//===- Loads.cpp - Local load analysis ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines simple local analyses for load instructions. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumeBundleQueries.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" using namespace llvm; static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, const DataLayout &DL) { Align BA = Base->getPointerAlignment(DL); return BA >= Alignment && Offset.isAligned(BA); } /// Test if V is always a pointer to allocated and suitably aligned memory for /// a simple load or store. static bool isDereferenceableAndAlignedPointer( const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, const TargetLibraryInfo *TLI, SmallPtrSetImpl &Visited, unsigned MaxDepth) { assert(V->getType()->isPointerTy() && "Base must be pointer"); // Recursion limit. if (MaxDepth-- == 0) return false; // Already visited? Bail out, we've likely hit unreachable code. if (!Visited.insert(V).second) return false; // Note that it is not safe to speculate into a malloc'd region because // malloc may return null. // For GEPs, determine if the indexing lands within the allocated object. if (const GEPOperator *GEP = dyn_cast(V)) { const Value *Base = GEP->getPointerOperand(); APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || !Offset.urem(APInt(Offset.getBitWidth(), Alignment.value())) .isMinValue()) return false; // If the base pointer is dereferenceable for Offset+Size bytes, then the // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base // pointer is aligned to Align bytes, and the Offset is divisible by Align // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also // aligned to Align bytes. // Offset and Size may have different bit widths if we have visited an // addrspacecast, so we can't do arithmetic directly on the APInt values. return isDereferenceableAndAlignedPointer( Base, Alignment, Offset + Size.sextOrTrunc(Offset.getBitWidth()), DL, CtxI, AC, DT, TLI, Visited, MaxDepth); } // bitcast instructions are no-ops as far as dereferenceability is concerned. if (const BitCastOperator *BC = dyn_cast(V)) { if (BC->getSrcTy()->isPointerTy()) return isDereferenceableAndAlignedPointer( BC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI, Visited, MaxDepth); } // Recurse into both hands of select. if (const SelectInst *Sel = dyn_cast(V)) { return isDereferenceableAndAlignedPointer(Sel->getTrueValue(), Alignment, Size, DL, CtxI, AC, DT, TLI, Visited, MaxDepth) && isDereferenceableAndAlignedPointer(Sel->getFalseValue(), Alignment, Size, DL, CtxI, AC, DT, TLI, Visited, MaxDepth); } bool CheckForNonNull, CheckForFreed; APInt KnownDerefBytes(Size.getBitWidth(), V->getPointerDereferenceableBytes(DL, CheckForNonNull, CheckForFreed)); if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && !CheckForFreed) if (!CheckForNonNull || isKnownNonZero(V, DL, 0, AC, CtxI, DT)) { // As we recursed through GEPs to get here, we've incrementally checked // that each step advanced by a multiple of the alignment. If our base is // properly aligned, then the original offset accessed must also be. APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0); return isAligned(V, Offset, Alignment, DL); } /// TODO refactor this function to be able to search independently for /// Dereferencability and Alignment requirements. if (const auto *Call = dyn_cast(V)) { if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) return isDereferenceableAndAlignedPointer(RP, Alignment, Size, DL, CtxI, AC, DT, TLI, Visited, MaxDepth); // If we have a call we can't recurse through, check to see if this is an // allocation function for which we can establish an minimum object size. // Such a minimum object size is analogous to a deref_or_null attribute in // that we still need to prove the result non-null at point of use. // NOTE: We can only use the object size as a base fact as we a) need to // prove alignment too, and