by /// isVectorIntrinsicWithScalarOpAtArg). bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { switch (ID) { case Intrinsic::abs: // Begin integer bit-manipulation. case Intrinsic::bswap: case Intrinsic::bitreverse: case Intrinsic::ctpop: case Intrinsic::ctlz: case Intrinsic::cttz: case Intrinsic::fshl: case Intrinsic::fshr: case Intrinsic::smax: case Intrinsic::smin: case Intrinsic::umax: case Intrinsic::umin: case Intrinsic::sadd_sat: case Intrinsic::ssub_sat: case Intrinsic::uadd_sat: case Intrinsic::usub_sat: case Intrinsic::smul_fix: case Intrinsic::smul_fix_sat: case Intrinsic::umul_fix: case Intrinsic::umul_fix_sat: case Intrinsic::sqrt: // Begin floating-point. case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::log: case Intrinsic::log10: case Intrinsic::log2: case Intrinsic::fabs: case Intrinsic::minnum: case Intrinsic::maxnum: case Intrinsic::minimum: case Intrinsic::maximum: case Intrinsic::copysign: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::trunc: case Intrinsic::rint: case Intrinsic::nearbyint: case Intrinsic::round: case Intrinsic::roundeven: case Intrinsic::pow: case Intrinsic::fma: case Intrinsic::fmuladd: case Intrinsic::is_fpclass: case Intrinsic::powi: case Intrinsic::canonicalize: case Intrinsic::fptosi_sat: case Intrinsic::fptoui_sat: case Intrinsic::lrint: case Intrinsic::llrint: return true; default: return false; } } /// Identifies if the vector form of the intrinsic has a scalar operand. bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) { switch (ID) { case Intrinsic::abs: case Intrinsic::ctlz: case Intrinsic::cttz: case Intrinsic::is_fpclass: case Intrinsic::powi: return (ScalarOpdIdx == 1); case Intrinsic::smul_fix: case Intrinsic::smul_fix_sat: case Intrinsic::umul_fix: case Intrinsic::umul_fix_sat: return (ScalarOpdIdx == 2); default: return false; } } bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) { assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!"); switch (ID) { case Intrinsic::fptosi_sat: case Intrinsic::fptoui_sat: case Intrinsic::lrint: case Intrinsic::llrint: return OpdIdx == -1 || OpdIdx == 0; case Intrinsic::is_fpclass: return OpdIdx == 0; case Intrinsic::powi: return OpdIdx == -1 || OpdIdx == 1; default: return OpdIdx == -1; } } /// Returns intrinsic ID for call. /// For the input call instruction it finds mapping intrinsic and returns /// its ID, in case it does not found it return not_intrinsic. Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI) { Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); if (ID == Intrinsic::not_intrinsic) return Intrinsic::not_intrinsic; if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || ID == Intrinsic::experimental_noalias_scope_decl || ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) return ID; return Intrinsic::not_intrinsic; } /// Given a vector and an element number, see if the scalar value is /// already around as a register, for example if it were inserted then extracted /// from the vector. Value *llvm::findScalarElement(Value *V, unsigned EltNo) { assert(V->getType()->isVectorTy() && "Not looking at a vector?"); VectorType *VTy = cast(V->getType()); // For fixed-length vector, return undef for out of range access. if (auto *FVTy = dyn_cast(VTy)) { unsigned Width = FVTy->getNumElements(); if (EltNo >= Width) return UndefValue::get(FVTy->getElementType()); } if (Constant *C = dyn_cast(V)) return C->getAggregateElement(EltNo); if (InsertElementInst *III = dyn_cast(V)) { // If this is an insert to a variable element, we don't know what it is. if (!isa(III->getOperand(2))) return nullptr; unsigned IIElt = cast(III->getOperand(2))->getZExtValue(); // If this is an insert to the element we are looking for, return the // inserted value. if (EltNo == IIElt) return III->getOperand(1); // Guard against infinite loop on malformed, unreachable IR. if (III == III->getOperand(0)) return nullptr; // Otherwise, the insertelement doesn't modify the value, recurse on its // vector input. return findScalarElement(III->getOperand(0), EltNo); } ShuffleVectorInst *SVI = dyn_cast(V); // Restrict the following transformation to fixed-length vector. if (SVI && isa(SVI->getType())) { unsigned LHSWidth = cast(SVI->getOperand(0)->getType())->getNumElements(); int InEl = SVI->getMaskValue(EltNo); if (InEl < 0) return UndefValue::get(VTy->getElementType()); if (InEl < (int)LHSWidth) return findScalarElement(SVI->getOperand(0), InEl); return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); } // Extract a value from a vector add operation with a constant zero. // TODO: Use getBinOpIdentity() to generalize this. Value *Val; Constant *C; if (match(V, m_Add(m_Value(Val), m_Constant(C)))) if (Constant *Elt = C->getAggregateElement(EltNo)) if (Elt->isNullValue()) return findScalarElement(Val, EltNo); // If the vector is a splat then we can trivially find the scalar element. if (isa(VTy)) if (Value *Splat = getSplatValue(V)) if (EltNo < VTy->getElementCount().getKnownMinValue()) return Splat; // Otherwise, we don't know. return nullptr; } int llvm::getSplatIndex(ArrayRef Mask) { int SplatIndex = -1; for (int M : Mask) { // Ignore invalid (undefined) mask elements. if (M < 0) continue; // There can be only 1 non-negative mask element value if this is a splat. if (SplatIndex != -1 && SplatIndex != M) return -1; // Initialize the splat index to the 1st non-negative mask element. SplatIndex = M; } assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); return SplatIndex; } /// Get splat value if the input is a splat vector or return nullptr. /// This function is not fully general. It checks only 2 cases: /// the input value is (1) a splat constant vector or (2) a sequence /// of instructions