//===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements utilities for interfacing with tensorflow C APIs. // //===----------------------------------------------------------------------===// #include "llvm/Config/config.h" #if defined(LLVM_HAVE_TFLITE) #include "llvm/ADT/Twine.h" #include "llvm/Analysis/Utils/TFUtils.h" #include "llvm/Support/Base64.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/JSON.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/kernels/register.h" #include "tensorflow/lite/model.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/op_resolver.h" #include "tensorflow/lite/logger.h" #include #include #include using namespace llvm; namespace llvm { class EvaluationResultImpl { public: EvaluationResultImpl(const std::vector &Outputs) : Outputs(Outputs){}; const TfLiteTensor *getOutput(size_t I) { return Outputs[I]; } EvaluationResultImpl(const EvaluationResultImpl &) = delete; EvaluationResultImpl(EvaluationResultImpl &&Other) = delete; private: const std::vector Outputs; }; class TFModelEvaluatorImpl { public: TFModelEvaluatorImpl(StringRef SavedModelPath, const std::vector &InputSpecs, const std::vector &OutputSpecs, const char *Tags); bool isValid() const { return IsValid; } size_t outputSize() const { return Output.size(); } std::unique_ptr evaluate() { Interpreter->Invoke(); return std::make_unique(Output); } const std::vector &getInput() const { return Input; } ~TFModelEvaluatorImpl(); private: std::unique_ptr Model; /// The objects necessary for carrying out an evaluation of the SavedModel. /// They are expensive to set up, and we maintain them accross all the /// evaluations of the model. std::unique_ptr Interpreter; /// The input tensors. We set up the tensors once and just mutate theirs /// scalars before each evaluation. The input tensors keep their value after /// an evaluation. std::vector Input; /// The output nodes. std::vector Output; void invalidate() { IsValid = false; } bool IsValid = true; /// Reusable utility for ensuring we can bind the requested Name to a node in /// the SavedModel Graph. bool checkReportAndInvalidate(const TfLiteTensor *Tensor, const TensorSpec &Spec); }; } // namespace llvm TFModelEvaluatorImpl::TFModelEvaluatorImpl( StringRef SavedModelPath, const std::vector &InputSpecs, const std::vector &OutputSpecs, const char *Tags = "serve") : Input(InputSpecs.size()), Output(OutputSpecs.size()) { // INFO and DEBUG messages could be numerous and not particularly interesting tflite::LoggerOptions::SetMinimumLogSeverity(tflite::TFLITE_LOG_WARNING); // FIXME: make ErrorReporter a member (may also need subclassing // StatefulErrorReporter) to easily get the latest error status, for // debugging. tflite::StderrReporter ErrorReporter; SmallVector TFLitePathBuff; llvm::sys::path::append(TFLitePathBuff, SavedModelPath, "model.tflite"); StringRef TFLitePath(TFLitePathBuff.data(), TFLitePathBuff.size()); Model = tflite::FlatBufferModel::BuildFromFile(TFLitePath.str().c_str(), &ErrorReporter); if (!Model) { invalidate(); return; } tflite::ops::builtin::BuiltinOpResolver Resolver; tflite::InterpreterBuilder Builder(*Model, Resolver); Builder(&Interpreter); if (!Interpreter) { invalidate(); return; } // We assume the input buffers are valid for the lifetime of the interpreter. // By default, tflite allocates memory in an arena and will periodically take // away memory and reallocate it in a different location after evaluations in // order to improve utilization of the buffers owned in the arena. So, we // explicitly mark our input buffers as persistent to avoid this behavior. for (size_t I = 0; I < Interpreter->inputs().size(); ++I) Interpreter->tensor(I)->allocation_type = TfLiteAllocationType::kTfLiteArenaRwPersistent; if (Interpreter->AllocateTensors() != TfLiteStatus::kTfLiteOk) { invalidate(); return; } // Known inputs and outputs StringMap InputsMap; StringMap OutputsMap; for (size_t I = 0; I < Interpreter->inputs().size(); ++I) InputsMap[Interpreter->GetInputName(I)] = I; for (size_t I = 0; I < Interpreter->outputs().size(); ++I) OutputsMap[Interpreter->GetOutputName(I)] = I; size_t NumberFeaturesPassed = 0; for (size_t I = 0; I < InputSpecs.size(); ++I) { auto &InputSpec = InputSpecs[I]; auto MapI = InputsMap.find(InputSpec.name() + ":" + std::to_string(InputSpec.port())); if (MapI == InputsMap.end()) { Input[I] = nullptr; continue; } Input[I] = Interpreter->tensor(MapI->second); if (!checkReportAndInvalidate(Input[I], InputSpec)) return; std::memset(Input[I]->data.data, 0, InputSpecs[I].getTotalTensorBufferSize()); ++NumberFeaturesPassed; } if (NumberFeaturesPassed < Interpreter->inputs().size()) { // we haven't passed all the required features to the model, throw an error. errs() << "Required feature(s) have not been passed to the ML model"; invalidate(); return; } for (size_t I = 0; I < OutputSpecs.size(); ++I) { const auto &OutputSpec = OutputSpecs[I]; Output[I] = Interpreter->output_tensor( OutputsMap[OutputSpec.name() + ":" + std::to_string(OutputSpec.port())]); if (!checkReportAndInvalidate(Output[I], OutputSpec)) return; } } TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath, const std::vector &InputSpecs, const std::vector &OutputSpecs, const char *Tags) : Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, OutputSpecs, Tags)) { if (!Impl->isValid()) Impl.reset(); } TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {} bool TFModelEvaluatorImpl::checkReportAndInvalidate(const TfLiteTensor *Tensor, const TensorSpec &Spec) { if (!Tensor) { errs() << "Could not find TF_Output named: " + Spec.name(); IsValid = false; } if (Spec.getTotalTensorBufferSize() != Tensor->bytes) IsValid = false; // If the total sizes match, there could still be a mismatch in the shape. // We ignore that for now. return IsValid; } std::optional TFModelEvaluator::evaluate() { if (!isValid()) return std::nullopt; return EvaluationResult(Impl->evaluate()); } void *TFModelEvaluator::getUntypedInput(size_t Index) { TfLiteTensor *T = Impl->getInput()[Index]; if (!T) return nullptr; return T->data.data; } TFModelEvaluator::EvaluationResult::EvaluationResult( std::unique_ptr Impl) : Impl(std::move(Impl)) {} TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other) : Impl(std::move(Other.Impl)) {} TFModelEvaluator::EvaluationResult & TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) { Impl = std::move(Other.Impl); return *this; } void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) { return Impl->getOutput(Index)->data.data; } const void * TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const { return Impl->getOutput(Index)->data.data; } TFModelEvaluator::EvaluationResult::~EvaluationResult() {} TFModelEvaluator::~TFModelEvaluator() {} #endif // defined(LLVM_HAVE_TFLITE)