//===- ValueTracking.cpp - Walk computations to compute properties --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains routines that help analyze properties that chains of // computations have. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/ValueTracking.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumeBundleQueries.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/Analysis/GuardUtils.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAArch64.h" #include "llvm/IR/IntrinsicsRISCV.h" #include "llvm/IR/IntrinsicsX86.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; // Controls the number of uses of the value searched for possible // dominating comparisons. static cl::opt DomConditionsMaxUses("dom-conditions-max-uses", cl::Hidden, cl::init(20)); // According to the LangRef, branching on a poison condition is absolutely // immediate full UB. However, historically we haven't implemented that // consistently as we had an important transformation (non-trivial unswitch) // which introduced instances of branch on poison/undef to otherwise well // defined programs. This issue has since been fixed, but the flag is // temporarily retained to easily diagnose potential regressions. static cl::opt BranchOnPoisonAsUB("branch-on-poison-as-ub", cl::Hidden, cl::init(true)); /// Returns the bitwidth of the given scalar or pointer type. For vector types, /// returns the element type's bitwidth. static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { if (unsigned BitWidth = Ty->getScalarSizeInBits()) return BitWidth; return DL.getPointerTypeSizeInBits(Ty); } namespace { // Simplifying using an assume can only be done in a particular control-flow // context (the context instruction provides that context). If an assume and // the context instruction are not in the same block then the DT helps in // figuring out if we can use it. struct Query { const DataLayout &DL; AssumptionCache *AC; const Instruction *CxtI; const DominatorTree *DT; // Unlike the other analyses, this may be a nullptr because not all clients // provide it currently. OptimizationRemarkEmitter *ORE; /// If true, it is safe to use metadata during simplification. InstrInfoQuery IIQ; Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo, OptimizationRemarkEmitter *ORE = nullptr) : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} }; } // end anonymous namespace // Given the provided Value and, potentially, a context instruction, return // the preferred context instruction (if any). static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { // If we've been provided with a context instruction, then use that (provided // it has been inserted). if (CxtI && CxtI->getParent()) return CxtI; // If the value is really an already-inserted instruction, then use that. CxtI = dyn_cast(V); if (CxtI && CxtI->getParent()) return CxtI; return nullptr; } static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { // If we've been provided with a context instruction, then use that (provided // it has been inserted). if (CxtI && CxtI->getParent()) return CxtI; // If the value is really an already-inserted instruction, then use that. CxtI = dyn_cast(V1); if (CxtI && CxtI->getParent()) return CxtI; CxtI = dyn_cast(V2); if (CxtI && CxtI->getParent()) return CxtI; return nullptr; } static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS) { // The length of scalable vectors is unknown at compile time, thus we // cannot check their values if (isa(Shuf->getType())) return false; int NumElts = cast(Shuf->getOperand(0)->getType())->getNumElements(); int NumMaskElts = cast(Shuf->getType())->getNumElements(); DemandedLHS = DemandedRHS = APInt::getZero(NumElts); if (DemandedElts.isZero()) return true; // Simple case of a shuffle with zeroinitializer. if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { DemandedLHS.setBit(0); return true; } for (int i = 0; i != NumMaskElts; ++i) { if (!DemandedElts[i]) continue; int M = Shuf->getMaskValue(i); assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); // For undef elements, we don't know anything about the common state of // the shuffle result. if (M == -1) return false; if (M < NumElts) DemandedLHS.setBit(M % NumElts); else DemandedRHS.setBit(M % NumElts); } return true; } static void computeKnownBits(const Value *V, const APInt &DemandedElts, KnownBits &Known, unsigned Depth, const Query &Q); static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Query &Q) { // FIXME: We currently have no way to represent the DemandedElts of a scalable // vector if (isa(V->getType())) { Known.resetAll(); return; } auto *FVTy = dyn_cast(V->getType()); APInt DemandedElts = FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); computeKnownBits(V, DemandedElts, Known, Depth, Q); } void llvm::computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { ::computeKnownBits(V, Known, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); } void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, KnownBits &Known, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { ::computeKnownBits(V, DemandedElts, Known, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); } static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, unsigned Depth, const Query &Q); static KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q); KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { return ::computeKnownBits( V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); } KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { return ::computeKnownBits( V, DemandedElts, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); } bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { assert(LHS->getType() == RHS->getType() && "LHS and RHS should have the same type"); assert(LHS->getType()->isIntOrIntVectorTy() && "LHS and RHS should be integers"); // Look for an inverted mask: (X & ~M) op (Y & M). { Value *M; if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && match(RHS, m_c_And(m_Specific(M), m_Value()))) return true; if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && match(LHS, m_c_And(m_Specific(M), m_Value()))) return true; } // X op (Y & ~X) if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) || match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value()))) return true; // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern // for constant Y. Value *Y; if (match(RHS, m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) || match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y)))) return true; // Look for: (A & B) op ~(A | B) { Value *A, *B; if (match(LHS, m_And(m_Value(A), m_Value(B))) && match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) return true; if (match(RHS, m_And(m_Value(A), m_Value(B))) && match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) return true; } IntegerType *IT = cast(LHS->getType()->getScalarType()); KnownBits LHSKnown(IT->getBitWidth()); KnownBits RHSKnown(IT->getBitWidth()); computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); } bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { return !I->user_empty() && all_of(I->users(), [](const User *U) { ICmpInst::Predicate P; return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); }); } static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, const Query &Q); bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { return ::isKnownToBeAPowerOfTwo( V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); } static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, const Query &Q); static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); } bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); return Known.isNonNegative(); } bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { if (auto *CI = dyn_cast(V)) return CI->getValue().isStrictlyPositive(); // TODO: We'd doing two recursive queries here. We should factor this such // that only a single query is needed. return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); } bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); return Known.isNegative(); } static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, const Query &Q); bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { return ::isKnownNonEqual(V1, V2, 0, Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, UseInstrInfo, /*ORE=*/nullptr)); } static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, const Query &Q); bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { return ::MaskedValueIsZero( V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); } static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, unsigned Depth, const Query &Q); static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { // FIXME: We currently have no way to represent the DemandedElts of a scalable // vector if (isa(V->getType())) return 1; auto *FVTy = dyn_cast(V->getType()); APInt DemandedElts = FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); return ComputeNumSignBits(V, DemandedElts, Depth, Q); } unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { return ::ComputeNumSignBits( V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); } unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); return V->getType()->getScalarSizeInBits() - SignBits + 1; } static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, bool NSW, const APInt &DemandedElts, KnownBits &KnownOut, KnownBits &Known2, unsigned Depth, const Query &Q) { computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); // If one operand is unknown and we have no nowrap information, // the result will be unknown independently of the second operand. if (KnownOut.isUnknown() && !NSW) return; computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); } static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, unsigned Depth, const Query &Q) { computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); bool isKnownNegative = false; bool isKnownNonNegative = false; // If the multiplication is known not to overflow, compute the sign bit. if (NSW) { if (Op0 == Op1) { // The product of a number with itself is non-negative. isKnownNonNegative = true; } else { bool isKnownNonNegativeOp1 = Known.isNonNegative(); bool isKnownNonNegativeOp0 = Known2.isNonNegative(); bool isKnownNegativeOp1 = Known.isNegative(); bool isKnownNegativeOp0 = Known2.isNegative(); // The product of two numbers with the same sign is non-negative. isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); // The product of a negative number and a non-negative number is either // negative or zero. if (!isKnownNonNegative) isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && Known2.isNonZero()) || (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); } } bool SelfMultiply = Op0 == Op1; // TODO: SelfMultiply can be poison, but not undef. if (SelfMultiply) SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); Known = KnownBits::mul(Known, Known2, SelfMultiply); // Only make use of no-wrap flags if we failed to compute the sign bit // directly. This matters if the multiplication always overflows, in // which case we prefer to follow the result of the direct computation, // though as the program is invoking undefined behaviour we can choose // whatever we like here. if (isKnownNonNegative && !Known.isNegative()) Known.makeNonNegative(); else if (isKnownNegative && !Known.isNonNegative()) Known.makeNegative(); } void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known) { unsigned BitWidth = Known.getBitWidth(); unsigned NumRanges = Ranges.getNumOperands() / 2; assert(NumRanges >= 1); Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned i = 0; i < NumRanges; ++i) { ConstantInt *Lower = mdconst::extract(Ranges.getOperand(2 * i + 0)); ConstantInt *Upper = mdconst::extract(Ranges.getOperand(2 * i + 1)); ConstantRange Range(Lower->getValue(), Upper->getValue()); // The first CommonPrefixBits of all values in Range are equal. unsigned CommonPrefixBits = (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); Known.One &= UnsignedMax & Mask; Known.Zero &= ~UnsignedMax & Mask; } } static bool isEphemeralValueOf(const Instruction *I, const Value *E) { SmallVector WorkSet(1, I); SmallPtrSet Visited; SmallPtrSet EphValues; // The instruction defining an assumption's condition itself is always // considered ephemeral to that assumption (even if it has other // non-ephemeral users). See r246696's test case for an example. if (is_contained(I->operands(), E)) return true; while (!WorkSet.empty()) { const Value *V = WorkSet.pop_back_val(); if (!Visited.insert(V).second) continue; // If all uses of this value are ephemeral, then so is this value. if (llvm::all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { if (V == E) return true; if (V == I || (isa(V) && !cast(V)->mayHaveSideEffects() && !cast(V)->isTerminator())) { EphValues.insert(V); if (const User *U = dyn_cast(V)) append_range(WorkSet, U->operands()); } } } return false; } // Is this an intrinsic that cannot be speculated but also cannot trap? bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { if (const IntrinsicInst *CI = dyn_cast(I)) return CI->isAssumeLikeIntrinsic(); return false; } bool llvm::isValidAssumeForContext(const Instruction *Inv, const Instruction *CxtI, const DominatorTree *DT) { // There are two restrictions on the use of an assume: // 1. The assume must dominate the context (or the control flow must // reach the assume whenever it reaches the context). // 2. The context must not be in the assume's set of ephemeral values // (otherwise we will use the assume to prove that the condition // feeding the assume is trivially true, thus causing the removal of // the assume). if (Inv->getParent() == CxtI->getParent()) { // If Inv and CtxI are in the same block, check if the assume (Inv) is first // in the BB. if (Inv->comesBefore(CxtI)) return true; // Don't let an assume affect itself - this would cause the problems // `isEphemeralValueOf` is trying to prevent, and it would also make // the loop below go out of bounds. if (Inv == CxtI) return false; // The context comes first, but they're both in the same block. // Make sure there is nothing in between that might interrupt // the control flow, not even CxtI itself. // We limit the scan distance between the assume and its context instruction // to avoid a compile-time explosion. This limit is chosen arbitrarily, so // it can be adjusted if needed (could be turned into a cl::opt). auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) return false; return !isEphemeralValueOf(Inv, CxtI); } // Inv and CxtI are in different blocks. if (DT) { if (DT->dominates(Inv, CxtI)) return true; } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { // We don't have a DT, but this trivially dominates. return true; } return false; } static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { // v u> y implies v != 0. if (Pred == ICmpInst::ICMP_UGT) return true; // Special-case v != 0 to also handle v != null. if (Pred == ICmpInst::ICMP_NE) return match(RHS, m_Zero()); // All other predicates - rely on generic ConstantRange handling. const APInt *C; if (!match(RHS, m_APInt(C))) return false; ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); return !TrueValues.contains(APInt::getZero(C->getBitWidth())); } static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { // Use of assumptions is context-sensitive. If we don't have a context, we // cannot use them! if (!Q.AC || !Q.CxtI) return false; if (Q.CxtI && V->getType()->isPointerTy()) { SmallVector AttrKinds{Attribute::NonNull}; if (!NullPointerIsDefined(Q.CxtI->getFunction(), V->getType()->getPointerAddressSpace())) AttrKinds.push_back(Attribute::Dereferenceable); if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) return true; } for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { if (!AssumeVH) continue; CallInst *I = cast(AssumeVH); assert(I->getFunction() == Q.CxtI->getFunction() && "Got assumption for the wrong function!"); // Warning: This loop can end up being somewhat performance sensitive. // We're running this loop for once for each value queried resulting in a // runtime of ~O(#assumes * #values). assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && "must be an assume intrinsic"); Value *RHS; CmpInst::Predicate Pred; auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) return false; if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) return true; } return false; } static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, unsigned Depth, const Query &Q) { // Use of assumptions is context-sensitive. If we don't have a context, we // cannot use them! if (!Q.AC || !Q.CxtI) return; unsigned BitWidth = Known.getBitWidth(); // Refine Known set if the pointer alignment is set by assume bundles. if (V->getType()->isPointerTy()) { if (RetainedKnowledge RK = getKnowledgeValidInContext( V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { if (isPowerOf2_64(RK.ArgValue)) Known.Zero.setLowBits(Log2_64(RK.ArgValue)); } } // Note that the patterns below need to be kept in sync with the code // in AssumptionCache::updateAffectedValues. for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { if (!AssumeVH) continue; CallInst *I = cast(AssumeVH); assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && "Got assumption for the wrong function!"); // Warning: This loop can end up being somewhat performance sensitive. // We're running this loop for once for each value queried resulting in a // runtime of ~O(#assumes * #values). assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && "must be an assume intrinsic"); Value *Arg = I->getArgOperand(0); if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { assert(BitWidth == 1 && "assume operand is not i1?"); Known.setAllOnes(); return; } if (match(Arg, m_Not(m_Specific(V))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { assert(BitWidth == 1 && "assume operand is not i1?"); Known.setAllZero(); return; } // The remaining tests are all recursive, so bail out if we hit the limit. if (Depth == MaxAnalysisRecursionDepth) continue; ICmpInst *Cmp = dyn_cast(Arg); if (!Cmp) continue; // We are attempting to compute known bits for the operands of an assume. // Do not try to use other assumptions for those recursive calls because // that can lead to mutual recursion and a compile-time explosion. // An example of the mutual recursion: computeKnownBits can call // isKnownNonZero which calls computeKnownBitsFromAssume (this function) // and so on. Query QueryNoAC = Q; QueryNoAC.AC = nullptr; // Note that ptrtoint may change the bitwidth. Value *A, *B; auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); CmpInst::Predicate Pred; uint64_t C; switch (Cmp->getPredicate()) { default: break; case ICmpInst::ICMP_EQ: // assume(v = a) if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); Known.Zero |= RHSKnown.Zero; Known.One |= RHSKnown.One; // assume(v & b = a) } else if (match(Cmp, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); KnownBits MaskKnown = computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // For those bits in the mask that are known to be one, we can propagate // known bits from the RHS to V. Known.Zero |= RHSKnown.Zero & MaskKnown.One; Known.One |= RHSKnown.One & MaskKnown.One; // assume(~(v & b) = a) } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); KnownBits MaskKnown = computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // For those bits in the mask that are known to be one, we can propagate // inverted known bits from the RHS to V. Known.Zero |= RHSKnown.One & MaskKnown.One; Known.One |= RHSKnown.Zero & MaskKnown.One; // assume(v | b = a) } else if (match(Cmp, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); KnownBits BKnown = computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // For those bits in B that are known to be zero, we can propagate known // bits from the RHS to V. Known.Zero |= RHSKnown.Zero & BKnown.Zero; Known.One |= RHSKnown.One & BKnown.Zero; // assume(~(v | b) = a) } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); KnownBits BKnown = computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // For those bits in B that are known to be zero, we can propagate // inverted known bits from the RHS to V. Known.Zero |= RHSKnown.One & BKnown.Zero; Known.One |= RHSKnown.Zero & BKnown.Zero; // assume(v ^ b = a) } else if (match(Cmp, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); KnownBits BKnown = computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // For those bits in B that are known to be zero, we can propagate known // bits from the RHS to V. For those bits in B that are known to be one, // we can propagate inverted known bits from the RHS to V. Known.Zero |= RHSKnown.Zero & BKnown.Zero; Known.One |= RHSKnown.One & BKnown.Zero; Known.Zero |= RHSKnown.One & BKnown.One; Known.One |= RHSKnown.Zero & BKnown.One; // assume(~(v ^ b) = a) } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); KnownBits BKnown = computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // For those bits in B that are known to be zero, we can propagate // inverted known bits from the RHS to V. For those bits in B that are // known to be one, we can propagate known bits from the RHS to V. Known.Zero |= RHSKnown.One & BKnown.Zero; Known.One |= RHSKnown.Zero & BKnown.Zero; Known.Zero |= RHSKnown.Zero & BKnown.One; Known.One |= RHSKnown.One & BKnown.One; // assume(v << c = a) } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // For those bits in RHS that are known, we can propagate them to known // bits in V shifted to the right by C. RHSKnown.Zero.lshrInPlace(C); Known.Zero |= RHSKnown.Zero; RHSKnown.One.lshrInPlace(C); Known.One |= RHSKnown.One; // assume(~(v << c) = a) } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // For those bits in RHS that are known, we can propagate them inverted // to known bits in V shifted to the right by C. RHSKnown.One.lshrInPlace(C); Known.Zero |= RHSKnown.One; RHSKnown.Zero.lshrInPlace(C); Known.One |= RHSKnown.Zero; // assume(v >> c = a) } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // For those bits in RHS that are known, we can propagate them to known // bits in V shifted to the right by C. Known.Zero |= RHSKnown.Zero << C; Known.One |= RHSKnown.One << C; // assume(~(v >> c) = a) } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // For those bits in RHS that are known, we can propagate them inverted // to known bits in V shifted to the right by C. Known.Zero |= RHSKnown.One << C; Known.One |= RHSKnown.Zero << C; } break; case ICmpInst::ICMP_SGE: // assume(v >=_s c) where c is non-negative if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); if (RHSKnown.isNonNegative()) { // We know that the sign bit is zero. Known.makeNonNegative(); } } break; case ICmpInst::ICMP_SGT: // assume(v >_s c) where c is at least -1. if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { // We know that the sign bit is zero. Known.makeNonNegative(); } } break; case ICmpInst::ICMP_SLE: // assume(v <=_s c) where c is negative if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); if (RHSKnown.isNegative()) { // We know that the sign bit is one. Known.makeNegative(); } } break; case ICmpInst::ICMP_SLT: // assume(v <_s c) where c is non-positive if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); if (RHSKnown.isZero() || RHSKnown.isNegative()) { // We know that the sign bit is one. Known.makeNegative(); } } break; case ICmpInst::ICMP_ULE: // assume(v <=_u c) if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // Whatever high bits in c are zero are known to be zero. Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); } break; case ICmpInst::ICMP_ULT: // assume(v <_u c) if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { KnownBits RHSKnown = computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); // If the RHS is known zero, then this assumption must be wrong (nothing // is unsigned less than zero). Signal a conflict and get out of here. if (RHSKnown.isZero()) { Known.Zero.setAllBits(); Known.One.setAllBits(); break; } // Whatever high bits in c are zero are known to be zero (if c is a power // of 2, then one more). if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); else Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); } break; } } // If assumptions conflict with each other or previous known bits, then we // have a logical fallacy. It's possible that the assumption is not reachable, // so this isn't a real bug. On the other hand, the program may have undefined // behavior, or we might have a bug in the compiler. We can't assert/crash, so // clear out the known bits, try to warn the user, and hope for the best. if (Known.Zero.intersects(Known.One)) { Known.resetAll(); if (Q.ORE) Q.ORE->emit([&]() { auto *CxtI = const_cast(Q.CxtI); return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", CxtI) << "Detected conflicting code assumptions. Program may " "have undefined behavior, or compiler may have " "internal error."; }); } } /// Compute known bits from a shift operator, including those with a /// non-constant shift amount. Known is the output of this function. Known2 is a /// pre-allocated temporary with the same bit width as Known and on return /// contains the known bit of the shift value source. KF is an /// operator-specific function that, given the known-bits and a shift amount, /// compute the implied known-bits of the shift operator's result respectively /// for that shift amount. The results from calling KF are conservatively /// combined for all permitted shift amounts. static void computeKnownBitsFromShiftOperator( const Operator *I, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, unsigned Depth, const Query &Q, function_ref KF) { unsigned BitWidth = Known.getBitWidth(); computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); // Note: We cannot use Known.Zero.getLimitedValue() here, because if // BitWidth > 64 and any upper bits are known, we'll end up returning the // limit value (which implies all bits are known). uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); bool ShiftAmtIsConstant = Known.isConstant(); bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); if (ShiftAmtIsConstant) { Known = KF(Known2, Known); // If the known bits conflict, this must be an overflowing left shift, so // the shift result is poison. We can return anything we want. Choose 0 for // the best folding opportunity. if (Known.hasConflict()) Known.setAllZero(); return; } // If the shift amount could be greater than or equal to the bit-width of the // LHS, the value could be poison, but bail out because the check below is // expensive. // TODO: Should we just carry on? if (MaxShiftAmtIsOutOfRange) { Known.resetAll(); return; } // It would be more-clearly correct to use the two temporaries for this // calculation. Reusing the APInts here to prevent unnecessary allocations. Known.resetAll(); // If we know the shifter operand is nonzero, we can sometimes infer more // known bits. However this is expensive to compute, so be lazy about it and // only compute it when absolutely necessary. Optional ShifterOperandIsNonZero; // Early exit if we can't constrain any well-defined shift amount. if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); if (!