that broadcasts a scalar at element 0. Value *llvm::getSplatValue(const Value *V) { if (isa(V->getType())) if (auto *C = dyn_cast(V)) return C->getSplatValue(); // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> Value *Splat; if (match(V, m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), m_Value(), m_ZeroMask()))) return Splat; return nullptr; } bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); if (isa(V->getType())) { if (isa(V)) return true; // FIXME: We can allow undefs, but if Index was specified, we may want to // check that the constant is defined at that index. if (auto *C = dyn_cast(V)) return C->getSplatValue() != nullptr; } if (auto *Shuf = dyn_cast(V)) { // FIXME: We can safely allow undefs here. If Index was specified, we will // check that the mask elt is defined at the required index. if (!all_equal(Shuf->getShuffleMask())) return false; // Match any index. if (Index == -1) return true; // Match a specific element. The mask should be defined at and match the // specified index. return Shuf->getMaskValue(Index) == Index; } // The remaining tests are all recursive, so bail out if we hit the limit. if (Depth++ == MaxAnalysisRecursionDepth) return false; // If both operands of a binop are splats, the result is a splat. Value *X, *Y, *Z; if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); // If all operands of a select are splats, the result is a splat. if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && isSplatValue(Z, Index, Depth); // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). return false; } bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts) { DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth); // Early out if we don't demand any elements. if (DemandedElts.isZero()) return true; // Simple case of a shuffle with zeroinitializer. if (all_of(Mask, [](int Elt) { return Elt == 0; })) { DemandedLHS.setBit(0); return true; } for (unsigned I = 0, E = Mask.size(); I != E; ++I) { int M = Mask[I]; assert((-1 <= M) && (M < (SrcWidth * 2)) && "Invalid shuffle mask constant"); if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) continue; // For undef elements, we don't know anything about the common state of // the shuffle result. if (M < 0) return false; if (M < SrcWidth) DemandedLHS.setBit(M); else DemandedRHS.setBit(M - SrcWidth); } return true; } void llvm::narrowShuffleMaskElts(int Scale, ArrayRef Mask, SmallVectorImpl &ScaledMask) { assert(Scale > 0 && "Unexpected scaling factor"); // Fast-path: if no scaling, then it is just a copy. if (Scale == 1) { ScaledMask.assign(Mask.begin(), Mask.end()); return; } ScaledMask.clear(); for (int MaskElt : Mask) { if (MaskElt >= 0) { assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && "Overflowed 32-bits"); } for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); } } bool llvm::widenShuffleMaskElts(int Scale, ArrayRef Mask, SmallVectorImpl &ScaledMask) { assert(Scale > 0 && "Unexpected scaling factor"); // Fast-path: if no scaling, then it is just a copy. if (Scale == 1) { ScaledMask.assign(Mask.begin(), Mask.end()); return true; } // We must map the original elements down evenly to a type with less elements. int NumElts = Mask.size(); if (NumElts % Scale != 0) return false; ScaledMask.clear(); ScaledMask.reserve(NumElts / Scale); // Step through the input mask by splitting into Scale-sized slices. do { ArrayRef MaskSlice = Mask.take_front(Scale); assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); // The first element of the slice determines how we evaluate this slice. int SliceFront = MaskSlice.front(); if (SliceFront < 0) { // Negative values (undef or other "sentinel" values) must be equal across // the entire slice. if (!all_equal(MaskSlice)) return false; ScaledMask.push_back(SliceFront); } else { // A positive mask element must be cleanly divisible. if (SliceFront % Scale != 0) return false; // Elements of the slice must be consecutive. for (int i = 1; i < Scale; ++i) if (MaskSlice[i] != SliceFront + i) return false; ScaledMask.push_back(SliceFront / Scale); } Mask = Mask.drop_front(Scale); } while (!Mask.empty()); assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); // All elements of the original mask can be scaled down to map to the elements // of a mask with wider elements. return true; } void llvm::getShuffleMaskWithWidestElts(ArrayRef Mask, SmallVectorImpl &ScaledMask) { std::array, 2> TmpMasks; SmallVectorImpl *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; ArrayRef InputMask = Mask; for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { while (widenShuffleMaskElts(Scale, InputMask, *Output)) { InputMask = *Output; std::swap(Output, Tmp); } } ScaledMask.assign(InputMask.begin(), InputMask.end()); } void llvm::processShuffleMasks( ArrayRef Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, unsigned NumOfUsedRegs, function_ref NoInputAction, function_ref, unsigned, unsigned)> SingleInputAction, function_ref, unsigned, unsigned)> ManyInputsAction) { SmallVector>> Res(NumOfDestRegs); // Try to perform better estimation of the permutation. // 1. Split the source/destination vectors into real registers. // 2. Do the mask analysis to identify which real registers are // permuted. int Sz = Mask.size(); unsigned SzDest = Sz / NumOfDestRegs; unsigned SzSrc = Sz / NumOfSrcRegs; for (unsigned I = 0; I < NumOfDestRegs; ++I) { auto &RegMasks = Res[I]; RegMasks.assign(NumOfSrcRegs, {}); // Check that the values in dest registers are in the one src // register. for (unsigned K = 0; K < SzDest; ++K) { int Idx = I * SzDest + K; if (Idx == Sz) break; if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem) continue; int SrcRegIdx = Mask[Idx] / SzSrc; // Add a