//===- InlineCost.cpp - Cost analysis for inliner -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements inline cost analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/InlineCost.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/AssemblyAnnotationWriter.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "inline-cost" STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); static cl::opt DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), cl::desc("Default amount of inlining to perform")); // We introduce this option since there is a minor compile-time win by avoiding // addition of TTI attributes (target-features in particular) to inline // candidates when they are guaranteed to be the same as top level methods in // some use cases. If we avoid adding the attribute, we need an option to avoid // checking these attributes. static cl::opt IgnoreTTIInlineCompatible( "ignore-tti-inline-compatible", cl::Hidden, cl::init(false), cl::desc("Ignore TTI attributes compatibility check between callee/caller " "during inline cost calculation")); static cl::opt PrintInstructionComments( "print-instruction-comments", cl::Hidden, cl::init(false), cl::desc("Prints comments for instruction based on inline cost analysis")); static cl::opt InlineThreshold( "inline-threshold", cl::Hidden, cl::init(225), cl::desc("Control the amount of inlining to perform (default = 225)")); static cl::opt HintThreshold( "inlinehint-threshold", cl::Hidden, cl::init(325), cl::desc("Threshold for inlining functions with inline hint")); static cl::opt ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, cl::init(45), cl::desc("Threshold for inlining cold callsites")); static cl::opt InlineEnableCostBenefitAnalysis( "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), cl::desc("Enable the cost-benefit analysis for the inliner")); static cl::opt InlineSavingsMultiplier( "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::desc("Multiplier to multiply cycle savings by during inlining")); static cl::opt InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), cl::desc("The maximum size of a callee that get's " "inlined without sufficient cycle savings")); // We introduce this threshold to help performance of instrumentation based // PGO before we actually hook up inliner with analysis passes such as BPI and // BFI. static cl::opt ColdThreshold( "inlinecold-threshold", cl::Hidden, cl::init(45), cl::desc("Threshold for inlining functions with cold attribute")); static cl::opt HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), cl::desc("Threshold for hot callsites ")); static cl::opt LocallyHotCallSiteThreshold( "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::desc("Threshold for locally hot callsites ")); static cl::opt ColdCallSiteRelFreq( "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::desc("Maximum block frequency, expressed as a percentage of caller's " "entry frequency, for a callsite to be cold in the absence of " "profile information.")); static cl::opt HotCallSiteRelFreq( "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::desc("Minimum block frequency, expressed as a multiple of caller's " "entry frequency, for a callsite to be hot in the absence of " "profile information.")); static cl::opt InstrCost("inline-instr-cost", cl::Hidden, cl::init(5), cl::desc("Cost of a single instruction when inlining")); static cl::opt MemAccessCost("inline-memaccess-cost", cl::Hidden, cl::init(0), cl::desc("Cost of load/store instruction when inlining")); static cl::opt CallPenalty( "inline-call-penalty", cl::Hidden, cl::init(25), cl::desc("Call penalty that is applied per callsite when inlining")); static cl::opt StackSizeThreshold("inline-max-stacksize", cl::Hidden, cl::init(std::numeric_limits::max()), cl::desc("Do not inline functions with a stack size " "that exceeds the specified limit")); static cl::opt RecurStackSizeThreshold( "recursive-inline-max-stacksize", cl::Hidden, cl::init(InlineConstants::TotalAllocaSizeRecursiveCaller), cl::desc("Do not inline recursive functions with a stack " "size that exceeds the specified limit")); static cl::opt OptComputeFullInlineCost( "inline-cost-full", cl::Hidden, cl::desc("Compute the full inline cost of a call site even when the cost " "exceeds the threshold.")); static cl::opt InlineCallerSupersetNoBuiltin( "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " "attributes.")); static cl::opt DisableGEPConstOperand( "disable-gep-const-evaluation", cl::Hidden, cl::init(false), cl::desc("Disables evaluation of GetElementPtr with constant operands")); namespace llvm { std::optional getStringFnAttrAsInt(const Attribute &Attr) { if (Attr.isValid()) { int AttrValue = 0; if (!Attr.getValueAsString().getAsInteger(10, AttrValue)) return AttrValue; } return std::nullopt; } std::optional getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) { return getStringFnAttrAsInt(CB.getFnAttr(AttrKind)); } std::optional getStringFnAttrAsInt(Function *F, StringRef AttrKind) { return getStringFnAttrAsInt(F->getFnAttribute(AttrKind)); } namespace InlineConstants { int getInstrCost() { return InstrCost; } } // namespace InlineConstants } // namespace llvm namespace { class InlineCostCallAnalyzer; // This struct is used to store information about inline cost of a // particular instruction struct InstructionCostDetail { int CostBefore = 0; int CostAfter = 0; int ThresholdBefore = 0; int ThresholdAfter = 0; int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } int getCostDelta() const { return CostAfter - CostBefore; } bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } }; class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { private: InlineCostCallAnalyzer *const ICCA; public: InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} void emitInstructionAnnot(const Instruction *I, formatted_raw_ostream &OS) override; }; /// Carry out call site analysis, in order to evaluate inlinability. /// NOTE: the type is currently used as implementation detail of functions such /// as llvm::getInlineCost. Note the function_ref constructor parameters - the /// expectation is that they come from the outer scope, from the wrapper /// functions. If we want to support constructing CallAnalyzer objects where /// lambdas are provided inline at construction, or where the object needs to /// otherwise survive past the scope of the provided functions, we need to /// revisit the argument types. class CallAnalyzer : public InstVisitor { typedef InstVisitor Base; friend class InstVisitor; protected: virtual ~CallAnalyzer() = default; /// The TargetTransformInfo available for this compilation. const TargetTransformInfo &TTI; /// Getter for the cache of @llvm.assume intrinsics. function_ref GetAssumptionCache; /// Getter for BlockFrequencyInfo function_ref GetBFI; /// Profile summary information. ProfileSummaryInfo *PSI; /// The called function. Function &F; // Cache the DataLayout since we use it a lot. const DataLayout &DL; /// The OptimizationRemarkEmitter available for this compilation. OptimizationRemarkEmitter *ORE; /// The candidate callsite being analyzed. Please do not use this to do /// analysis in the caller function; we want the inline cost query to be /// easily cacheable. Instead, use the cover function paramHasAttr. CallBase &CandidateCall; /// Extension points for handling callsite features. // Called before a basic block was analyzed. virtual void onBlockStart(const BasicBlock *BB) {} /// Called after a basic block was analyzed. virtual void onBlockAnalyzed(const BasicBlock *BB) {} /// Called before an instruction was analyzed virtual void onInstructionAnalysisStart(const Instruction *I) {} /// Called after an instruction was analyzed virtual void onInstructionAnalysisFinish(const Instruction *I) {} /// Called at the end of the analysis of the callsite. Return the outcome of /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or /// the reason it can't. virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } /// Called when we're about to start processing a basic block, and every time /// we are done processing an instruction. Return true if there is no point in /// continuing the analysis (e.g. we've determined already the call site is /// too expensive to inline) virtual bool shouldStop() { return false; } /// Called before the analysis of the callee body starts (with callsite /// contexts propagated). It checks callsite-specific information. Return a /// reason analysis can't continue if that's the case, or 'true' if it may /// continue. virtual InlineResult onAnalysisStart() { return InlineResult::success(); } /// Called if the analysis engine decides SROA cannot be done for the given /// alloca. virtual void onDisableSROA(AllocaInst *Arg) {} /// Called the analysis engine determines load elimination won't happen. virtual void onDisableLoadElimination() {} /// Called when we visit a CallBase, before the analysis starts. Return false /// to stop further processing of the instruction. virtual bool onCallBaseVisitStart(CallBase &Call) { return true; } /// Called to account for a call. virtual void onCallPenalty() {} /// Called to account for a load or store. virtual void onMemAccess(){}; /// Called to account for the expectation the inlining would result in a load /// elimination. virtual void onLoadEliminationOpportunity() {} /// Called to account for the cost of argument setup for the Call in the /// callee's body (not the callsite currently under analysis). virtual void onCallArgumentSetup(const CallBase &Call) {} /// Called to account for a load relative intrinsic. virtual void onLoadRelativeIntrinsic() {} /// Called to account for a lowered call. virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { } /// Account for a jump table of given size. Return false to stop further /// processing the switch instruction virtual bool onJumpTable(unsigned JumpTableSize) { return true; } /// Account for a case cluster of given size. Return false to stop further /// processing of the instruction. virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } /// Called at the end of processing a switch instruction, with the given /// number of case clusters. virtual void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster) {} /// Called to account for any other instruction not specifically accounted /// for. virtual void onMissedSimplification() {} /// Start accounting potential benefits due to SROA for the given alloca. virtual void onInitializeSROAArg(AllocaInst *Arg) {} /// Account SROA savings for the AllocaInst value. virtual void onAggregateSROAUse(AllocaInst *V) {} bool handleSROA(Value *V, bool DoNotDisable) { // Check for SROA candidates in comparisons. if (auto *SROAArg = getSROAArgForValueOrNull(V)) { if (DoNotDisable) { onAggregateSROAUse(SROAArg); return true; } disableSROAForArg(SROAArg); } return false; } bool IsCallerRecursive = false; bool IsRecursiveCall = false; bool ExposesReturnsTwice = false; bool HasDynamicAlloca = false; bool ContainsNoDuplicateCall = false; bool HasReturn = false; bool HasIndirectBr = false; bool HasUninlineableIntrinsic = false; bool InitsVargArgs = false; /// Number of bytes allocated statically by the callee. uint64_t AllocatedSize = 0; unsigned NumInstructions = 0; unsigned NumVectorInstructions = 0; /// While we walk the potentially-inlined instructions, we build up and /// maintain a mapping of simplified values specific to this callsite. The /// idea is to propagate any special information we have about arguments to /// this call through the inlinable section of the function, and account for /// likely simplifications post-inlining. The most important aspect we track /// is CFG altering simplifications -- when we prove a basic block dead, that /// can cause dramatic shifts in the cost of inlining a function. DenseMap SimplifiedValues; /// Keep track of the values which map back (through function arguments) to /// allocas on the caller stack which could be simplified through SROA. DenseMap SROAArgValues; /// Keep track of Allocas for which we believe we may get SROA optimization. DenseSet EnabledSROAAllocas; /// Keep track of values which map to a pointer base and constant offset. DenseMap> ConstantOffsetPtrs; /// Keep track of dead blocks due to the constant arguments. SmallPtrSet DeadBlocks; /// The mapping of the blocks to their known unique successors due to the /// constant arguments. DenseMap KnownSuccessors; /// Model the elimination of repeated loads that is expected to happen /// whenever we simplify away the stores that would otherwise cause them to be /// loads. bool EnableLoadElimination = true; /// Whether we allow inlining for recursive call. bool AllowRecursiveCall = false; SmallPtrSet LoadAddrSet; AllocaInst *getSROAArgForValueOrNull(Value *V) const { auto It = SROAArgValues.find(V); if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) return nullptr; return It->second; } // Custom simplification helper routines. bool isAllocaDerivedArg(Value *V); void disableSROAForArg(AllocaInst *SROAArg); void disableSROA(Value *V); void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); void disableLoadElimination(); bool isGEPFree(GetElementPtrInst &GEP); bool canFoldInboundsGEP(GetElementPtrInst &I); bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); bool simplifyCallSite(Function *F, CallBase &Call); bool simplifyInstruction(Instruction &I); bool simplifyIntrinsicCallIsConstant(CallBase &CB); bool simplifyIntrinsicCallObjectSize(CallBase &CB); ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); /// Return true if the given argument to the function being considered for /// inlining has the given attribute set either at the call site or the /// function declaration. Primarily used to inspect call site specific /// attributes since these can be more precise than the ones on the callee /// itself. bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); /// Return true if the given value is known non null within the callee if /// inlined through this particular callsite. bool isKnownNonNullInCallee(Value *V); /// Return true if size growth is allowed when inlining the callee at \p Call. bool allowSizeGrowth(CallBase &Call); // Custom analysis routines. InlineResult analyzeBlock(BasicBlock *BB, SmallPtrSetImpl &EphValues); // Disable several entry points to the visitor so we don't accidentally use // them by declaring but not defining them here. void visit(Module *); void visit(Module &); void visit(Function *); void visit(Function &); void visit(BasicBlock *); void visit(BasicBlock &); // Provide base case for our instruction visit. bool visitInstruction(Instruction &I); // Our visit overrides. bool visitAlloca(AllocaInst &I); bool visitPHI(PHINode &I); bool visitGetElementPtr(GetElementPtrInst &I); bool visitBitCast(BitCastInst &I); bool visitPtrToInt(PtrToIntInst &I); bool visitIntToPtr(IntToPtrInst &I); bool visitCastInst(CastInst &I); bool visitCmpInst(CmpInst &I); bool visitSub(BinaryOperator &I); bool visitBinaryOperator(BinaryOperator &I); bool visitFNeg(UnaryOperator &I); bool visitLoad(LoadInst &I); bool visitStore(StoreInst &I); bool visitExtractValue(ExtractValueInst &I); bool visitInsertValue(InsertValueInst &I); bool visitCallBase(CallBase &Call); bool visitReturnInst(ReturnInst &RI); bool visitBranchInst(BranchInst &BI); bool visitSelectInst(SelectInst &SI); bool visitSwitchInst(SwitchInst &SI); bool visitIndirectBrInst(IndirectBrInst &IBI); bool visitResumeInst(ResumeInst &RI); bool visitCleanupReturnInst(CleanupReturnInst &RI); bool visitCatchReturnInst(CatchReturnInst &RI); bool visitUnreachableInst(UnreachableInst &I); public: CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, function_ref GetAssumptionCache, function_ref GetBFI = nullptr, ProfileSummaryInfo *PSI = nullptr, OptimizationRemarkEmitter *ORE = nullptr) : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), CandidateCall(Call) {} InlineResult analyze(); std::optional getSimplifiedValue(Instruction *I) { if (SimplifiedValues.contains(I)) return SimplifiedValues[I]; return std::nullopt; } // Keep a bunch of stats about the cost savings found so we can print them // out when debugging. unsigned NumConstantArgs = 0; unsigned NumConstantOffsetPtrArgs = 0; unsigned NumAllocaArgs = 0; unsigned NumConstantPtrCmps = 0; unsigned NumConstantPtrDiffs = 0; unsigned NumInstructionsSimplified = 0; void dump(); }; // Considering forming a binary search, we should find the number of nodes // which is same as the number of comparisons when lowered. For a given // number of clusters, n, we can define a recursive function, f(n), to find // the number of nodes in the tree. The recursion is : // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, // and f(n) = n, when n <= 3. // This will lead a binary tree where the leaf should be either f(2) or f(3) // when n > 3. So, the number of comparisons from leaves should be n, while // the number of non-leaf should be : // 2^(log2(n) - 1) - 1 // = 2^log2(n) * 2^-1 - 1 // = n / 2 - 1. // Considering comparisons from leaf and non-leaf nodes, we can estimate the // number of comparisons in a simple closed form : // n + n / 2 - 1 = n * 3 / 2 - 1 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { return 3 * static_cast(NumCaseCluster) / 2 - 1; } /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer class InlineCostCallAnalyzer final : public CallAnalyzer { const bool ComputeFullInlineCost; int LoadEliminationCost = 0; /// Bonus to be applied when percentage of vector instructions in callee is /// high (see more details in updateThreshold). int VectorBonus = 0; /// Bonus to be applied when the callee has only one reachable basic block. int SingleBBBonus = 0; /// Tunable parameters that control the analysis. const InlineParams &Params; // This DenseMap stores the delta change in cost and threshold after // accounting for the given instruction. The map is filled only with the // flag PrintInstructionComments on. DenseMap InstructionCostDetailMap; /// Upper bound for the inlining cost. Bonuses are being applied