//===-- MemoryProfileInfo.cpp - memory profile info ------------------------==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains utilities to analyze memory profile information. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/MemoryProfileInfo.h" #include "llvm/Support/CommandLine.h" using namespace llvm; using namespace llvm::memprof; #define DEBUG_TYPE "memory-profile-info" // Upper bound on lifetime access density (accesses per byte per lifetime sec) // for marking an allocation cold. cl::opt MemProfLifetimeAccessDensityColdThreshold( "memprof-lifetime-access-density-cold-threshold", cl::init(0.05), cl::Hidden, cl::desc("The threshold the lifetime access density (accesses per byte per " "lifetime sec) must be under to consider an allocation cold")); // Lower bound on lifetime to mark an allocation cold (in addition to accesses // per byte per sec above). This is to avoid pessimizing short lived objects. cl::opt MemProfAveLifetimeColdThreshold( "memprof-ave-lifetime-cold-threshold", cl::init(200), cl::Hidden, cl::desc("The average lifetime (s) for an allocation to be considered " "cold")); // Lower bound on average lifetime accesses density (total life time access // density / alloc count) for marking an allocation hot. cl::opt MemProfMinAveLifetimeAccessDensityHotThreshold( "memprof-min-ave-lifetime-access-density-hot-threshold", cl::init(1000), cl::Hidden, cl::desc("The minimum TotalLifetimeAccessDensity / AllocCount for an " "allocation to be considered hot")); AllocationType llvm::memprof::getAllocType(uint64_t TotalLifetimeAccessDensity, uint64_t AllocCount, uint64_t TotalLifetime) { // The access densities are multiplied by 100 to hold 2 decimal places of // precision, so need to divide by 100. if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 < MemProfLifetimeAccessDensityColdThreshold // Lifetime is expected to be in ms, so convert the threshold to ms. && ((float)TotalLifetime) / AllocCount >= MemProfAveLifetimeColdThreshold * 1000) return AllocationType::Cold; // The access densities are multiplied by 100 to hold 2 decimal places of // precision, so need to divide by 100. if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 > MemProfMinAveLifetimeAccessDensityHotThreshold) return AllocationType::Hot; return AllocationType::NotCold; } MDNode *llvm::memprof::buildCallstackMetadata(ArrayRef CallStack, LLVMContext &Ctx) { std::vector StackVals; for (auto Id : CallStack) { auto *StackValMD = ValueAsMetadata::get(ConstantInt::get(Type::getInt64Ty(Ctx), Id)); StackVals.push_back(StackValMD); } return MDNode::get(Ctx, StackVals); } MDNode *llvm::memprof::getMIBStackNode(const MDNode *MIB) { assert(MIB->getNumOperands() == 2); // The stack metadata is the first operand of each memprof MIB metadata. return cast(MIB->getOperand(0)); } AllocationType llvm::memprof::getMIBAllocType(const MDNode *MIB) { assert(MIB->getNumOperands() == 2); // The allocation type is currently the second operand of each memprof // MIB metadata. This will need to change as we add additional allocation // types that can be applied based on the allocation profile data. auto *MDS = dyn_cast(MIB->getOperand(1)); assert(MDS); if (MDS->getString().equals("cold")) { return AllocationType::Cold; } else if (MDS->getString().equals("hot")) { return AllocationType::Hot; } return AllocationType::NotCold; } std::string llvm::memprof::getAllocTypeAttributeString(AllocationType Type) { switch (Type) { case AllocationType::NotCold: return "notcold"; break; case AllocationType::Cold: return "cold"; break; case AllocationType::Hot: return "hot"; break; default: assert(false && "Unexpected alloc type"); } llvm_unreachable("invalid alloc type"); } static void addAllocTypeAttribute(LLVMContext &Ctx, CallBase *CI, AllocationType AllocType) { auto AllocTypeString = getAllocTypeAttributeString(AllocType); auto A = llvm::Attribute::get(Ctx, "memprof", AllocTypeString); CI->addFnAttr(A); } bool llvm::memprof::hasSingleAllocType(uint8_t AllocTypes) { const unsigned NumAllocTypes = llvm::popcount(AllocTypes); assert(NumAllocTypes != 0); return NumAllocTypes == 1; } void CallStackTrie::addCallStack(AllocationType AllocType, ArrayRef StackIds) { bool First = true; CallStackTrieNode *Curr = nullptr; for (auto StackId : StackIds) { // If this is the first stack frame, add or update alloc node. if (First) { First = false; if (Alloc) { assert(AllocStackId == StackId); Alloc->AllocTypes |= static_cast(AllocType); } else { AllocStackId = StackId; Alloc = new CallStackTrieNode(AllocType); } Curr = Alloc; continue; } // Update existing caller node if it