cost of PermuteTwoSrc for each new source register permute, // if we have more than one source registers. if (RegMasks[SrcRegIdx].empty()) RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem); RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc; } } // Process split mask. for (unsigned I = 0; I < NumOfUsedRegs; ++I) { auto &Dest = Res[I]; int NumSrcRegs = count_if(Dest, [](ArrayRef Mask) { return !Mask.empty(); }); switch (NumSrcRegs) { case 0: // No input vectors were used! NoInputAction(); break; case 1: { // Find the only mask with at least single undef mask elem. auto *It = find_if(Dest, [](ArrayRef Mask) { return !Mask.empty(); }); unsigned SrcReg = std::distance(Dest.begin(), It); SingleInputAction(*It, SrcReg, I); break; } default: { // The first mask is a permutation of a single register. Since we have >2 // input registers to shuffle, we merge the masks for 2 first registers // and generate a shuffle of 2 registers rather than the reordering of the // first register and then shuffle with the second register. Next, // generate the shuffles of the resulting register + the remaining // registers from the list. auto &&CombineMasks = [](MutableArrayRef FirstMask, ArrayRef SecondMask) { for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { if (SecondMask[Idx] != PoisonMaskElem) { assert(FirstMask[Idx] == PoisonMaskElem && "Expected undefined mask element."); FirstMask[Idx] = SecondMask[Idx] + VF; } } }; auto &&NormalizeMask = [](MutableArrayRef Mask) { for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { if (Mask[Idx] != PoisonMaskElem) Mask[Idx] = Idx; } }; int SecondIdx; do { int FirstIdx = -1; SecondIdx = -1; MutableArrayRef FirstMask, SecondMask; for (unsigned I = 0; I < NumOfDestRegs; ++I) { SmallVectorImpl &RegMask = Dest[I]; if (RegMask.empty()) continue; if (FirstIdx == SecondIdx) { FirstIdx = I; FirstMask = RegMask; continue; } SecondIdx = I; SecondMask = RegMask; CombineMasks(FirstMask, SecondMask); ManyInputsAction(FirstMask, FirstIdx, SecondIdx); NormalizeMask(FirstMask); RegMask.clear(); SecondMask = FirstMask; SecondIdx = FirstIdx; } if (FirstIdx != SecondIdx && SecondIdx >= 0) { CombineMasks(SecondMask, FirstMask); ManyInputsAction(SecondMask, SecondIdx, FirstIdx); Dest[FirstIdx].clear(); NormalizeMask(SecondMask); } } while (SecondIdx >= 0); break; } } } } MapVector llvm::computeMinimumValueSizes(ArrayRef Blocks, DemandedBits &DB, const TargetTransformInfo *TTI) { // DemandedBits will give us every value's live-out bits. But we want // to ensure no extra casts would need to be inserted, so every DAG // of connected values must have the same minimum bitwidth. EquivalenceClasses ECs; SmallVector Worklist; SmallPtrSet Roots; SmallPtrSet Visited; DenseMap DBits; SmallPtrSet InstructionSet; MapVector MinBWs; // Determine the roots. We work bottom-up, from truncs or icmps. bool SeenExtFromIllegalType = false; for (auto *BB : Blocks) for (auto &I : *BB) { InstructionSet.insert(&I); if (TTI && (isa(&I) || isa(&I)) && !TTI->isTypeLegal(I.getOperand(0)->getType())) SeenExtFromIllegalType = true; // Only deal with non-vector integers up to 64-bits wide. if ((isa(&I) || isa(&I)) && !I.getType()->isVectorTy() && I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { // Don't make work for ourselves. If we know the loaded type is legal, // don't add it to the worklist. if (TTI && isa(&I) && TTI->isTypeLegal(I.getType())) continue; Worklist.push_back(&I); Roots.insert(&I); } } // Early exit. if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) return MinBWs; // Now proceed breadth-first, unioning values together. while (!Worklist.empty()) { Value *Val = Worklist.pop_back_val(); Value *Leader = ECs.getOrInsertLeaderValue(Val); if (!Visited.insert(Val).second) continue; // Non-instructions terminate a chain successfully. if (!isa(Val)) continue; Instruction *I = cast(Val); // If we encounter a type that is larger than 64 bits, we can't represent // it so bail out. if (DB.getDemandedBits(I).getBitWidth() > 64) return MapVector(); uint64_t V = DB.getDemandedBits(I).getZExtValue(); DBits[Leader] |= V; DBits[I] = V; // Casts, loads and instructions outside of our range terminate a chain // successfully. if (isa(I) || isa(I) || isa(I) || !InstructionSet.count(I)) continue; // Unsafe casts terminate a chain unsuccessfully. We can't do anything // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to // transform anything that relies on them. if (isa(I) || isa(I) || isa(I) || !I->getType()->isIntegerTy()) { DBits[Leader] |= ~0ULL; continue; } // We don't modify the types of PHIs. Reductions will already have been // truncated if possible, and inductions' sizes will have been chosen by // indvars. if (isa(I)) continue; if (DBits[Leader] == ~0ULL) // All bits demanded, no point continuing. continue; for (Value *O : cast(I)->operands()) { ECs.unionSets(Leader, O); Worklist.push_back(O); } } // Now we've discovered all values, walk them to see if there are // any users we didn't see. If there are, we can't optimize that // chain. for (auto &I : DBits) for (auto *U : I.first->users()) if (U->getType()->isIntegerTy() && DBits.count(U) == 0) DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { uint64_t LeaderDemandedBits = 0; for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) LeaderDemandedBits |= DBits[M]; uint64_t MinBW = llvm::bit_width(LeaderDemandedBits); // Round up to a power of 2 MinBW = llvm::bit_ceil(MinBW); // We don't modify the types of PHIs. Reductions will already have been // truncated if possible, and inductions' sizes will have been chosen by // indvars. // If we are required to shrink a PHI, abandon this entire equivalence class. bool Abort = false; for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) if (isa(M) && MinBW < M->getType()->getScalarSizeInBits()) { Abort = true; break; } if (Abort) continue; for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { auto *MI = dyn_cast(M); if (!MI) continue; Type *Ty = M->getType(); if (Roots.count(M)) Ty = MI->getOperand(0)->getType(); if (MinBW >= Ty->getScalarSizeInBits()) continue; // If any of M's operands demand more bits than MinBW then M cannot be // performed safely in MinBW. if (any_of(MI->operands(), [&DB, MinBW](Use &U) { auto *CI = dyn_cast(U); // For constants shift amounts, check if the shift would result in // poison. if (CI && isa(U.getUser()) && U.getOperandNo() == 1) return CI->uge(MinBW); uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue()); return bit_ceil(BW) > MinBW; })) continue; MinBWs[MI] = MinBW; } } return MinBWs; } /// Add all access groups in @p AccGroups to @p List. template static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { // Interpret an access group as a list containing itself. if (AccGroups->getNumOperands() == 0) { assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); List.insert(AccGroups); return; } for (const auto &AccGroupListOp : AccGroups->operands()) { auto *Item = cast(AccGroupListOp.get()); assert(isValidAsAccessGroup(Item) && "List item must be an access group"); List.insert(Item); } } MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { if (!AccGroups1) return AccGroups2; if (!AccGroups2) return AccGroups1; if (AccGroups1 == AccGroups2) return AccGroups1; SmallSetVector Union; addToAccessGroupList(Union, AccGroups1); addToAccessGroupList(Union, AccGroups2); if (Union.size() == 0) return nullptr; if (Union.size() == 1) return cast(Union.front()); LLVMContext &Ctx = AccGroups1->getContext(); return MDNode::get(Ctx, Union.getArrayRef()); } MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, const Instruction *Inst2) { bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); if (!MayAccessMem1 && !MayAccessMem2) return nullptr; if (!MayAccessMem1) return Inst2->getMetadata(LLVMContext::MD_access_group); if (!MayAccessMem2) return Inst1->getMetadata(LLVMContext::MD_access_group); MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); if (!MD1 || !MD2) return nullptr; if (MD1 == MD2) return MD1; // Use set for scalable 'contains' check. SmallPtrSet AccGroupSet2; addToAccessGroupList(AccGroupSet2, MD2); SmallVector Intersection; if (MD1->getNumOperands() == 0) { assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); if (AccGroupSet2.count(MD1)) Intersection.push_back(MD1); } else { for (const MDOperand &Node : MD1->operands()) { auto *Item = cast(Node.get()); assert(isValidAsAccessGroup(Item) && "List item must be an access group"); if (AccGroupSet2.count(Item)) Intersection.push_back(Item); } } if (Intersection.size() == 0) return nullptr; if (Intersection.size() == 1) return cast(Intersection.front()); LLVMContext &Ctx = Inst1->getContext(); return MDNode::get(Ctx, Intersection); } /// \returns \p I after propagating metadata from \p VL. Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef VL) { if (VL.empty()) return Inst; Instruction *I0 = cast(VL[0]); SmallVector, 4> Metadata; I0->getAllMetadataOtherThanDebugLoc(Metadata); for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, LLVMContext::MD_noalias, LLVMContext::MD_fpmath, LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, LLVMContext::MD_access_group}) { MDNode *MD = I0->getMetadata(Kind); for (int J = 1, E = VL.size(); MD && J != E; ++J) { const Instruction *IJ = cast(VL[J]); MDNode *IMD = IJ->getMetadata(Kind); switch (Kind) { case LLVMContext::MD_tbaa: MD = MDNode::getMostGenericTBAA(MD, IMD); break; case LLVMContext::MD_alias_scope: MD = MDNode::getMostGenericAliasScope(MD, IMD); break; case LLVMContext::MD_fpmath: MD = MDNode::getMostGenericFPMath(MD, IMD); break; case LLVMContext::MD_noalias: case LLVMContext::MD_nontemporal: case LLVMContext::MD_invariant_load: MD = MDNode::intersect(MD, IMD); break; case LLVMContext::MD_access_group: MD = intersectAccessGroups(Inst, IJ); break; default: llvm_unreachable("unhandled metadata"); } } Inst->setMetadata(Kind, MD); } return Inst; } Constant * llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup &Group) { // All 1's means mask is not needed. if (Group.getNumMembers() == Group.getFactor()) return nullptr; // TODO: support reversed access. assert(!Group.isReverse() && "Reversed group not supported."); SmallVector Mask; for (unsigned i = 0; i < VF; i++) for (unsigned j = 0; j < Group.getFactor(); ++j) { unsigned HasMember = Group.getMember(j) ? 1 : 0; Mask.push_back(Builder.getInt1(HasMember)); } return ConstantVector::get(Mask); } llvm::SmallVector llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { SmallVector MaskVec; for (unsigned i = 0; i < VF; i++) for (unsigned j = 0; j < ReplicationFactor; j++) MaskVec.push_back(i); return MaskVec; } llvm::SmallVector llvm::createInterleaveMask(unsigned VF, unsigned NumVecs) { SmallVector Mask; for (unsigned i = 0; i < VF; i++) for (unsigned j = 0; j < NumVecs; j++) Mask.push_back(j * VF + i); return Mask; } llvm::SmallVector llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { SmallVector Mask; for (unsigned i = 0; i < VF; i++) Mask.push_back(Start + i * Stride); return Mask; } llvm::SmallVector llvm::createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs) { SmallVector Mask; for (unsigned i = 0; i < NumInts; i++) Mask.push_back(Start + i); for (unsigned i = 0; i < NumUndefs; i++) Mask.push_back(-1); return Mask; } llvm::SmallVector llvm::createUnaryMask(ArrayRef Mask, unsigned NumElts) { // Avoid casts in the loop and make sure we have a reasonable