*ShifterOperandIsNonZero) return; } Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { // Combine the shifted known input bits only for those shift amounts // compatible with its known constraints. if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) continue; if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) continue; // If we know the shifter is nonzero, we may be able to infer more known // bits. This check is sunk down as far as possible to avoid the expensive // call to isKnownNonZero if the cheaper checks above fail. if (ShiftAmt == 0) { if (!ShifterOperandIsNonZero) ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); if (*ShifterOperandIsNonZero) continue; } Known = KnownBits::commonBits( Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); } // If the known bits conflict, the result is poison. Return a 0 and hope the // caller can further optimize that. if (Known.hasConflict()) Known.setAllZero(); } static void computeKnownBitsFromOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, unsigned Depth, const Query &Q) { unsigned BitWidth = Known.getBitWidth(); KnownBits Known2(BitWidth); switch (I->getOpcode()) { default: break; case Instruction::Load: if (MDNode *MD = Q.IIQ.getMetadata(cast(I), LLVMContext::MD_range)) computeKnownBitsFromRangeMetadata(*MD, Known); break; case Instruction::And: { // If either the LHS or the RHS are Zero, the result is zero. computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); Known &= Known2; // and(x, add (x, -1)) is a common idiom that always clears the low bit; // here we handle the more general case of adding any odd number by // matching the form add(x, add(x, y)) where y is odd. // TODO: This could be generalized to clearing any bit set in y where the // following bit is known to be unset in y. Value *X = nullptr, *Y = nullptr; if (!Known.Zero[0] && !Known.One[0] && match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { Known2.resetAll(); computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); if (Known2.countMinTrailingOnes() > 0) Known.Zero.setBit(0); } break; } case Instruction::Or: computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); Known |= Known2; break; case Instruction::Xor: computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); Known ^= Known2; break; case Instruction::Mul: { bool NSW = Q.IIQ.hasNoSignedWrap(cast(I)); computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, Known, Known2, Depth, Q); break; } case Instruction::UDiv: { computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); Known = KnownBits::udiv(Known, Known2); break; } case Instruction::Select: { const Value *LHS = nullptr, *RHS = nullptr; SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; if (SelectPatternResult::isMinOrMax(SPF)) { computeKnownBits(RHS, Known, Depth + 1, Q); computeKnownBits(LHS, Known2, Depth + 1, Q); switch (SPF) { default: llvm_unreachable("Unhandled select pattern flavor!"); case SPF_SMAX: Known = KnownBits::smax(Known, Known2); break; case SPF_SMIN: Known = KnownBits::smin(Known, Known2); break; case SPF_UMAX: Known = KnownBits::umax(Known, Known2); break; case SPF_UMIN: Known = KnownBits::umin(Known, Known2); break; } break; } computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); // Only known if known in both the LHS and RHS. Known = KnownBits::commonBits(Known, Known2); if (SPF == SPF_ABS) { // RHS from matchSelectPattern returns the negation part of abs pattern. // If the negate has an NSW flag we can assume the sign bit of the result // will be 0 because that makes abs(INT_MIN) undefined. if (match(RHS, m_Neg(m_Specific(LHS))) && Q.IIQ.hasNoSignedWrap(cast(RHS))) Known.Zero.setSignBit(); } break; } case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::SIToFP: case Instruction::UIToFP: break; // Can't work with floating point. case Instruction::PtrToInt: case Instruction::IntToPtr: // Fall through and handle them the same as zext/trunc. LLVM_FALLTHROUGH; case Instruction::ZExt: case Instruction::Trunc: { Type *SrcTy = I->getOperand(0)->getType(); unsigned SrcBitWidth; // Note that we handle pointer operands here because of inttoptr/ptrtoint // which fall through here. Type *ScalarTy = SrcTy->getScalarType(); SrcBitWidth = ScalarTy->isPointerTy() ? Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); assert(SrcBitWidth && "SrcBitWidth can't be zero"); Known = Known.anyextOrTrunc(SrcBitWidth); computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); Known = Known.zextOrTrunc(BitWidth); break; } case Instruction::BitCast: { Type *SrcTy = I->getOperand(0)->getType(); if (SrcTy->isIntOrPtrTy() && // TODO: For now, not handling conversions like: // (bitcast i64 %x to <2 x i32>) !I->getType()->isVectorTy()) { computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); break; } // Handle cast from vector integer type to scalar or vector integer. auto *SrcVecTy = dyn_cast(SrcTy); if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || !I->getType()->isIntOrIntVectorTy()) break; // Look through a cast from narrow vector elements to wider type. // Examples: v4i32 -> v2i64, v3i8 -> v24 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); if (BitWidth % SubBitWidth == 0) { // Known bits are automatically intersected across demanded elements of a // vector. So for example, if a bit is computed as known zero, it must be // zero across all demanded elements of the vector. // // For this bitcast, each demanded element of the output is sub-divided // across a set of smaller vector elements in the source vector. To get // the known bits for an entire element of the output, compute the known // bits for each sub-element sequentially. This is done by shifting the // one-set-bit demanded elements parameter across the sub-elements for // consecutive calls to computeKnownBits. We are using the demanded // elements parameter as a mask operator. // // The known bits of each sub-element are then inserted into place // (dependent on endian) to form the full result of known bits. unsigned NumElts = DemandedElts.getBitWidth(); unsigned SubScale = BitWidth / SubBitWidth; APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); for (unsigned i = 0; i != NumElts; ++i) { if (DemandedElts[i]) SubDemandedElts.setBit(i * SubScale); } KnownBits KnownSrc(SubBitWidth); for (unsigned i = 0; i != SubScale; ++i) { computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, Depth + 1, Q); unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); } } break; } case Instruction::SExt: { // Compute the bits in the result that are not present in the input. unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); Known = Known.trunc(SrcBitWidth); computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. Known = Known.sext(BitWidth); break; } case Instruction::Shl: { bool NSW = Q.IIQ.hasNoSignedWrap(cast(I)); auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); // If this shift has "nsw" keyword, then the result is either a poison // value or has the same sign bit as the first operand. if (NSW) { if (KnownVal.Zero.isSignBitSet()) Result.Zero.setSignBit(); if (KnownVal.One.isSignBitSet()) Result.One.setSignBit(); } return Result; }; computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, KF); // Trailing zeros of a right-shifted constant never decrease. const APInt *C; if (match(I->getOperand(0), m_APInt(C))) Known.Zero.setLowBits(C->countTrailingZeros()); break; } case Instruction::LShr: { auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { return KnownBits::lshr(KnownVal, KnownAmt); }; computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, KF); // Leading zeros of a left-shifted constant never decrease. const APInt *C; if (match(I->getOperand(0), m_APInt(C))) Known.Zero.setHighBits(C->countLeadingZeros()); break; } case Instruction::AShr: { auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { return KnownBits::ashr(KnownVal, KnownAmt); }; computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, KF); break; } case Instruction::Sub: { bool NSW = Q.IIQ.hasNoSignedWrap(cast(I)); computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, DemandedElts, Known, Known2, Depth, Q); break; } case Instruction::Add: { bool NSW = Q.IIQ.hasNoSignedWrap(cast(I)); computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, DemandedElts, Known, Known2, Depth, Q); break; } case Instruction::SRem: computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); Known = KnownBits::srem(Known, Known2); break; case Instruction::URem: computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); Known = KnownBits::urem(Known, Known2); break; case Instruction::Alloca: Known.Zero.setLowBits(Log2(cast(I)->getAlign())); break; case Instruction::GetElementPtr: { // Analyze all of the subscripts of this getelementptr instruction // to determine if we can prove known low zero bits. computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); // Accumulate the constant indices in a separate variable // to minimize the number of calls to computeForAddSub. APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); gep_type_iterator GTI = gep_type_begin(I); for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { // TrailZ can only become smaller, short-circuit if we hit zero. if (Known.isUnknown()) break; Value *Index = I->getOperand(i); // Handle case when index is zero. Constant *CIndex = dyn_cast(Index); if (CIndex && CIndex->isZeroValue()) continue; if (StructType *STy = GTI.getStructTypeOrNull()) { // Handle struct member offset arithmetic. assert(CIndex && "Access to structure field must be known at compile time"); if (CIndex->getType()->isVectorTy()) Index = CIndex->getSplatValue(); unsigned Idx = cast(Index)->getZExtValue(); const StructLayout *SL = Q.DL.getStructLayout(STy); uint64_t Offset = SL->getElementOffset(Idx); AccConstIndices += Offset; continue; } // Handle array index arithmetic. Type *IndexedTy = GTI.getIndexedType(); if (!IndexedTy->isSized()) { Known.resetAll(); break; } unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); KnownBits IndexBits(IndexBitWidth); computeKnownBits(Index, IndexBits, Depth + 1, Q); TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); KnownBits ScalingFactor(IndexBitWidth); // Multiply by current sizeof type. // &A[i] == A + i * sizeof(*A[i]). if (IndexTypeSize.isScalable()) { // For scalable types the only thing we know about sizeof is // that this is a multiple of the minimum size. ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); } else if (IndexBits.isConstant()) { APInt IndexConst = IndexBits.getConstant(); APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); IndexConst *= ScalingFactor; AccConstIndices += IndexConst.sextOrTrunc(BitWidth); continue; } else { ScalingFactor = KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); } IndexBits = KnownBits::mul(IndexBits, ScalingFactor); // If the offsets have a different width from the pointer, according // to the language reference we need to sign-extend or truncate them // to the width of the pointer. IndexBits = IndexBits.sextOrTrunc(BitWidth); // Note that inbounds does *not* guarantee nsw for the addition, as only // the offset is signed, while the base address is unsigned. Known = KnownBits::computeForAddSub( /*Add=*/true, /*NSW=*/false, Known, IndexBits); } if (!Known.isUnknown() && !AccConstIndices.isZero()) { KnownBits Index = KnownBits::makeConstant(AccConstIndices); Known = KnownBits::computeForAddSub( /*Add=*/true, /*NSW=*/false, Known, Index); } break; } case Instruction::PHI: { const PHINode *P = cast(I); BinaryOperator *BO = nullptr; Value *R = nullptr, *L = nullptr; if (matchSimpleRecurrence(P, BO, R, L)) { // Handle the case of a simple two-predecessor recurrence PHI. // There's a lot more that could theoretically be done here, but // this is sufficient to catch some interesting cases. unsigned Opcode = BO->getOpcode(); // If this is a shift recurrence, we know the bits being shifted in. // We can combine that with information about the start value of the // recurrence to conclude facts about the result. if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || Opcode == Instruction::Shl) && BO->getOperand(0) == I) { // We have matched a recurrence of the form: // %iv = [R, %entry], [%iv.next, %backedge] // %iv.next = shift_op %iv, L // Recurse with the phi context to avoid concern about whether facts // inferred hold at original context instruction. TODO: It may be // correct to use the original context. IF warranted, explore and // add sufficient tests to cover. Query RecQ = Q; RecQ.CxtI = P; computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); switch (Opcode) { case Instruction::Shl: // A shl recurrence will only increase the tailing zeros Known.Zero.setLowBits(Known2.countMinTrailingZeros()); break; case Instruction::LShr: // A lshr recurrence will preserve the leading zeros of the // start value Known.Zero.setHighBits(Known2.countMinLeadingZeros()); break; case Instruction::AShr: // An ashr recurrence will extend the initial sign bit Known.Zero.setHighBits(Known2.countMinLeadingZeros()); Known.One.setHighBits(Known2.countMinLeadingOnes()); break; }; } // Check for operations that have the property that if // both their operands have low zero bits, the result // will have low zero bits. if (Opcode == Instruction::Add || Opcode == Instruction::Sub || Opcode == Instruction::And || Opcode == Instruction::Or || Opcode == Instruction::Mul) { // Change the context instruction to the "edge" that flows into the // phi. This is important because that is where the value is actually // "evaluated" even though it is used later somewhere else. (see also // D69571). Query RecQ = Q; unsigned OpNum = P->getOperand(0) == R ? 0 : 1; Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); // Ok, we have a PHI of the form L op= R. Check for low // zero bits. RecQ.CxtI = RInst; computeKnownBits(R, Known2, Depth + 1, RecQ); // We need to take the minimum number of known bits KnownBits Known3(BitWidth); RecQ.CxtI = LInst; computeKnownBits(L, Known3, Depth + 1, RecQ); Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), Known3.countMinTrailingZeros())); auto *OverflowOp = dyn_cast(BO); if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { // If initial value of recurrence is nonnegative, and we are adding // a nonnegative number with nsw, the result can only be nonnegative // or poison value regardless of the number of times we execute the // add in phi recurrence. If initial value is negative and we are // adding a negative number with nsw, the result can only be // negative or poison value. Similar arguments apply to sub and mul. // // (add non-negative, non-negative) --> non-negative // (add negative, negative) --> negative if (Opcode == Instruction::Add) { if (Known2.isNonNegative() && Known3.isNonNegative()) Known.makeNonNegative(); else if (Known2.isNegative() && Known3.isNegative()) Known.makeNegative(); } // (sub nsw non-negative, negative) --> non-negative // (sub nsw negative, non-negative) --> negative else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { if (Known2.isNonNegative() && Known3.isNegative()) Known.makeNonNegative(); else if (Known2.isNegative() && Known3.isNonNegative()) Known.makeNegative(); } // (mul nsw non-negative, non-negative) --> non-negative else if (Opcode == Instruction::Mul && Known2.isNonNegative() && Known3.isNonNegative()) Known.makeNonNegative(); } break; } } // Unreachable blocks may have zero-operand PHI nodes. if (P->getNumIncomingValues() == 0) break; // Otherwise take the unions of the known bit sets of the operands, // taking conservative care to avoid excessive recursion. if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { // Skip if every incoming value references to ourself. if (isa_and_nonnull(P->hasConstantValue())) break; Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { Value *IncValue = P->getIncomingValue(u); // Skip direct self references. if (IncValue == P) continue; // Change the context instruction to the "edge" that flows into the // phi. This is important because that is where the value is actually // "evaluated" even though it is used later somewhere else. (see also // D69571). Query RecQ = Q; RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); Known2 = KnownBits(BitWidth); // Recurse, but cap the recursion to one level, because we don't // want to waste time spinning around in loops. computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); Known = KnownBits::commonBits(Known, Known2); // If all bits have been ruled out, there's no need to check // more operands. if (Known.isUnknown()) break; } } break; } case Instruction::Call: case Instruction::Invoke: // If range metadata is attached to this call, set known bits from that, // and then intersect with known bits based on other properties of the // function. if (MDNode *MD = Q.IIQ.getMetadata(cast(I), LLVMContext::MD_range)) computeKnownBitsFromRangeMetadata(*MD, Known); if (const Value *RV = cast(I)->getReturnedArgOperand()) { computeKnownBits(RV, Known2, Depth + 1, Q); Known.Zero |= Known2.Zero; Known.One |= Known2.One; } if (const IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::abs: { computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); Known = Known2.abs(IntMinIsPoison); break; } case Intrinsic::bitreverse: computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); Known.Zero |= Known2.Zero.reverseBits(); Known.One |= Known2.One.reverseBits(); break; case Intrinsic::bswap: computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); Known.Zero |= Known2.Zero.byteSwap(); Known.One |= Known2.One.byteSwap(); break; case Intrinsic::ctlz: { computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); // If we have a known 1, its position is our upper bound. unsigned PossibleLZ = Known2.countMaxLeadingZeros(); // If this call is poison for 0 input, the result will be less than 2^n. if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) PossibleLZ = std::min(PossibleLZ, BitWidth - 1); unsigned LowBits = Log2_32(PossibleLZ)+1; Known.Zero.setBitsFrom(LowBits); break; } case Intrinsic::cttz: { computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); // If we have a known 1, its position is our upper bound. unsigned PossibleTZ = Known2.countMaxTrailingZeros(); // If this call is poison for 0 input, the result will be less than 2^n. if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) PossibleTZ = std::min(PossibleTZ, BitWidth - 1); unsigned LowBits = Log2_32(PossibleTZ)+1; Known.Zero.setBitsFrom(LowBits); break; } case Intrinsic::ctpop: { computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); // We can bound the space the count needs. Also, bits known to be zero // can't contribute to the population. unsigned BitsPossiblySet = Known2.countMaxPopulation(); unsigned LowBits = Log2_32(BitsPossiblySet)+1; Known.Zero.setBitsFrom(LowBits); // TODO: we could bound KnownOne using the lower bound on the number // of bits which might be set provided by popcnt KnownOne2. break; } case Intrinsic::fshr: case Intrinsic::fshl: { const APInt *SA; if (!match(I->getOperand(2), m_APInt(SA))) break; // Normalize to funnel shift left. uint64_t ShiftAmt = SA->urem(BitWidth); if (II->getIntrinsicID() == Intrinsic::fshr) ShiftAmt = BitWidth - ShiftAmt; KnownBits Known3(BitWidth); computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); Known.Zero = Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); Known.One = Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); break; } case Intrinsic::uadd_sat: case Intrinsic::usub_sat: { bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); // Add: Leading ones of either operand are preserved. // Sub: Leading zeros of LHS and leading ones of RHS are preserved // as leading zeros in the result. unsigned LeadingKnown; if (IsAdd) LeadingKnown = std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); else LeadingKnown = std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingOnes()); Known = KnownBits::computeForAddSub( IsAdd, /* NSW */ false, Known, Known2); // We select between the operation result and all-ones/zero // respectively, so we can preserve known ones/zeros. if (IsAdd) { Known.One.setHighBits(LeadingKnown); Known.Zero.clearAllBits(); } else { Known.Zero.setHighBits(LeadingKnown); Known.One.clearAllBits(); } break; } case Intrinsic::umin: computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); Known = KnownBits::umin(Known, Known2); break; case Intrinsic::umax: computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); Known = KnownBits::umax(Known, Known2); break; case Intrinsic::smin: computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); Known = KnownBits::smin(Known, Known2); break; case Intrinsic::smax: computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); Known = KnownBits::smax(Known, Known2); break; case Intrinsic::x86_sse42_crc32_64_64: Known.Zero.setBitsFrom(32); break; case Intrinsic::riscv_vsetvli: case Intrinsic::riscv_vsetvlimax: // Assume that VL output is positive and would fit in an int32_t. // TODO: VLEN might be capped at 16 bits in a future V spec update. if (BitWidth >= 32) Known.Zero.setBitsFrom(31); break; case Intrinsic::vscale: { if (!II->getParent() || !II->getFunction() || !