to account /// for speculative "expected profit" of the inlining decision. int Threshold = 0; /// The amount of StaticBonus applied. int StaticBonusApplied = 0; /// Attempt to evaluate indirect calls to boost its inline cost. const bool BoostIndirectCalls; /// Ignore the threshold when finalizing analysis. const bool IgnoreThreshold; // True if the cost-benefit-analysis-based inliner is enabled. const bool CostBenefitAnalysisEnabled; /// Inlining cost measured in abstract units, accounts for all the /// instructions expected to be executed for a given function invocation. /// Instructions that are statically proven to be dead based on call-site /// arguments are not counted here. int Cost = 0; // The cumulative cost at the beginning of the basic block being analyzed. At // the end of analyzing each basic block, "Cost - CostAtBBStart" represents // the size of that basic block. int CostAtBBStart = 0; // The static size of live but cold basic blocks. This is "static" in the // sense that it's not weighted by profile counts at all. int ColdSize = 0; // Whether inlining is decided by cost-threshold analysis. bool DecidedByCostThreshold = false; // Whether inlining is decided by cost-benefit analysis. bool DecidedByCostBenefit = false; // The cost-benefit pair computed by cost-benefit analysis. std::optional CostBenefit; bool SingleBB = true; unsigned SROACostSavings = 0; unsigned SROACostSavingsLost = 0; /// The mapping of caller Alloca values to their accumulated cost savings. If /// we have to disable SROA for one of the allocas, this tells us how much /// cost must be added. DenseMap SROAArgCosts; /// Return true if \p Call is a cold callsite. bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); /// Update Threshold based on callsite properties such as callee /// attributes and callee hotness for PGO builds. The Callee is explicitly /// passed to support analyzing indirect calls whose target is inferred by /// analysis. void updateThreshold(CallBase &Call, Function &Callee); /// Return a higher threshold if \p Call is a hot callsite. std::optional getHotCallSiteThreshold(CallBase &Call, BlockFrequencyInfo *CallerBFI); /// Handle a capped 'int' increment for Cost. void addCost(int64_t Inc) { Inc = std::max(std::min(INT_MAX, Inc), INT_MIN); Cost = std::max(std::min(INT_MAX, Inc + Cost), INT_MIN); } void onDisableSROA(AllocaInst *Arg) override { auto CostIt = SROAArgCosts.find(Arg); if (CostIt == SROAArgCosts.end()) return; addCost(CostIt->second); SROACostSavings -= CostIt->second; SROACostSavingsLost += CostIt->second; SROAArgCosts.erase(CostIt); } void onDisableLoadElimination() override { addCost(LoadEliminationCost); LoadEliminationCost = 0; } bool onCallBaseVisitStart(CallBase &Call) override { if (std::optional AttrCallThresholdBonus = getStringFnAttrAsInt(Call, "call-threshold-bonus")) Threshold += *AttrCallThresholdBonus; if (std::optional AttrCallCost = getStringFnAttrAsInt(Call, "call-inline-cost")) { addCost(*AttrCallCost); // Prevent further processing of the call since we want to override its // inline cost, not just add to it. return false; } return true; } void onCallPenalty() override { addCost(CallPenalty); } void onMemAccess() override { addCost(MemAccessCost); } void onCallArgumentSetup(const CallBase &Call) override { // Pay the price of the argument setup. We account for the average 1 // instruction per call argument setup here. addCost(Call.arg_size() * InstrCost); } void onLoadRelativeIntrinsic() override { // This is normally lowered to 4 LLVM instructions. addCost(3 * InstrCost); } void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) override { // We account for the average 1 instruction per call argument setup here. addCost(Call.arg_size() * InstrCost); // If we have a constant that we are calling as a function, we can peer // through it and see the function target. This happens not infrequently // during devirtualization and so we want to give it a hefty bonus for // inlining, but cap that bonus in the event that inlining wouldn't pan out. // Pretend to inline the function, with a custom threshold. if (IsIndirectCall && BoostIndirectCalls) { auto IndirectCallParams = Params; IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold; /// FIXME: if InlineCostCallAnalyzer is derived from, this may need /// to instantiate the derived class. InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, GetAssumptionCache, GetBFI, PSI, ORE, false); if (CA.analyze().isSuccess()) { // We were able to inline the indirect call! Subtract the cost from the // threshold to get the bonus we want to apply, but don't go below zero. Cost -= std::max(0, CA.getThreshold() - CA.getCost()); } } else // Otherwise simply add the cost for merely making the call. addCost(CallPenalty); } void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster) override { // If suitable for a jump table, consider the cost for the table size and // branch to destination. // Maximum valid cost increased in this function. if (JumpTableSize) { int64_t JTCost = static_cast(JumpTableSize) * InstrCost + 4 * InstrCost; addCost(JTCost); return; } if (NumCaseCluster <= 3) { // Suppose a comparison includes one compare and one conditional branch. addCost(NumCaseCluster * 2 * InstrCost); return; } int64_t ExpectedNumberOfCompare = getExpectedNumberOfCompare(NumCaseCluster); int64_t SwitchCost = ExpectedNumberOfCompare * 2 * InstrCost; addCost(SwitchCost); } void onMissedSimplification() override { addCost(InstrCost); } void onInitializeSROAArg(AllocaInst *Arg) override { assert(Arg != nullptr && "Should not initialize SROA costs for null value."); auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg); SROACostSavings += SROAArgCost; SROAArgCosts[Arg] = SROAArgCost; } void onAggregateSROAUse(AllocaInst *SROAArg) override { auto CostIt = SROAArgCosts.find(SROAArg); assert(CostIt != SROAArgCosts.end() && "expected this argument to have a cost"); CostIt->second += InstrCost; SROACostSavings += InstrCost; } void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } void onBlockAnalyzed(const BasicBlock *BB) override { if (CostBenefitAnalysisEnabled) { // Keep track of the static size of live but cold basic blocks. For now, // we define a cold basic block to be one that's never executed. assert(GetBFI && "GetBFI must be available"); BlockFrequencyInfo *BFI = &(GetBFI(F)); assert(BFI && "BFI must be available"); auto ProfileCount = BFI->getBlockProfileCount(BB); if (*ProfileCount == 0) ColdSize += Cost - CostAtBBStart; } auto *TI = BB->getTerminator(); // If we had any successors at this point, than post-inlining is likely to // have them as well. Note that we assume any basic blocks which existed // due to branches or switches which folded above will also fold after // inlining. if (SingleBB && TI->getNumSuccessors() > 1) { // Take off the bonus we applied to the threshold. Threshold -= SingleBBBonus; SingleBB = false; } } void onInstructionAnalysisStart(const Instruction *I) override { // This function is called to store the initial cost of inlining before // the given instruction was assessed. if (!PrintInstructionComments) return; InstructionCostDetailMap[I].CostBefore = Cost; InstructionCostDetailMap[I].ThresholdBefore = Threshold; } void onInstructionAnalysisFinish(const Instruction *I) override { // This function is called to find new values of cost and threshold after // the instruction has been assessed. if (!PrintInstructionComments) return; InstructionCostDetailMap[I].CostAfter = Cost; InstructionCostDetailMap[I].ThresholdAfter = Threshold; } bool isCostBenefitAnalysisEnabled() { if (!PSI || !PSI->hasProfileSummary()) return false; if (!GetBFI) return false; if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { // Honor the explicit request from the user. if (!InlineEnableCostBenefitAnalysis) return false; } else { // Otherwise, require instrumentation profile. if (!PSI->hasInstrumentationProfile()) return false; } auto *Caller = CandidateCall.getParent()->getParent(); if (!Caller->getEntryCount()) return false; BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); if (!CallerBFI) return false; // For now, limit to hot call site. if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) return false; // Make sure we have a nonzero entry count. auto EntryCount = F.getEntryCount(); if (!EntryCount || !EntryCount->getCount()) return false; BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); if (!CalleeBFI) return false; return true; } // Determine whether we should inline the given call site, taking into account // both the size cost and the cycle savings. Return std::nullopt if we don't // have suficient profiling information to determine. std::optional costBenefitAnalysis() { if (!CostBenefitAnalysisEnabled) return std::nullopt; // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by // falling back to the cost-based metric. // TODO: Improve this hacky condition. if (Threshold == 0) return std::nullopt; assert(GetBFI); BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); assert(CalleeBFI); // The