number. int NumEltsSigned = NumElts; assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); // If the mask chooses an element from operand 1, reduce it to choose from the // corresponding element of operand 0. Undef mask elements are unchanged. SmallVector UnaryMask; for (int MaskElt : Mask) { assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; UnaryMask.push_back(UnaryElt); } return UnaryMask; } /// A helper function for concatenating vectors. This function concatenates two /// vectors having the same element type. If the second vector has fewer /// elements than the first, it is padded with undefs. static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, Value *V2) { VectorType *VecTy1 = dyn_cast(V1->getType()); VectorType *VecTy2 = dyn_cast(V2->getType()); assert(VecTy1 && VecTy2 && VecTy1->getScalarType() == VecTy2->getScalarType() && "Expect two vectors with the same element type"); unsigned NumElts1 = cast(VecTy1)->getNumElements(); unsigned NumElts2 = cast(VecTy2)->getNumElements(); assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); if (NumElts1 > NumElts2) { // Extend with UNDEFs. V2 = Builder.CreateShuffleVector( V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); } return Builder.CreateShuffleVector( V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); } Value *llvm::concatenateVectors(IRBuilderBase &Builder, ArrayRef Vecs) { unsigned NumVecs = Vecs.size(); assert(NumVecs > 1 && "Should be at least two vectors"); SmallVector ResList; ResList.append(Vecs.begin(), Vecs.end()); do { SmallVector TmpList; for (unsigned i = 0; i < NumVecs - 1; i += 2) { Value *V0 = ResList[i], *V1 = ResList[i + 1]; assert((V0->getType() == V1->getType() || i == NumVecs - 2) && "Only the last vector may have a different type"); TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); } // Push the last vector if the total number of vectors is odd. if (NumVecs % 2 != 0) TmpList.push_back(ResList[NumVecs - 1]); ResList = TmpList; NumVecs = ResList.size(); } while (NumVecs > 1); return ResList[0]; } bool llvm::maskIsAllZeroOrUndef(Value *Mask) { assert(isa(Mask->getType()) && isa(Mask->getType()->getScalarType()) && cast(Mask->getType()->getScalarType())->getBitWidth() == 1 && "Mask must be a vector of i1"); auto *ConstMask = dyn_cast(Mask); if (!ConstMask) return false; if (ConstMask->isNullValue() || isa(ConstMask)) return true; if (isa(ConstMask->getType())) return false; for (unsigned I = 0, E = cast(ConstMask->getType())->getNumElements(); I != E; ++I) { if (auto *MaskElt = ConstMask->getAggregateElement(I)) if (MaskElt->isNullValue() || isa(MaskElt)) continue; return false; } return true; } bool llvm::maskIsAllOneOrUndef(Value *Mask) { assert(isa(Mask->getType()) && isa(Mask->getType()->getScalarType()) && cast(Mask->getType()->getScalarType())->getBitWidth() == 1 && "Mask must be a vector of i1"); auto *ConstMask = dyn_cast(Mask); if (!ConstMask) return false; if (ConstMask->isAllOnesValue() || isa(ConstMask)) return true; if (isa(ConstMask->getType())) return false; for (unsigned I = 0, E = cast(ConstMask->getType())->getNumElements(); I != E; ++I) { if (auto *MaskElt = ConstMask->getAggregateElement(I)) if (MaskElt->isAllOnesValue() || isa(MaskElt)) continue; return false; } return true; } /// TODO: This is a lot like known bits, but for /// vectors. Is there something we can common this with? APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { assert(isa(Mask->getType()) && isa(Mask->getType()->getScalarType()) && cast(Mask->getType()->getScalarType())->getBitWidth() == 1 && "Mask must be a fixed width vector of i1"); const unsigned VWidth = cast(Mask->getType())->getNumElements(); APInt DemandedElts = APInt::getAllOnes(VWidth); if (auto *CV = dyn_cast(Mask)) for (unsigned i = 0; i < VWidth; i++) if (CV->getAggregateElement(i)->isNullValue()) DemandedElts.clearBit(i); return DemandedElts; } bool InterleavedAccessInfo::isStrided(int Stride) { unsigned Factor = std::abs(Stride); return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; } void InterleavedAccessInfo::collectConstStrideAccesses( MapVector &AccessStrideInfo, const DenseMap &Strides) { auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); // Since it's desired that the load/store instructions be maintained in // "program order" for the interleaved access analysis, we have to visit the // blocks in the loop in reverse postorder (i.e., in a topological order). // Such an ordering will ensure that any load/store that may be executed // before a second load/store will precede the second load/store in // AccessStrideInfo. LoopBlocksDFS DFS(TheLoop); DFS.perform(LI); for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) for (auto &I : *BB) { Value *Ptr = getLoadStorePointerOperand(&I); if (!Ptr) continue; Type *ElementTy = getLoadStoreType(&I); // Currently, codegen doesn't support cases where the type size doesn't // match the alloc size. Skip them for now. uint64_t Size = DL.getTypeAllocSize(ElementTy); if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) continue; // We don't check wrapping here because we don't know yet if Ptr will be // part of a full group or a group with gaps. Checking wrapping for all // pointers (even those that end up in groups with no gaps) will be overly // conservative. For full groups, wrapping should be ok since if we would // wrap around the address space we would do a memory access at nullptr // even without the transformation. The wrapping checks are therefore // deferred until after we've formed the interleaved groups. int64_t Stride = getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0); const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, getLoadStoreAlignment(&I)); } } // Analyze