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) break; auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); Optional VScaleMax = Attr.getVScaleRangeMax(); if (!VScaleMax) break; unsigned VScaleMin = Attr.getVScaleRangeMin(); // If vscale min = max then we know the exact value at compile time // and hence we know the exact bits. if (VScaleMin == VScaleMax) { Known.One = VScaleMin; Known.Zero = VScaleMin; Known.Zero.flipAllBits(); break; } unsigned FirstZeroHighBit = 32 - countLeadingZeros(*VScaleMax); if (FirstZeroHighBit < BitWidth) Known.Zero.setBitsFrom(FirstZeroHighBit); break; } } } break; case Instruction::ShuffleVector: { auto *Shuf = dyn_cast(I); // FIXME: Do we need to handle ConstantExpr involving shufflevectors? if (!Shuf) { Known.resetAll(); return; } // For undef elements, we don't know anything about the common state of // the shuffle result. APInt DemandedLHS, DemandedRHS; if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { Known.resetAll(); return; } Known.One.setAllBits(); Known.Zero.setAllBits(); if (!!DemandedLHS) { const Value *LHS = Shuf->getOperand(0); computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); // If we don't know any bits, early out. if (Known.isUnknown()) break; } if (!!DemandedRHS) { const Value *RHS = Shuf->getOperand(1); computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); Known = KnownBits::commonBits(Known, Known2); } break; } case Instruction::InsertElement: { const Value *Vec = I->getOperand(0); const Value *Elt = I->getOperand(1); auto *CIdx = dyn_cast(I->getOperand(2)); // Early out if the index is non-constant or out-of-range. unsigned NumElts = DemandedElts.getBitWidth(); if (!CIdx || CIdx->getValue().uge(NumElts)) { Known.resetAll(); return; } Known.One.setAllBits(); Known.Zero.setAllBits(); unsigned EltIdx = CIdx->getZExtValue(); // Do we demand the inserted element? if (DemandedElts[EltIdx]) { computeKnownBits(Elt, Known, Depth + 1, Q); // If we don't know any bits, early out. if (Known.isUnknown()) break; } // We don't need the base vector element that has been inserted. APInt DemandedVecElts = DemandedElts; DemandedVecElts.clearBit(EltIdx); if (!!DemandedVecElts) { computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); Known = KnownBits::commonBits(Known, Known2); } break; } case Instruction::ExtractElement: { // Look through extract element. If the index is non-constant or // out-of-range demand all elements, otherwise just the extracted element. const Value *Vec = I->getOperand(0); const Value *Idx = I->getOperand(1); auto *CIdx = dyn_cast(Idx); if (isa(Vec->getType())) { // FIXME: there's probably *something* we can do with scalable vectors Known.resetAll(); break; } unsigned NumElts = cast(Vec->getType())->getNumElements(); APInt DemandedVecElts = APInt::getAllOnes(NumElts); if (CIdx && CIdx->getValue().ult(NumElts)) DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); break; } case Instruction::ExtractValue: if (IntrinsicInst *II = dyn_cast(I->getOperand(0))) { const ExtractValueInst *EVI = cast(I); if (EVI->getNumIndices() != 1) break; if (EVI->getIndices()[0] == 0) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: computeKnownBitsAddSub(true, II->getArgOperand(0), II->getArgOperand(1), false, DemandedElts, Known, Known2, Depth, Q); break; case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: computeKnownBitsAddSub(false, II->getArgOperand(0), II->getArgOperand(1), false, DemandedElts, Known, Known2, Depth, Q); break; case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, DemandedElts, Known, Known2, Depth, Q); break; } } } break; case Instruction::Freeze: if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, Depth + 1)) computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); break; } } /// Determine which bits of V are known to be either zero or one and return /// them. KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, unsigned Depth, const Query &Q) { KnownBits Known(getBitWidth(V->getType(), Q.DL)); computeKnownBits(V, DemandedElts, Known, Depth, Q); return Known; } /// Determine which bits of V are known to be either zero or one and return /// them. KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { KnownBits Known(getBitWidth(V->getType(), Q.DL)); computeKnownBits(V, Known, Depth, Q); return Known; } /// Determine which bits of V are known to be either zero or one and return /// them in the Known bit set. /// /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that /// we cannot optimize based on the assumption that it is zero without changing /// it to be an explicit zero. If we don't change it to zero, other code could /// optimized based on the contradictory assumption that it is non-zero. /// Because instcombine aggressively folds operations with undef args anyway, /// this won't lose us code quality. /// /// This function is defined on values with integer type, values with pointer /// type, and vectors of integers. In the case /// where V is a vector, known zero, and known one values are the /// same width as the vector element, and the bit is set only if it is true /// for all of the demanded elements in the vector specified by DemandedElts. void computeKnownBits(const Value *V, const APInt &DemandedElts, KnownBits &Known, unsigned Depth, const Query &Q) { if (!DemandedElts || isa(V->getType())) { // No demanded elts or V is a scalable vector, better to assume we don't // know anything. Known.resetAll(); return; } assert(V && "No Value?"); assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); #ifndef NDEBUG Type *Ty = V->getType(); unsigned BitWidth = Known.getBitWidth(); assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && "Not integer or pointer type!"); if (auto *FVTy = dyn_cast(Ty)) { assert( FVTy->getNumElements() == DemandedElts.getBitWidth() && "DemandedElt width should equal the fixed vector number of elements"); } else { assert(DemandedElts == APInt(1, 1) && "DemandedElt width should be 1 for scalars"); } Type *ScalarTy = Ty->getScalarType(); if (ScalarTy->isPointerTy()) { assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && "V and Known should have same BitWidth"); } else { assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && "V and Known should have same BitWidth"); } #endif const APInt *C; if (match(V, m_APInt(C))) { // We know all of the bits for a scalar constant or a splat vector constant! Known = KnownBits::makeConstant(*C); return; } // Null and aggregate-zero are all-zeros. if (isa(V) || isa(V)) { Known.setAllZero(); return; } // Handle a constant vector by taking the intersection of the known bits of // each element. if (const ConstantDataVector *CDV = dyn_cast(V)) { // We know that CDV must be a vector of integers. Take the intersection of // each element. Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { if (!DemandedElts[i]) continue; APInt Elt = CDV->getElementAsAPInt(i); Known.Zero &= ~Elt; Known.One &= Elt; } return; } if (const auto *CV = dyn_cast(V)) { // We know that CV must be a vector of integers. Take the intersection of // each element. Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { if (!DemandedElts[i]) continue; Constant *Element = CV->getAggregateElement(i); auto *ElementCI = dyn_cast_or_null(Element); if (!ElementCI) { Known.resetAll(); return; } const APInt &Elt = ElementCI->getValue(); Known.Zero &= ~Elt; Known.One &= Elt; } return; } // Start out not knowing anything. Known.resetAll(); // We can't imply anything about undefs. if (isa(V)) return; // There's no point in looking through other users of ConstantData for // assumptions. Confirm that we've handled them all. assert(!isa(V) && "Unhandled constant data!"); // All recursive calls that increase depth must come after this. if (Depth == MaxAnalysisRecursionDepth) return; // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has // the bits of its aliasee. if (const GlobalAlias *GA = dyn_cast(V)) { if (!GA->isInterposable()) computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); return; } if (const Operator *I = dyn_cast(V)) computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); // Aligned pointers have trailing zeros - refine Known.Zero set if (isa(V->getType())) { Align Alignment = V->getPointerAlignment(Q.DL); Known.Zero.setLowBits(Log2(Alignment)); } // computeKnownBitsFromAssume strictly refines Known. // Therefore, we run them after computeKnownBitsFromOperator. // Check whether a nearby assume intrinsic can determine some known bits. computeKnownBitsFromAssume(V, Known, Depth, Q); assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); } /// Try to detect a recurrence that the value of the induction variable is /// always a power of two (or zero). static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, unsigned Depth, Query &Q) { BinaryOperator *BO = nullptr; Value *Start = nullptr, *Step = nullptr; if (!matchSimpleRecurrence(PN, BO, Start, Step)) return false; // Initial value must be a power of two. for (const Use &U : PN->operands()) { if (U.get() == Start) { // Initial value comes from a different BB, need to adjust context // instruction for analysis. Q.CxtI = PN->getIncomingBlock(U)->getTerminator(); if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q)) return false; } } // Except for Mul, the induction variable must be on the left side of the // increment expression, otherwise its value can be arbitrary. if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step) return false; Q.CxtI = BO->getParent()->getTerminator(); switch (BO->getOpcode()) { case Instruction::Mul: // Power of two is closed under multiplication. return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO)) && isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q); case Instruction::SDiv: // Start value must not be signmask for signed division, so simply being a // power of two is not sufficient, and it has to be a constant. if (!match(Start, m_Power2()) || match(Start, m_SignMask())) return false; LLVM_FALLTHROUGH; case Instruction::UDiv: // Divisor must be a power of two. // If OrZero is false, cannot guarantee induction variable is non-zero after // division, same for Shr, unless it is exact division. return (OrZero || Q.IIQ.isExact(BO)) && isKnownToBeAPowerOfTwo(Step, false, Depth, Q); case Instruction::Shl: return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO); case Instruction::AShr: if (!match(Start, m_Power2()) || match(Start, m_SignMask())) return false; LLVM_FALLTHROUGH; case Instruction::LShr: return OrZero || Q.IIQ.isExact(BO); default: return false; } } /// Return true if the given value is known to have exactly one /// bit set when defined. For vectors return true if every element is known to /// be a power of two when defined. Supports values with integer or pointer /// types and vectors of integers. bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, const Query &Q) { assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); // Attempt to match against constants. if (OrZero && match(V, m_Power2OrZero())) return true; if (match(V, m_Power2())) return true; // 1 << X is clearly a power of two if the one is not shifted off the end. If // it is shifted off the end then the result is undefined. if (match(V, m_Shl(m_One(), m_Value()))) return true; // (signmask) >>l X is clearly a power of two if the one is not shifted off // the bottom. If it is shifted off the bottom then the result is undefined. if (match(V, m_LShr(m_SignMask(), m_Value()))) return true; // The remaining tests are all recursive, so bail out if we hit the limit. if (Depth++ == MaxAnalysisRecursionDepth) return false; Value *X = nullptr, *Y = nullptr; // A shift left or a logical shift right of a power of two is a power of two // or zero. if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || match(V, m_LShr(m_Value(X), m_Value())))) return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); if (const ZExtInst *ZI = dyn_cast(V)) return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); if (const SelectInst *SI = dyn_cast(V)) return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); // Peek through min/max. if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); } if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { // A power of two and'd with anything is a power of two or zero. if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) return true; // X & (-X) is always a power of two or zero. if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) return true; return false; } // Adding a power-of-two or zero to the same power-of-two or zero yields // either the original power-of-two, a larger power-of-two or zero. if (match(V, m_Add(m_Value(X), m_Value(Y)))) { const OverflowingBinaryOperator *VOBO = cast(V); if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || Q.IIQ.hasNoSignedWrap(VOBO)) { if (match(X, m_And(m_Specific(Y), m_Value())) || match(X, m_And(m_Value(), m_Specific(Y)))) if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) return true; if (match(Y, m_And(m_Specific(X), m_Value())) || match(Y, m_And(m_Value(), m_Specific(X)))) if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) return true; unsigned BitWidth = V->getType()->getScalarSizeInBits(); KnownBits LHSBits(BitWidth); computeKnownBits(X, LHSBits, Depth, Q); KnownBits RHSBits(BitWidth); computeKnownBits(Y, RHSBits, Depth, Q); // If i8 V is a power of two or zero: // ZeroBits: 1 1 1 0 1 1 1 1 // ~ZeroBits: 0 0 0 1 0 0 0 0 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) // If OrZero isn't set, we cannot give back a zero result. // Make sure either the LHS or RHS has a bit set. if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) return true; } } // A PHI node is power of two if all incoming values are power of two, or if // it is an induction variable where in each step its value is a power of two. if (const PHINode *PN = dyn_cast(V)) { Query RecQ = Q; // Check if it is an induction variable and always power of two. if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ)) return true; // Recursively check all incoming values. Limit recursion to 2 levels, so // that search complexity is limited to number of operands^2. unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); return llvm::all_of(PN->operands(), [&](const Use &U) { // Value is power of 2 if it is coming from PHI node itself by induction. if (U.get() == PN) return true; // Change the context instruction to the incoming block where it is // evaluated. RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ); }); } // An exact divide or right shift can only shift off zero bits, so the result // is a power of two only if the first operand is a power of two and not // copying a sign bit (sdiv int_min, 2). if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { return isKnownToBeAPowerOfTwo(cast(V)->getOperand(0), OrZero, Depth, Q); } return false; } /// Test whether a GEP's result is known to be non-null. /// /// Uses properties inherent in a GEP to try to determine whether it is known /// to be non-null. /// /// Currently this routine does not support vector GEPs. static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, const Query &Q) { const Function *F = nullptr; if (const Instruction *I = dyn_cast(GEP)) F = I->getFunction(); if (!GEP->isInBounds() || NullPointerIsDefined(F, GEP->getPointerAddressSpace())) return false; // FIXME: Support vector-GEPs. assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); // If the base pointer is non-null, we cannot walk to a null address with an // inbounds GEP in address space zero. if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) return true; // Walk the GEP operands and see if any operand introduces a non-zero offset. // If so, then the GEP cannot produce a null pointer, as doing so would // inherently violate the inbounds contract within address space zero. for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); GTI != GTE; ++GTI) { // Struct types are easy -- they must always be indexed by a constant. if (StructType *STy = GTI.getStructTypeOrNull()) { ConstantInt *OpC = cast(GTI.getOperand()); unsigned ElementIdx = OpC->getZExtValue(); const StructLayout *SL = Q.DL.getStructLayout(STy); uint64_t ElementOffset = SL->getElementOffset(ElementIdx); if (ElementOffset > 0) return true; continue; } // If we have a zero-sized type, the index doesn't matter. Keep looping. if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) continue; // Fast path the constant operand case both for efficiency and so we don't // increment Depth when just zipping down an all-constant GEP. if (ConstantInt *OpC = dyn_cast(GTI.getOperand())) { if (!OpC->isZero()) return true; continue; } // We post-increment Depth here because while isKnownNonZero increments it // as well, when we pop back up that increment won't persist. We don't want // to recurse 10k times just because we have 10k GEP operands. We don't // bail completely out because we want to handle constant GEPs regardless // of depth. if (Depth++ >= MaxAnalysisRecursionDepth) continue; if (isKnownNonZero(GTI.getOperand(), Depth, Q)) return true; } return false; } static bool isKnownNonNullFromDominatingCondition(const Value *V, const Instruction *CtxI, const DominatorTree *DT) { if (isa(V)) return false; if (!CtxI || !DT) return false; unsigned NumUsesExplored = 0; for (const auto *U : V->users()) { // Avoid massive lists if (NumUsesExplored >= DomConditionsMaxUses) break; NumUsesExplored++; // If the value is used as an argument to a call or invoke, then argument // attributes may provide an answer about null-ness. if (const auto *CB = dyn_cast(U)) if (auto *CalledFunc = CB->getCalledFunction()) for (const Argument &Arg : CalledFunc->args()) if (CB->getArgOperand(Arg.getArgNo()) == V && Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && DT->dominates(CB, CtxI)) return true; // If the value is used as a load/store, then the pointer must be non null. if (V == getLoadStorePointerOperand(U)) { const Instruction *I = cast(U); if (!NullPointerIsDefined(I->getFunction(), V->getType()->getPointerAddressSpace()) && DT->dominates(I, CtxI)) return true; } // Consider only compare instructions uniquely controlling a branch Value *RHS; CmpInst::Predicate Pred; if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) continue; bool NonNullIfTrue; if (cmpExcludesZero(Pred, RHS)) NonNullIfTrue = true; else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) NonNullIfTrue = false; else continue; SmallVector WorkList; SmallPtrSet Visited; for (const auto *CmpU : U->users()) { assert(WorkList.empty() && "Should be!"); if (Visited.insert(CmpU).second) WorkList.push_back(CmpU); while (!WorkList.empty()) { auto *Curr = WorkList.pop_back_val(); // If a user is an AND, add all its users to the work list. We only // propagate "pred != null" condition through AND because it is only // correct to assume that all conditions of AND are met in true branch. // TODO: Support similar logic of OR and EQ predicate? if (NonNullIfTrue) if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { for (const auto *CurrU : Curr->users()) if (Visited.insert(CurrU).second) WorkList.push_back(CurrU); continue; } if (const BranchInst *BI = dyn_cast(Curr)) { assert(BI->isConditional() && "uses a comparison!"); BasicBlock *NonNullSuccessor = BI->getSuccessor(NonNullIfTrue ? 0 : 1); BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) return true; } else if (NonNullIfTrue && isGuard(Curr) && DT->dominates(cast(Curr), CtxI)) { return true; } } } } return false; } /// Does the 'Range' metadata (which must be a valid MD_range operand list) /// ensure that the value it's attached to is never Value? 'RangeType' is /// is the type of the value described by the range. static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { const unsigned NumRanges = Ranges->getNumOperands() / 2; assert(NumRanges >= 1); for (unsigned i = 0; i < NumRanges; ++i) { ConstantInt *Lower = mdconst::extract(Ranges->getOperand(2 * i + 0)); ConstantInt *Upper = mdconst::extract(Ranges->getOperand(2 * i + 1)); ConstantRange Range(Lower->getValue(), Upper->getValue()); if (Range.contains(Value)) return false; } return true; } /// Try to detect a recurrence that monotonically increases/decreases from a /// non-zero starting value. These are common as induction variables. static bool isNonZeroRecurrence(const PHINode *PN) { BinaryOperator *BO = nullptr; Value *Start = nullptr, *Step = nullptr; const APInt *StartC, *StepC; if (!matchSimpleRecurrence(PN, BO, Start, Step) || !match(Start, m_APInt(StartC)) || StartC->isZero()) return false; switch (BO->getOpcode()) { case Instruction::Add: // Starting from non-zero and stepping away from zero can never wrap back // to zero. return BO->hasNoUnsignedWrap() || (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && StartC->isNegative() == StepC->isNegative()); case Instruction::Mul: return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && match(Step, m_APInt(StepC)) && !StepC->isZero(); case Instruction::Shl: return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); case Instruction::AShr: case Instruction::LShr: return BO->isExact(); default: return false; } } /// Return true if the given value is known to be non-zero when defined. For /// vectors, return true if every demanded element is known to be non-zero when /// defined. For pointers, if the context instruction and dominator tree are /// specified, perform context-sensitive analysis and return true if the /// pointer couldn't possibly be null at the specified instruction. /// Supports values with integer or pointer type and vectors of integers. bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, const Query &Q) { // FIXME: We currently have no way to represent the DemandedElts of a scalable // vector if (isa(V->getType())) return false; if (auto *C = dyn_cast(V)) { if (C->isNullValue()) return false; if (isa(C)) // Must be non-zero due to null test above. return true; if (auto *CE = dyn_cast(C)) { // See the comment for IntToPtr/PtrToInt instructions below. if (CE->getOpcode() == Instruction::IntToPtr || CE->getOpcode() == Instruction::PtrToInt) if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) .getFixedSize() <= Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) return isKnownNonZero(CE->getOperand(0), Depth, Q); } // For constant vectors, check that all elements are undefined or known // non-zero to determine that the whole vector is known non-zero. if (auto *VecTy = dyn_cast(C->getType())) { for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { if (!DemandedElts[i]) continue; Constant *Elt = C->getAggregateElement(i); if (!Elt || Elt->isNullValue()) return false; if (!isa(Elt) && !isa(Elt)) return false; } return true; } // A global variable in address space 0 is non null unless extern weak // or an absolute symbol reference. Other address spaces may have null as a // valid address for a global, so we can't assume anything. if (const GlobalValue *GV = dyn_cast(V)) { if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && GV->getType()->getAddressSpace() == 0) return true; } else return false; } if (auto *I = dyn_cast(V)) { if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { // If the possible ranges don't contain zero, then the value is // definitely non-zero. if (auto *Ty = dyn_cast(V->getType())) { const APInt ZeroValue(Ty->getBitWidth(), 0); if (rangeMetadataExcludesValue(Ranges, ZeroValue)) return true; } } } if (isKnownNonZeroFromAssume(V, Q)) return true; // Some of the tests below are recursive, so bail out if we hit the limit. if (Depth++ >= MaxAnalysisRecursionDepth) return false; // Check for pointer simplifications. if (PointerType *PtrTy = dyn_cast(V->getType())) { // Alloca never returns null, malloc might. if (isa(V) && Q.DL.getAllocaAddrSpace() == 0) return true; // A byval, inalloca may not be null in a non-default addres space. A // nonnull argument is assumed never 0. if (const Argument *A = dyn_cast(V)) { if (((A->hasPassPointeeByValueCopyAttr() && !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || A->hasNonNullAttr())) return true; } // A Load tagged with nonnull metadata is never null. if (const LoadInst *LI = dyn_cast(V)) if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) return true; if (const auto *Call = dyn_cast(V)) { if (Call->isReturnNonNull()) return true; if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) return isKnownNonZero(RP, Depth, Q); } } if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) return true; // Check for recursive pointer simplifications. if (V->getType()->isPointerTy()) { // Look through bitcast operations, GEPs, and int2ptr instructions as they // do not alter the value, or at least not the nullness property of the // value, e.g., int2ptr is allowed to zero/sign extend the value. // // Note that we have to take special care to avoid looking through // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well // as casts that can alter the value, e.g., AddrSpaceCasts. if (const GEPOperator *GEP = dyn_cast(V)) return isGEPKnownNonNull(GEP, Depth, Q); if (auto *BCO = dyn_cast(V)) return isKnownNonZero(BCO->getOperand(0), Depth, Q); if (auto *I2P = dyn_cast(V)) if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) return isKnownNonZero(I2P->getOperand(0), Depth, Q); } // Similar to int2ptr above, we can look through ptr2int here if the cast // is a no-op or an extend and not a truncate. if (auto *P2I = dyn_cast(V)) if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) return isKnownNonZero(P2I->getOperand(0), Depth, Q); unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); // X | Y != 0 if X != 0 or Y != 0. Value *X = nullptr, *Y = nullptr; if (match(V, m_Or(m_Value(X), m_Value(Y)))) return isKnownNonZero(X, DemandedElts, Depth, Q) || isKnownNonZero(Y, DemandedElts, Depth, Q); // ext X != 0 if X != 0. if (isa(V) || isa(V)) return isKnownNonZero(cast(V)->getOperand(0), Depth, Q); // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined // if the lowest bit is shifted off the end. if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { // shl nuw can't remove any non-zero bits. const OverflowingBinaryOperator *BO = cast(V); if (Q.IIQ.hasNoUnsignedWrap(BO)) return isKnownNonZero(X, Depth, Q); KnownBits Known(BitWidth); computeKnownBits(X, DemandedElts, Known, Depth, Q); if (Known.One[0]) return true; } // shr X, Y != 0 if X is negative. Note that the value of the shift is not // defined if the sign bit is shifted off the end. else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { // shr exact can only shift out zero bits. const PossiblyExactOperator *BO = cast(V); if (BO->isExact()) return isKnownNonZero(X, Depth, Q); KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); if (Known.isNegative()) return true; // If the shifter operand is a constant, and all of the bits shifted // out are known to be zero, and X is known non-zero then at least one // non-zero bit must remain. if (ConstantInt *Shift = dyn_cast(Y)) { auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); // Is there a known one in the portion not shifted out? if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) return true; // Are all the bits to be shifted out known zero? if (Known.countMinTrailingZeros() >= ShiftVal) return isKnownNonZero(X, DemandedElts, Depth, Q); } } // div exact can only produce a zero if the dividend is zero. else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { return isKnownNonZero(X, DemandedElts, Depth, Q); } // X + Y. else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); // If X and Y are both non-negative (as signed values) then their sum is not // zero unless both X and Y are zero. if (XKnown.isNonNegative() && YKnown.isNonNegative()) if (isKnownNonZero(X, DemandedElts, Depth, Q) || isKnownNonZero(Y, DemandedElts, Depth, Q)) return true; // If X and Y are both negative (as signed values) then their sum is not // zero unless both X and Y equal INT_MIN. if (XKnown.isNegative() && YKnown.isNegative()) { APInt Mask = APInt::getSignedMaxValue(BitWidth); // The sign bit of X is set. If some other bit is set then X is not equal // to INT_MIN. if (XKnown.One.intersects(Mask)) return true; // The sign bit of Y is set. If some other bit is set then Y is not equal // to INT_MIN. if (YKnown.One.intersects(Mask)) return true; } // The sum of a non-negative number and a power of two is not zero. if (XKnown.isNonNegative() && isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) return true; if (YKnown.isNonNegative() && isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) return true; } // X * Y. else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { const OverflowingBinaryOperator *BO = cast(V); // If X and Y are non-zero then so is X * Y as long as the multiplication // does not overflow. if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && isKnownNonZero(X, DemandedElts, Depth, Q) && isKnownNonZero(Y, DemandedElts, Depth, Q)) return true; } // (C ? X : Y) != 0 if X != 0 and Y != 0. else if (const SelectInst *SI = dyn_cast(V)) { if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) return true; } // PHI else if (const PHINode *PN = dyn_cast(V)) { if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) return true; // Check if all incoming values