cycle savings expressed as the sum of InstrCost // multiplied by the estimated dynamic count of each instruction we can // avoid. Savings come from the call site cost, such as argument setup and // the call instruction, as well as the instructions that are folded. // // We use 128-bit APInt here to avoid potential overflow. This variable // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case // assumes that we can avoid or fold a billion instructions, each with a // profile count of 10^^15 -- roughly the number of cycles for a 24-hour // period on a 4GHz machine. APInt CycleSavings(128, 0); for (auto &BB : F) { APInt CurrentSavings(128, 0); for (auto &I : BB) { if (BranchInst *BI = dyn_cast(&I)) { // Count a conditional branch as savings if it becomes unconditional. if (BI->isConditional() && isa_and_nonnull( SimplifiedValues.lookup(BI->getCondition()))) { CurrentSavings += InstrCost; } } else if (Value *V = dyn_cast(&I)) { // Count an instruction as savings if we can fold it. if (SimplifiedValues.count(V)) { CurrentSavings += InstrCost; } } } auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); CurrentSavings *= *ProfileCount; CycleSavings += CurrentSavings; } // Compute the cycle savings per call. auto EntryProfileCount = F.getEntryCount(); assert(EntryProfileCount && EntryProfileCount->getCount()); auto EntryCount = EntryProfileCount->getCount(); CycleSavings += EntryCount / 2; CycleSavings = CycleSavings.udiv(EntryCount); // Compute the total savings for the call site. auto *CallerBB = CandidateCall.getParent(); BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); CycleSavings += getCallsiteCost(this->CandidateCall, DL); CycleSavings *= *CallerBFI->getBlockProfileCount(CallerBB); // Remove the cost of the cold basic blocks. int Size = Cost - ColdSize; // Allow tiny callees to be inlined regardless of whether they meet the // savings threshold. Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; CostBenefit.emplace(APInt(128, Size), CycleSavings); // Return true if the savings justify the cost of inlining. Specifically, // we evaluate the following inequality: // // CycleSavings PSI->getOrCompHotCountThreshold() // -------------- >= ----------------------------------- // Size InlineSavingsMultiplier // // Note that the left hand side is specific to a call site. The right hand // side is a constant for the entire executable. APInt LHS = CycleSavings; LHS *= InlineSavingsMultiplier; APInt RHS(128, PSI->getOrCompHotCountThreshold()); RHS *= Size; return LHS.uge(RHS); } InlineResult finalizeAnalysis() override { // Loops generally act a lot like calls in that they act like barriers to // movement, require a certain amount of setup, etc. So when optimising for // size, we penalise any call sites that perform loops. We do this after all // other costs here, so will likely only be dealing with relatively small // functions (and hence DT and LI will hopefully be cheap). auto *Caller = CandidateCall.getFunction(); if (Caller->hasMinSize()) { DominatorTree DT(F); LoopInfo LI(DT); int NumLoops = 0; for (Loop *L : LI) { // Ignore loops that will not be executed if (DeadBlocks.count(L->getHeader())) continue; NumLoops++; } addCost(NumLoops * InlineConstants::LoopPenalty); } // We applied the maximum possible vector bonus at the beginning. Now, // subtract the excess bonus, if any, from the Threshold before // comparing against Cost. if (NumVectorInstructions <= NumInstructions / 10) Threshold -= VectorBonus; else if (NumVectorInstructions <= NumInstructions / 2) Threshold -= VectorBonus / 2; if (std::optional AttrCost = getStringFnAttrAsInt(CandidateCall, "function-inline-cost")) Cost = *AttrCost; if (std::optional AttrCostMult = getStringFnAttrAsInt( CandidateCall, InlineConstants::FunctionInlineCostMultiplierAttributeName)) Cost *= *AttrCostMult; if (std::optional AttrThreshold = getStringFnAttrAsInt(CandidateCall, "function-inline-threshold")) Threshold = *AttrThreshold; if (auto Result = costBenefitAnalysis()) { DecidedByCostBenefit = true; if (*Result) return InlineResult::success(); else return InlineResult::failure("Cost over threshold."); } if (IgnoreThreshold) return InlineResult::success(); DecidedByCostThreshold = true; return Cost < std::max(1, Threshold) ? InlineResult::success() : InlineResult::failure("Cost over threshold."); } bool shouldStop() override { if (IgnoreThreshold || ComputeFullInlineCost) return false; // Bail out the moment we cross the threshold. This means we'll under-count // the cost, but only when undercounting doesn't matter. if (Cost < Threshold) return false; DecidedByCostThreshold = true; return true; } void onLoadEliminationOpportunity() override { LoadEliminationCost += InstrCost; } InlineResult onAnalysisStart() override { // Perform some tweaks to the cost and threshold based on the direct // callsite information. // We want to more aggressively inline vector-dense kernels, so up the // threshold, and we'll lower it if the % of vector instructions gets too // low. Note that these bonuses are some what arbitrary and evolved over // time by accident as much as because they are principled bonuses. // // FIXME: It would be nice to remove all such bonuses. At least it would be // nice to base the bonus values on something more scientific. assert(NumInstructions == 0); assert(NumVectorInstructions == 0); // Update the threshold based on callsite properties updateThreshold(CandidateCall, F); // While Threshold depends on commandline options that can take negative // values, we want to enforce the invariant that the computed threshold and // bonuses are non-negative. assert(Threshold >= 0); assert(SingleBBBonus >= 0); assert(VectorBonus >= 0); // Speculatively apply all possible bonuses to Threshold. If cost exceeds // this Threshold any time, and cost cannot decrease, we can stop processing // the rest of the function body. Threshold += (SingleBBBonus + VectorBonus); // Give out bonuses for the callsite, as the instructions setting them up // will be gone after inlining. addCost(-getCallsiteCost(this->CandidateCall, DL)); // If this function uses the coldcc calling convention, prefer not to inline // it. if (F.getCallingConv() == CallingConv::Cold) Cost += InlineConstants::ColdccPenalty; LLVM_DEBUG(dbgs() << " Initial cost: " << Cost << "\n"); // Check if we're done. This can happen due to bonuses and penalties. if (Cost >= Threshold && !ComputeFullInlineCost) return InlineResult::failure("high cost"); return InlineResult::success(); } public: InlineCostCallAnalyzer( Function &Callee, CallBase &Call, const InlineParams &Params, const TargetTransformInfo &TTI, function_ref GetAssumptionCache, function_ref GetBFI = nullptr, ProfileSummaryInfo *PSI = nullptr, OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, bool IgnoreThreshold = false) : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), ComputeFullInlineCost(OptComputeFullInlineCost || Params.ComputeFullInlineCost || ORE || isCostBenefitAnalysisEnabled()), Params(Params), Threshold(Params.DefaultThreshold), BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), Writer(this) { AllowRecursiveCall = *Params.AllowRecursiveCall; } /// Annotation Writer for instruction details InlineCostAnnotationWriter Writer; void dump(); // Prints the same analysis as dump(), but its definition is not dependent // on the build. void print(raw_ostream &OS); std::optional getCostDetails(const Instruction *I) { if (InstructionCostDetailMap.contains(I)) return InstructionCostDetailMap[I]; return std::nullopt; } virtual ~InlineCostCallAnalyzer() = default; int getThreshold() const { return Threshold; } int getCost() const { return Cost; } int getStaticBonusApplied() const { return StaticBonusApplied; } std::optional getCostBenefitPair() { return CostBenefit; } bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; } }; // Return true if CB is the sole call to local function Callee. static bool isSoleCallToLocalFunction(const CallBase &CB, const Function &Callee) { return Callee.hasLocalLinkage() && Callee.hasOneLiveUse() && &Callee == CB.getCalledFunction(); } class InlineCostFeaturesAnalyzer final : public CallAnalyzer { private: InlineCostFeatures Cost = {}; // FIXME: These constants are taken from the heuristic-based cost visitor. // These should be removed entirely in a later revision to avoid reliance on // heuristics in the ML inliner. static constexpr int JTCostMultiplier = 4; static constexpr int CaseClusterCostMultiplier = 2; static constexpr int SwitchCostMultiplier = 2; // FIXME: These are taken from the heuristic-based cost visitor: we should // eventually abstract these to the CallAnalyzer to avoid duplication. unsigned SROACostSavingOpportunities = 0; int VectorBonus = 0; int SingleBBBonus = 0; int Threshold = 5; DenseMap SROACosts; void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { Cost[static_cast(Feature)] += Delta; } void set(InlineCostFeatureIndex Feature, int64_t Value) { Cost[static_cast(Feature)] = Value; } void