//===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// // // The LLVM Compiler Infrastructure // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file defines the implementation for the loop cache analysis. /// The implementation is largely based on the following paper: /// /// Compiler Optimizations for Improving Data Locality /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf /// /// The general approach taken to estimate the number of cache lines used by the /// memory references in an inner loop is: /// 1. Partition memory references that exhibit temporal or spacial reuse /// into reference groups. /// 2. For each loop L in the a loop nest LN: /// a. Compute the cost of the reference group /// b. Compute the loop cost by summing up the reference groups costs //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopCacheAnalysis.h" #include "llvm/ADT/BreadthFirstIterator.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Delinearization.h" #include "llvm/Analysis/DependenceAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "loop-cache-cost" static cl::opt DefaultTripCount( "default-trip-count", cl::init(100), cl::Hidden, cl::desc("Use this to specify the default trip count of a loop")); // In this analysis two array references are considered to exhibit temporal // reuse if they access either the same memory location, or a memory location // with distance smaller than a configurable threshold. static cl::opt TemporalReuseThreshold( "temporal-reuse-threshold", cl::init(2), cl::Hidden, cl::desc("Use this to specify the max. distance between array elements " "accessed in a loop so that the elements are classified to have " "temporal reuse")); /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a /// nullptr if any loops in the loop vector supplied has more than one sibling. /// The loop vector is expected to contain loops collected in breadth-first /// order. static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { assert(!Loops.empty() && "Expecting a non-empy loop vector"); Loop *LastLoop = Loops.back(); Loop *ParentLoop = LastLoop->getParentLoop(); if (ParentLoop == nullptr) { assert(Loops.size() == 1 && "Expecting a single loop"); return LastLoop; } return (llvm::is_sorted(Loops, [](const Loop *L1, const Loop *L2) { return L1->getLoopDepth() < L2->getLoopDepth(); })) ? LastLoop : nullptr; } static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, const Loop &L, ScalarEvolution &SE) { const SCEVAddRecExpr *AR = dyn_cast(&AccessFn); if (!AR || !AR->isAffine()) return false; assert(AR->getLoop() && "AR should have a loop"); // Check that start and increment are not add recurrences. const SCEV *Start = AR->getStart(); const SCEV *Step = AR->getStepRecurrence(SE); if (isa(Start) || isa(Step)) return false; // Check that start and increment are both invariant in the loop. if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) return false; const SCEV *StepRec = AR->getStepRecurrence(SE); if (StepRec && SE.isKnownNegative(StepRec)) StepRec = SE.getNegativeSCEV(StepRec); return StepRec == &ElemSize; } /// Compute the trip count for the given loop \p L or assume a default value if /// it is not a compile time constant. Return the SCEV expression for the trip /// count. static const SCEV *computeTripCount(const Loop &L, const SCEV &ElemSize, ScalarEvolution &SE) { const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); const SCEV *TripCount = (!isa(BackedgeTakenCount) && isa(BackedgeTakenCount)) ? SE.getTripCountFromExitCount(BackedgeTakenCount) : nullptr; if (!TripCount) { LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() << " could not be computed, using DefaultTripCount\n"); TripCount = SE.getConstant(ElemSize.getType(), DefaultTripCount); } return TripCount; } //===----------------------------------------------------------------------===// // IndexedReference implementation // raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { if (!R.IsValid) { OS << R.StoreOrLoadInst; OS << ", IsValid=false."; return OS; } OS << *R.BasePointer; for (const SCEV *Subscript : R.Subscripts) OS << "[" << *Subscript << "]"; OS << ", Sizes: "; for (const SCEV *Size : R.Sizes) OS << "[" << *Size << "]"; return OS; } IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, const LoopInfo &LI, ScalarEvolution &SE) : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { assert((isa(StoreOrLoadInst) || isa(StoreOrLoadInst)) && "Expecting a load or store instruction"); IsValid = delinearize(LI); if (IsValid) LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this << "\n"); } Optional IndexedReference::hasSpacialReuse(const IndexedReference &Other, unsigned CLS, AAResults &AA) const { assert(IsValid && "Expecting a valid reference"); if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse: different base pointers\n"); return false; } unsigned NumSubscripts = getNumSubscripts(); if (NumSubscripts != Other.getNumSubscripts()) { LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse: different number of subscripts\n"); return false; } // all subscripts must be equal, except the leftmost one (the last one). for (auto SubNum : seq(0, NumSubscripts - 1)) { if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " << "\n\t" << *getSubscript(SubNum) << "\n\t" << *Other.getSubscript(SubNum) << "\n"); return false; } } // the difference between the last subscripts must be less than the cache line // size. const SCEV *LastSubscript = getLastSubscript(); const SCEV *OtherLastSubscript = Other.getLastSubscript(); const SCEVConstant *Diff = dyn_cast( SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); if (Diff == nullptr) { LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, difference between subscript:\n\t" << *LastSubscript << "\n\t" << OtherLastSubscript << "\nis not constant.\n"); return None; } bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); LLVM_DEBUG({ if (InSameCacheLine) dbgs().indent(2) << "Found spacial reuse.\n"; else dbgs().indent(2) << "No spacial reuse.\n"; }); return InSameCacheLine; } Optional IndexedReference::hasTemporalReuse(const IndexedReference &Other, unsigned MaxDistance, const Loop &L, DependenceInfo &DI, AAResults &AA) const { assert(IsValid && "Expecting a valid reference"); if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: different base pointer\n"); return false; } std::unique_ptr D = DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); if (D == nullptr) { LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); return false; } if (D->isLoopIndependent()) { LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); return true; } // Check the dependence distance at every loop level. There is temporal reuse // if the distance at the given loop's depth is small (|d| <= MaxDistance) and // it is zero at every other loop level. int LoopDepth = L.getLoopDepth(); int Levels = D->getLevels(); for (int Level = 1; Level <= Levels; ++Level) { const SCEV *Distance = D->getDistance(Level); const SCEVConstant *SCEVConst = dyn_cast_or_null(Distance); if (SCEVConst == nullptr) { LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); return None; } const ConstantInt &CI = *SCEVConst->getValue(); if (Level != LoopDepth && !CI.isZero()) { LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance is not zero at depth=" << Level << "\n"); return false; } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { LLVM_DEBUG( dbgs().indent(2) << "No temporal reuse: distance is greater than MaxDistance at depth=" << Level << "\n"); return false; } } LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); return true; } CacheCostTy IndexedReference::computeRefCost(const Loop &L, unsigned CLS) const { assert(IsValid && "Expecting a valid reference"); LLVM_DEBUG({ dbgs().indent(2) << "Computing cache cost for:\n"; dbgs().indent(4) << *this << "\n"; }); // If the indexed reference is loop invariant the cost is one. if (isLoopInvariant(L)) { LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); return 1; } const SCEV *TripCount = computeTripCount(L, *Sizes.back(), SE); assert(TripCount && "Expecting valid TripCount"); LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); const SCEV *RefCost = nullptr; const SCEV *Stride = nullptr; if (isConsecutive(L, Stride, CLS)) { // If the indexed reference is 'consecutive' the cost is // (TripCount*Stride)/CLS. assert(Stride != nullptr && "Stride should not be null for consecutive access!"); Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType()); const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS); Stride = SE.getNoopOrAnyExtend(Stride, WiderType); TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType); const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); RefCost = SE.getUDivExpr(Numerator, CacheLineSize); LLVM_DEBUG(dbgs().indent(4) << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" << *RefCost << "\n"); } else { // If the indexed reference is not 'consecutive' the cost is proportional to // the trip count and the depth of the dimension which the subject loop // subscript is accessing. We try to estimate this by multiplying the cost // by the trip counts of loops corresponding to the inner dimensions. For // example, given the indexed reference 'A[i][j][k]', and assuming the // i-loop is in the innermost position, the cost would be equal to the // iterations of the i-loop multiplied by iterations of the j-loop. RefCost = TripCount; int Index = getSubscriptIndex(L); assert(Index >= 0 && "Cound not locate a valid Index"); for (unsigned I = Index + 1; I < getNumSubscripts() - 1; ++I) { const SCEVAddRecExpr *AR = dyn_cast(getSubscript(I)); assert(AR && AR->getLoop() && "Expecting valid loop"); const SCEV *TripCount = computeTripCount(*AR->getLoop(), *Sizes.back(), SE); Type *WiderType = SE.getWiderType(RefCost->getType(), TripCount->getType()); RefCost = SE.getMulExpr(SE.getNoopOrAnyExtend(RefCost, WiderType), SE.getNoopOrAnyExtend(TripCount, WiderType)); } LLVM_DEBUG(dbgs().indent(4) << "Access is not consecutive: RefCost=" << *RefCost << "\n"); } assert(RefCost && "Expecting a valid RefCost"); // Attempt to fold RefCost into a constant. if (auto ConstantCost = dyn_cast(RefCost)) return ConstantCost->getValue()->getSExtValue(); LLVM_DEBUG(dbgs().indent(4) << "RefCost is not a constant! Setting to RefCost=InvalidCost " "(invalid value).\n"); return CacheCost::InvalidCost; } bool IndexedReference::tryDelinearizeFixedSize( const SCEV *AccessFn, SmallVectorImpl &Subscripts) { SmallVector ArraySizes; if (!tryDelinearizeFixedSizeImpl(&SE, &StoreOrLoadInst, AccessFn, Subscripts, ArraySizes)) return false; // Populate Sizes with scev expressions to be used in calculations later. for (auto Idx : seq(1, Subscripts.size())) Sizes.push_back( SE.getConstant(Subscripts[Idx]->getType(), ArraySizes[Idx - 1])); LLVM_DEBUG({ dbgs() << "Delinearized subscripts of fixed-size array\n" << "GEP:" << *getLoadStorePointerOperand(&StoreOrLoadInst) << "\n"; }); return true; } bool IndexedReference::delinearize(const LoopInfo &LI) { assert(Subscripts.empty() && "Subscripts should be empty"); assert(Sizes.empty() && "Sizes should be empty"); assert(!IsValid && "Should be called once from the constructor"); LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); const BasicBlock *BB = StoreOrLoadInst.getParent(); if (Loop *L = LI.getLoopFor(BB)) { const SCEV *AccessFn = SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); BasePointer = dyn_cast(SE.getPointerBase(AccessFn)); if (BasePointer == nullptr) { LLVM_DEBUG( dbgs().indent(2) << "ERROR: failed to delinearize, can't identify base pointer\n"); return false; } bool IsFixedSize = false; // Try to delinearize fixed-size arrays. if (tryDelinearizeFixedSize(AccessFn, Subscripts)) { IsFixedSize = true; // The last element of Sizes is the element size. Sizes.push_back(ElemSize); LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() << "', AccessFn: " << *AccessFn << "\n"); } AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); // Try to delinearize parametric-size arrays. if (!IsFixedSize) { LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() << "', AccessFn: " << *AccessFn << "\n"); llvm::delinearize(SE, AccessFn, Subscripts, Sizes, SE.getElementSize(&StoreOrLoadInst)); } if (Subscripts.empty() || Sizes.empty() || Subscripts.size() != Sizes.size()) { // Attempt to determine whether we have a single dimensional array access. // before giving up. if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { LLVM_DEBUG(dbgs().indent(2) << "ERROR: failed to delinearize reference\n"); Subscripts.clear(); Sizes.clear(); return false; } // The array may be accessed in reverse, for example: // for (i = N; i > 0; i--) // A[i] = 0; // In this case, reconstruct the access function using the absolute value // of the step recurrence. const SCEVAddRecExpr *AccessFnAR = dyn_cast(AccessFn); const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; if (StepRec && SE.isKnownNegative(StepRec)) AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(), SE.getNegativeSCEV(StepRec), AccessFnAR->getLoop(), AccessFnAR->getNoWrapFlags()); const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); Subscripts.push_back(Div); Sizes.push_back(ElemSize); } return all_of(Subscripts, [&](const SCEV *Subscript) { return isSimpleAddRecurrence(*Subscript, *L); }); } return false; } bool IndexedReference::isLoopInvariant(const Loop &L) const { Value *Addr = getPointerOperand(&StoreOrLoadInst); assert(Addr != nullptr && "Expecting either a load or a store instruction"); assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) return true; // The indexed reference is loop invariant if none of the coefficients use // the loop induction variable. bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { return isCoeffForLoopZeroOrInvariant(*Subscript, L); }); return allCoeffForLoopAreZero; } bool IndexedReference::isConsecutive(const Loop &L, const SCEV *&Stride, unsigned CLS) const { // The indexed reference is 'consecutive' if the only coefficient that uses // the loop induction variable is the last one... const SCEV *LastSubscript = Subscripts.back(); for (const SCEV *Subscript : Subscripts) { if (Subscript == LastSubscript) continue; if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) return false; } // ...and the access stride is less than the cache line size. const SCEV *Coeff = getLastCoefficient(); const SCEV *ElemSize = Sizes.back(); Type *WiderType = SE.getWiderType(Coeff->getType(), ElemSize->getType()); // FIXME: This assumes that all values are signed integers which may // be incorrect in unusual codes and incorrectly use sext instead of zext. // for (uint32_t i = 0; i < 512; ++i) { // uint8_t trunc = i; // A[trunc] = 42; // } // This consecutively iterates twice over A. If `trunc` is sign-extended, // we would conclude that this may iterate backwards over the array. // However, LoopCacheAnalysis is heuristic anyway and transformations must // not result in wrong optimizations if the heuristic was incorrect. Stride = SE.getMulExpr(SE.getNoopOrSignExtend(Coeff, WiderType), SE.getNoopOrSignExtend(ElemSize, WiderType)); const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride; return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); } int IndexedReference::getSubscriptIndex(const Loop &L) const { for (auto Idx : seq(0, getNumSubscripts())) { const SCEVAddRecExpr *AR = dyn_cast(getSubscript(Idx)); if (AR && AR->getLoop() == &L) { return Idx; } } return -1; } const SCEV *IndexedReference::getLastCoefficient() const { const SCEV *LastSubscript = getLastSubscript(); auto *AR = cast(LastSubscript); return AR->getStepRecurrence(SE); } bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, const Loop &L) const { const SCEVAddRecExpr *AR = dyn_cast(&Subscript); return (AR != nullptr) ? AR->getLoop() != &L : SE.isLoopInvariant(&Subscript, &L); } bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, const Loop &L) const { if (!isa(Subscript)) return false; const SCEVAddRecExpr *AR = cast(&Subscript); assert(AR->getLoop() && "AR should have a loop"); if (!AR->isAffine()) return false; const SCEV *Start = AR->getStart(); const SCEV *Step = AR->getStepRecurrence(SE); if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) return false; return true; } bool IndexedReference::isAliased(const IndexedReference &Other, AAResults &AA) const { const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); return AA.isMustAlias(Loc1, Loc2); } //===----------------------------------------------------------------------===// // CacheCost implementation // raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { for (const auto &LC : CC.LoopCosts) { const Loop *L = LC.first; OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; } return OS; } CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, ScalarEvolution &SE, TargetTransformInfo &TTI, AAResults &AA, DependenceInfo &DI, Optional TRT) : Loops(Loops), TRT((TRT == None) ? Optional(TemporalReuseThreshold) : TRT), LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) { assert(!Loops.empty() && "Expecting a non-empty loop vector."); for (const Loop *L : Loops) { unsigned TripCount = SE.getSmallConstantTripCount(L); TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; TripCounts.push_back({L, TripCount}); } calculateCacheFootprint(); } std::unique_ptr CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, DependenceInfo &DI, Optional TRT) { if (!Root.isOutermost()) { LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); return nullptr; } LoopVectorTy Loops; append_range(Loops, breadth_first(&Root)); if (!getInnerMostLoop(Loops)) { LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " "than one innermost loop\n"); return nullptr; } return std::make_unique(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); } void CacheCost::calculateCacheFootprint() { LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); ReferenceGroupsTy RefGroups; if (!populateReferenceGroups(RefGroups)) return; LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); for (const Loop *L : Loops) { assert(llvm::none_of( LoopCosts, [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) && "Should not add duplicate element"); CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); LoopCosts.push_back(std::make_pair(L, LoopCost)); } sortLoopCosts(); RefGroups.clear(); } bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { assert(RefGroups.empty() && "Reference groups should be empty"); unsigned CLS = TTI.getCacheLineSize(); Loop *InnerMostLoop = getInnerMostLoop(Loops); assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); for (BasicBlock *BB : InnerMostLoop->getBlocks()) { for (Instruction &I : *BB) { if (!isa(I) && !isa(I)) continue; std::unique_ptr R(new IndexedReference(I, LI, SE)); if (!R->isValid()) continue; bool Added = false; for (ReferenceGroupTy &RefGroup : RefGroups) { const IndexedReference &Representative = *RefGroup.front(); LLVM_DEBUG({ dbgs() << "References:\n"; dbgs().indent(2) << *R << "\n"; dbgs().indent(2) << Representative << "\n"; }); // FIXME: Both positive and negative access functions will be placed // into the same reference group, resulting in a bi-directional array // access such as: // for (i = N; i > 0; i--) // A[i] = A[N - i]; // having the same cost calculation as a single dimention access pattern // for (i = 0; i < N; i++) // A[i] = A[i]; // when in actuality, depending on the array size, the first example // should have a cost closer to 2x the second due to the two cache // access per iteration from opposite ends of the array Optional HasTemporalReuse = R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); Optional HasSpacialReuse = R->hasSpacialReuse(Representative, CLS, AA); if ((HasTemporalReuse && *HasTemporalReuse) || (HasSpacialReuse && *HasSpacialReuse)) { RefGroup.push_back(std::move(R)); Added = true; break; } } if (!Added) { ReferenceGroupTy RG; RG.push_back(std::move(R)); RefGroups.push_back(std::move(RG)); } } } if (RefGroups.empty()) return false; LLVM_DEBUG({ dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; int n = 1; for (const ReferenceGroupTy &RG : RefGroups) { dbgs().indent(2) << "RefGroup " << n << ":\n"; for (const auto &IR : RG) dbgs().indent(4) << *IR << "\n"; n++; } dbgs() << "\n"; }); return true; } CacheCostTy CacheCost::computeLoopCacheCost(const Loop &L, const ReferenceGroupsTy &RefGroups) const { if (!L.isLoopSimplifyForm()) return InvalidCost; LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() << "' as innermost loop.\n"); // Compute the product of the trip counts of each other loop in the nest. CacheCostTy TripCountsProduct = 1; for (const auto &TC : TripCounts) { if (TC.first == &L) continue; TripCountsProduct *= TC.second; } CacheCostTy LoopCost = 0; for (const ReferenceGroupTy &RG : RefGroups) { CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); LoopCost += RefGroupCost * TripCountsProduct; } LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() << "' has cost=" << LoopCost << "\n"); return LoopCost; } CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, const Loop &L) const { assert(!RG.empty() && "Reference group should have at least one member."); const IndexedReference *Representative = RG.front().get(); return Representative->computeRefCost(L, TTI.getCacheLineSize()); } //===----------------------------------------------------------------------===// // LoopCachePrinterPass implementation // PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U) { Function *F = L.getHeader()->getParent(); DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); if (auto CC = CacheCost::getCacheCost(L, AR, DI)) OS << *CC; return PreservedAnalyses::all(); }