b) don't want the compile time impact of a // separate recursive walk. ObjectSizeOpts Opts; // TODO: It may be okay to round to align, but that would imply that // accessing slightly out of bounds was legal, and we're currently // inconsistent about that. For the moment, be conservative. Opts.RoundToAlign = false; Opts.NullIsUnknownSize = true; uint64_t ObjSize; if (getObjectSize(V, ObjSize, DL, TLI, Opts)) { APInt KnownDerefBytes(Size.getBitWidth(), ObjSize); if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size) && isKnownNonZero(V, DL, 0, AC, CtxI, DT) && !V->canBeFreed()) { // As we recursed through GEPs to get here, we've incrementally // checked that each step advanced by a multiple of the alignment. If // our base is properly aligned, then the original offset accessed // must also be. APInt Offset(DL.getTypeStoreSizeInBits(V->getType()), 0); return isAligned(V, Offset, Alignment, DL); } } } // For gc.relocate, look through relocations if (const GCRelocateInst *RelocateInst = dyn_cast(V)) return isDereferenceableAndAlignedPointer(RelocateInst->getDerivedPtr(), Alignment, Size, DL, CtxI, AC, DT, TLI, Visited, MaxDepth); if (const AddrSpaceCastOperator *ASC = dyn_cast(V)) return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Alignment, Size, DL, CtxI, AC, DT, TLI, Visited, MaxDepth); if (CtxI) { /// Look through assumes to see if both dereferencability and alignment can /// be provent by an assume RetainedKnowledge AlignRK; RetainedKnowledge DerefRK; if (getKnowledgeForValue( V, {Attribute::Dereferenceable, Attribute::Alignment}, AC, [&](RetainedKnowledge RK, Instruction *Assume, auto) { if (!isValidAssumeForContext(Assume, CtxI)) return false; if (RK.AttrKind == Attribute::Alignment) AlignRK = std::max(AlignRK, RK); if (RK.AttrKind == Attribute::Dereferenceable) DerefRK = std::max(DerefRK, RK); if (AlignRK && DerefRK && AlignRK.ArgValue >= Alignment.value() && DerefRK.ArgValue >= Size.getZExtValue()) return true; // We have found what we needed so we stop looking return false; // Other assumes may have better information. so // keep looking })) return true; } // If we don't know, assume the worst. return false; } bool llvm::isDereferenceableAndAlignedPointer( const Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, const TargetLibraryInfo *TLI) { // Note: At the moment, Size can be zero. This ends up being interpreted as // a query of whether [Base, V] is dereferenceable and V is aligned (since // that's what the implementation happened to do). It's unclear if this is // the desired semantic, but at least SelectionDAG does exercise this case. SmallPtrSet Visited; return ::isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT, TLI, Visited, 16); } bool llvm::isDereferenceableAndAlignedPointer( const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, const TargetLibraryInfo *TLI) { // For unsized types or scalable vectors we don't know exactly how many bytes // are dereferenced, so bail out. if (!Ty->isSized() || Ty->isScalableTy()) return false; // When dereferenceability information is provided by a dereferenceable // attribute, we know exactly how many bytes are dereferenceable. If we can // determine the exact offset to the attributed variable, we can use that // information here. APInt AccessSize(DL.getPointerTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); return isDereferenceableAndAlignedPointer(V, Alignment, AccessSize, DL, CtxI, AC, DT, TLI); } bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, const DataLayout &DL, const Instruction *CtxI, AssumptionCache *AC, const DominatorTree *DT, const TargetLibraryInfo *TLI) { return isDereferenceableAndAlignedPointer(V, Ty, Align(1), DL, CtxI, AC, DT, TLI); } /// Test if A and B will obviously have the same value. /// /// This includes recognizing that %t0 and %t1 will have the same /// value in code like this: /// \code /// %t0 = getelementptr \@a, 0, 3 /// store