are non-zero using recursion. Query RecQ = Q; unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); return llvm::all_of(PN->operands(), [&](const Use &U) { if (U.get() == PN) return true; RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); }); } // ExtractElement else if (const auto *EEI = dyn_cast(V)) { const Value *Vec = EEI->getVectorOperand(); const Value *Idx = EEI->getIndexOperand(); auto *CIdx = dyn_cast(Idx); if (auto *VecTy = dyn_cast(Vec->getType())) { unsigned NumElts = VecTy->getNumElements(); APInt DemandedVecElts = APInt::getAllOnes(NumElts); if (CIdx && CIdx->getValue().ult(NumElts)) DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); } } // Freeze else if (const FreezeInst *FI = dyn_cast(V)) { auto *Op = FI->getOperand(0); if (isKnownNonZero(Op, Depth, Q) && isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) return true; } else if (const auto *II = dyn_cast(V)) { if (II->getIntrinsicID() == Intrinsic::vscale) return true; } KnownBits Known(BitWidth); computeKnownBits(V, DemandedElts, Known, Depth, Q); return Known.One != 0; } bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { // FIXME: We currently have no way to represent the DemandedElts of a scalable // vector if (isa(V->getType())) return false; auto *FVTy = dyn_cast(V->getType()); APInt DemandedElts = FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); return isKnownNonZero(V, DemandedElts, Depth, Q); } /// If the pair of operators are the same invertible function, return the /// the operands of the function corresponding to each input. Otherwise, /// return None. An invertible function is one that is 1-to-1 and maps /// every input value to exactly one output value. This is equivalent to /// saying that Op1 and Op2 are equal exactly when the specified pair of /// operands are equal, (except that Op1 and Op2 may be poison more often.) static Optional> getInvertibleOperands(const Operator *Op1, const Operator *Op2) { if (Op1->getOpcode() != Op2->getOpcode()) return None; auto getOperands = [&](unsigned OpNum) -> auto { return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); }; switch (Op1->getOpcode()) { default: break; case Instruction::Add: case Instruction::Sub: if (Op1->getOperand(0) == Op2->getOperand(0)) return getOperands(1); if (Op1->getOperand(1) == Op2->getOperand(1)) return getOperands(0); break; case Instruction::Mul: { // invertible if A * B == (A * B) mod 2^N where A, and B are integers // and N is the bitwdith. The nsw case is non-obvious, but proven by // alive2: https://alive2.llvm.org/ce/z/Z6D5qK auto *OBO1 = cast(Op1); auto *OBO2 = cast(Op2); if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) break; // Assume operand order has been canonicalized if (Op1->getOperand(1) == Op2->getOperand(1) && isa(Op1->getOperand(1)) && !cast(Op1->getOperand(1))->isZero()) return getOperands(0); break; } case Instruction::Shl: { // Same as multiplies, with the difference that we don't need to check // for a non-zero multiply. Shifts always multiply by non-zero. auto *OBO1 = cast(Op1); auto *OBO2 = cast(Op2); if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) break; if (Op1->getOperand(1) == Op2->getOperand(1)) return getOperands(0); break; } case Instruction::AShr: case Instruction::LShr: { auto *PEO1 = cast(Op1); auto *PEO2 = cast(Op2); if (!PEO1->isExact() || !PEO2->isExact()) break; if (Op1->getOperand(1) == Op2->getOperand(1)) return getOperands(0); break; } case Instruction::SExt: case Instruction::ZExt: if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) return getOperands(0); break; case Instruction::PHI: { const PHINode *PN1 = cast(Op1); const PHINode *PN2 = cast(Op2); // If PN1 and PN2 are both recurrences, can we prove the entire recurrences // are a single invertible function of the start values? Note that repeated // application of an invertible function is also invertible BinaryOperator *BO1 = nullptr; Value *Start1 = nullptr, *Step1 = nullptr; BinaryOperator *BO2 = nullptr; Value *Start2 = nullptr, *Step2 = nullptr; if (PN1->getParent() != PN2->getParent() || !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) break; auto Values = getInvertibleOperands(cast(BO1), cast(BO2)); if (!Values) break; // We have to be careful of mutually defined recurrences here. Ex: // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V // * X_i = Y_i = X_(i-1) OP Y_(i-1) // The invertibility of these is complicated, and not worth reasoning // about (yet?). if (Values->first != PN1 || Values->second != PN2) break; return std::make_pair(Start1, Start2); } } return None; } /// Return true if V2 == V1 + X, where X is known non-zero. static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, const Query &Q) { const BinaryOperator *BO = dyn_cast(V1); if (!BO || BO->getOpcode() != Instruction::Add) return false; Value *Op = nullptr; if (V2 == BO->getOperand(0)) Op = BO->getOperand(1); else if (V2 == BO->getOperand(1)) Op = BO->getOperand(0); else return false; return isKnownNonZero(Op, Depth + 1, Q); } /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and /// the multiplication is nuw or nsw. static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, const Query &Q) { if (auto *OBO = dyn_cast(V2)) { const APInt *C; return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); } return false; } /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and /// the shift is nuw or nsw. static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, const Query &Q) { if (auto *OBO = dyn_cast(V2)) { const APInt *C; return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); } return false; } static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, unsigned Depth, const Query &Q) { // Check two PHIs are in same block. if (PN1->getParent() != PN2->getParent()) return false; SmallPtrSet VisitedBBs; bool UsedFullRecursion = false; for (const BasicBlock *IncomBB : PN1->blocks()) { if (!VisitedBBs.insert(IncomBB).second) continue; // Don't reprocess blocks that we have dealt with already. const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); const APInt *C1, *C2; if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) continue; // Only one pair of phi operands is allowed for full recursion. if (UsedFullRecursion) return false; Query RecQ = Q; RecQ.CxtI = IncomBB->getTerminator(); if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) return false; UsedFullRecursion = true; } return true; } /// Return true if it is known that V1 != V2. static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, const Query &Q) { if (V1 == V2) return false; if (V1->getType() != V2->getType()) // We can't look through casts yet. return false; if (Depth >= MaxAnalysisRecursionDepth) return false; // See if we can recurse through (exactly one of) our operands. This // requires our operation be 1-to-1 and map every input value to exactly // one output value. Such an operation is invertible. auto *O1 = dyn_cast(V1); auto *O2 = dyn_cast(V2); if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { if (auto Values = getInvertibleOperands(O1, O2)) return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); if (const PHINode *PN1 = dyn_cast(V1)) { const PHINode *PN2 = cast(V2); // FIXME: This is missing a generalization to handle the case where one is // a PHI and another one isn't. if (isNonEqualPHIs(PN1, PN2, Depth, Q)) return true; }; } if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) return true; if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) return true; if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) return true; if (V1->getType()->isIntOrIntVectorTy()) { // Are any known bits in V1 contradictory to known bits in V2? If V1 // has a known zero where V2 has a known one, they must not be equal. KnownBits Known1 = computeKnownBits(V1, Depth, Q); KnownBits Known2 = computeKnownBits(V2, Depth, Q); if (Known1.Zero.intersects(Known2.One) || Known2.Zero.intersects(Known1.One)) return true; } return false; } /// Return true if 'V & Mask' is known to be zero. We use this predicate to /// simplify operations downstream. Mask is known to be zero for bits that V /// cannot have. /// /// This function is defined on values with integer type, values with pointer /// type, and vectors of integers. In the case /// where V is a vector, the mask, known zero, and known one values are the /// same width as the vector element, and the bit is set only if it is true /// for all of the elements in the vector. bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, const Query &Q) { KnownBits Known(Mask.getBitWidth()); computeKnownBits(V, Known, Depth, Q); return Mask.isSubsetOf(Known.Zero); } // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). // Returns the input and lower/upper bounds. static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, const APInt *&CLow, const APInt *&CHigh) { assert(isa(Select) && cast(Select)->getOpcode() == Instruction::Select && "Input should be a Select!"); const Value *LHS = nullptr, *RHS = nullptr; SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; if (SPF != SPF_SMAX && SPF != SPF_SMIN) return false; if (!match(RHS, m_APInt(CLow))) return false; const Value *LHS2 = nullptr, *RHS2 = nullptr; SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; if (getInverseMinMaxFlavor(SPF) != SPF2) return false; if (!match(RHS2, m_APInt(CHigh))) return false; if (SPF == SPF_SMIN) std::swap(CLow, CHigh); In = LHS2; return CLow->sle(*CHigh); } static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, const APInt *&CLow, const APInt *&CHigh) { assert((II->getIntrinsicID() == Intrinsic::smin || II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax"); Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); auto *InnerII = dyn_cast(II->getArgOperand(0)); if (!InnerII || InnerII->getIntrinsicID() != InverseID || !match(II->getArgOperand(1), m_APInt(CLow)) || !match(InnerII->getArgOperand(1), m_APInt(CHigh))) return false; if (II->getIntrinsicID() == Intrinsic::smin) std::swap(CLow, CHigh); return CLow->sle(*CHigh); } /// For vector constants, loop over the elements and find the constant with the /// minimum number of sign bits. Return 0 if the value is not a vector constant /// or if any element was not analyzed; otherwise, return the count for the /// element with the minimum number of sign bits. static unsigned computeNumSignBitsVectorConstant(const Value *V, const APInt &DemandedElts, unsigned TyBits) { const auto *CV = dyn_cast(V); if (!CV || !isa(CV->getType())) return 0; unsigned MinSignBits = TyBits; unsigned NumElts = cast(CV->getType())->getNumElements(); for (unsigned i = 0; i != NumElts; ++i) { if (!DemandedElts[i]) continue; // If we find a non-ConstantInt, bail out. auto *Elt = dyn_cast_or_null(CV->getAggregateElement(i)); if (!Elt) return 0; MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); } return MinSignBits; } static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, unsigned Depth, const Query &Q); static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, unsigned Depth, const Query &Q) { unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); assert(Result > 0 && "At least one sign bit needs to be present!"); return Result; } /// Return the number of times the sign bit of the register is replicated into /// the other bits. We know that at least 1 bit is always equal to the sign bit /// (itself), but other cases can give us information. For example, immediately /// after an "ashr X, 2", we know that the top 3 bits are all equal to each /// other, so we return 3. For vectors, return the number of sign bits for the /// vector element with the minimum number of known sign bits of the demanded /// elements in the vector specified by DemandedElts. static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, unsigned Depth, const Query &Q) { Type *Ty = V->getType(); // FIXME: We currently have no way to represent the DemandedElts of a scalable // vector if (isa(Ty)) return 1; #ifndef NDEBUG assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); if (auto *FVTy = dyn_cast(Ty)) { assert( FVTy->getNumElements() == DemandedElts.getBitWidth() && "DemandedElt width should equal the fixed vector number of elements"); } else { assert(DemandedElts == APInt(1, 1) && "DemandedElt width should be 1 for scalars"); } #endif // We return the minimum number of sign bits that are guaranteed to be present // in V, so for undef we have to conservatively return 1. We don't have the // same behavior for poison though -- that's a FIXME today. Type *ScalarTy = Ty->getScalarType(); unsigned TyBits = ScalarTy->isPointerTy() ? Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); unsigned Tmp, Tmp2; unsigned FirstAnswer = 1; // Note that ConstantInt is handled by the general computeKnownBits case // below. if (Depth == MaxAnalysisRecursionDepth) return 1; if (auto *U = dyn_cast(V)) { switch (Operator::getOpcode(V)) { default: break; case Instruction::SExt: Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; case Instruction::SDiv: { const APInt *Denominator; // sdiv X, C -> adds log(C) sign bits. if (match(U->getOperand(1), m_APInt(Denominator))) { // Ignore non-positive denominator. if (!Denominator->isStrictlyPositive()) break; // Calculate the incoming numerator bits. unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); // Add floor(log(C)) bits to the numerator bits. return std::min(TyBits, NumBits + Denominator->logBase2()); } break; } case Instruction::SRem: { Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); const APInt *Denominator; // srem X, C -> we know that the result is within [-C+1,C) when C is a // positive constant. This let us put a lower bound on the number of sign // bits. if (match(U->getOperand(1), m_APInt(Denominator))) { // Ignore non-positive denominator. if (Denominator->isStrictlyPositive()) { // Calculate the leading sign bit constraints by examining the // denominator. Given that the denominator is positive, there are two // cases: // // 1. The numerator is positive. The result range is [0,C) and // [0,C) u< (1 << ceilLogBase2(C)). // // 2. The numerator is negative. Then the result range is (-C,0] and // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). // // Thus a lower bound on the number of sign bits is `TyBits - // ceilLogBase2(C)`. unsigned ResBits = TyBits - Denominator->ceilLogBase2(); Tmp = std::max(Tmp, ResBits); } } return Tmp; } case Instruction::AShr: { Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); // ashr X, C -> adds C sign bits. Vectors too. const APInt *ShAmt; if (match(U->getOperand(1), m_APInt(ShAmt))) { if (ShAmt->uge(TyBits)) break; // Bad shift. unsigned ShAmtLimited = ShAmt->getZExtValue(); Tmp += ShAmtLimited; if (Tmp > TyBits) Tmp = TyBits; } return Tmp; } case Instruction::Shl: { const APInt *ShAmt; if (match(U->getOperand(1), m_APInt(ShAmt))) { // shl destroys sign bits. Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); if (ShAmt->uge(TyBits) || // Bad shift. ShAmt->uge(Tmp)) break; // Shifted all sign bits out. Tmp2 = ShAmt->getZExtValue(); return Tmp - Tmp2; } break; } case Instruction::And: case Instruction::Or: case Instruction::Xor: // NOT is handled here. // Logical binary ops preserve the number of sign bits at the worst. Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); if (Tmp != 1) { Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); FirstAnswer = std::min(Tmp, Tmp2); // We computed what we know about the sign bits as our first // answer. Now proceed to the generic code that uses // computeKnownBits, and pick whichever answer is better. } break; case Instruction::Select: { // If we have a clamp pattern, we know that the number of sign bits will // be the minimum of the clamp min/max range. const Value *X; const APInt *CLow, *CHigh; if (isSignedMinMaxClamp(U, X, CLow, CHigh)) return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); if (Tmp == 1) break; Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); return std::min(Tmp, Tmp2); } case Instruction::Add: // Add can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); if (Tmp == 1) break; // Special case decrementing a value (ADD X, -1): if (const auto *CRHS = dyn_cast(U->getOperand(1))) if (CRHS->isAllOnesValue()) { KnownBits Known(TyBits); computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); // If the input is known to be 0 or 1, the output is 0/-1, which is // all sign bits set. if ((Known.Zero | 1).isAllOnes()) return TyBits; // If we are subtracting one from a positive number, there is no carry // out of the result. if (Known.isNonNegative()) return Tmp; } Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); if (Tmp2 == 1) break; return std::min(Tmp, Tmp2) - 1; case Instruction::Sub: Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); if (Tmp2 == 1) break; // Handle NEG. if (const auto *CLHS = dyn_cast(U->getOperand(0))) if (CLHS->isNullValue()) { KnownBits Known(TyBits); computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); // If the input is known to be 0 or 1, the output is 0/-1, which is // all sign bits set. if ((Known.Zero | 1).isAllOnes()) return TyBits; // If the input is known to be positive (the sign bit is known clear), // the output of the NEG has the same number of sign bits as the // input. if (Known.isNonNegative()) return Tmp2; // Otherwise, we treat this like a SUB. } // Sub can have at most one carry bit. Thus we know that the output // is, at worst, one more bit than the inputs. Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); if (Tmp == 1) break; return std::min(Tmp, Tmp2) - 1; case Instruction::Mul: { // The output of the Mul can be at most twice the valid bits in the // inputs. unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); if (SignBitsOp0 == 1) break; unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); if (SignBitsOp1 == 1) break; unsigned OutValidBits = (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; } case Instruction::PHI: { const PHINode *PN = cast(U); unsigned NumIncomingValues = PN->getNumIncomingValues(); // Don't analyze large in-degree PHIs. if (NumIncomingValues > 4) break; // Unreachable blocks may have zero-operand PHI nodes. if (NumIncomingValues == 0) break; // Take the minimum of all incoming values. This can't infinitely loop // because of our depth threshold. Query RecQ = Q; Tmp = TyBits; for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { if (Tmp == 1) return Tmp; RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); Tmp = std::min( Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); } return Tmp; } case Instruction::Trunc: // FIXME: it's tricky to do anything useful for this, but it is an // important case for targets like X86. break; case Instruction::ExtractElement: // Look through extract element. At the moment we keep this simple and // skip tracking the specific element. But at least we might find // information valid for all elements of the vector (for example if vector // is sign extended, shifted, etc). return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); case Instruction::ShuffleVector: { // Collect the minimum number of sign bits that are shared by every vector // element referenced by the shuffle. auto *Shuf = dyn_cast(U); if (!Shuf) { // FIXME: Add support for shufflevector constant expressions. return 1; } APInt DemandedLHS, DemandedRHS; // For undef elements, we don't know anything about the common state of // the shuffle result. if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) return 1; Tmp = std::numeric_limits::max(); if (!!DemandedLHS) { const Value *LHS = Shuf->getOperand(0); Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); } // If we don't know anything, early out and try computeKnownBits // fall-back. if (Tmp == 1) break; if (!!DemandedRHS) { const Value *RHS = Shuf->getOperand(1); Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); Tmp = std::min(Tmp, Tmp2); } // If we don't know anything, early out and try computeKnownBits // fall-back. if (Tmp == 1) break; assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); return Tmp; } case Instruction::Call: { if (const auto *II = dyn_cast(U)) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::abs: Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); if (Tmp == 1) break; // Absolute value reduces number of sign bits by at most 1. return Tmp - 1; case Intrinsic::smin: case Intrinsic::smax: { const APInt *CLow, *CHigh; if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); } } } } } } // Finally, if we can prove that the top bits of the result are 0's or 1's, // use this information. // If we can examine all elements of a vector constant successfully, we're // done (we can't do any better than that). If not, keep trying. if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) return VecSignBits; KnownBits Known(TyBits); computeKnownBits(V, DemandedElts, Known, Depth, Q); // If we know that the sign bit is either zero or one, determine the number of // identical bits in the top of the input value. return std::max(FirstAnswer, Known.countMinSignBits()); } Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI) { const Function *F = CB.getCalledFunction(); if (!F) return Intrinsic::not_intrinsic; if (F->isIntrinsic()) return F->getIntrinsicID(); // We are going to infer semantics of a library function based on mapping it // to an LLVM intrinsic. Check that the library function is available from // this callbase and in this environment. LibFunc Func; if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || !CB.onlyReadsMemory()) return Intrinsic::not_intrinsic; switch (Func) { default: break; case LibFunc_sin: case LibFunc_sinf: case LibFunc_sinl: return Intrinsic::sin; case LibFunc_cos: case LibFunc_cosf: case LibFunc_cosl: return Intrinsic::cos; case LibFunc_exp: case LibFunc_expf: case LibFunc_expl: return Intrinsic::exp; case LibFunc_exp2: case LibFunc_exp2f: case LibFunc_exp2l: return Intrinsic::exp2; case LibFunc_log: case LibFunc_logf: case LibFunc_logl: return Intrinsic::log; case LibFunc_log10: case LibFunc_log10f: case LibFunc_log10l: return Intrinsic::log10; case LibFunc_log2: case LibFunc_log2f: case LibFunc_log2l: return Intrinsic::log2; case LibFunc_fabs: case LibFunc_fabsf: case LibFunc_fabsl: return Intrinsic::fabs; case LibFunc_fmin: case LibFunc_fminf: case LibFunc_fminl: return Intrinsic::minnum; case LibFunc_fmax: case LibFunc_fmaxf: case LibFunc_fmaxl: return Intrinsic::maxnum; case LibFunc_copysign: case LibFunc_copysignf: case LibFunc_copysignl: return Intrinsic::copysign; case LibFunc_floor: case LibFunc_floorf: case LibFunc_floorl: return Intrinsic::floor; case LibFunc_ceil: case LibFunc_ceilf: case LibFunc_ceill: return Intrinsic::ceil; case LibFunc_trunc: case LibFunc_truncf: case LibFunc_truncl: return Intrinsic::trunc; case LibFunc_rint: case LibFunc_rintf: case LibFunc_rintl: return Intrinsic::rint; case LibFunc_nearbyint: case LibFunc_nearbyintf: case LibFunc_nearbyintl: return Intrinsic::nearbyint; case LibFunc_round: case LibFunc_roundf: case LibFunc_roundl: return Intrinsic::round; case LibFunc_roundeven: case LibFunc_roundevenf: case LibFunc_roundevenl: return Intrinsic::roundeven; case LibFunc_pow: case LibFunc_powf: case LibFunc_powl: return Intrinsic::pow; case LibFunc_sqrt: case LibFunc_sqrtf: case LibFunc_sqrtl: return Intrinsic::sqrt; } return Intrinsic::not_intrinsic; } /// Return true if we can prove that the specified FP value is never equal to /// -0.0. /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee /// that a value is not -0.0. It only guarantees that -0.0 may be treated /// the same as +0.0 in floating-point ops. bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, unsigned Depth) { if (auto *CFP = dyn_cast(V)) return !CFP->getValueAPF().isNegZero(); if (Depth == MaxAnalysisRecursionDepth) return false; auto *Op = dyn_cast(V); if (!Op) return false; // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) return true; // sitofp and uitofp turn into +0.0 for zero. if (isa(Op) || isa(Op)) return true; if (auto *Call = dyn_cast(Op)) { Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); switch (IID) { default: break; // sqrt(-0.0) = -0.0, no other negative results are possible. case Intrinsic::sqrt: case Intrinsic::canonicalize: return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); case Intrinsic::experimental_constrained_sqrt: { // NOTE: This rounding mode restriction may be too strict. const auto *CI = cast(Call); if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven) return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); else return false; } // fabs(x) != -0.0 case Intrinsic::fabs: return true; // sitofp and uitofp turn into +0.0 for zero. case Intrinsic::experimental_constrained_sitofp: case Intrinsic::experimental_constrained_uitofp: return true; } } return false; } /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign /// bit despite comparing equal. static bool cannotBeOrderedLessThanZeroImpl(const Value *V, const TargetLibraryInfo *TLI, bool SignBitOnly, unsigned Depth) { // TODO: This function does not do the right thing when SignBitOnly is true // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform // which flips the sign bits of NaNs. See // https://llvm.org/bugs/show_bug.cgi?id=31702. if (const ConstantFP *CFP = dyn_cast(V)) { return !CFP->getValueAPF().isNegative() || (!SignBitOnly && CFP->getValueAPF().isZero()); } // Handle vector of constants. if (auto *CV = dyn_cast(V)) { if (auto *CVFVTy = dyn_cast(CV->getType())) { unsigned NumElts = CVFVTy->getNumElements(); for (unsigned i = 0; i != NumElts; ++i) { auto *CFP = dyn_cast_or_null(CV->getAggregateElement(i)); if (!CFP) return false; if (CFP->getValueAPF().isNegative() && (SignBitOnly || !CFP->getValueAPF().isZero())) return false; } // All non-negative ConstantFPs. return true; } } if (Depth == MaxAnalysisRecursionDepth) return false; const Operator *I = dyn_cast(V); if (!I) return false; switch (I->getOpcode()) { default: break; // Unsigned integers are always nonnegative. case Instruction::UIToFP: return true; case Instruction::FDiv: // X / X is always exactly 1.0 or a NaN. if (I->getOperand(0) == I->getOperand(1) && (!SignBitOnly || cast(I)->hasNoNaNs())) return true; // Set SignBitOnly for RHS, because X / -0.0 is -Inf (or NaN). return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1) && cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, /*SignBitOnly*/ true, Depth + 1); case Instruction::FMul: // X * X is always non-negative or a NaN. if (I->getOperand(0) == I->getOperand(1) && (!SignBitOnly || cast(I)->hasNoNaNs())) return true; LLVM_FALLTHROUGH; case Instruction::FAdd: case Instruction::FRem: return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1) && cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, Depth + 1); case Instruction::Select: return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, Depth + 1) && cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, Depth + 1); case Instruction::FPExt: case Instruction::FPTrunc: // Widening/narrowing never change sign. return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1); case Instruction::ExtractElement: // Look through extract element. At the moment we keep this simple and skip // tracking the specific element. But at least we might find information // valid for all elements of the vector. return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1); case Instruction::Call: const auto *CI = cast(I); Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); switch (IID) { default: break; case Intrinsic::maxnum: { Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); auto isPositiveNum = [&](Value *V) { if (SignBitOnly) { // With SignBitOnly, this is tricky because the result of // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is // a constant strictly greater than 0.0. const APFloat *C; return match(V, m_APFloat(C)) && *C > APFloat::getZero(C->getSemantics()); } // -0.0 compares equal to 0.0, so if this operand is at least -0.0, // maxnum can't be ordered-less-than-zero. return isKnownNeverNaN(V, TLI) && cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); }; // TODO: This could be improved. We could also check that neither operand // has its sign bit set (and at least 1 is not-NAN?). return isPositiveNum(V0) || isPositiveNum(V1); } case Intrinsic::maximum: return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1) || cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, Depth + 1); case Intrinsic::minnum: case Intrinsic::minimum: return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1) && cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, Depth + 1); case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::fabs: return true; case Intrinsic::sqrt: // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. if (!SignBitOnly) return true; return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || CannotBeNegativeZero(CI->getOperand(0), TLI)); case Intrinsic::powi: if (ConstantInt *Exponent = dyn_cast(I->getOperand(1))) { // powi(x,n) is non-negative if n is even. if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) return true; } // TODO: This is not correct. Given that exp is an integer, here are the // ways that pow can return a negative value: // // pow(x, exp) --> negative if exp is odd and x is negative. // pow(-0, exp) --> -inf if exp is negative odd. // pow(-0, exp) --> -0 if exp is positive odd. // pow(-inf, exp) --> -0 if exp is negative odd. // pow(-inf, exp) --> -inf if exp is positive odd. // // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, // but we must return false if x == -0. Unfortunately we do not currently // have a way of expressing this constraint. See details in // https://llvm.org/bugs/show_bug.cgi?id=31702. return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1); case Intrinsic::fma: case Intrinsic::fmuladd: // x*x+y is non-negative if y is non-negative. return I->getOperand(0) == I->getOperand(1) && (!SignBitOnly || cast(I)->hasNoNaNs()) && cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, Depth + 1); } break; } return false; } bool llvm::CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI) { return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); } bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); } bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, unsigned Depth) { assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); // If we're told that infinities won't happen, assume they won't. if (auto *FPMathOp = dyn_cast(V)) if (FPMathOp->hasNoInfs()) return true; // Handle scalar constants. if (auto *CFP = dyn_cast(V)) return !CFP->isInfinity(); if (Depth == MaxAnalysisRecursionDepth) return false; if (auto *Inst = dyn_cast(V)) { switch (Inst->getOpcode()) { case Instruction::Select: { return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); } case Instruction::SIToFP: case Instruction::UIToFP: { // Get width of largest magnitude integer (remove a bit if signed). // This still works for a signed minimum value because the largest FP // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); if (Inst->getOpcode() == Instruction::SIToFP) --IntSize; // If the exponent of the largest finite FP value can hold the largest // integer, the result of the cast must be finite. Type *FPTy = Inst->getType()->getScalarType(); return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; } default: break; } } // try to handle fixed width vector constants auto *VFVTy = dyn_cast(V->getType()); if (VFVTy && isa(V)) { // For vectors, verify that each element is not infinity. unsigned NumElts = VFVTy->getNumElements(); for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = cast(V)->getAggregateElement(i); if (!Elt) return false; if (isa(Elt)) continue; auto *CElt = dyn_cast(Elt); if (!CElt || CElt->isInfinity()) return false; } // All elements were confirmed non-infinity or undefined. return true; } // was not able to prove that V never contains infinity return false; } bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, unsigned Depth) { assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); // If we're told that NaNs won't happen, assume they won't. if (auto *FPMathOp = dyn_cast(V)) if (FPMathOp->hasNoNaNs()) return true; // Handle scalar constants. if (auto *CFP = dyn_cast(V)) return !CFP->isNaN(); if (Depth == MaxAnalysisRecursionDepth) return false; if (auto *Inst = dyn_cast(V)) { switch (Inst->getOpcode()) { case Instruction::FAdd: case Instruction::FSub: // Adding positive and negative infinity produces NaN. return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); case Instruction::FMul: // Zero multiplied with infinity produces NaN. // FIXME: If neither side can be zero fmul never produces NaN. return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); case Instruction::FDiv: case Instruction::FRem: // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. return false; case Instruction::Select: { return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); } case Instruction::SIToFP: case Instruction::UIToFP: return true; case Instruction::FPTrunc: case Instruction::FPExt: return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); default: break; } } if (const auto *II = dyn_cast(V)) { switch (II->getIntrinsicID()) { case Intrinsic::canonicalize: case Intrinsic::fabs: case Intrinsic::copysign: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::trunc: case Intrinsic::rint: case Intrinsic::nearbyint: case Intrinsic::round: case Intrinsic::roundeven: return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); case Intrinsic::sqrt: return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); case Intrinsic::minnum: case Intrinsic::maxnum: // If either operand is not NaN, the result is not NaN. return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); default: return false; } } // Try to handle fixed width vector constants auto *VFVTy = dyn_cast(V->getType()); if (VFVTy && isa(V)) { // For vectors, verify that each element is not NaN. unsigned NumElts = VFVTy->getNumElements(); for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = cast(V)->getAggregateElement(i); if (!Elt) return false; if (isa(Elt)) continue; auto *CElt = dyn_cast(Elt); if (!CElt || CElt->isNaN()) return false; } // All elements were confirmed not-NaN or undefined. return true; } // Was not able to prove that V never contains NaN return false; } Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { // All byte-wide stores are splatable, even of arbitrary variables. if (V->getType()->isIntegerTy(8)) return V; LLVMContext &Ctx = V->getContext(); // Undef don't care. auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); if (isa(V)) return UndefInt8; // Return Undef for zero-sized type. if (!DL.getTypeStoreSize(V->getType()).isNonZero()) return UndefInt8; Constant *C = dyn_cast(V); if (!C) { // Conceptually, we could handle things like: // %a = zext i8 %X to i16 // %b = shl i16 %a, 8 // %c = or i16 %a, %b // but until there is an example that actually needs this, it doesn't seem // worth worrying about. return nullptr; } // Handle 'null' ConstantArrayZero etc. if (C->isNullValue()) return Constant::getNullValue(Type::getInt8Ty(Ctx)); // Constant floating-point values can be handled as integer values if the // corresponding integer value is "byteable". An important case is 0.0. if (ConstantFP *CFP = dyn_cast(C)) { Type *Ty = nullptr; if (CFP->getType()->isHalfTy()) Ty = Type::getInt16Ty(Ctx); else if (CFP->getType()->isFloatTy()) Ty = Type::getInt32Ty(Ctx); else if (CFP->getType()->isDoubleTy()) Ty = Type::getInt64Ty(Ctx); // Don't handle long double formats, which have strange constraints. return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) : nullptr; } // We can handle constant integers that are multiple of 8 bits. if (ConstantInt *CI = dyn_cast(C)) { if (CI->getBitWidth() % 8 == 0) { assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); if (!CI->getValue().isSplat(8)) return nullptr; return ConstantInt::get(Ctx, CI->getValue().trunc(8)); } } if (auto *CE = dyn_cast(C)) { if (CE->getOpcode() == Instruction::IntToPtr) { if (auto *PtrTy = dyn_cast(CE->getType())) { unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); return isBytewiseValue( ConstantExpr::getIntegerCast(CE->getOperand(0), Type::getIntNTy(Ctx, BitWidth), false), DL); } } } auto Merge = [&](Value *LHS, Value *RHS) -> Value * { if (LHS == RHS) return LHS; if (!LHS || !RHS) return nullptr; if (LHS == UndefInt8) return RHS; if (RHS == UndefInt8) return LHS; return nullptr; }; if (ConstantDataSequential *CA = dyn_cast(C)) { Value *Val = UndefInt8; for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) return nullptr; return Val; } if (isa(C)) { Value *Val = UndefInt8; for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) return nullptr; return Val; } // Don't try to handle the handful of other constants. return nullptr; } // This is the recursive version of BuildSubAggregate. It takes a few different // arguments. Idxs is the index within the nested struct From that we are // looking at now (which is of type IndexedType). IdxSkip is the number of // indices from Idxs that should be left out when inserting into the resulting // struct. To is the result struct built so far, new insertvalue instructions // build on that. static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, SmallVectorImpl &Idxs, unsigned IdxSkip, Instruction *InsertBefore) { StructType *STy = dyn_cast(IndexedType); if (STy) { // Save the original To argument so we can modify it Value *OrigTo = To; // General case, the type indexed by Idxs is a struct for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { // Process each struct element recursively Idxs.push_back(i); Value *PrevTo = To; To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, InsertBefore); Idxs.pop_back(); if (!To) { // Couldn't find any inserted value for this index? Cleanup while (PrevTo != OrigTo) { InsertValueInst* Del = cast(PrevTo); PrevTo = Del->getAggregateOperand(); Del->eraseFromParent(); } // Stop processing elements break; } } // If we successfully found a value for each of our subaggregates if (To) return To; } // Base case, the type indexed by SourceIdxs is not a struct, or not all of // the struct's elements had a value that was inserted directly. In the latter // case, perhaps we can't determine each of the subelements individually, but // we might be able to find the complete struct somewhere. // Find the value that is at that particular spot Value *V = FindInsertedValue(From, Idxs); if (!V) return nullptr; // Insert the value in the new (sub) aggregate return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), "tmp", InsertBefore); } // This helper takes a nested struct and extracts a part of it (which is again a // struct) into a new value. For example, given the struct: // { a, { b, { c, d }, e } } // and the indices "1, 1" this returns // { c, d }. // // It does this by inserting an insertvalue for each element in the resulting // struct, as opposed to just inserting a single struct. This will only work if // each of the elements of the substruct are known (ie, inserted into From by an // insertvalue instruction somewhere). // // All inserted insertvalue instructions are inserted before InsertBefore static Value *BuildSubAggregate(Value *From, ArrayRef idx_range, Instruction *InsertBefore) { assert(InsertBefore && "Must have someplace to insert!"); Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), idx_range); Value *To = UndefValue::get(IndexedType); SmallVector Idxs(idx_range.begin(), idx_range.end()); unsigned IdxSkip = Idxs.size(); return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); } /// Given an aggregate and a sequence of indices, see if the scalar value /// indexed is already around as a register, for example if it was inserted /// directly into the aggregate. /// /// If InsertBefore is not null, this function will duplicate (modified) /// insertvalues when a part of a nested struct is extracted. Value *llvm::FindInsertedValue(Value *V, ArrayRef idx_range, Instruction *InsertBefore) { // Nothing to index? Just return V then (this is useful at the end of our // recursion). if (idx_range.empty()) return V; // We have indices, so V should have an indexable type. assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && "Not looking at a struct or array?"); assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && "Invalid indices for type?"); if (Constant *C = dyn_cast(V)) { C = C->getAggregateElement(idx_range[0]); if (!C) return nullptr; return FindInsertedValue(C, idx_range.slice(1), InsertBefore); } if (InsertValueInst *I = dyn_cast(V)) { // Loop the indices for the insertvalue instruction in parallel with the // requested indices const unsigned *req_idx = idx_range.begin(); for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); i != e; ++i, ++req_idx) { if (req_idx == idx_range.end()) { // We can't handle this without inserting insertvalues if (!InsertBefore) return nullptr; // The requested index identifies a part of a nested aggregate. Handle // this specially. For example, // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 // %C = extractvalue {i32, { i32, i32 } } %B, 1 // This can be changed into // %A = insertvalue {i32, i32 } undef, i32 10, 0 // %C = insertvalue {i32, i32 } %A, i32 11, 1 // which allows the unused 0,0 element from the nested struct to be // removed. return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), InsertBefore); } // This insert value inserts something else than what we are looking for. // See if the (aggregate) value inserted into has the value we are // looking for, then. if (*req_idx != *i) return FindInsertedValue(I->getAggregateOperand(), idx_range, InsertBefore); } // If we end up here, the indices of the insertvalue match with those // requested (though possibly only partially). Now we recursively look at // the inserted value, passing any remaining indices. return FindInsertedValue(I->getInsertedValueOperand(), makeArrayRef(req_idx, idx_range.end()), InsertBefore); } if (ExtractValueInst *I = dyn_cast(V)) { // If we're extracting a value from an aggregate that was extracted from // something else, we can extract from that something else directly instead. // However, we will need to chain I's indices with the requested indices. // Calculate the number of indices required unsigned size = I->getNumIndices() + idx_range.size(); // Allocate some space to put the new indices in SmallVector Idxs; Idxs.reserve(size); // Add indices from the extract value instruction Idxs.append(I->idx_begin(), I->idx_end()); // Add requested indices Idxs.append(idx_range.begin(), idx_range.end()); assert(Idxs.size() == size && "Number of indices added not correct?"); return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); } // Otherwise, we don't know (such as, extracting from a function return value // or load instruction) return nullptr; } bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize) { // Make sure the GEP has exactly three arguments. if (GEP->getNumOperands() != 3) return false; // Make sure the index-ee is a pointer to array of \p CharSize integers. // CharSize. ArrayType *AT = dyn_cast(GEP->getSourceElementType()); if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) return false; // Check to make sure that the first operand of the GEP is an integer and // has value 0 so that we are sure we're indexing into the initializer. const ConstantInt *FirstIdx = dyn_cast(GEP->getOperand(1)); if (!FirstIdx || !FirstIdx->isZero()) return false; return true; } // If V refers to an initialized global constant, set Slice either to // its initializer if the size of its elements equals ElementSize, or, // for ElementSize == 8, to its representation as an array of unsiged // char. Return true on success. bool llvm::getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset) { assert(V); // Drill down into the pointer expression V, ignoring any intervening // casts, and determine the identity of the object it references along // with the cumulative byte offset into it. const GlobalVariable *GV = dyn_cast(getUnderlyingObject(V)); if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) // Fail if V is not based on constant global object. return false; const DataLayout &DL = GV->getParent()->getDataLayout(); APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0); if (GV != V->stripAndAccumulateConstantOffsets(DL, Off, /*AllowNonInbounds*/ true)) // Fail if a constant offset could not be determined. return false; uint64_t StartIdx = Off.getLimitedValue(); if (StartIdx == UINT64_MAX) // Fail if the constant offset is excessive. return false; Offset += StartIdx; ConstantDataArray *Array = nullptr; ArrayType *ArrayTy = nullptr; if (GV->getInitializer()->isNullValue()) { Type *GVTy = GV->getValueType(); uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); uint64_t Length = SizeInBytes / (ElementSize / 8); Slice.Array = nullptr; Slice.Offset = 0; // Return an empty Slice for undersized constants to let callers // transform even undefined library calls into simpler, well-defined // expressions. This is preferable to making the calls although it // prevents sanitizers from detecting such calls. Slice.Length = Length < Offset ? 0 : Length - Offset; return true; } auto *Init = const_cast(GV->getInitializer()); if (auto *ArrayInit = dyn_cast(Init)) { Type *InitElTy = ArrayInit->getElementType(); if (InitElTy->isIntegerTy(ElementSize)) { // If Init is an initializer for an array of the expected type // and size, use it as is. Array = ArrayInit; ArrayTy = ArrayInit->getType(); } } if (!Array) { if (ElementSize != 8) // TODO: Handle conversions to larger integral types. return false; // Otherwise extract the portion of the initializer starting // at Offset as an array of bytes, and reset Offset. Init = ReadByteArrayFromGlobal(GV, Offset); if (!Init) return false; Offset = 0; Array = dyn_cast(Init); ArrayTy = dyn_cast(Init->getType()); } uint64_t NumElts = ArrayTy->getArrayNumElements(); if (Offset > NumElts) return false; Slice.Array = Array; Slice.Offset = Offset; Slice.Length = NumElts - Offset; return true; } /// Extract bytes from the initializer of the constant array V, which need /// not be a nul-terminated string. On success, store the bytes in Str and /// return true. When TrimAtNul is set, Str will contain only the bytes up /// to but not including the first nul. Return false on failure. bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, uint64_t Offset, bool TrimAtNul) { ConstantDataArraySlice Slice; if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) return false; if (Slice.Array == nullptr) { if (TrimAtNul) { // Return a nul-terminated string even for an empty Slice. This is // safe because all existing SimplifyLibcalls callers require string // arguments and the behavior of the functions they fold is undefined // otherwise. Folding the calls this way is preferable to making // the undefined library calls, even though it prevents sanitizers // from reporting such calls. Str = StringRef(); return true; } if (Slice.Length == 1) { Str = StringRef("", 1); return true; } // We cannot instantiate a StringRef as we do not have an appropriate string // of 0s at hand. return false; } // Start out with the entire array in the StringRef. Str = Slice.Array->getAsString(); // Skip over 'offset' bytes. Str = Str.substr(Slice.Offset); if (TrimAtNul) { // Trim off the \0 and anything after it. If the array is not nul // terminated, we just return the whole end of string. The client may know // some other way that the string is length-bound. Str = Str.substr(0, Str.find('\0')); } return true; } // These next two are very similar to the above, but also look through PHI // nodes. // TODO: See if we can integrate these two together. /// If we can compute the length of the string pointed to by /// the specified pointer, return 'len+1'. If we can't, return 0. static uint64_t GetStringLengthH(const Value *V, SmallPtrSetImpl &PHIs, unsigned CharSize) { // Look through noop bitcast instructions. V = V->stripPointerCasts(); // If this is a PHI node, there are two cases: either we have already seen it // or we haven't. if (const PHINode *PN = dyn_cast(V)) { if (!PHIs.insert(PN).second) return ~0ULL; // already in the set. // If it was new, see if all the input strings are the same length. uint64_t LenSoFar = ~0ULL; for (Value *IncValue : PN->incoming_values()) { uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); if (Len == 0) return 0; // Unknown length -> unknown. if (Len == ~0ULL) continue; if (Len != LenSoFar && LenSoFar != ~0ULL) return 0; // Disagree -> unknown. LenSoFar = Len; } // Success, all agree. return LenSoFar; } // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) if (const SelectInst *SI = dyn_cast(V)) { uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); if (Len1 == 0) return 0; uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); if (Len2 == 0) return 0; if (Len1 == ~0ULL) return Len2; if (Len2 == ~0ULL) return Len1; if (Len1 != Len2) return 0; return Len1; } // Otherwise, see if we can read the string. ConstantDataArraySlice Slice; if (!getConstantDataArrayInfo(V, Slice, CharSize)) return 0; if (Slice.Array == nullptr) // Zeroinitializer (including an empty one). return 1; // Search for the first nul character. Return a conservative result even // when there is no nul. This is safe since otherwise the string function // being folded such as strlen is undefined, and can be preferable to // making the undefined library call. unsigned NullIndex = 0; for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) break; } return NullIndex + 1; } /// If we can compute the length of the string pointed to by /// the specified pointer, return 'len+1'. If we can't, return 0. uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { if (!V->getType()->isPointerTy()) return 0; SmallPtrSet PHIs; uint64_t Len = GetStringLengthH(V, PHIs, CharSize); // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return // an empty string as a length. return Len == ~0ULL ? 