exists. auto Next = Curr->Callers.find(StackId); if (Next != Curr->Callers.end()) { Curr = Next->second; Curr->AllocTypes |= static_cast(AllocType); continue; } // Otherwise add a new caller node. auto *New = new CallStackTrieNode(AllocType); Curr->Callers[StackId] = New; Curr = New; } assert(Curr); } void CallStackTrie::addCallStack(MDNode *MIB) { MDNode *StackMD = getMIBStackNode(MIB); assert(StackMD); std::vector CallStack; CallStack.reserve(StackMD->getNumOperands()); for (const auto &MIBStackIter : StackMD->operands()) { auto *StackId = mdconst::dyn_extract(MIBStackIter); assert(StackId); CallStack.push_back(StackId->getZExtValue()); } addCallStack(getMIBAllocType(MIB), CallStack); } static MDNode *createMIBNode(LLVMContext &Ctx, std::vector &MIBCallStack, AllocationType AllocType) { std::vector MIBPayload( {buildCallstackMetadata(MIBCallStack, Ctx)}); MIBPayload.push_back( MDString::get(Ctx, getAllocTypeAttributeString(AllocType))); return MDNode::get(Ctx, MIBPayload); } // Recursive helper to trim contexts and create metadata nodes. // Caller should have pushed Node's loc to MIBCallStack. Doing this in the // caller makes it simpler to handle the many early returns in this method. bool CallStackTrie::buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx, std::vector &MIBCallStack, std::vector &MIBNodes, bool CalleeHasAmbiguousCallerContext) { // Trim context below the first node in a prefix with a single alloc type. // Add an MIB record for the current call stack prefix. if (hasSingleAllocType(Node->AllocTypes)) { MIBNodes.push_back( createMIBNode(Ctx, MIBCallStack, (AllocationType)Node->AllocTypes)); return true; } // We don't have a single allocation for all the contexts sharing this prefix, // so recursively descend into callers in trie. if (!Node->Callers.empty()) { bool NodeHasAmbiguousCallerContext = Node->Callers.size() > 1; bool AddedMIBNodesForAllCallerContexts = true; for (auto &Caller : Node->Callers) { MIBCallStack.push_back(Caller.first); AddedMIBNodesForAllCallerContexts &= buildMIBNodes(Caller.second, Ctx, MIBCallStack, MIBNodes, NodeHasAmbiguousCallerContext); // Remove Caller. MIBCallStack.pop_back(); } if (AddedMIBNodesForAllCallerContexts) return true; // We expect that the callers should be forced to add MIBs to disambiguate // the context in this case (see below). assert(!NodeHasAmbiguousCallerContext); } // If we reached here, then this node does not have a single allocation type, // and we didn't add metadata for a longer call stack prefix including any of // Node's callers. That means we never hit a single allocation type along all // call stacks with this prefix. This can happen due to recursion collapsing // or the stack being deeper than tracked by the profiler runtime, leading to // contexts with different allocation types being merged. In that case, we // trim the context just below the deepest context split, which is this // node if the callee has an ambiguous caller context (multiple callers), // since the recursive calls above returned false. Conservatively give it // non-cold allocation type. if (!CalleeHasAmbiguousCallerContext) return false; MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, AllocationType::NotCold)); return true; } // Build and attach the minimal necessary MIB metadata. If the alloc has a // single allocation type, add a function attribute instead. Returns true if // memprof metadata attached, false if not (attribute added). bool CallStackTrie::buildAndAttachMIBMetadata(CallBase *CI) { auto &Ctx = CI->getContext(); if (hasSingleAllocType(Alloc->AllocTypes)) { addAllocTypeAttribute(Ctx, CI, (AllocationType)Alloc->AllocTypes); return false; } std::vector MIBCallStack; MIBCallStack.push_back(AllocStackId); std::vector MIBNodes; assert(!Alloc->Callers.empty() && "addCallStack has not been called yet"); buildMIBNodes(Alloc, Ctx, MIBCallStack, MIBNodes, /*CalleeHasAmbiguousCallerContext=*/true); assert(MIBCallStack.size() == 1 && "Should only be left with Alloc's location in stack"); CI->setMetadata(LLVMContext::MD_memprof, MDNode::get(Ctx, MIBNodes)); return true; } template <> CallStack::CallStackIterator::CallStackIterator( const MDNode *N, bool End) : N(N) { if (!N) return; Iter = End ? N->op_end() : N->op_begin(); } template <> uint64_t CallStack::CallStackIterator::operator*() { assert(Iter != N->op_end()); ConstantInt *StackIdCInt = mdconst::dyn_extract(*Iter); assert(StackIdCInt); return StackIdCInt->getZExtValue(); } template <> uint64_t CallStack::back() const { assert(N); return mdconst::dyn_extract(N->operands().back()) ->getZExtValue(); }