i32 0, i32* %t0 /// %t1 = getelementptr \@a, 0, 3 /// %t2 = load i32* %t1 /// \endcode /// static bool AreEquivalentAddressValues(const Value *A, const Value *B) { // Test if the values are trivially equivalent. if (A == B) return true; // Test if the values come from identical arithmetic instructions. // Use isIdenticalToWhenDefined instead of isIdenticalTo because // this function is only used when one address use dominates the // other, which means that they'll always either have the same // value or one of them will have an undefined value. if (isa(A) || isa(A) || isa(A) || isa(A)) if (const Instruction *BI = dyn_cast(B)) if (cast(A)->isIdenticalToWhenDefined(BI)) return true; // Otherwise they may not be equivalent. return false; } bool llvm::isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, ScalarEvolution &SE, DominatorTree &DT, AssumptionCache *AC) { auto &DL = LI->getModule()->getDataLayout(); Value *Ptr = LI->getPointerOperand(); APInt EltSize(DL.getIndexTypeSizeInBits(Ptr->getType()), DL.getTypeStoreSize(LI->getType()).getFixedValue()); const Align Alignment = LI->getAlign(); Instruction *HeaderFirstNonPHI = L->getHeader()->getFirstNonPHI(); // If given a uniform (i.e. non-varying) address, see if we can prove the // access is safe within the loop w/o needing predication. if (L->isLoopInvariant(Ptr)) return isDereferenceableAndAlignedPointer(Ptr, Alignment, EltSize, DL, HeaderFirstNonPHI, AC, &DT); // Otherwise, check to see if we have a repeating access pattern where we can // prove that all accesses are well aligned and dereferenceable. auto *AddRec = dyn_cast(SE.getSCEV(Ptr)); if (!AddRec || AddRec->getLoop() != L || !AddRec->isAffine()) return false; auto* Step = dyn_cast(AddRec->getStepRecurrence(SE)); if (!Step) return false; auto TC = SE.getSmallConstantMaxTripCount(L); if (!TC) return false; // TODO: Handle overlapping accesses. // We should be computing AccessSize as (TC - 1) * Step + EltSize. if (EltSize.sgt(Step->getAPInt())) return false; // Compute the total access size for access patterns with unit stride and // patterns with gaps. For patterns with unit stride, Step and EltSize are the // same. // For patterns with gaps (i.e. non unit stride), we are // accessing EltSize bytes at every Step. APInt AccessSize = TC * Step->getAPInt(); assert(SE.isLoopInvariant(AddRec->getStart(), L) && "implied by addrec definition"); Value *Base = nullptr; if (auto *StartS = dyn_cast(AddRec->getStart())) { Base = StartS->getValue(); } else if (auto *StartS = dyn_cast(AddRec->getStart())) { // Handle (NewBase + offset) as start value. const auto *Offset = dyn_cast(StartS->getOperand(0)); const auto *NewBase = dyn_cast(StartS->getOperand(1)); if (StartS->getNumOperands() == 2 && Offset && NewBase) { // For the moment, restrict ourselves to the case where the offset is a // multiple of the requested alignment and the base is aligned. // TODO: generalize if a case found which warrants if (Offset->getAPInt().urem(Alignment.value()) != 0) return false; Base = NewBase->getValue(); bool Overflow = false; AccessSize = AccessSize.uadd_ov(Offset->getAPInt(), Overflow); if (Overflow) return false; } } if (!Base) return false; // For the moment, restrict ourselves to the case where the access size is a // multiple of the requested alignment and the base is aligned. // TODO: generalize if a case found which warrants if (EltSize.urem(Alignment.value()) != 0) return false; return isDereferenceableAndAlignedPointer(Base, Alignment, AccessSize, DL, HeaderFirstNonPHI, AC, &DT); } /// Check if executing a load of this pointer value cannot trap. /// /// If DT and ScanFrom are specified this method performs context-sensitive /// analysis and returns true if it is safe to load immediately before ScanFrom. /// /// If it is not obviously safe to load from the specified pointer, we do /// a quick local scan of the basic block containing \c ScanFrom, to