1 : Len; } const Value * llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness) { assert(Call && "getArgumentAliasingToReturnedPointer only works on nonnull calls"); if (const Value *RV = Call->getReturnedArgOperand()) return RV; // This can be used only as a aliasing property. if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( Call, MustPreserveNullness)) return Call->getArgOperand(0); return nullptr; } bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( const CallBase *Call, bool MustPreserveNullness) { switch (Call->getIntrinsicID()) { case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: case Intrinsic::aarch64_irg: case Intrinsic::aarch64_tagp: return true; case Intrinsic::ptrmask: return !MustPreserveNullness; default: return false; } } /// \p PN defines a loop-variant pointer to an object. Check if the /// previous iteration of the loop was referring to the same object as \p PN. static bool isSameUnderlyingObjectInLoop(const PHINode *PN, const LoopInfo *LI) { // Find the loop-defined value. Loop *L = LI->getLoopFor(PN->getParent()); if (PN->getNumIncomingValues() != 2) return true; // Find the value from previous iteration. auto *PrevValue = dyn_cast(PN->getIncomingValue(0)); if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) PrevValue = dyn_cast(PN->getIncomingValue(1)); if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) return true; // If a new pointer is loaded in the loop, the pointer references a different // object in every iteration. E.g.: // for (i) // int *p = a[i]; // ... if (auto *Load = dyn_cast(PrevValue)) if (!L->isLoopInvariant(Load->getPointerOperand())) return false; return true; } const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { if (!V->getType()->isPointerTy()) return V; for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { if (auto *GEP = dyn_cast(V)) { V = GEP->getPointerOperand(); } else if (Operator::getOpcode(V) == Instruction::BitCast || Operator::getOpcode(V) == Instruction::AddrSpaceCast) { V = cast(V)->getOperand(0); if (!V->getType()->isPointerTy()) return V; } else if (auto *GA = dyn_cast(V)) { if (GA->isInterposable()) return V; V = GA->getAliasee(); } else { if (auto *PHI = dyn_cast(V)) { // Look through single-arg phi nodes created by LCSSA. if (PHI->getNumIncomingValues() == 1) { V = PHI->getIncomingValue(0); continue; } } else if (auto *Call = dyn_cast(V)) { // CaptureTracking can know about special capturing properties of some // intrinsics like launder.invariant.group, that can't be expressed with // the attributes, but have properties like returning aliasing pointer. // Because some analysis may assume that nocaptured pointer is not // returned from some special intrinsic (because function would have to // be marked with returns attribute), it is crucial to use this function // because it should be in sync with CaptureTracking. Not using it may // cause weird miscompilations where 2 aliasing pointers are assumed to // noalias. if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { V = RP; continue; } } return V; } assert(V->getType()->isPointerTy() && "Unexpected operand type!"); } return V; } void llvm::getUnderlyingObjects(const Value *V, SmallVectorImpl &Objects, LoopInfo *LI, unsigned MaxLookup) { SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(V); do { const Value *P = Worklist.pop_back_val(); P = getUnderlyingObject(P, MaxLookup); if (!Visited.insert(P).second) continue; if (auto *SI = dyn_cast(P)) { Worklist.push_back(SI->getTrueValue()); Worklist.push_back(SI->getFalseValue()); continue; } if (auto *PN = dyn_cast(P)) { // If this PHI changes the underlying object in every iteration of the // loop, don't look through it. Consider: // int **A; // for (i) { // Prev = Curr; // Prev = PHI (Prev_0, Curr) // Curr = A[i]; // *Prev, *Curr; // // Prev is tracking Curr one iteration behind so they refer to different // underlying objects. if (!LI || !LI->isLoopHeader(PN->getParent()) || isSameUnderlyingObjectInLoop(PN, LI)) append_range(Worklist, PN->incoming_values()); continue; } Objects.push_back(P); } while (!Worklist.empty()); } /// This is the function that does the work of looking through basic /// ptrtoint+arithmetic+inttoptr sequences. static const Value *getUnderlyingObjectFromInt(const Value *V) { do { if (const Operator *U = dyn_cast(V)) { // If we find a ptrtoint, we can transfer control back to the // regular getUnderlyingObjectFromInt. if (U->getOpcode() == Instruction::PtrToInt) return U->getOperand(0); // If we find an add of a constant, a multiplied value, or a phi, it's // likely that the other operand will lead us to the base // object. We don't have to worry about the case where the // object address is somehow being computed by the multiply, // because our callers only care when the result is an // identifiable object. if (U->getOpcode() != Instruction::Add || (!isa(U->getOperand(1)) && Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && !isa(U->getOperand(1)))) return V; V = U->getOperand(0); } else { return V; } assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); } while (true); } /// This is a wrapper around getUnderlyingObjects and adds support for basic /// ptrtoint+arithmetic+inttoptr sequences. /// It returns false if unidentified object is found in getUnderlyingObjects. bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl &Objects) { SmallPtrSet Visited; SmallVector Working(1, V); do { V = Working.pop_back_val(); SmallVector Objs; getUnderlyingObjects(V, Objs); for (const Value *V : Objs) { if (!Visited.insert(V).second) continue; if (Operator::getOpcode(V) == Instruction::IntToPtr) { const Value *O = getUnderlyingObjectFromInt(cast(V)->getOperand(0)); if (O->getType()->isPointerTy()) { Working.push_back(O); continue; } } // If getUnderlyingObjects fails to find an identifiable object, // getUnderlyingObjectsForCodeGen also fails for safety. if (!isIdentifiedObject(V)) { Objects.clear(); return false; } Objects.push_back(const_cast(V)); } } while (!Working.empty()); return true; } AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { AllocaInst *Result = nullptr; SmallPtrSet Visited; SmallVector Worklist; auto AddWork = [&](Value *V) { if (Visited.insert(V).second) Worklist.push_back(V); }; AddWork(V); do { V = Worklist.pop_back_val(); assert(Visited.count(V)); if (AllocaInst *AI = dyn_cast(V)) { if (Result && Result != AI) return nullptr; Result = AI; } else if (CastInst *CI = dyn_cast(V)) { AddWork(CI->getOperand(0)); } else if (PHINode *PN = dyn_cast(V)) { for (Value *IncValue : PN->incoming_values()) AddWork(IncValue); } else if (auto *SI = dyn_cast(V)) { AddWork(SI->getTrueValue()); AddWork(SI->getFalseValue()); } else if (GetElementPtrInst *GEP = dyn_cast(V)) { if (OffsetZero && !GEP->hasAllZeroIndices()) return nullptr; AddWork(GEP->getPointerOperand()); } else if (CallBase *CB = dyn_cast(V)) { Value *Returned = CB->getReturnedArgOperand(); if (Returned) AddWork(Returned); else return nullptr; } else { return nullptr; } } while (!Worklist.empty()); return Result; } static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( const Value *V, bool AllowLifetime, bool AllowDroppable) { for (const User *U : V->users()) { const IntrinsicInst *II = dyn_cast(U); if (!II) return false; if (AllowLifetime && II->isLifetimeStartOrEnd()) continue; if (AllowDroppable && II->isDroppable()) continue; return false; } return true; } bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( V, /* AllowLifetime */ true, /* AllowDroppable */ false); } bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( V, /* AllowLifetime */ true, /* AllowDroppable */ true); } bool llvm::mustSuppressSpeculation(const LoadInst &LI) { if (!LI.isUnordered()) return true; const Function &F = *LI.getFunction(); // Speculative load may create a race that did not exist in the source. return F.hasFnAttribute(Attribute::SanitizeThread) || // Speculative load may load data from dirty regions. F.hasFnAttribute(Attribute::SanitizeAddress) || F.hasFnAttribute(Attribute::SanitizeHWAddress); } bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst, const Instruction *CtxI, const DominatorTree *DT, const TargetLibraryInfo *TLI) { return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI, DT, TLI); } bool llvm::isSafeToSpeculativelyExecuteWithOpcode( unsigned Opcode, const Instruction *Inst, const Instruction *CtxI, const DominatorTree *DT, const TargetLibraryInfo *TLI) { #ifndef NDEBUG if (Inst->getOpcode() != Opcode) { // Check that the operands are actually compatible with the Opcode override. auto hasEqualReturnAndLeadingOperandTypes = [](const Instruction *Inst, unsigned NumLeadingOperands) { if (Inst->getNumOperands() < NumLeadingOperands) return false; const Type *ExpectedType = Inst->getType(); for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp) if (Inst->getOperand(ItOp)->getType() != ExpectedType) return false; return true; }; assert(!Instruction::isBinaryOp(Opcode) || hasEqualReturnAndLeadingOperandTypes(Inst, 2)); assert(!Instruction::isUnaryOp(Opcode) || hasEqualReturnAndLeadingOperandTypes(Inst, 1)); } #endif switch (Opcode) { default: return true; case Instruction::UDiv: case Instruction::URem: { // x / y is undefined if y == 0. const APInt *V; if (match(Inst->getOperand(1), m_APInt(V))) return *V != 0; return false; } case Instruction::SDiv: case Instruction::SRem: { // x / y is undefined if y == 0 or x == INT_MIN and y == -1 const APInt *Numerator, *Denominator; if (!match(Inst->getOperand(1), m_APInt(Denominator))) return false; // We cannot hoist this division if the denominator is 0. if (*Denominator == 0) return false; // It's safe to hoist if the denominator is not 0 or -1. if (!Denominator->isAllOnes()) return true; // At this point we know that the denominator is -1. It is safe to hoist as // long we know that the numerator is not INT_MIN. if (match(Inst->getOperand(0), m_APInt(Numerator))) return !Numerator->isMinSignedValue(); // The numerator *might* be MinSignedValue. return false; } case Instruction::Load: { const LoadInst *LI = dyn_cast(Inst); if (!LI) return false; if (mustSuppressSpeculation(*LI)) return false; const DataLayout &DL = LI->getModule()->getDataLayout(); return isDereferenceableAndAlignedPointer( LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT, TLI); } case Instruction::Call: { auto *CI = dyn_cast(Inst); if (!CI) return false; const Function *Callee = CI->getCalledFunction(); // The called function could have undefined behavior or side-effects, even // if marked readnone nounwind. return Callee && Callee->isSpeculatable(); } case Instruction::VAArg: case Instruction::Alloca: case Instruction::Invoke: case Instruction::CallBr: case Instruction::PHI: case Instruction::Store: case Instruction::Ret: case Instruction::Br: case Instruction::IndirectBr: case Instruction::Switch: case Instruction::Unreachable: case Instruction::Fence: case Instruction::AtomicRMW: case Instruction::AtomicCmpXchg: case Instruction::LandingPad: case Instruction::Resume: case Instruction::CatchSwitch: case Instruction::CatchPad: case Instruction::CatchRet: case Instruction::CleanupPad: case Instruction::CleanupRet: return false; // Misc instructions which have effects } } bool llvm::mayHaveNonDefUseDependency(const Instruction &I) { if (I.mayReadOrWriteMemory()) // Memory dependency possible return true; if (!isSafeToSpeculativelyExecute(&I)) // Can't move above a maythrow call or infinite loop. Or if an // inalloca alloca, above a stacksave call. return true; if (!isGuaranteedToTransferExecutionToSuccessor(&I)) // 1) Can't reorder two inf-loop calls, even if readonly // 2) Also can't reorder an inf-loop call below a instruction which isn't // safe to speculative execute. (Inverse of above) return true; return false; } /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { switch (OR) { case ConstantRange::OverflowResult::MayOverflow: return OverflowResult::MayOverflow; case ConstantRange::OverflowResult::AlwaysOverflowsLow: return OverflowResult::AlwaysOverflowsLow; case ConstantRange::OverflowResult::AlwaysOverflowsHigh: return OverflowResult::AlwaysOverflowsHigh; case ConstantRange::OverflowResult::NeverOverflows: return OverflowResult::NeverOverflows; } llvm_unreachable("Unknown OverflowResult"); } /// Combine constant ranges from computeConstantRange() and computeKnownBits(). static ConstantRange computeConstantRangeIncludingKnownBits( const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { KnownBits Known = computeKnownBits( V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); ConstantRange::PreferredRangeType RangeType = ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; return CR1.intersectWith(CR2, RangeType); } OverflowResult llvm::computeOverflowForUnsignedMul( const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, UseInstrInfo); KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, UseInstrInfo); ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); } OverflowResult llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { // Multiplying n * m significant bits yields a result of n + m significant // bits. If the total number of significant bits does not exceed the // result bit width (minus 1), there is no overflow. // This means if we have enough leading sign bits in the operands // we can guarantee that the result does not overflow. // Ref: "Hacker's Delight" by Henry Warren unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); // Note that underestimating the number of sign bits gives a more // conservative answer. unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); // First handle the easy case: if we have enough sign bits there's // definitely no overflow. if (SignBits > BitWidth + 1) return OverflowResult::NeverOverflows; // There are two ambiguous cases where there can be no overflow: // SignBits == BitWidth + 1 and // SignBits == BitWidth // The second case is difficult to check, therefore we only handle the // first case. if (SignBits == BitWidth + 1) { // It overflows only when both arguments are negative and the true // product is exactly the minimum negative number. // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 // For simplicity we just check if at least one side is not negative. KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, UseInstrInfo); KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, UseInstrInfo); if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) return OverflowResult::NeverOverflows; } return OverflowResult::MayOverflow; } OverflowResult llvm::computeOverflowForUnsignedAdd( const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo) { ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, UseInstrInfo); ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, UseInstrInfo); return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); } static OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, const AddOperator *Add, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { if (Add && Add->hasNoSignedWrap()) { return OverflowResult::NeverOverflows; } // If LHS and RHS each have at least two sign bits, the addition will look // like // // XX..... + // YY..... // // If the carry into the most significant position is 0, X and Y can't both // be 1 and therefore the carry out of the addition is also 0. // // If the carry into the most significant position is 1, X and Y can't both // be 0 and therefore the carry out of the addition is also 1. // // Since the carry into the most significant position is always equal to // the carry out of the addition, there is no signed overflow. if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) return OverflowResult::NeverOverflows; ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); OverflowResult OR = mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); if (OR != OverflowResult::MayOverflow) return OR; // The remaining code needs Add to be available. Early returns if not so. if (!Add) return OverflowResult::MayOverflow; // If the sign of Add is the same as at least one of the operands, this add // CANNOT overflow. If this can be determined from the known bits of the // operands the above signedAddMayOverflow() check will have already done so. // The only other way to improve on the known bits is from an assumption, so // call computeKnownBitsFromAssume() directly. bool LHSOrRHSKnownNonNegative = (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); bool LHSOrRHSKnownNegative = (LHSRange.isAllNegative() || RHSRange.isAllNegative()); if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { KnownBits AddKnown(LHSRange.getBitWidth()); computeKnownBitsFromAssume( Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || (AddKnown.isNegative() && LHSOrRHSKnownNegative)) return OverflowResult::NeverOverflows; } return OverflowResult::MayOverflow; } OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { // X - (X % ?) // The remainder of a value can't have greater magnitude than itself, // so the subtraction can't overflow. // X - (X -nuw ?) // In the minimal case, this would simplify to "?", so there's no subtract // at all. But if this analysis is used to peek through casts, for example, // then determining no-overflow may allow other transforms. // TODO: There are other patterns like this. // See simplifyICmpWithBinOpOnLHS() for candidates. if (match(RHS, m_URem(m_Specific(LHS), m_Value())) || match(RHS, m_NUWSub(m_Specific(LHS), m_Value()))) if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) return OverflowResult::NeverOverflows; // Checking for conditions implied by dominating conditions may be expensive. // Limit it to usub_with_overflow calls for now. if (match(CxtI, m_Intrinsic(m_Value(), m_Value()))) if (auto C = isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { if (*C) return OverflowResult::NeverOverflows; return OverflowResult::AlwaysOverflowsLow; } ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); } OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { // X - (X % ?) // The remainder of a value can't have greater magnitude than itself, // so the subtraction can't overflow. // X - (X -nsw ?) // In the minimal case, this would simplify to "?", so there's no subtract // at all. But if this analysis is used to peek through casts, for example, // then determining no-overflow may allow other transforms. if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) || match(RHS, m_NSWSub(m_Specific(LHS), m_Value()))) if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) return OverflowResult::NeverOverflows; // If LHS and RHS each have at least two sign bits, the subtraction // cannot overflow. if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) return OverflowResult::NeverOverflows; ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); } bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT) { SmallVector GuardingBranches; SmallVector Results; for (const User *U : WO->users()) { if (const auto *EVI = dyn_cast(U)) { assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); if (EVI->getIndices()[0] == 0) Results.push_back(EVI); else { assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); for (const auto *U : EVI->users()) if (const auto *B = dyn_cast(U)) { assert(B->isConditional() && "How else is it using an i1?"); GuardingBranches.push_back(B); } } } else { // We are using the aggregate directly in a way we don't want to analyze // here (storing it to a global, say). return false; } } auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); if (!NoWrapEdge.isSingleEdge()) return false; // Check if all users of the add are provably no-wrap. for (const auto *Result : Results) { // If the extractvalue itself is not executed on overflow, the we don't // need to check each use separately, since domination is transitive. if (DT.dominates(NoWrapEdge, Result->getParent())) continue; for (const auto &RU : Result->uses()) if (!DT.dominates(NoWrapEdge, RU)) return false; } return true; }; return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); } static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, bool ConsiderFlags) { if (ConsiderFlags && Op->hasPoisonGeneratingFlags()) return true; unsigned Opcode = Op->getOpcode(); // Check whether opcode is a poison/undef-generating operation switch (Opcode) { case Instruction::Shl: case Instruction::AShr: case Instruction::LShr: { // Shifts return poison if shiftwidth is larger than the bitwidth. if (auto *C = dyn_cast(Op->getOperand(1))) { SmallVector ShiftAmounts; if (auto *FVTy = dyn_cast(C->getType())) { unsigned NumElts = FVTy->getNumElements(); for (unsigned i = 0; i < NumElts; ++i) ShiftAmounts.push_back(C->getAggregateElement(i)); } else if (isa(C->getType())) return true; // Can't tell, just return true to be safe else ShiftAmounts.push_back(C); bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { auto *CI = dyn_cast_or_null(C); return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); }); return !Safe; } return true; } case Instruction::FPToSI: case Instruction::FPToUI: // fptosi/ui yields poison if the resulting value does not fit in the // destination type. return true; case Instruction::Call: if (auto *II = dyn_cast(Op)) { switch (II->getIntrinsicID()) { // TODO: Add more intrinsics. case Intrinsic::ctpop: case Intrinsic::sadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::umul_with_overflow: return false; } } LLVM_FALLTHROUGH; case Instruction::CallBr: case Instruction::Invoke: { const auto *CB = cast(Op); return !CB->hasRetAttr(Attribute::NoUndef); } case Instruction::InsertElement: case Instruction::ExtractElement: { // If index exceeds the length of the vector, it returns poison auto *VTy = cast(Op->getOperand(0)->getType()); unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; auto *Idx = dyn_cast(Op->getOperand(IdxOp)); if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) return true; return false; } case Instruction::ShuffleVector: { // shufflevector may return undef. if (PoisonOnly) return false; ArrayRef Mask = isa(Op) ? cast(Op)->getShuffleMask() : cast(Op)->getShuffleMask(); return is_contained(Mask, UndefMaskElem); } case Instruction::FNeg: case Instruction::PHI: case Instruction::Select: case Instruction::URem: case Instruction::SRem: case Instruction::ExtractValue: case Instruction::InsertValue: case Instruction::Freeze: case Instruction::ICmp: case Instruction::FCmp: return false; case Instruction::GetElementPtr: // inbounds is handled above // TODO: what about inrange on constexpr? return false; default: { const auto *CE = dyn_cast(Op); if (isa(Op) || (CE && CE->isCast())) return false; else if (Instruction::isBinaryOp(Opcode)) return false; // Be conservative and return true. return true; } } } bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); } bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); } static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth) { if (ValAssumedPoison == V) return true; const unsigned MaxDepth = 2; if (Depth >= MaxDepth) return false; if (const auto *I = dyn_cast(V)) { if (propagatesPoison(cast(I))) return any_of(I->operands(), [=](const Value *Op) { return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); }); // 'select ValAssumedPoison, _, _' is poison. if (const auto *SI = dyn_cast(I)) return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), Depth + 1); // V = extractvalue V0, idx // V2 = extractvalue V0, idx2 // V0's elements are all poison or not. (e.g., add_with_overflow) const WithOverflowInst *II; if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || llvm::is_contained(II->args(), ValAssumedPoison))) return true; } return false; } static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth) { if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) return true; if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) return true; const unsigned MaxDepth = 2; if (Depth >= MaxDepth) return false; const auto *I = dyn_cast(ValAssumedPoison); if (I && !canCreatePoison(cast(I))) { return all_of(I->operands(), [=](const Value *Op) { return impliesPoison(Op, V, Depth + 1); }); } return false; } bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); } static bool programUndefinedIfUndefOrPoison(const Value *V, bool PoisonOnly); static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, const Instruction *CtxI, const DominatorTree *DT, unsigned Depth, bool PoisonOnly) { if (Depth >= MaxAnalysisRecursionDepth) return false; if (isa(V)) return false; if (const auto *A = dyn_cast(V)) { if (A->hasAttribute(Attribute::NoUndef)) return true; } if (auto *C = dyn_cast(V)) { if (isa(C)) return PoisonOnly && !isa(C); if (isa(C) || isa(C) || isa(V) || isa(C) || isa(C)) return true; if (C->getType()->isVectorTy() && !isa(C)) return (PoisonOnly ? !C->containsPoisonElement() : !C->containsUndefOrPoisonElement()) && !C->containsConstantExpression(); } // Strip cast operations from a pointer value. // Note that stripPointerCastsSameRepresentation can strip off getelementptr // inbounds with zero offset. To guarantee that the result isn't poison, the // stripped pointer is checked as it has to be pointing into an allocated // object or be null `null` to ensure `inbounds` getelement pointers with a // zero offset could not produce poison. // It can strip off addrspacecast that do not change bit representation as // well. We believe that such addrspacecast is equivalent to no-op. auto *StrippedV = V->stripPointerCastsSameRepresentation(); if (isa(StrippedV) || isa(StrippedV) || isa(StrippedV) || isa(StrippedV)) return true; auto OpCheck = [&](const Value *V) { return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, PoisonOnly); }; if (auto *Opr = dyn_cast(V)) { // If the value is a freeze instruction, then it can never // be undef or poison. if (isa(V)) return true; if (const auto *CB = dyn_cast(V)) { if (CB->hasRetAttr(Attribute::NoUndef)) return true; } if (const auto *PN = dyn_cast(V)) { unsigned Num = PN->getNumIncomingValues(); bool IsWellDefined = true; for (unsigned i = 0; i < Num; ++i) { auto *TI = PN->getIncomingBlock(i)->getTerminator(); if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, DT, Depth + 1, PoisonOnly)) { IsWellDefined = false; break; } } if (IsWellDefined) return true; } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) return true; } if (auto *I = dyn_cast(V)) if (I->hasMetadata(LLVMContext::MD_noundef) || I->hasMetadata(LLVMContext::MD_dereferenceable) || I->hasMetadata(LLVMContext::MD_dereferenceable_or_null)) return true; if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) return true; // CxtI may be null or a cloned instruction. if (!CtxI || !CtxI->getParent() || !DT) return false; auto *DNode = DT->getNode(CtxI->getParent()); if (!DNode) // Unreachable block return false; // If V is used as a branch condition before reaching CtxI, V cannot be // undef or poison. // br V, BB1, BB2 // BB1: // CtxI ; V cannot be undef or poison here auto *Dominator = DNode->getIDom(); while (Dominator) { auto *TI = Dominator->getBlock()->getTerminator(); Value *Cond = nullptr; if (auto BI = dyn_cast_or_null(TI)) { if (BI->isConditional()) Cond = BI->getCondition(); } else if (auto SI = dyn_cast_or_null(TI)) { Cond = SI->getCondition(); } if (Cond) { if (Cond == V) return true; else if (PoisonOnly && isa(Cond)) { // For poison, we can analyze further auto *Opr = cast(Cond); if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) return true; } } Dominator = Dominator->getIDom(); } if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) return true; return false; } bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, const Instruction *CtxI, const DominatorTree *DT, unsigned