onDisableSROA(AllocaInst *Arg) override { auto CostIt = SROACosts.find(Arg); if (CostIt == SROACosts.end()) return; increment(InlineCostFeatureIndex::sroa_losses, CostIt->second); SROACostSavingOpportunities -= CostIt->second; SROACosts.erase(CostIt); } void onDisableLoadElimination() override { set(InlineCostFeatureIndex::load_elimination, 1); } void onCallPenalty() override { increment(InlineCostFeatureIndex::call_penalty, CallPenalty); } void onCallArgumentSetup(const CallBase &Call) override { increment(InlineCostFeatureIndex::call_argument_setup, Call.arg_size() * InstrCost); } void onLoadRelativeIntrinsic() override { increment(InlineCostFeatureIndex::load_relative_intrinsic, 3 * InstrCost); } void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) override { increment(InlineCostFeatureIndex::lowered_call_arg_setup, Call.arg_size() * InstrCost); if (IsIndirectCall) { InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, /*HintThreshold*/ {}, /*ColdThreshold*/ {}, /*OptSizeThreshold*/ {}, /*OptMinSizeThreshold*/ {}, /*HotCallSiteThreshold*/ {}, /*LocallyHotCallSiteThreshold*/ {}, /*ColdCallSiteThreshold*/ {}, /*ComputeFullInlineCost*/ true, /*EnableDeferral*/ true}; IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold; InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, GetAssumptionCache, GetBFI, PSI, ORE, false, true); if (CA.analyze().isSuccess()) { increment(InlineCostFeatureIndex::nested_inline_cost_estimate, CA.getCost()); increment(InlineCostFeatureIndex::nested_inlines, 1); } } else { onCallPenalty(); } } void onFinalizeSwitch(unsigned JumpTableSize, unsigned NumCaseCluster) override { if (JumpTableSize) { int64_t JTCost = static_cast(JumpTableSize) * InstrCost + JTCostMultiplier * InstrCost; increment(InlineCostFeatureIndex::jump_table_penalty, JTCost); return; } if (NumCaseCluster <= 3) { increment(InlineCostFeatureIndex::case_cluster_penalty, NumCaseCluster * CaseClusterCostMultiplier * InstrCost); return; } int64_t ExpectedNumberOfCompare = getExpectedNumberOfCompare(NumCaseCluster); int64_t SwitchCost = ExpectedNumberOfCompare * SwitchCostMultiplier * InstrCost; increment(InlineCostFeatureIndex::switch_penalty, SwitchCost); } void onMissedSimplification() override { increment(InlineCostFeatureIndex::unsimplified_common_instructions, InstrCost); } void onInitializeSROAArg(AllocaInst *Arg) override { auto SROAArgCost = TTI.getCallerAllocaCost(&CandidateCall, Arg); SROACosts[Arg] = SROAArgCost; SROACostSavingOpportunities += SROAArgCost; } void onAggregateSROAUse(AllocaInst *Arg) override { SROACosts.find(Arg)->second += InstrCost; SROACostSavingOpportunities += InstrCost; } void onBlockAnalyzed(const BasicBlock *BB) override { if (BB->getTerminator()->getNumSuccessors() > 1) set(InlineCostFeatureIndex::is_multiple_blocks, 1); Threshold -= SingleBBBonus; } InlineResult finalizeAnalysis() override { auto *Caller = CandidateCall.getFunction(); if (Caller->hasMinSize()) { DominatorTree DT(F); LoopInfo LI(DT); for (Loop *L : LI) { // Ignore loops that will not be executed if (DeadBlocks.count(L->getHeader())) continue; increment(InlineCostFeatureIndex::num_loops, InlineConstants::LoopPenalty); } } set(InlineCostFeatureIndex::dead_blocks, DeadBlocks.size()); set(InlineCostFeatureIndex::simplified_instructions, NumInstructionsSimplified); set(InlineCostFeatureIndex::constant_args, NumConstantArgs); set(InlineCostFeatureIndex::constant_offset_ptr_args, NumConstantOffsetPtrArgs); set(InlineCostFeatureIndex::sroa_savings, SROACostSavingOpportunities); if (NumVectorInstructions <= NumInstructions / 10) Threshold -= VectorBonus; else if (NumVectorInstructions <= NumInstructions / 2) Threshold -= VectorBonus / 2; set(InlineCostFeatureIndex::threshold, Threshold); return InlineResult::success(); } bool shouldStop() override { return false; } void onLoadEliminationOpportunity() override { increment(InlineCostFeatureIndex::load_elimination, 1); } InlineResult onAnalysisStart() override { increment(InlineCostFeatureIndex::callsite_cost, -1 * getCallsiteCost(this->CandidateCall, DL)); set(InlineCostFeatureIndex::cold_cc_penalty, (F.getCallingConv() == CallingConv::Cold)); set(InlineCostFeatureIndex::last_call_to_static_bonus, isSoleCallToLocalFunction(CandidateCall, F)); // FIXME: we shouldn't repeat this logic in both the Features and Cost // analyzer - instead, we should abstract it to a common method in the // CallAnalyzer int SingleBBBonusPercent = 50; int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); Threshold += TTI.adjustInliningThreshold(&CandidateCall); Threshold *= TTI.getInliningThresholdMultiplier(); SingleBBBonus = Threshold * SingleBBBonusPercent / 100; VectorBonus = Threshold * VectorBonusPercent / 100; Threshold += (SingleBBBonus + VectorBonus); return InlineResult::success(); } public: InlineCostFeaturesAnalyzer( const TargetTransformInfo &TTI, function_ref &GetAssumptionCache, function_ref GetBFI, ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, CallBase &Call) : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} const InlineCostFeatures &features() const { return Cost; } }; } // namespace /// Test whether the given value is an Alloca-derived function argument. bool CallAnalyzer::isAllocaDerivedArg(Value *V) { return SROAArgValues.count(V); } void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { onDisableSROA(SROAArg); EnabledSROAAllocas.erase(SROAArg); disableLoadElimination(); } void InlineCostAnnotationWriter::emitInstructionAnnot( const Instruction *I, formatted_raw_ostream &OS) { // The cost of inlining of the given instruction is printed always. // The threshold delta is printed only when it is non-zero. It happens // when we decided to give a bonus at a particular instruction. std::optional Record = ICCA->getCostDetails(I); if (!Record) OS << "; No analysis for the instruction"; else { OS << "; cost before = " << Record->CostBefore << ", cost after = " << Record->CostAfter << ", threshold before = " << Record->ThresholdBefore << ", threshold after = " << Record->ThresholdAfter << ", "; OS << "cost delta = " << Record->getCostDelta(); if (Record->hasThresholdChanged()) OS << ", threshold delta = " << Record->getThresholdDelta(); } auto C = ICCA->getSimplifiedValue(const_cast(I)); if (C) { OS << ", simplified to "; (*C)->print(OS, true); } OS << "\n"; } /// If 'V' maps to a SROA candidate, disable SROA for it. void CallAnalyzer::disableSROA(Value *V) { if (auto *SROAArg = getSROAArgForValueOrNull(V)) { disableSROAForArg(SROAArg); } } void CallAnalyzer::disableLoadElimination() { if (EnableLoadElimination) { onDisableLoadElimination(); EnableLoadElimination = false; } } /// Accumulate a constant GEP offset into an APInt if possible. /// /// Returns false if unable to compute the offset for any reason. Respects any /// simplified values known during the analysis of this callsite. bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); assert(IntPtrWidth == Offset.getBitWidth()); for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); GTI != GTE; ++GTI) { ConstantInt *OpC = dyn_cast(GTI.getOperand()); if (!OpC) if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) OpC = dyn_cast(SimpleOp); if (!OpC) return false; if (OpC->isZero()) continue; // Handle a struct index, which adds its field offset to the pointer. if (StructType *STy = GTI.getStructTypeOrNull()) { unsigned ElementIdx = OpC->getZExtValue(); const StructLayout *SL = DL.getStructLayout(STy); Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); continue; } APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; } return true; } /// Use TTI to check whether a GEP is free. /// /// Respects any simplified values known during the analysis of this callsite. bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { SmallVector Operands; Operands.push_back(GEP.getOperand(0)); for (const Use &Op : GEP.indices()) if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) Operands.push_back(SimpleOp); else Operands.push_back(Op); return TTI.getInstructionCost(&GEP, Operands, TargetTransformInfo::TCK_SizeAndLatency) == TargetTransformInfo::TCC_Free; } bool CallAnalyzer::visitAlloca(AllocaInst &I) { disableSROA(I.getOperand(0)); // Check whether inlining will turn a dynamic alloca into a static // alloca and handle that case. if (I.isArrayAllocation()) { Constant *Size = SimplifiedValues.lookup(I.getArraySize()); if (auto *AllocSize = dyn_cast_or_null(Size)) { // Sometimes a dynamic alloca could be converted into a static alloca // after this constant prop, and become a huge static alloca on an // unconditional CFG path. Avoid inlining if this is going to happen above // a threshold. // FIXME: If the threshold is removed or lowered too much, we could end up // being too pessimistic and prevent inlining non-problematic code. This // could result in unintended perf regressions. A better overall strategy // is needed to track stack usage during inlining. Type *Ty = I.getAllocatedType(); AllocatedSize = SaturatingMultiplyAdd( AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getKnownMinValue(), AllocatedSize); if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) HasDynamicAlloca = true; return false; } } // Accumulate the allocated size. if (I.isStaticAlloca()) { Type *Ty = I.getAllocatedType(); AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinValue(), AllocatedSize); } // FIXME: This is overly conservative. Dynamic allocas are inefficient for // a variety of reasons, and so we would like to not inline them into // functions which don't currently have a dynamic alloca. This simply // disables inlining altogether in the presence of a dynamic alloca. if (!I.isStaticAlloca()) HasDynamicAlloca = true; return false; } bool CallAnalyzer::visitPHI(PHINode &I) { // FIXME: We need to propagate SROA *disabling* through phi nodes, even // though we don't want to propagate it's bonuses. The idea is to disable // SROA if it *might* be used in an inappropriate manner. // Phi nodes are always zero-cost. // FIXME: Pointer sizes may differ between different address spaces, so do we // need to use correct address space in the call to getPointerSizeInBits here? // Or could we skip the getPointerSizeInBits call completely? As far as I can // see the ZeroOffset is used as a dummy value, so we can probably use any // bit width for the ZeroOffset? APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0)); bool CheckSROA = I.getType()->isPointerTy(); // Track the constant or pointer with constant offset we've seen so far. Constant *FirstC = nullptr; std::pair FirstBaseAndOffset = {nullptr, ZeroOffset}; Value *FirstV = nullptr; for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { BasicBlock *Pred = I.getIncomingBlock(i); // If the incoming block is dead, skip the incoming block. if (DeadBlocks.count(Pred)) continue; // If the parent block of phi is not the known successor of the incoming // block, skip the incoming block. BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; if (KnownSuccessor && KnownSuccessor != I.getParent()) continue; Value *V = I.getIncomingValue(i); // If the incoming value is this phi itself, skip the incoming value. if (&I == V) continue; Constant *C = dyn_cast(V); if (!C) C = SimplifiedValues.lookup(V); std::pair BaseAndOffset = {nullptr, ZeroOffset}; if (!C && CheckSROA) BaseAndOffset = ConstantOffsetPtrs.lookup(V); if (!C && !BaseAndOffset.first) // The incoming value is neither a constant nor a pointer with constant // offset, exit early. return true; if (FirstC) { if (FirstC == C) // If we've seen a constant incoming value before and it is the same // constant we see this time, continue checking the next incoming value. continue; // Otherwise early exit because we either see a different constant or saw // a constant before but we have a pointer with constant offset this time. return true; } if (FirstV) { // The same logic as above, but check pointer with constant offset here. if (FirstBaseAndOffset == BaseAndOffset) continue; return true; } if (C) { // This is the 1st time we've seen a constant, record it. FirstC = C; continue; } // The remaining case is that this is the 1st time we've seen a pointer with // constant offset, record it. FirstV = V; FirstBaseAndOffset = BaseAndOffset; } // Check if we can map phi to a constant. if (FirstC) { SimplifiedValues[&I] = FirstC; return true; } // Check if we can map phi to a pointer with constant offset. if (FirstBaseAndOffset.first) { ConstantOffsetPtrs[&I] = FirstBaseAndOffset; if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) SROAArgValues[&I] = SROAArg; } return true; } /// Check we can fold GEPs of constant-offset call site argument pointers. /// This requires target data and inbounds GEPs. /// /// \return true if the specified GEP can be folded. bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { // Check if we have a base + offset for the pointer. std::pair BaseAndOffset = ConstantOffsetPtrs.lookup(I.getPointerOperand()); if (!BaseAndOffset.first) return false; // Check if the offset of this GEP is constant, and if so accumulate it // into Offset. if (!accumulateGEPOffset(cast(I), BaseAndOffset.second)) return false; // Add the result as a new mapping to Base + Offset. ConstantOffsetPtrs[&I] = BaseAndOffset; return true; } bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); // Lambda to check whether a GEP's indices are all constant. auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { for (const Use &Op : GEP.indices()) if (!isa(Op) && !SimplifiedValues.lookup(Op)) return false; return true; }; if (!DisableGEPConstOperand) if (simplifyInstruction(I)) return true; if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { if (SROAArg) SROAArgValues[&I] = SROAArg; // Constant GEPs are modeled as free. return true; } // Variable GEPs will require math and will disable SROA. if (SROAArg) disableSROAForArg(SROAArg); return isGEPFree(I); } /// Simplify \p I if its operands are constants and update SimplifiedValues. bool CallAnalyzer::simplifyInstruction(Instruction &I) { SmallVector COps; for (Value *Op : I.operands()) { Constant *COp = dyn_cast(Op); if (!COp) COp = SimplifiedValues.lookup(Op); if (!COp) return false; COps.push_back(COp); } auto *C = ConstantFoldInstOperands(&I, COps, DL); if (!C) return false; SimplifiedValues[&I] = C; return true; } /// Try to simplify a call to llvm.is.constant. /// /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since /// we expect calls of this specific intrinsic to be infrequent. /// /// FIXME: Given that we know CB's parent (F) caller /// (CandidateCall->getParent()->getParent()), we might be able to determine /// whether inlining F into F's caller would change how the call to /// llvm.is.constant would evaluate. bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) { Value *Arg = CB.getArgOperand(0); auto *C = dyn_cast(Arg); if (!C) C = dyn_cast_or_null(SimplifiedValues.lookup(Arg)); Type *RT = CB.getFunctionType()->getReturnType(); SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0); return true; } bool CallAnalyzer::simplifyIntrinsicCallObjectSize(CallBase &CB) { // As per the langref, "The fourth argument to llvm.objectsize determines if // the value should be evaluated at runtime." if (cast(CB.getArgOperand(3))->isOne()) return false; Value *V = lowerObjectSizeCall(&cast(CB), DL, nullptr, /*MustSucceed=*/true); Constant *C = dyn_cast_or_null(V); if (C) SimplifiedValues[&CB] = C; return C; } bool CallAnalyzer::visitBitCast(BitCastInst &I) { // Propagate constants through bitcasts. if (simplifyInstruction(I)) return true; // Track base/offsets through casts std::pair BaseAndOffset = ConstantOffsetPtrs.lookup(I.getOperand(0)); // Casts don't change the offset, just wrap it up. if (BaseAndOffset.first) ConstantOffsetPtrs[&I] = BaseAndOffset; // Also look for SROA candidates here. if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) SROAArgValues[&I] = SROAArg; // Bitcasts are always zero cost. return true; } bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { // Propagate constants through ptrtoint. if (simplifyInstruction(I)) return true; // Track base/offset pairs when converted to a plain integer provided the // integer is large enough to represent the pointer. unsigned IntegerSize = I.getType()->getScalarSizeInBits(); unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); if (IntegerSize == DL.getPointerSizeInBits(AS)) { std::pair BaseAndOffset = ConstantOffsetPtrs.lookup(I.getOperand(0)); if (BaseAndOffset.first) ConstantOffsetPtrs[&I] = BaseAndOffset; } // This is really weird. Technically, ptrtoint will disable SROA. However, // unless that ptrtoint is *used* somewhere in the live basic blocks after // inlining, it will be nuked, and SROA should proceed. All of the uses which // would block SROA would also block SROA if applied directly to a pointer, // and so we can just add the integer in here. The only places where SROA is // preserved either cannot fire on an integer, or won't in-and-of themselves // disable SROA (ext) w/o some later use that we would see and disable. if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) SROAArgValues[&I] = SROAArg; return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == TargetTransformInfo::TCC_Free; } bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { // Propagate constants through ptrtoint. if (simplifyInstruction(I)) return true; // Track base/offset pairs when round-tripped through a pointer without // modifications provided the integer is not too large. Value *Op = I.getOperand(0); unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { std::pair BaseAndOffset = ConstantOffsetPtrs.lookup(Op); if (BaseAndOffset.first) ConstantOffsetPtrs[&I] = BaseAndOffset; } // "Propagate" SROA here in the same manner as we do for ptrtoint above. if (auto *SROAArg = getSROAArgForValueOrNull(Op)) SROAArgValues[&I] = SROAArg; return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == TargetTransformInfo::TCC_Free; } bool CallAnalyzer::visitCastInst(CastInst &I) { // Propagate constants through casts. if (simplifyInstruction(I)) return