determine /// if the address is already accessed. /// /// This uses the pointee type to determine how many bytes need to be safe to /// load from the pointer. bool llvm::isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size, const DataLayout &DL, Instruction *ScanFrom, AssumptionCache *AC, const DominatorTree *DT, const TargetLibraryInfo *TLI) { // If DT is not specified we can't make context-sensitive query const Instruction* CtxI = DT ? ScanFrom : nullptr; if (isDereferenceableAndAlignedPointer(V, Alignment, Size, DL, CtxI, AC, DT, TLI)) return true; if (!ScanFrom) return false; if (Size.getBitWidth() > 64) return false; const uint64_t LoadSize = Size.getZExtValue(); // Otherwise, be a little bit aggressive by scanning the local block where we // want to check to see if the pointer is already being loaded or stored // from/to. If so, the previous load or store would have already trapped, // so there is no harm doing an extra load (also, CSE will later eliminate // the load entirely). BasicBlock::iterator BBI = ScanFrom->getIterator(), E = ScanFrom->getParent()->begin(); // We can at least always strip pointer casts even though we can't use the // base here. V = V->stripPointerCasts(); while (BBI != E) { --BBI; // If we see a free or a call which may write to memory (i.e. which might do // a free) the pointer could be marked invalid. if (isa(BBI) && BBI->mayWriteToMemory() && !isa(BBI) && !isa(BBI)) return false; Value *AccessedPtr; Type *AccessedTy; Align AccessedAlign; if (LoadInst *LI = dyn_cast(BBI)) { // Ignore volatile loads. The execution of a volatile load cannot // be used to prove an address is backed by regular memory; it can, // for example, point to an MMIO register. if (LI->isVolatile()) continue; AccessedPtr = LI->getPointerOperand(); AccessedTy = LI->getType(); AccessedAlign = LI->getAlign(); } else if (StoreInst *SI = dyn_cast(BBI)) { // Ignore volatile stores (see comment for loads). if (SI->isVolatile()) continue; AccessedPtr = SI->getPointerOperand(); AccessedTy = SI->getValueOperand()->getType(); AccessedAlign = SI->getAlign(); } else continue; if (AccessedAlign < Alignment) continue; // Handle trivial cases. if (AccessedPtr == V && LoadSize <= DL.getTypeStoreSize(AccessedTy)) return true; if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && LoadSize <= DL.getTypeStoreSize(AccessedTy)) return true; } return false; } bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment, const DataLayout &DL, Instruction *ScanFrom, AssumptionCache *AC, const DominatorTree *DT, const TargetLibraryInfo *TLI) { TypeSize TySize = DL.getTypeStoreSize(Ty); if (TySize.isScalable()) return false; APInt Size(DL.getIndexTypeSizeInBits(V->getType()), TySize.getFixedValue()); return isSafeToLoadUnconditionally(V, Alignment, Size, DL, ScanFrom, AC, DT, TLI); } /// DefMaxInstsToScan - the default number of maximum instructions /// to scan in the block, used by FindAvailableLoadedValue(). /// FindAvailableLoadedValue() was introduced in r60148, to improve jump /// threading in part by eliminating partially redundant loads. /// At that point, the value of MaxInstsToScan was already set to '6' /// without documented explanation. cl::opt llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, cl::desc("Use this to specify the default maximum number of instructions " "to scan backward from a given instruction, when searching for " "available loaded value")); Value *llvm::FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, AAResults *AA, bool *IsLoad, unsigned *NumScanedInst) { // Don't CSE load that is volatile or anything stronger than unordered. if (!Load->isUnordered()) return nullptr; MemoryLocation Loc = MemoryLocation::get(Load); return findAvailablePtrLoadStore(Loc, Load->getType(), Load->isAtomic(), ScanBB, ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); } // Check if the load and the store have the same base, constant offsets and // non-overlapping access ranges. static bool areNonOverlapSameBaseLoadAndStore(const Value *LoadPtr, Type *LoadTy, const Value *StorePtr, Type *StoreTy, const DataLayout &DL) { APInt LoadOffset(DL.getIndexTypeSizeInBits(LoadPtr->getType()), 0); APInt StoreOffset(DL.getIndexTypeSizeInBits(StorePtr->getType()), 0); const Value *LoadBase = LoadPtr->stripAndAccumulateConstantOffsets( DL, LoadOffset, /* AllowNonInbounds */ false); const Value *StoreBase = StorePtr->stripAndAccumulateConstantOffsets( DL, StoreOffset, /* AllowNonInbounds */ false); if (LoadBase != StoreBase) return false; auto LoadAccessSize = LocationSize::precise(DL.getTypeStoreSize(LoadTy)); auto StoreAccessSize = LocationSize::precise(DL.getTypeStoreSize(StoreTy)); ConstantRange LoadRange(LoadOffset, LoadOffset + LoadAccessSize.toRaw()); ConstantRange StoreRange(StoreOffset, StoreOffset + StoreAccessSize.toRaw()); return LoadRange.intersectWith(StoreRange).isEmptySet(); } static Value *getAvailableLoadStore(Instruction *Inst, const Value *Ptr, Type *AccessTy, bool AtLeastAtomic, const DataLayout &DL, bool *IsLoadCSE) { // If this is a load of Ptr, the loaded value is available. // (This is true even if the load is volatile or atomic, although // those cases are unlikely.) if (LoadInst *LI = dyn_cast(Inst)) { // We can value forward from an atomic to a non-atomic, but not the // other way around. if (LI->isAtomic() < AtLeastAtomic) return nullptr; Value *LoadPtr = LI->getPointerOperand()->stripPointerCasts(); if (!AreEquivalentAddressValues(LoadPtr, Ptr)) return nullptr; if (CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { if (IsLoadCSE) *IsLoadCSE = true; return LI; } } // If this is a store through Ptr, the value is available! // (This is true even if the store is volatile or atomic, although // those cases are unlikely.) if (StoreInst *SI = dyn_cast(Inst)) { // We can value forward from an atomic to a non-atomic, but not the // other way around. if (SI->isAtomic() < AtLeastAtomic) return nullptr; Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); if (!AreEquivalentAddressValues(StorePtr, Ptr)) return nullptr; if (IsLoadCSE) *IsLoadCSE = false; Value *Val = SI->getValueOperand(); if (CastInst::isBitOrNoopPointerCastable(Val->getType(), AccessTy, DL)) return Val; TypeSize StoreSize = DL.getTypeSizeInBits(Val->getType()); TypeSize LoadSize = DL.getTypeSizeInBits(AccessTy); if (TypeSize::isKnownLE(LoadSize, StoreSize)) if (auto *C = dyn_cast(Val)) return ConstantFoldLoadFromConst(C, AccessTy, DL); } if (auto *MSI = dyn_cast(Inst)) { // Don't forward from (non-atomic) memset to atomic load. if (AtLeastAtomic) return nullptr; // Only handle constant memsets. auto *Val = dyn_cast(MSI->getValue()); auto *Len = dyn_cast(MSI->getLength()); if (!Val || !Len) return nullptr; // TODO: Handle offsets. Value *Dst = MSI->getDest(); if (!AreEquivalentAddressValues(Dst, Ptr)) return nullptr; if (IsLoadCSE) *IsLoadCSE = false; TypeSize LoadTypeSize = DL.getTypeSizeInBits(AccessTy); if (LoadTypeSize.isScalable()) return nullptr; // Make sure the read bytes are contained in the memset. uint64_t LoadSize = LoadTypeSize.getFixedValue(); if ((Len->getValue() * 8).ult(LoadSize)) return nullptr; APInt Splat = LoadSize >= 8 ? APInt::getSplat(LoadSize, Val->getValue()) : Val->getValue().trunc(LoadSize); ConstantInt *SplatC = ConstantInt::get(MSI->getContext(), Splat); if (CastInst::isBitOrNoopPointerCastable(SplatC->getType(), AccessTy, DL)) return SplatC; return nullptr; } return nullptr; } Value *llvm::findAvailablePtrLoadStore( const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, AAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst) { if (MaxInstsToScan == 0) MaxInstsToScan = ~0U; const DataLayout &DL = ScanBB->getModule()->getDataLayout(); const Value *StrippedPtr = Loc.Ptr->stripPointerCasts(); while (ScanFrom != ScanBB->begin()) { // We must ignore debug info directives when counting (otherwise they // would affect codegen). Instruction *Inst = &*--ScanFrom; if (Inst->isDebugOrPseudoInst()) continue; // Restore ScanFrom to expected value in case next test succeeds ScanFrom++; if (NumScanedInst) ++(*NumScanedInst); // Don't scan huge blocks. if (MaxInstsToScan-- == 0) return nullptr; --ScanFrom; if (Value *Available = getAvailableLoadStore(Inst, StrippedPtr, AccessTy, AtLeastAtomic, DL, IsLoadCSE)) return Available; // Try to get the store size for the type. if (StoreInst *SI = dyn_cast(Inst)) { Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); // If both StrippedPtr and StorePtr reach all the way to an alloca or // global and they are different, ignore the store. This is a trivial form // of alias analysis that is important for reg2mem'd code. if ((isa(StrippedPtr) || isa(StrippedPtr)) && (isa(StorePtr) || isa(StorePtr)) && StrippedPtr != StorePtr) continue; if (!AA) { // When AA isn't available, but if the load and the store have the same // base, constant offsets and non-overlapping access ranges, ignore the // store. This is a simple form of alias analysis that is used by the // inliner. FIXME: use BasicAA if possible. if (areNonOverlapSameBaseLoadAndStore( Loc.Ptr, AccessTy, SI->getPointerOperand(), SI->getValueOperand()->getType(), DL)) continue; } else { // If we have alias analysis and it says the store won't modify the // loaded value, ignore the store. if (!isModSet(AA->getModRefInfo(SI, Loc))) continue; } // Otherwise the store that may or may not alias the pointer, bail out. ++ScanFrom; return nullptr; } // If this is some other instruction that may clobber Ptr, bail out. if (Inst->mayWriteToMemory()) { // If alias analysis claims that it really won't modify the load, // ignore it. if (AA && !isModSet(AA->getModRefInfo(Inst, Loc))) continue; // May modify the pointer, bail out. ++ScanFrom; return nullptr; } } // Got to the start of the block, we didn't find it, but are done for this // block. return nullptr; } Value *llvm::FindAvailableLoadedValue(LoadInst *Load, AAResults &AA, bool *IsLoadCSE, unsigned MaxInstsToScan) { const DataLayout &DL = Load->getModule()->getDataLayout(); Value *StrippedPtr = Load->getPointerOperand()->stripPointerCasts(); BasicBlock *ScanBB = Load->getParent(); Type *AccessTy = Load->getType(); bool AtLeastAtomic = Load->isAtomic(); if (!Load->isUnordered()) return nullptr; // Try to find an available value first, and delay expensive alias analysis // queries until later. Value *Available = nullptr; SmallVector MustNotAliasInsts; for (Instruction &Inst : make_range(++Load->getReverseIterator(), ScanBB->rend())) { if (Inst.isDebugOrPseudoInst()) continue; if (MaxInstsToScan-- == 0) return nullptr; Available = getAvailableLoadStore(&Inst, StrippedPtr, AccessTy, AtLeastAtomic, DL, IsLoadCSE); if (Available) break; if (Inst.mayWriteToMemory()) MustNotAliasInsts.push_back(&Inst); } // If we found an available value, ensure that the instructions in between // did not modify the memory location. if (Available) { MemoryLocation Loc = MemoryLocation::get(Load); for (Instruction *Inst : MustNotAliasInsts) if (isModSet(AA.getModRefInfo(Inst, Loc))) return nullptr; } return Available; } bool llvm::canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL, Instruction *CtxI) { Type *Ty = A->getType(); assert(Ty == B->getType() && Ty->isPointerTy() && "values must have matching pointer types"); // NOTE: The checks in the function are incomplete and currently miss illegal // cases! The current implementation is a starting point and the // implementation should be made stricter over time. if (auto *C = dyn_cast(B)) { // Do not allow replacing a pointer with a constant pointer, unless it is // either null or at least one byte is dereferenceable. APInt OneByte(DL.getPointerTypeSizeInBits(Ty), 1); return C->isNullValue() || isDereferenceableAndAlignedPointer(B, Align(1), OneByte, DL, CtxI); } return true; }