Depth) { return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); } bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, const Instruction *CtxI, const DominatorTree *DT, unsigned Depth) { return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); } OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), Add, DL, AC, CxtI, DT); } OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); } bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { // Note: An atomic operation isn't guaranteed to return in a reasonable amount // of time because it's possible for another thread to interfere with it for an // arbitrary length of time, but programs aren't allowed to rely on that. // If there is no successor, then execution can't transfer to it. if (isa(I)) return false; if (isa(I)) return false; // Note: Do not add new checks here; instead, change Instruction::mayThrow or // Instruction::willReturn. // // FIXME: Move this check into Instruction::willReturn. if (isa(I)) { switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { default: // A catchpad may invoke exception object constructors and such, which // in some languages can be arbitrary code, so be conservative by default. return false; case EHPersonality::CoreCLR: // For CoreCLR, it just involves a type test. return true; } } // An instruction that returns without throwing must transfer control flow // to a successor. return !I->mayThrow() && I->willReturn(); } bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { // TODO: This is slightly conservative for invoke instruction since exiting // via an exception *is* normal control for them. for (const Instruction &I : *BB) if (!isGuaranteedToTransferExecutionToSuccessor(&I)) return false; return true; } bool llvm::isGuaranteedToTransferExecutionToSuccessor( BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, unsigned ScanLimit) { return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), ScanLimit); } bool llvm::isGuaranteedToTransferExecutionToSuccessor( iterator_range Range, unsigned ScanLimit) { assert(ScanLimit && "scan limit must be non-zero"); for (const Instruction &I : Range) { if (isa(I)) continue; if (--ScanLimit == 0) return false; if (!isGuaranteedToTransferExecutionToSuccessor(&I)) return false; } return true; } bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L) { // The loop header is guaranteed to be executed for every iteration. // // FIXME: Relax this constraint to cover all basic blocks that are // guaranteed to be executed at every iteration. if (I->getParent() != L->getHeader()) return false; for (const Instruction &LI : *L->getHeader()) { if (&LI == I) return true; if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; } llvm_unreachable("Instruction not contained in its own parent basic block."); } bool llvm::propagatesPoison(const Operator *I) { switch (I->getOpcode()) { case Instruction::Freeze: case Instruction::Select: case Instruction::PHI: case Instruction::Invoke: return false; case Instruction::Call: if (auto *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { // TODO: Add more intrinsics. case Intrinsic::sadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::umul_with_overflow: // If an input is a vector containing a poison element, the // two output vectors (calculated results, overflow bits)' // corresponding lanes are poison. return true; case Intrinsic::ctpop: return true; } } return false; case Instruction::ICmp: case Instruction::FCmp: case Instruction::GetElementPtr: return true; default: if (isa(I) || isa(I) || isa(I)) return true; // Be conservative and return false. return false; } } void llvm::getGuaranteedWellDefinedOps( const Instruction *I, SmallPtrSetImpl &Operands) { switch (I->getOpcode()) { case Instruction::Store: Operands.insert(cast(I)->getPointerOperand()); break; case Instruction::Load: Operands.insert(cast(I)->getPointerOperand()); break; // Since dereferenceable attribute imply noundef, atomic operations // also implicitly have noundef pointers too case Instruction::AtomicCmpXchg: Operands.insert(cast(I)->getPointerOperand()); break; case Instruction::AtomicRMW: Operands.insert(cast(I)->getPointerOperand()); break; case Instruction::Call: case Instruction::Invoke: { const CallBase *CB = cast(I); if (CB->isIndirectCall()) Operands.insert(CB->getCalledOperand()); for (unsigned i = 0; i < CB->arg_size(); ++i) { if (CB->paramHasAttr(i, Attribute::NoUndef) || CB->paramHasAttr(i, Attribute::Dereferenceable)) Operands.insert(CB->getArgOperand(i)); } break; } case Instruction::Ret: if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) Operands.insert(I->getOperand(0)); break; default: break; } } void llvm::getGuaranteedNonPoisonOps(const Instruction *I, SmallPtrSetImpl &Operands) { getGuaranteedWellDefinedOps(I, Operands); switch (I->getOpcode()) { // Divisors of these operations are allowed to be partially undef. case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: Operands.insert(I->getOperand(1)); break; case Instruction::Switch: if (BranchOnPoisonAsUB) Operands.insert(cast(I)->getCondition()); break; case Instruction::Br: { auto *BR = cast(I); if (BranchOnPoisonAsUB && BR->isConditional()) Operands.insert(BR->getCondition()); break; } default: break; } } bool llvm::mustTriggerUB(const Instruction *I, const SmallSet& KnownPoison) { SmallPtrSet NonPoisonOps; getGuaranteedNonPoisonOps(I, NonPoisonOps); for (const auto *V : NonPoisonOps) if (KnownPoison.count(V)) return true; return false; } static bool programUndefinedIfUndefOrPoison(const Value *V, bool PoisonOnly) { // We currently only look for uses of values within the same basic // block, as that makes it easier to guarantee that the uses will be // executed given that Inst is executed. // // FIXME: Expand this to consider uses beyond the same basic block. To do // this, look out for the distinction between post-dominance and strong // post-dominance. const BasicBlock *BB = nullptr; BasicBlock::const_iterator Begin; if (const auto *Inst = dyn_cast(V)) { BB = Inst->getParent(); Begin = Inst->getIterator(); Begin++; } else if (const auto *Arg = dyn_cast(V)) { BB = &Arg->getParent()->getEntryBlock(); Begin = BB->begin(); } else { return false; } // Limit number of instructions we look at, to avoid scanning through large // blocks. The current limit is chosen arbitrarily. unsigned ScanLimit = 32; BasicBlock::const_iterator End = BB->end(); if (!PoisonOnly) { // Since undef does not propagate eagerly, be conservative & just check // whether a value is directly passed to an instruction that must take // well-defined operands. for (const auto &I : make_range(Begin, End)) { if (isa(I)) continue; if (--ScanLimit == 0) break; SmallPtrSet WellDefinedOps; getGuaranteedWellDefinedOps(&I, WellDefinedOps); if (WellDefinedOps.contains(V)) return true; if (!isGuaranteedToTransferExecutionToSuccessor(&I)) break; } return false; } // Set of instructions that we have proved will yield poison if Inst // does. SmallSet YieldsPoison; SmallSet Visited; YieldsPoison.insert(V); auto Propagate = [&](const User *User) { if (propagatesPoison(cast(User))) YieldsPoison.insert(User); }; for_each(V->users(), Propagate); Visited.insert(BB); while (true) { for (const auto &I : make_range(Begin, End)) { if (isa(I)) continue; if (--ScanLimit == 0) return false; if (mustTriggerUB(&I, YieldsPoison)) return true; if (!isGuaranteedToTransferExecutionToSuccessor(&I)) return false; // Mark poison that propagates from I through uses of I. if (YieldsPoison.count(&I)) for_each(I.users(), Propagate); } BB = BB->getSingleSuccessor(); if (!BB || !Visited.insert(BB).second) break; Begin = BB->getFirstNonPHI()->getIterator(); End = BB->end(); } return false; } bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { return ::programUndefinedIfUndefOrPoison(Inst, false); } bool llvm::programUndefinedIfPoison(const Instruction *Inst) { return ::programUndefinedIfUndefOrPoison(Inst, true); } static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { if (FMF.noNaNs()) return true; if (auto *C = dyn_cast(V)) return !C->isNaN(); if (auto *C = dyn_cast(V)) { if (!C->getElementType()->isFloatingPointTy()) return false; for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { if (C->getElementAsAPFloat(I).isNaN()) return false; } return true; } if (isa(V)) return true; return false; } static bool isKnownNonZero(const Value *V) { if (auto *C = dyn_cast(V)) return !C->isZero(); if (auto *C = dyn_cast(V)) { if (!C->getElementType()->isFloatingPointTy()) return false; for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { if (C->getElementAsAPFloat(I).isZero()) return false; } return true; } return false; } /// Match clamp pattern for float types without care about NaNs or signed zeros. /// Given non-min/max outer cmp/select from the clamp pattern this /// function recognizes if it can be substitued by a "canonical" min/max /// pattern. static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS) { // Try to match // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) // and return description of the outer Max/Min. // First, check if select has inverse order: if (CmpRHS == FalseVal) { std::swap(TrueVal, FalseVal); Pred = CmpInst::getInversePredicate(Pred); } // Assume success now. If there's no match, callers should not use these anyway. LHS = TrueVal; RHS = FalseVal; const APFloat *FC1; if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) return {SPF_UNKNOWN, SPNB_NA, false}; const APFloat *FC2; switch (Pred) { case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: if (match(FalseVal, m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && *FC1 < *FC2) return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; break; case CmpInst::FCMP_OGT: case CmpInst::FCMP_OGE: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: if (match(FalseVal, m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && *FC1 > *FC2) return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; break; default: break; } return {SPF_UNKNOWN, SPNB_NA, false}; } /// Recognize variations of: /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) static SelectPatternResult matchClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal) { // Swap the select operands and predicate to match the patterns below. if (CmpRHS != TrueVal) { Pred = ICmpInst::getSwappedPredicate(Pred); std::swap(TrueVal, FalseVal); } const APInt *C1; if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { const APInt *C2; // (X SMAX(SMIN(X, C2), C1) if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) return {SPF_SMAX, SPNB_NA, false}; // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) return {SPF_SMIN, SPNB_NA, false}; // (X UMAX(UMIN(X, C2), C1) if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) return {SPF_UMAX, SPNB_NA, false}; // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) return {SPF_UMIN, SPNB_NA, false}; } return {SPF_UNKNOWN, SPNB_NA, false}; } /// Recognize variations of: /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TVal, Value *FVal, unsigned Depth) { // TODO: Allow FP min/max with nnan/nsz. assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); Value *A = nullptr, *B = nullptr; SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); if (!SelectPatternResult::isMinOrMax(L.Flavor)) return {SPF_UNKNOWN, SPNB_NA, false}; Value *C = nullptr, *D = nullptr; SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); if (L.Flavor != R.Flavor) return {SPF_UNKNOWN, SPNB_NA, false}; // We have something like: x Pred y ? min(a, b) : min(c, d). // Try to match the compare to the min/max operations of the select operands. // First, make sure we have the right compare predicate. switch (L.Flavor) { case SPF_SMIN: if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { Pred = ICmpInst::getSwappedPredicate(Pred); std::swap(CmpLHS, CmpRHS); } if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) break; return {SPF_UNKNOWN, SPNB_NA, false}; case SPF_SMAX: if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { Pred = ICmpInst::getSwappedPredicate(Pred); std::swap(CmpLHS, CmpRHS); } if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) break; return {SPF_UNKNOWN, SPNB_NA, false}; case SPF_UMIN: if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { Pred = ICmpInst::getSwappedPredicate(Pred); std::swap(CmpLHS, CmpRHS); } if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) break; return {SPF_UNKNOWN, SPNB_NA, false}; case SPF_UMAX: if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { Pred = ICmpInst::getSwappedPredicate(Pred); std::swap(CmpLHS, CmpRHS); } if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) break; return {SPF_UNKNOWN, SPNB_NA, false}; default: return {SPF_UNKNOWN, SPNB_NA, false}; } // If there is a common operand in the already matched min/max and the other // min/max operands match the compare operands (either directly or inverted), // then this is min/max of the same flavor. // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) if (D == B) { if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && match(A, m_Not(m_Specific(CmpRHS))))) return {L.Flavor, SPNB_NA, false}; } // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) if (C == B) { if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && match(A, m_Not(m_Specific(CmpRHS))))) return {L.Flavor, SPNB_NA, false}; } // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) if (D == A) { if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && match(B, m_Not(m_Specific(CmpRHS))))) return {L.Flavor, SPNB_NA, false}; } // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) if (C == A) { if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && match(B, m_Not(m_Specific(CmpRHS))))) return {L.Flavor, SPNB_NA, false}; } return {SPF_UNKNOWN, SPNB_NA, false}; } /// If the input value is the result of a 'not' op, constant integer, or vector /// splat of a constant integer, return the bitwise-not source value. /// TODO: This could be extended to handle non-splat vector integer constants. static Value *getNotValue(Value *V) { Value *NotV; if (match(V, m_Not(m_Value(NotV)))) return NotV; const APInt *C; if (match(V, m_APInt(C))) return ConstantInt::get(V->getType(), ~(*C)); return nullptr; } /// Match non-obvious integer minimum and maximum sequences. static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth) { // Assume success. If there's no match, callers should not use these anyway. LHS = TrueVal; RHS = FalseVal; SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) return SPR; SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) return SPR; // Look through 'not' ops to find disguised min/max. // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { switch (Pred) { case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; default: break; } } // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { switch (Pred) { case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; default: break; } } if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) return {SPF_UNKNOWN, SPNB_NA, false}; const APInt *C1; if (!match(CmpRHS, m_APInt(C1))) return {SPF_UNKNOWN, SPNB_NA, false}; // An unsigned min/max can be written with a signed compare. const APInt *C2; if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { // Is the sign bit set? // (X (X >u MAXVAL) ? X : MAXVAL ==> UMAX // (X (X >u MAXVAL) ? MAXVAL : X ==> UMIN if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; // Is the sign bit clear? // (X >s -1) ? MINVAL : X ==> (X UMAX // (X >s -1) ? X : MINVAL ==> (X UMIN if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; } return {SPF_UNKNOWN, SPNB_NA, false}; } bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { assert(X && Y && "Invalid operand"); // X = sub (0, Y) || X = sub nsw (0, Y) if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) return true; // Y = sub (0, X) || Y = sub nsw (0, X) if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) return true; // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) Value *A, *B; return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); } static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, FastMathFlags FMF, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth) { if (CmpInst::isFPPredicate(Pred)) { // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one // 0.0 operand, set the compare's 0.0 operands to that same value for the // purpose of identifying min/max. Disregard vector constants with undefined // elements because those can not be back-propagated for analysis. Value *OutputZeroVal = nullptr; if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && !cast(TrueVal)->containsUndefOrPoisonElement()) OutputZeroVal = TrueVal; else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && !cast(FalseVal)->containsUndefOrPoisonElement()) OutputZeroVal = FalseVal; if (OutputZeroVal) { if (match(CmpLHS, m_AnyZeroFP())) CmpLHS = OutputZeroVal; if (match(CmpRHS, m_AnyZeroFP())) CmpRHS = OutputZeroVal; } } LHS = CmpLHS; RHS = CmpRHS; // Signed zero may return inconsistent results between implementations. // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) // Therefore, we behave conservatively and only proceed if at least one of the // operands is known to not be zero or if we don't care about signed zero. switch (Pred) { default: break; // FIXME: Include OGT/OLT/UGT/ULT. case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && !isKnownNonZero(CmpRHS)) return {SPF_UNKNOWN, SPNB_NA, false}; } SelectPatternNaNBehavior NaNBehavior = SPNB_NA; bool Ordered = false; // When given one NaN and one non-NaN input: // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. // - A simple C99 (a < b ? a : b) construction will return 'b' (as the // ordered comparison fails), which could be NaN or non-NaN. // so here we discover exactly what NaN behavior is required/accepted. if (CmpInst::isFPPredicate(Pred)) { bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); if (LHSSafe && RHSSafe) { // Both operands are known non-NaN. NaNBehavior = SPNB_RETURNS_ANY; } else if (CmpInst::isOrdered(Pred)) { // An ordered comparison will return false when given a NaN, so it // returns the RHS. Ordered = true; if (LHSSafe) // LHS is non-NaN, so if RHS is NaN then NaN will be returned. NaNBehavior = SPNB_RETURNS_NAN; else if (RHSSafe) NaNBehavior = SPNB_RETURNS_OTHER; else // Completely unsafe. return {SPF_UNKNOWN, SPNB_NA, false}; } else { Ordered = false; // An unordered comparison will return true when given a NaN, so it // returns the LHS. if (LHSSafe) // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. NaNBehavior = SPNB_RETURNS_OTHER; else if (RHSSafe) NaNBehavior = SPNB_RETURNS_NAN; else // Completely unsafe. return {SPF_UNKNOWN, SPNB_NA, false}; } } if (TrueVal == CmpRHS && FalseVal == CmpLHS) { std::swap(CmpLHS, CmpRHS); Pred = CmpInst::getSwappedPredicate(Pred); if (NaNBehavior == SPNB_RETURNS_NAN) NaNBehavior = SPNB_RETURNS_OTHER; else if (NaNBehavior == SPNB_RETURNS_OTHER) NaNBehavior = SPNB_RETURNS_NAN; Ordered = !Ordered; } // ([if]cmp X, Y) ? X : Y if (TrueVal == CmpLHS && FalseVal == CmpRHS) { switch (Pred) { default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; } } if (isKnownNegation(TrueVal, FalseVal)) { // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can // match against either LHS or sext(LHS). auto MaybeSExtCmpLHS = m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); if (match(TrueVal, MaybeSExtCmpLHS)) { // Set the return values. If the compare uses the negated value (-X >s 0), // swap the return values because the negated value is always 'RHS'. LHS = TrueVal; RHS = FalseVal; if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) std::swap(LHS, RHS); // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) return {SPF_ABS, SPNB_NA, false}; // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) return {SPF_ABS, SPNB_NA, false}; // (X NABS(X) // (-X NABS(X) if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) return {SPF_NABS, SPNB_NA, false}; } else if (match(FalseVal, MaybeSExtCmpLHS)) { // Set the return values. If the compare uses the negated value (-X >s 0), // swap the return values because the negated value is always 'RHS'. LHS = FalseVal; RHS = TrueVal; if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) std::swap(LHS, RHS); // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) return {SPF_NABS, SPNB_NA, false}; // (X ABS(X) // (-X ABS(X) if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) return {SPF_ABS, SPNB_NA, false}; } } if (CmpInst::isIntPredicate(Pred)) return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar // may return either -0.0 or 0.0, so fcmp/select pair has stricter // semantics than minNum. Be conservative in such case. if (NaNBehavior != SPNB_RETURNS_ANY || (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && !isKnownNonZero(CmpRHS))) return {SPF_UNKNOWN, SPNB_NA, false}; return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); } /// Helps to match a select pattern in case of a type mismatch. /// /// The function processes the case when type of true and false values of a /// select instruction differs from type of the cmp instruction operands because /// of a cast instruction. The function checks if it is legal to move the cast /// operation after "select". If yes, it returns the new second value of /// "select" (with the assumption that cast is moved): /// 1. As operand of cast instruction when both values of "select" are same cast /// instructions. /// 2. As restored constant (by applying reverse cast operation) when the first /// value of the "select" is a cast operation and the second value is a /// constant. /// NOTE: We return only the new second value because the first value could be /// accessed as operand of cast instruction. static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, Instruction::CastOps *CastOp) { auto *Cast1 = dyn_cast(V1); if (!Cast1) return nullptr; *CastOp = Cast1->getOpcode(); Type *SrcTy = Cast1->getSrcTy(); if (auto *Cast2 = dyn_cast(V2)) { // If V1 and V2 are both the same cast from the same type, look through V1. if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) return Cast2->getOperand(0); return nullptr; } auto *C = dyn_cast(V2); if (!C) return nullptr; Constant *CastedTo = nullptr; switch (*CastOp) { case Instruction::ZExt: if (CmpI->isUnsigned()) CastedTo = ConstantExpr::getTrunc(C, SrcTy); break; case Instruction::SExt: if (CmpI->isSigned()) CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); break; case Instruction::Trunc: Constant *CmpConst; if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && CmpConst->getType() == SrcTy) { // Here we have the following case: // // %cond = cmp iN %x, CmpConst // %tr = trunc iN %x to iK // %narrowsel = select i1 %cond, iK %t, iK C // // We can always move trunc after select operation: // // %cond = cmp iN %x, CmpConst // %widesel = select i1 %cond, iN %x, iN CmpConst // %tr = trunc iN %widesel to iK // // Note that C could be extended in any way because we don't care about // upper bits after truncation. It can't be abs pattern, because it would // look like: // // select i1 %cond, x, -x. // // So only min/max pattern could be matched. Such match requires widened C // == CmpConst. That is why set widened C = CmpConst, condition trunc // CmpConst == C is checked below. CastedTo = CmpConst; } else { CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); } break; case Instruction::FPTrunc: CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); break; case Instruction::FPExt: CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); break; case Instruction::FPToUI: CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); break; case Instruction::FPToSI: CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); break; case Instruction::UIToFP: CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); break; case Instruction::SIToFP: CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); break; default: break; } if (!CastedTo) return nullptr; // Make sure the cast doesn't lose any information. Constant *CastedBack = ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); if (CastedBack != C) return nullptr; return CastedTo; } SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp, unsigned Depth) { if (Depth >= MaxAnalysisRecursionDepth) return {SPF_UNKNOWN, SPNB_NA, false}; SelectInst *SI = dyn_cast(V); if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; CmpInst *CmpI = dyn_cast(SI->getCondition()); if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; Value *TrueVal = SI->getTrueValue(); Value *FalseVal = SI->getFalseValue(); return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, CastOp, Depth); } SelectPatternResult llvm::matchDecomposedSelectPattern( CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp, unsigned Depth) { CmpInst::Predicate Pred = CmpI->getPredicate(); Value *CmpLHS = CmpI->getOperand(0); Value *CmpRHS = CmpI->getOperand(1); FastMathFlags FMF; if (isa(CmpI)) FMF = CmpI->getFastMathFlags(); // Bail out early. if (CmpI->isEquality()) return {SPF_UNKNOWN, SPNB_NA, false}; // Deal with type mismatches. if (CastOp && CmpLHS->getType() != TrueVal->getType()) { if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { // If this is a potential fmin/fmax with a cast to integer, then ignore // -0.0 because there is no corresponding integer value. if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) FMF.setNoSignedZeros(); return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, cast(TrueVal)->getOperand(0), C, LHS, RHS, Depth); } if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { // If this is a potential fmin/fmax with a cast to integer, then ignore // -0.0 because there is no corresponding integer value. if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) FMF.setNoSignedZeros(); return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, C, cast(FalseVal)->getOperand(0), LHS, RHS, Depth); } } return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); } CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; if (SPF == SPF_FMINNUM) return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; if (SPF == SPF_FMAXNUM) return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; llvm_unreachable("unhandled!"); } SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { if (SPF == SPF_SMIN) return SPF_SMAX; if (SPF == SPF_UMIN) return SPF_UMAX; if (SPF == SPF_SMAX) return SPF_SMIN; if (SPF == SPF_UMAX) return SPF_UMIN; llvm_unreachable("unhandled!"); } Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { switch (MinMaxID) { case Intrinsic::smax: return Intrinsic::smin; case Intrinsic::smin: return Intrinsic::smax; case Intrinsic::umax: return Intrinsic::umin; case Intrinsic::umin: return Intrinsic::umax; default: llvm_unreachable("Unexpected intrinsic"); } } CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { return getMinMaxPred(getInverseMinMaxFlavor(SPF)); } APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { switch (SPF) { case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); case SPF_UMAX: return APInt::getMaxValue(BitWidth); case SPF_UMIN: return APInt::getMinValue(BitWidth); default: llvm_unreachable("Unexpected flavor"); } } std::pair llvm::canConvertToMinOrMaxIntrinsic(ArrayRef VL) { // Check if VL contains select instructions that can be folded into a min/max // vector intrinsic and return the intrinsic if it is possible. // TODO: Support floating point min/max. bool AllCmpSingleUse = true; SelectPatternResult SelectPattern; SelectPattern.Flavor = SPF_UNKNOWN; if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { Value *LHS, *RHS; auto CurrentPattern = matchSelectPattern(I, LHS, RHS); if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || CurrentPattern.Flavor == SPF_FMINNUM || CurrentPattern.Flavor == SPF_FMAXNUM || !I->getType()->isIntOrIntVectorTy()) return false; if (SelectPattern.Flavor != SPF_UNKNOWN && SelectPattern.Flavor != CurrentPattern.Flavor) return false; SelectPattern = CurrentPattern; AllCmpSingleUse &= match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); return true; })) { switch (SelectPattern.Flavor) { case SPF_SMIN: return {Intrinsic::smin, AllCmpSingleUse}; case SPF_UMIN: return {Intrinsic::umin, AllCmpSingleUse}; case SPF_SMAX: return {Intrinsic::smax, AllCmpSingleUse}; case SPF_UMAX: return {Intrinsic::umax, AllCmpSingleUse}; default: llvm_unreachable("unexpected select pattern flavor"); } } return {Intrinsic::not_intrinsic, false}; } bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step) { // Handle the case of a simple two-predecessor recurrence PHI. // There's a lot more that could theoretically be done here, but // this is sufficient to catch some interesting cases. if (P->getNumIncomingValues() != 2) return false; for (unsigned i = 0; i != 2; ++i) { Value *L = P->getIncomingValue(i); Value *R = P->getIncomingValue(!i); Operator *LU = dyn_cast(L); if (!LU) continue; unsigned Opcode = LU->getOpcode(); switch (Opcode) { default: continue; // TODO: Expand list -- xor, div, gep, uaddo, etc.. case Instruction::LShr: case Instruction::AShr: case Instruction::Shl: case Instruction::Add: case Instruction::Sub: case Instruction::And: case Instruction::Or: case Instruction::Mul: { Value *LL = LU->getOperand(0); Value *LR = LU->getOperand(1); // Find a recurrence. if (LL == P) L = LR; else if (LR == P) L = LL; else continue; // Check for recurrence with L and R flipped. break; // Match! } }; // We have matched a recurrence of the form: // %iv = [R, %entry], [%iv.next, %backedge] // %iv.next = binop %iv, L // OR // %iv = [R, %entry], [%iv.next, %backedge] // %iv.next = binop L, %iv BO = cast(LU); Start = R; Step = L; return true; } return false; } bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, Value *&Start, Value *&Step) { BinaryOperator *BO = nullptr; P = dyn_cast(I->getOperand(0)); if (!P) P = dyn_cast(I->getOperand(1)); return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; } /// Return true if "icmp Pred LHS RHS" is always true. static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS, const DataLayout &DL, unsigned Depth) { if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) return true; switch (Pred) { default: return false; case CmpInst::ICMP_SLE: { const APInt *C; // LHS s<= LHS +_{nsw} C if C >= 0 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) return !C->isNegative(); return false; } case CmpInst::ICMP_ULE: { const APInt *C; // LHS u<= LHS +_{nuw} C for any C if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) return true; // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, const Value *&X, const APInt *&CA, const APInt *&CB) { if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) return true; // If X & C == 0 then (X | C) == X +_{nuw} C if (match(A, m_Or(m_Value(X), m_APInt(CA))) && match(B, m_Or(m_Specific(X), m_APInt(CB)))) { KnownBits Known(CA->getBitWidth()); computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, /*CxtI*/ nullptr, /*DT*/ nullptr); if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) return true; } return false; }; const Value *X; const APInt *CLHS, *CRHS; if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) return CLHS->ule(*CRHS); return false; } } } /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred /// ALHS ARHS" is true. Otherwise, return None. static Optional isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS, const DataLayout &DL, unsigned Depth) { switch (Pred) { default: return None; case CmpInst::ICMP_SLT: case CmpInst::ICMP_SLE: if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) return true; return None; case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) return true; return None; } } /// Return true if the operands of the two compares match. IsSwappedOps is true /// when the operands match, but are swapped. static bool isMatchingOps(const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS, bool &IsSwappedOps) { bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); return IsMatchingOps || IsSwappedOps; } /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. /// Otherwise, return None if we can't infer anything. static Optional isImpliedCondMatchingOperands(CmpInst::Predicate APred, CmpInst::Predicate BPred, bool AreSwappedOps) { // Canonicalize the predicate as if the operands were not commuted. if (AreSwappedOps) BPred = ICmpInst::getSwappedPredicate(BPred); if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) return true; if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) return false; return None; } /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. /// Otherwise, return None if we can't infer anything. static Optional isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const APInt &C1, CmpInst::Predicate BPred, const APInt &C2) { ConstantRange DomCR = ConstantRange::makeExactICmpRegion(APred, C1); ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2); ConstantRange Intersection = DomCR.intersectWith(CR); ConstantRange Difference = DomCR.difference(CR); if (Intersection.isEmptySet()) return false; if (Difference.isEmptySet()) return true; return None; } /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is /// false. Otherwise, return None if we can't infer anything. static Optional isImpliedCondICmps(const ICmpInst *LHS, CmpInst::Predicate BPred, const Value *BLHS, const Value *BRHS, const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { Value *ALHS = LHS->getOperand(0); Value *ARHS = LHS->getOperand(1); // The rest of the logic assumes the LHS condition is true. If that's not the // case, invert the predicate to make it so. CmpInst::Predicate APred = LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); // Can we infer anything when the two compares have matching operands? bool AreSwappedOps; if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { if (Optional Implication = isImpliedCondMatchingOperands( APred, BPred, AreSwappedOps)) return Implication; // No amount of additional analysis will infer the second condition, so // early exit. return None; } // Can we infer anything when the LHS operands match and the RHS operands are // constants (not necessarily matching)? const APInt *AC, *BC; if (ALHS == BLHS && match(ARHS, m_APInt(AC)) && match(BRHS, m_APInt(BC))) return isImpliedCondMatchingImmOperands(APred, *AC, BPred, *BC); if (APred == BPred) return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); return None; } /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is /// false. Otherwise, return None if we can't infer anything. We expect the /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. static Optional isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { // The LHS must be an 'or', 'and', or a 'select' instruction. assert((LHS->getOpcode() == Instruction::And || LHS->getOpcode() == Instruction::Or || LHS->getOpcode() == Instruction::Select) && "Expected LHS to be 'and', 'or', or 'select'."); assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); // If the result of an 'or' is false, then we know both legs of the 'or' are // false. Similarly, if the result of an 'and' is true, then we know both // legs of the 'and' are true. const Value *ALHS, *ARHS; if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { // FIXME: Make this non-recursion. if (Optional Implication = isImpliedCondition( ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) return Implication; if (Optional Implication = isImpliedCondition( ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) return Implication; return None; } return None; } Optional llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { // Bail out when we hit the limit. if (Depth == MaxAnalysisRecursionDepth) return None; // A mismatch occurs when we compare a scalar cmp to a vector cmp, for // example. if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) return None; assert(LHS->getType()->isIntOrIntVectorTy(1) && "Expected integer type only!"); // Both LHS and RHS are icmps. const ICmpInst *LHSCmp = dyn_cast(LHS); if (LHSCmp) return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth); /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect /// the RHS to be an icmp. /// FIXME: Add support for and/or/select on the RHS. if (const Instruction *LHSI = dyn_cast(LHS)) { if ((LHSI->getOpcode() == Instruction::And || LHSI->getOpcode() == Instruction::Or || LHSI->getOpcode() == Instruction::Select)) return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth); } return None; } Optional llvm::isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { // LHS ==> RHS by definition if (LHS == RHS) return LHSIsTrue; if (const ICmpInst *RHSCmp = dyn_cast(RHS)) return isImpliedCondition(LHS, RHSCmp->getPredicate(), RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, LHSIsTrue, Depth); if (Depth == MaxAnalysisRecursionDepth) return None; // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2 const Value *RHS1, *RHS2; if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) { if (Optional Imp = isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) if (*Imp == true) return true; if (Optional Imp = isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) if (*Imp == true) return true; } if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) { if (Optional Imp = isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) if (*Imp == false) return false; if (Optional Imp = isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) if (*Imp == false) return false; } return None; } // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch // condition dominating ContextI or nullptr, if no condition is found. static std::pair getDomPredecessorCondition(const Instruction *ContextI) { if (!ContextI || !ContextI->getParent()) return {nullptr, false}; // TODO: This is a poor/cheap way to determine dominance. Should we use a // dominator tree (eg, from a SimplifyQuery) instead? const BasicBlock *ContextBB = ContextI->getParent(); const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); if (!PredBB) return {nullptr, false}; // We need a conditional branch in the predecessor. Value *PredCond; BasicBlock *TrueBB, *FalseBB; if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) return {nullptr, false}; // The branch should get simplified. Don't bother simplifying this condition. if (TrueBB == FalseBB) return {nullptr, false}; assert((TrueBB == ContextBB || FalseBB == ContextBB) && "Predecessor block does not point to successor?"); // Is this condition implied by the predecessor condition? return {PredCond, TrueBB == ContextBB}; } Optional llvm::isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL) { assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); auto PredCond = getDomPredecessorCondition(ContextI); if (PredCond.first) return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); return None; } Optional llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS, const Instruction *ContextI, const DataLayout &DL) { auto PredCond = getDomPredecessorCondition(ContextI); if (PredCond.first) return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, PredCond.second); return None; } static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ, bool PreferSignedRange) { unsigned Width = Lower.getBitWidth(); const APInt *C; switch (BO.getOpcode()) { case Instruction::Add: if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { bool HasNSW = IIQ.hasNoSignedWrap(&BO); bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); // If the caller expects a signed compare, then try to use a signed range. // Otherwise if both no-wraps are set, use the unsigned range because it // is never larger than the signed range. Example: // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. if (PreferSignedRange && HasNSW && HasNUW) HasNUW = false; if (HasNUW) { // 'add nuw x, C' produces [C, UINT_MAX]. Lower = *C; } else if (HasNSW) { if (C->isNegative()) { // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. Lower = APInt::getSignedMinValue(Width); Upper = APInt::getSignedMaxValue(Width) + *C + 1; } else { // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. Lower = APInt::getSignedMinValue(Width) + *C; Upper = APInt::getSignedMaxValue(Width) + 1; } } } break; case Instruction::And: if (match(BO.getOperand(1), m_APInt(C))) // 'and x, C' produces [0, C]. Upper = *C + 1; break; case Instruction::Or: if (match(BO.getOperand(1), m_APInt(C))) // 'or x, C' produces [C, UINT_MAX]. Lower = *C; break; case Instruction::AShr: if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. Lower = APInt::getSignedMinValue(Width).ashr(*C); Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; } else if (match(BO.getOperand(0), m_APInt(C))) { unsigned ShiftAmount = Width - 1; if (!C->isZero() && IIQ.isExact(&BO)) ShiftAmount = C->countTrailingZeros(); if (C->isNegative()) { // 'ashr C, x' produces [C, C >> (Width-1)] Lower = *C; Upper = C->ashr(ShiftAmount) + 1; } else { // 'ashr C, x' produces [C >> (Width-1), C] Lower = C->ashr(ShiftAmount); Upper = *C + 1; } } break; case Instruction::LShr: if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { // 'lshr x, C' produces [0, UINT_MAX >> C]. Upper = APInt::getAllOnes(Width).lshr(*C) + 1; } else if (match(BO.getOperand(0), m_APInt(C))) { // 'lshr C, x' produces [C >> (Width-1), C]. unsigned ShiftAmount = Width - 1; if (!C->isZero() && IIQ.isExact(&BO)) ShiftAmount = C->countTrailingZeros(); Lower = C->lshr(ShiftAmount); Upper = *C + 1; } break; case Instruction::Shl: if (match(BO.getOperand(0), m_APInt(C))) { if (IIQ.hasNoUnsignedWrap(&BO)) { // 'shl nuw C, x' produces [C, C << CLZ(C)] Lower = *C; Upper = Lower.shl(Lower.countLeadingZeros()) + 1; } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? if (C->isNegative()) { // 'shl nsw C, x' produces [C << CLO(C)-1, C] unsigned ShiftAmount = C->countLeadingOnes() - 1; Lower = C->shl(ShiftAmount); Upper = *C + 1; } else { // 'shl nsw C, x' produces [C, C << CLZ(C)-1] unsigned ShiftAmount = C->countLeadingZeros() - 1; Lower = *C; Upper = C->shl(ShiftAmount) + 1; } } } break; case Instruction::SDiv: if (match(BO.getOperand(1), m_APInt(C))) { APInt IntMin = APInt::getSignedMinValue(Width); APInt IntMax = APInt::getSignedMaxValue(Width); if (C->isAllOnes()) { // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] // where C != -1 and C != 0 and C != 1 Lower = IntMin + 1; Upper = IntMax + 1; } else if (C->countLeadingZeros() < Width - 1) { // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] // where C != -1 and C != 0 and C != 1 Lower = IntMin.sdiv(*C); Upper = IntMax.sdiv(*C); if (Lower.sgt(Upper)) std::swap(Lower, Upper); Upper = Upper + 1; assert(Upper != Lower && "Upper part of range has wrapped!"); } } else if (match(BO.getOperand(0), m_APInt(C))) { if (C->isMinSignedValue()) { // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. Lower = *C; Upper = Lower.lshr(1) + 1; } else { // 'sdiv C, x' produces [-|C|, |C|]. Upper = C->abs() + 1; Lower = (-Upper) + 1; } } break; case Instruction::UDiv: if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { // 'udiv x, C' produces [0, UINT_MAX / C]. Upper = APInt::getMaxValue(Width).udiv(*C) + 1; } else if (match(BO.getOperand(0), m_APInt(C))) { // 'udiv C, x' produces [0, C]. Upper = *C + 1; } break; case Instruction::SRem: if (match(BO.getOperand(1), m_APInt(C))) { // 'srem x, C' produces (-|C|, |C|). Upper = C->abs(); Lower = (-Upper) + 1; } break; case Instruction::URem: if (match(BO.getOperand(1), m_APInt(C))) // 'urem x, C' produces [0, C). Upper = *C; break; default: break; } } static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, APInt &Upper) { unsigned Width = Lower.getBitWidth(); const APInt *C; switch (II.getIntrinsicID()) { case Intrinsic::ctpop: case Intrinsic::ctlz: case Intrinsic::cttz: // Maximum of set/clear bits is the bit width. assert(Lower == 0 && "Expected lower bound to be zero"); Upper = Width + 1; break; case Intrinsic::uadd_sat: // uadd.sat(x, C) produces [C, UINT_MAX]. if (match(II.getOperand(0), m_APInt(C)) || match(II.getOperand(1), m_APInt(C))) Lower = *C; break; case Intrinsic::sadd_sat: if (match(II.getOperand(0), m_APInt(C)) || match(II.getOperand(1), m_APInt(C))) { if (C->isNegative()) { // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. Lower = APInt::getSignedMinValue(Width); Upper = APInt::getSignedMaxValue(Width) + *C + 1; } else { // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. Lower = APInt::getSignedMinValue(Width) + *C; Upper = APInt::getSignedMaxValue(Width) + 1; } } break; case Intrinsic::usub_sat: // usub.sat(C, x) produces [0, C]. if (match(II.getOperand(0), m_APInt(C))) Upper = *C + 1; // usub.sat(x, C) produces [0, UINT_MAX - C]. else if (match(II.getOperand(1), m_APInt(C))) Upper = APInt::getMaxValue(Width) - *C + 1; break; case Intrinsic::ssub_sat: if (match(II.getOperand(0), m_APInt(C))) { if (C->isNegative()) { // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. Lower = APInt::getSignedMinValue(Width); Upper = *C - APInt::getSignedMinValue(Width) + 1; } else { // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. Lower = *C - APInt::getSignedMaxValue(Width); Upper = APInt::getSignedMaxValue(Width) + 1; } } else if (match(II.getOperand(1), m_APInt(C))) { if (C->isNegative()) { // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: Lower = APInt::getSignedMinValue(Width) - *C; Upper = APInt::getSignedMaxValue(Width) + 1; } else { // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. Lower = APInt::getSignedMinValue(Width); Upper = APInt::getSignedMaxValue(Width) - *C + 1; } } break; case Intrinsic::umin: case Intrinsic::umax: case Intrinsic::smin: case Intrinsic::smax: if (!match(II.getOperand(0), m_APInt(C)) && !match(II.getOperand(1), m_APInt(C))) break; switch (II.getIntrinsicID()) { case Intrinsic::umin: Upper = *C + 1; break; case Intrinsic::umax: Lower = *C; break; case Intrinsic::smin: Lower = APInt::getSignedMinValue(Width); Upper = *C + 1; break; case Intrinsic::smax: Lower = *C; Upper = APInt::getSignedMaxValue(Width) + 1; break; default: llvm_unreachable("Must be min/max intrinsic"); } break; case Intrinsic::abs: // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. if (match(II.getOperand(1), m_One())) Upper = APInt::getSignedMaxValue(Width) + 1; else Upper = APInt::getSignedMinValue(Width) + 1; break; default: break; } } static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ) { const Value *LHS = nullptr, *RHS = nullptr; SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); if (R.Flavor == SPF_UNKNOWN) return; unsigned BitWidth = SI.getType()->getScalarSizeInBits(); if (R.Flavor == SelectPatternFlavor::SPF_ABS) { // If the negation part of the abs (in RHS) has the NSW flag, // then the result of abs(X) is [0..SIGNED_MAX], // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. Lower = APInt::getZero(BitWidth); if (match(RHS, m_Neg(m_Specific(LHS))) && IIQ.hasNoSignedWrap(cast(RHS))) Upper = APInt::getSignedMaxValue(BitWidth) + 1; else Upper = APInt::getSignedMinValue(BitWidth) + 1; return; } if (R.Flavor == SelectPatternFlavor::SPF_NABS) { // The result of -abs(X) is <= 0. Lower = APInt::getSignedMinValue(BitWidth); Upper = APInt(BitWidth, 1); return; } const APInt *C; if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) return; switch (R.Flavor) { case SPF_UMIN: Upper = *C + 1; break; case SPF_UMAX: Lower = *C; break; case SPF_SMIN: Lower = APInt::getSignedMinValue(BitWidth); Upper = *C + 1; break; case SPF_SMAX: Lower = *C; Upper = APInt::getSignedMaxValue(BitWidth) + 1; break; default: break; } } static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { // The maximum representable value of a half is 65504. For floats the maximum // value is 3.4e38 which requires roughly 129 bits. unsigned BitWidth = I->getType()->getScalarSizeInBits(); if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) return; if (isa(I) && BitWidth >= 17) { Lower = APInt(BitWidth, -65504); Upper = APInt(BitWidth, 65505); } if (isa(I) && BitWidth >= 16) { // For a fptoui the lower limit is left as 0. Upper = APInt(BitWidth, 65505); } } ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo, AssumptionCache *AC, const Instruction *CtxI, const DominatorTree *DT, unsigned Depth) { assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); if (Depth == MaxAnalysisRecursionDepth) return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); const APInt *C; if (match(V, m_APInt(C))) return ConstantRange(*C); InstrInfoQuery IIQ(UseInstrInfo); unsigned BitWidth = V->getType()->getScalarSizeInBits(); APInt Lower = APInt(BitWidth, 0); APInt Upper = APInt(BitWidth, 0); if (auto *BO = dyn_cast(V)) setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); else if (auto *II = dyn_cast(V)) setLimitsForIntrinsic(*II, Lower, Upper); else if (auto *SI = dyn_cast(V)) setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); else if (isa(V) || isa(V)) setLimitForFPToI(cast(V), Lower, Upper); ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); if (auto *I = dyn_cast(V)) if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); if (CtxI && AC) { // Try to restrict the range based on information from assumptions. for (auto &AssumeVH : AC->assumptionsFor(V)) { if (!AssumeVH) continue; CallInst *I = cast(AssumeVH); assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && "Got assumption for the wrong function!"); assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && "must be an assume intrinsic"); if (!isValidAssumeForContext(I, CtxI, DT)) continue; Value *Arg = I->getArgOperand(0); ICmpInst *Cmp = dyn_cast(Arg); // Currently we just use information from comparisons. if (!Cmp || Cmp->getOperand(0) != V) continue; // TODO: Set "ForSigned" parameter via Cmp->isSigned()? ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, UseInstrInfo, AC, I, DT, Depth + 1); CR = CR.intersectWith( ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); } } return CR; } static Optional getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { // Skip over the first indices. gep_type_iterator GTI = gep_type_begin(GEP); for (unsigned i = 1; i != Idx; ++i, ++GTI) /*skip along*/; // Compute the offset implied by the rest of the indices. int64_t Offset = 0; for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { ConstantInt *OpC = dyn_cast(GEP->getOperand(i)); if (!OpC) return None; if (OpC->isZero()) continue; // No offset. // Handle struct indices, which add their field offset to the pointer. if (StructType *STy = GTI.getStructTypeOrNull()) { Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); continue; } // Otherwise, we have a sequential type like an array or fixed-length // vector. Multiply the index by the ElementSize. TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); if (Size.isScalable()) return None; Offset += Size.getFixedSize() * OpC->getSExtValue(); } return Offset; } Optional llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, const DataLayout &DL) { APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); // Handle the trivial case first. if (Ptr1 == Ptr2) return Offset2.getSExtValue() - Offset1.getSExtValue(); const GEPOperator *GEP1 = dyn_cast(Ptr1); const GEPOperator *GEP2 = dyn_cast(Ptr2); // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical // base. After that base, they may have some number of common (and // potentially variable) indices. After that they handle some constant // offset, which determines their offset from each other. At this point, we // handle no other case. if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || GEP1->getSourceElementType() != GEP2->getSourceElementType()) return None; // Skip any common indices and track the GEP types. unsigned Idx = 1; for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) break; auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); if (!IOffset1 || !IOffset2) return None; return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - Offset1.getSExtValue(); }