interleaved accesses and collect them into interleaved load and // store groups. // // When generating code for an interleaved load group, we effectively hoist all // loads in the group to the location of the first load in program order. When // generating code for an interleaved store group, we sink all stores to the // location of the last store. This code motion can change the order of load // and store instructions and may break dependences. // // The code generation strategy mentioned above ensures that we won't violate // any write-after-read (WAR) dependences. // // E.g., for the WAR dependence: a = A[i]; // (1) // A[i] = b; // (2) // // The store group of (2) is always inserted at or below (2), and the load // group of (1) is always inserted at or above (1). Thus, the instructions will // never be reordered. All other dependences are checked to ensure the // correctness of the instruction reordering. // // The algorithm visits all memory accesses in the loop in bottom-up program // order. Program order is established by traversing the blocks in the loop in // reverse postorder when collecting the accesses. // // We visit the memory accesses in bottom-up order because it can simplify the // construction of store groups in the presence of write-after-write (WAW) // dependences. // // E.g., for the WAW dependence: A[i] = a; // (1) // A[i] = b; // (2) // A[i + 1] = c; // (3) // // We will first create a store group with (3) and (2). (1) can't be added to // this group because it and (2) are dependent. However, (1) can be grouped // with other accesses that may precede it in program order. Note that a // bottom-up order does not imply that WAW dependences should not be checked. void InterleavedAccessInfo::analyzeInterleaving( bool EnablePredicatedInterleavedMemAccesses) { LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); const auto &Strides = LAI->getSymbolicStrides(); // Holds all accesses with a constant stride. MapVector AccessStrideInfo; collectConstStrideAccesses(AccessStrideInfo, Strides); if (AccessStrideInfo.empty()) return; // Collect the dependences in the loop. collectDependences(); // Holds all interleaved store groups temporarily. SmallSetVector *, 4> StoreGroups; // Holds all interleaved load groups temporarily. SmallSetVector *, 4> LoadGroups; // Groups added to this set cannot have new members added. SmallPtrSet *, 4> CompletedLoadGroups; // Search in bottom-up program order for pairs of accesses (A and B) that can // form interleaved load or store groups. In the algorithm below, access A // precedes access B in program order. We initialize a group for B in the // outer loop of the algorithm, and then in the inner loop, we attempt to // insert each A into B's group if: // // 1. A and B have the same stride, // 2. A and B have the same memory object size, and // 3. A belongs in B's group according to its distance from B. // // Special care is taken to ensure group formation will not break any // dependences. for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); BI != E; ++BI) { Instruction *B = BI->first; StrideDescriptor DesB = BI->second; // Initialize a group for B if it has an allowable stride. Even if we don't // create a group for B, we continue with the bottom-up algorithm to ensure // we don't break any of B's dependences. InterleaveGroup *GroupB = nullptr; if (isStrided(DesB.Stride) && (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { GroupB = getInterleaveGroup(B); if (!GroupB) { LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); if (B->mayWriteToMemory()) StoreGroups.insert(GroupB); else LoadGroups.insert(GroupB); } } for (auto AI = std::next(BI); AI != E; ++AI) { Instruction *A = AI->first; StrideDescriptor DesA = AI->second; // Our code motion strategy implies that we can't have dependences // between accesses in an interleaved group and other accesses located // between the first and last member of the group. Note that this also // means that a group can't have more than one member at a given offset. // The accesses in a group can have dependences with other accesses, but // we must ensure we don't extend the boundaries of the group such that // we encompass those dependent accesses. // // For example, assume we have the sequence of accesses shown below in a // stride-2 loop: // // (1, 2) is a group | A[i] = a; // (1) // | A[i-1] = b; // (2) | // A[i-3] = c; // (3) // A[i] = d; // (4) | (2, 4) is not a group // // Because accesses (2) and (3) are dependent, we can group (2) with (1) // but not with (4). If we did, the dependent access (3) would be within // the boundaries of the (2, 4) group. auto DependentMember = [&](InterleaveGroup *Group, StrideEntry *A) -> Instruction * { for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) { Instruction *MemberOfGroupB = Group->getMember(Index); if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups( A, &*AccessStrideInfo.find(MemberOfGroupB))) return MemberOfGroupB; } return nullptr; }; auto GroupA = getInterleaveGroup(A); // If A is a load, dependencies are tolerable, there's nothing to do here. // If both A and B belong to the same (store) group, they are independent, // even if dependencies have not been recorded. // If both GroupA and GroupB are null, there's nothing to do here. if (A->mayWriteToMemory() && GroupA != GroupB) { Instruction *DependentInst = nullptr; // If GroupB is a load group, we have to compare AI against all // members of GroupB because if any load within GroupB has a dependency // on AI, we need to mark GroupB as complete and also release the // store GroupA (if A belongs to one). The former prevents incorrect // hoisting of load B above store A while the latter prevents incorrect // sinking of store A below load B. if (GroupB && LoadGroups.contains(GroupB)) DependentInst = DependentMember(GroupB, &*AI); else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) DependentInst = B; if (DependentInst) { // A has a store dependence on B (or on some load within GroupB) and // is part of a store group. Release A's group to prevent illegal // sinking of A below B. A will then be free to form another group // with instructions that precede it. if (GroupA && StoreGroups.contains(GroupA)) { LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " "dependence between " << *A << " and " << *DependentInst << '\n'); StoreGroups.remove(GroupA); releaseGroup(GroupA); } // If B is a load and part of an interleave group, no earlier loads // can be added to B's interleave group, because this would mean the // DependentInst would move across store A. Mark the interleave group // as complete. if (GroupB && LoadGroups.contains(GroupB)) { LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B << " as complete.\n"); CompletedLoadGroups.insert(GroupB); } } } if (CompletedLoadGroups.contains(GroupB)) { // Skip trying to add A to B, continue to look for other conflicting A's // in groups to be released. continue; } // At this point, we've checked for illegal code motion. If either A or B // isn't strided, there's nothing left to do. if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) continue; // Ignore A if it's already in a group or isn't the same kind of memory // operation as B. // Note that mayReadFromMemory() isn't mutually exclusive to // mayWriteToMemory in the case of atomic loads. We shouldn't see those // here, canVectorizeMemory() should have returned false - except for the // case we asked for optimization remarks. if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) || (A->mayWriteToMemory() != B->mayWriteToMemory())) continue; // Check rules 1 and 2. Ignore A if its stride or size is different from // that of B. if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) continue; // Ignore A if the memory object of A and B don't belong to the same // address space if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) continue; // Calculate the distance from A to B. const SCEVConstant *DistToB = dyn_cast( PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); if (!DistToB) continue; int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); // Check rule 3. Ignore A if its distance to B is not a multiple of the // size. if (DistanceToB % static_cast(DesB.Size)) continue; // All members of a predicated interleave-group must have the same predicate, // and currently must reside in the same BB. BasicBlock *BlockA = A->getParent(); BasicBlock *BlockB = B->getParent(); if ((isPredicated(BlockA) || isPredicated(BlockB)) && (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) continue; // The index of A is the index of B plus A's distance to B in multiples // of the size. int IndexA = GroupB->getIndex(B) + DistanceToB / static_cast(DesB.Size); // Try to insert A into B's group. if (GroupB->insertMember(A, IndexA, DesA.Alignment)) { LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' << " into the interleave group with" << *B << '\n'); InterleaveGroupMap[A] = GroupB; // Set the first load in program order as the insert position. if (A->mayReadFromMemory()) GroupB->setInsertPos(A); } } // Iteration over A accesses. } // Iteration over B accesses. auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup *Group, int Index, std::string FirstOrLast) -> bool { Instruction *Member = Group->getMember(Index); assert(Member && "Group member does not exist"); Value *MemberPtr = getLoadStorePointerOperand(Member); Type *AccessTy = getLoadStoreType(Member); if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0)) return false; LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " << FirstOrLast << " group member potentially pointer-wrapping.\n"); releaseGroup(Group); return true; }; // Remove interleaved groups with gaps whose memory // accesses may wrap around. We have to revisit the getPtrStride analysis, // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does // not check wrapping (see documentation there). // FORNOW we use Assume=false; // TODO: Change to Assume=true but making sure we don't exceed the threshold // of runtime SCEV assumptions checks (thereby potentially failing to // vectorize altogether). // Additional optional optimizations: // TODO: If we are peeling the loop and we know that the first pointer doesn't // wrap then we can deduce that all pointers in the group don't wrap. // This means that we can forcefully peel the loop in order to only have to // check the first pointer for no-wrap. When we'll change to use Assume=true // we'll only need at most one runtime check per interleaved group. for (auto *Group : LoadGroups) { // Case 1: A full group. Can Skip the checks; For full groups, if the wide // load would wrap around the address space we would do a memory access at // nullptr even without the transformation. if (Group->getNumMembers() == Group->getFactor()) continue; // Case 2: If first and last members of the group don't wrap this implies // that all the pointers in the group don't wrap. // So we check only group member 0 (which is always guaranteed to exist), // and group member Factor - 1; If the latter doesn't exist we rely on // peeling (if it is a non-reversed accsess -- see Case 3). if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) continue; if (Group->getMember(Group->getFactor() - 1)) InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, std::string("last")); else { // Case 3: A non-reversed interleaved load group with gaps: We need // to execute at least one scalar epilogue iteration. This will ensure // we don't speculatively access memory out-of-bounds. We only need // to look for a member at index factor - 1, since every group must have // a member at index zero. if (Group->isReverse()) { LLVM_DEBUG( dbgs() << "LV: Invalidate candidate interleaved group due to " "a reverse access with gaps.\n"); releaseGroup(Group); continue; } LLVM_DEBUG( dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); RequiresScalarEpilogue = true; } } for (auto *Group : StoreGroups) { // Case 1: A full group. Can Skip the checks; For full groups, if the wide // store would wrap around the address space we would do a memory access at // nullptr even without the transformation. if (Group->getNumMembers() == Group->getFactor()) continue; // Interleave-store-group with gaps is implemented using masked wide store. // Remove interleaved store groups with gaps if // masked-interleaved-accesses are not enabled by the target. if (!EnablePredicatedInterleavedMemAccesses) { LLVM_DEBUG( dbgs() << "LV: Invalidate candidate interleaved store group due " "to gaps.\n"); releaseGroup(Group); continue; } // Case 2: If first and last members of the group don't wrap this implies // that all the pointers in the group don't wrap. // So we check only group member 0 (which is always guaranteed to exist), // and the last group member. Case 3 (scalar epilog) is not relevant for // stores with gaps, which are implemented with masked-store (rather than // speculative access, as in loads). if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) continue; for (int Index = Group->getFactor() - 1; Index > 0; Index--) if (Group->getMember(Index)) { InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last")); break; } } } void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { // If no group had triggered the requirement to create an epilogue loop, // there is nothing to do. if (!requiresScalarEpilogue()) return; bool ReleasedGroup = false; // Release groups requiring scalar epilogues. Note that this also removes them // from InterleaveGroups. for (auto *Group : make_early_inc_range(InterleaveGroups)) { if (!Group->requiresScalarEpilogue()) continue; LLVM_DEBUG( dbgs() << "LV: Invalidate candidate interleaved group due to gaps that " "require a scalar epilogue (not allowed under optsize) and cannot " "be masked (not enabled). \n"); releaseGroup(Group); ReleasedGroup = true; } assert(ReleasedGroup && "At least one group must be invalidated, as a " "scalar epilogue was required"); (void)ReleasedGroup; RequiresScalarEpilogue = false; } template void InterleaveGroup::addMetadata(InstT *NewInst) const { llvm_unreachable("addMetadata can only be used for Instruction"); } namespace llvm { template <> void InterleaveGroup::addMetadata(Instruction *NewInst) const { SmallVector VL; std::transform(Members.begin(), Members.end(), std::back_inserter(VL), [](std::pair p) { return p.second; }); propagateMetadata(NewInst, VL); } } void VFABI::getVectorVariantNames( const CallInst &CI, SmallVectorImpl &VariantMappings) { const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString(); if (S.empty()) return; SmallVector ListAttr; S.split(ListAttr, ","); for (const auto &S : SetVector(ListAttr.begin(), ListAttr.end())) { std::optional Info = VFABI::tryDemangleForVFABI(S, CI.getFunctionType()); if (Info && CI.getModule()->getFunction(Info->VectorName)) { LLVM_DEBUG(dbgs() << "VFABI: Adding mapping '" << S << "' for " << CI << "\n"); VariantMappings.push_back(std::string(S)); } else LLVM_DEBUG(dbgs() << "VFABI: Invalid mapping '" << S << "'\n"); } } FunctionType *VFABI::createFunctionType(const VFInfo &Info, const FunctionType *ScalarFTy) { // Create vector parameter types SmallVector VecTypes; ElementCount VF = Info.Shape.VF; int ScalarParamIndex = 0; for (auto VFParam : Info.Shape.Parameters) { if (VFParam.ParamKind == VFParamKind::GlobalPredicate) { VectorType *MaskTy = VectorType::get(Type::getInt1Ty(ScalarFTy->getContext()), VF); VecTypes.push_back(MaskTy); continue; } Type *OperandTy = ScalarFTy->getParamType(ScalarParamIndex++); if (VFParam.ParamKind == VFParamKind::Vector) OperandTy = VectorType::get(OperandTy, VF); VecTypes.push_back(OperandTy); } auto *RetTy = ScalarFTy->getReturnType(); if (!RetTy->isVoidTy()) RetTy = VectorType::get(RetTy, VF); return FunctionType::get(RetTy, VecTypes, false); } bool VFShape::hasValidParameterList() const { for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; ++Pos) { assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); switch (Parameters[Pos].ParamKind) { default: // Nothing to check. break; case VFParamKind::OMP_Linear: case VFParamKind::OMP_LinearRef: case VFParamKind::OMP_LinearVal: case VFParamKind::OMP_LinearUVal: // Compile time linear steps must be non-zero. if (Parameters[Pos].LinearStepOrPos == 0) return false; break; case VFParamKind::OMP_LinearPos: case VFParamKind::OMP_LinearRefPos: case VFParamKind::OMP_LinearValPos: case VFParamKind::OMP_LinearUValPos: // The runtime linear step must be referring to some other // parameters in the signature. if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) return false; // The linear step parameter must be marked as uniform. if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != VFParamKind::OMP_Uniform) return false; // The linear step parameter can't point at itself. if (Parameters[Pos].LinearStepOrPos == int(Pos)) return false; break; case VFParamKind::GlobalPredicate: // The global predicate must be the unique. Can be placed anywhere in the // signature. for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) return false; break; } } return true; }