true; // Disable SROA in the face of arbitrary casts we don't explicitly list // elsewhere. disableSROA(I.getOperand(0)); // If this is a floating-point cast, and the target says this operation // is expensive, this may eventually become a library call. Treat the cost // as such. switch (I.getOpcode()) { case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) onCallPenalty(); break; default: break; } return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == TargetTransformInfo::TCC_Free; } bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { return CandidateCall.paramHasAttr(A->getArgNo(), Attr); } bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { // Does the *call site* have the NonNull attribute set on an argument? We // use the attribute on the call site to memoize any analysis done in the // caller. This will also trip if the callee function has a non-null // parameter attribute, but that's a less interesting case because hopefully // the callee would already have been simplified based on that. if (Argument *A = dyn_cast(V)) if (paramHasAttr(A, Attribute::NonNull)) return true; // Is this an alloca in the caller? This is distinct from the attribute case // above because attributes aren't updated within the inliner itself and we // always want to catch the alloca derived case. if (isAllocaDerivedArg(V)) // We can actually predict the result of comparisons between an // alloca-derived value and null. Note that this fires regardless of // SROA firing. return true; return false; } bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { // If the normal destination of the invoke or the parent block of the call // site is unreachable-terminated, there is little point in inlining this // unless there is literally zero cost. // FIXME: Note that it is possible that an unreachable-terminated block has a // hot entry. For example, in below scenario inlining hot_call_X() may be // beneficial : // main() { // hot_call_1(); // ... // hot_call_N() // exit(0); // } // For now, we are not handling this corner case here as it is rare in real // code. In future, we should elaborate this based on BPI and BFI in more // general threshold adjusting heuristics in updateThreshold(). if (InvokeInst *II = dyn_cast(&Call)) { if (isa(II->getNormalDest()->getTerminator())) return false; } else if (isa(Call.getParent()->getTerminator())) return false; return true; } bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI) { // If global profile summary is available, then callsite's coldness is // determined based on that. if (PSI && PSI->hasProfileSummary()) return PSI->isColdCallSite(Call, CallerBFI); // Otherwise we need BFI to be available. if (!CallerBFI) return false; // Determine if the callsite is cold relative to caller's entry. We could // potentially cache the computation of scaled entry frequency, but the added // complexity is not worth it unless this scaling shows up high in the // profiles. const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); auto CallSiteBB = Call.getParent(); auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); auto CallerEntryFreq = CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); return CallSiteFreq < CallerEntryFreq * ColdProb; } std::optional InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, BlockFrequencyInfo *CallerBFI) { // If global profile summary is available, then callsite's hotness is // determined based on that. if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) return Params.HotCallSiteThreshold; // Otherwise we need BFI to be available and to have a locally hot callsite // threshold. if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) return std::nullopt; // Determine if the callsite is hot relative to caller's entry. We could // potentially cache the computation of scaled entry frequency, but the added // complexity is not worth it unless this scaling shows up high in the // profiles. auto CallSiteBB = Call.getParent(); auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); auto CallerEntryFreq = CallerBFI->getEntryFreq(); if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) return Params.LocallyHotCallSiteThreshold; // Otherwise treat it normally. return std::nullopt; } void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { // If no size growth is allowed for this inlining, set Threshold to 0. if (!allowSizeGrowth(Call)) { Threshold = 0; return; } Function *Caller = Call.getCaller(); // return min(A, B) if B is valid. auto MinIfValid = [](int A, std::optional B) { return B ? std::min(A, *B) : A; }; // return max(A, B) if B is valid. auto MaxIfValid = [](int A, std::optional B) { return B ? std::max(A, *B) : A; }; // Various bonus percentages. These are multiplied by Threshold to get the // bonus values. // SingleBBBonus: This bonus is applied if the callee has a single reachable // basic block at the given callsite context. This is speculatively applied // and withdrawn if more than one basic block is seen. // // LstCallToStaticBonus: This large bonus is applied to ensure the inlining // of the last call to a static function as inlining such functions is // guaranteed to reduce code size. // // These bonus percentages may be set to 0 based on properties of the caller // and the callsite. int SingleBBBonusPercent = 50; int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; // Lambda to set all the above bonus and bonus percentages to 0. auto DisallowAllBonuses = [&]() { SingleBBBonusPercent = 0; VectorBonusPercent = 0; LastCallToStaticBonus = 0; }; // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available // and reduce the threshold if the caller has the necessary attribute. if (Caller->hasMinSize()) { Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); // For minsize, we want to disable the single BB bonus and the vector // bonuses, but not the last-call-to-static bonus. Inlining the last call to // a static function will, at the minimum, eliminate the parameter setup and // call/return instructions. SingleBBBonusPercent = 0; VectorBonusPercent = 0; } else if (Caller->hasOptSize()) Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); // Adjust the threshold based on inlinehint attribute and profile based // hotness information if the caller does not have MinSize attribute. if (!Caller->hasMinSize()) { if (Callee.hasFnAttribute(Attribute::InlineHint)) Threshold = MaxIfValid(Threshold, Params.HintThreshold); // FIXME: After switching to the new passmanager, simplify the logic below // by checking only the callsite hotness/coldness as we will reliably // have local profile information. // // Callsite hotness and coldness can be determined if sample profile is // used (which adds hotness metadata to calls) or if caller's // BlockFrequencyInfo is available. BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); if (!Caller->hasOptSize() && HotCallSiteThreshold) { LLVM_DEBUG(dbgs() << "Hot callsite.\n"); // FIXME: This should update the threshold only if it exceeds the // current threshold, but AutoFDO + ThinLTO currently relies on this // behavior to prevent inlining of hot callsites during ThinLTO // compile phase. Threshold = *HotCallSiteThreshold; } else if (isColdCallSite(Call, CallerBFI)) { LLVM_DEBUG(dbgs() << "Cold callsite.\n"); // Do not apply bonuses for a cold callsite including the // LastCallToStatic bonus. While this bonus might result in code size // reduction, it can cause the size of a non-cold caller to increase // preventing it from being inlined. DisallowAllBonuses(); Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); } else if (PSI) { // Use callee's global profile information only if we have no way of // determining this via callsite information. if (PSI->isFunctionEntryHot(&Callee)) { LLVM_DEBUG(dbgs() << "Hot callee.\n"); // If callsite hotness can not be determined, we may still know // that the callee is hot and treat it as a weaker hint for threshold // increase. Threshold = MaxIfValid(Threshold, Params.HintThreshold); } else if (PSI->isFunctionEntryCold(&Callee)) { LLVM_DEBUG(dbgs() << "Cold callee.\n"); // Do not apply bonuses for a cold callee including the // LastCallToStatic bonus. While this bonus might result in code size // reduction, it can cause the size of a non-cold caller to increase // preventing it from being inlined. DisallowAllBonuses(); Threshold = MinIfValid(Threshold, Params.ColdThreshold); } } } Threshold += TTI.adjustInliningThreshold(&Call); // Finally, take the target-specific inlining threshold multiplier into // account. Threshold *= TTI.getInliningThresholdMultiplier(); SingleBBBonus = Threshold * SingleBBBonusPercent / 100; VectorBonus = Threshold * VectorBonusPercent / 100; // If there is only one call of the function, and it has internal linkage, // the cost of inlining it drops dramatically. It may seem odd to update // Cost in updateThreshold, but the bonus depends on the logic in this method. if (isSoleCallToLocalFunction(Call, F)) { Cost -= LastCallToStaticBonus; StaticBonusApplied = LastCallToStaticBonus; } } bool CallAnalyzer::visitCmpInst(CmpInst &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); // First try to handle simplified comparisons. if (simplifyInstruction(I)) return true; if (I.getOpcode() == Instruction::FCmp) return false; // Otherwise look for a comparison between constant offset pointers with // a common base. Value *LHSBase, *RHSBase; APInt LHSOffset, RHSOffset; std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); if (LHSBase) { std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); if (RHSBase && LHSBase == RHSBase) { // We have common bases, fold the icmp to a constant based on the // offsets. Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { SimplifiedValues[&I] = C; ++NumConstantPtrCmps; return true; } } } auto isImplicitNullCheckCmp = [](const CmpInst &I) { for (auto *User : I.users()) if (auto *Instr = dyn_cast(User)) if (!Instr->getMetadata(LLVMContext::MD_make_implicit)) return false; return true; }; // If the comparison is an equality comparison with null, we can simplify it // if we know the value (argument) can't be null if (I.isEquality() && isa(I.getOperand(1))) { if (isKnownNonNullInCallee(I.getOperand(0))) { bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) : ConstantInt::getFalse(I.getType()); return true; } // Implicit null checks act as unconditional branches and their comparisons // should be treated as simplified and free of cost. if (isImplicitNullCheckCmp(I)) return true; } return handleSROA(I.getOperand(0), isa(I.getOperand(1))); } bool CallAnalyzer::visitSub(BinaryOperator &I) { // Try to handle a special case: we can fold computing the difference of two // constant-related pointers. Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); Value *LHSBase, *RHSBase; APInt LHSOffset, RHSOffset; std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); if (LHSBase) { std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); if (RHSBase && LHSBase == RHSBase) { // We have common bases, fold the subtract to a constant based on the // offsets. Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { SimplifiedValues[&I] = C; ++NumConstantPtrDiffs; return true; } } } // Otherwise, fall back to the generic logic for simplifying and handling // instructions. return Base::visitSub(I); } bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); Constant *CLHS = dyn_cast(LHS); if (!CLHS) CLHS = SimplifiedValues.lookup(LHS); Constant *CRHS = dyn_cast(RHS); if (!CRHS) CRHS = SimplifiedValues.lookup(RHS); Value *SimpleV = nullptr; if (auto FI = dyn_cast(&I)) SimpleV = simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, FI->getFastMathFlags(), DL); else SimpleV = simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); if (Constant *C = dyn_cast_or_null(SimpleV)) SimplifiedValues[&I] = C; if (SimpleV) return true; // Disable any SROA on arguments to arbitrary, unsimplified binary operators. disableSROA(LHS); disableSROA(RHS); // If the instruction is floating point, and the target says this operation // is expensive, this may eventually become a library call. Treat the cost // as such. Unless it's fneg which can be implemented with an xor. using namespace llvm::PatternMatch; if (I.getType()->isFloatingPointTy() && TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && !match(&I, m_FNeg(m_Value()))) onCallPenalty(); return false; } bool CallAnalyzer::visitFNeg(UnaryOperator &I) { Value *Op = I.getOperand(0); Constant *COp = dyn_cast(Op); if (!COp) COp = SimplifiedValues.lookup(Op); Value *SimpleV = simplifyFNegInst( COp ? COp : Op, cast(I).getFastMathFlags(), DL); if (Constant *C = dyn_cast_or_null(SimpleV)) SimplifiedValues[&I] = C; if (SimpleV) return true; // Disable any SROA on arguments to arbitrary, unsimplified fneg. disableSROA(Op); return false; } bool CallAnalyzer::visitLoad(LoadInst &I) { if (handleSROA(I.getPointerOperand(), I.isSimple())) return true; // If the data is already loaded from this address and hasn't been clobbered // by any stores or calls, this load is likely to be redundant and can be // eliminated. if (EnableLoadElimination && !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { onLoadEliminationOpportunity(); return true; } onMemAccess(); return false; } bool CallAnalyzer::visitStore(StoreInst &I) { if (handleSROA(I.getPointerOperand(), I.isSimple())) return true; // The store can potentially clobber loads and prevent repeated loads from // being eliminated. // FIXME: // 1. We can probably keep an initial set of eliminatable loads substracted // from the cost even when we finally see a store. We just need to disable // *further* accumulation of elimination savings. // 2. We should probably at some point thread MemorySSA for the callee into // this and then use that to actually compute *really* precise savings. disableLoadElimination(); onMemAccess(); return false; } bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { // Constant folding for extract value is trivial. if (simplifyInstruction(I)) return true; // SROA can't look through these, but they may be free. return Base::visitExtractValue(I); } bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { // Constant folding for insert value is trivial. if (simplifyInstruction(I)) return true; // SROA can't look through these, but they may be free. return Base::visitInsertValue(I); } /// Try to simplify a call site. /// /// Takes a concrete function and callsite and tries to actually simplify it by /// analyzing the arguments and call itself with instsimplify. Returns true if /// it has simplified the callsite to some other entity (a constant), making it /// free. bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { // FIXME: Using the instsimplify logic directly for this is inefficient // because we have to continually rebuild the argument list even when no // simplifications can be performed. Until that is fixed with remapping // inside of instsimplify, directly constant fold calls here. if (!canConstantFoldCallTo(&Call, F)) return false; // Try to re-map the arguments to constants. SmallVector ConstantArgs; ConstantArgs.reserve(Call.arg_size()); for (Value *I : Call.args()) { Constant *C = dyn_cast(I); if (!C) C = dyn_cast_or_null(SimplifiedValues.lookup(I)); if (!C) return false; // This argument doesn't map to a constant. ConstantArgs.push_back(C); } if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { SimplifiedValues[&Call] = C; return true; } return false; } bool CallAnalyzer::visitCallBase(CallBase &Call) { if (!onCallBaseVisitStart(Call)) return true; if (Call.hasFnAttr(Attribute::ReturnsTwice) && !F.hasFnAttribute(Attribute::ReturnsTwice)) { // This aborts the entire analysis. ExposesReturnsTwice = true; return false; } if (isa(Call) && cast(Call).cannotDuplicate()) ContainsNoDuplicateCall = true; Function *F = Call.getCalledFunction(); bool IsIndirectCall = !F; if (IsIndirectCall) { // Check if this happens to be an indirect function call to a known function // in this inline context. If not, we've done all we can. Value *Callee = Call.getCalledOperand(); F = dyn_cast_or_null(SimplifiedValues.lookup(Callee)); if (!F || F->getFunctionType() != Call.getFunctionType()) { onCallArgumentSetup(Call); if (!Call.onlyReadsMemory()) disableLoadElimination(); return Base::visitCallBase(Call); } } assert(F && "Expected a call to a known function"); // When we have a concrete function, first try to simplify it directly. if (simplifyCallSite(F, Call)) return true; // Next check if it is an intrinsic we know about. // FIXME: Lift this into part of the InstVisitor. if (IntrinsicInst *II = dyn_cast(&Call)) { switch (II->getIntrinsicID()) { default: if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) disableLoadElimination(); return Base::visitCallBase(Call); case Intrinsic::load_relative: onLoadRelativeIntrinsic(); return false; case Intrinsic::memset: case Intrinsic::memcpy: case Intrinsic::memmove: disableLoadElimination(); // SROA can usually chew through these intrinsics, but they aren't free. return false; case Intrinsic::icall_branch_funnel: case Intrinsic::localescape: HasUninlineableIntrinsic = true; return false; case Intrinsic::vastart: InitsVargArgs = true; return false; case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) SROAArgValues[II] = SROAArg; return true; case Intrinsic::is_constant: return simplifyIntrinsicCallIsConstant(Call); case Intrinsic::objectsize: return simplifyIntrinsicCallObjectSize(Call); } } if (F == Call.getFunction()) { // This flag will fully abort the analysis, so don't bother with anything // else. IsRecursiveCall = true; if (!AllowRecursiveCall) return false; } if (TTI.isLoweredToCall(F)) { onLoweredCall(F, Call, IsIndirectCall); } if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) disableLoadElimination(); return Base::visitCallBase(Call); } bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { // At least one return instruction will be free after inlining. bool Free = !HasReturn; HasReturn = true; return Free; } bool CallAnalyzer::visitBranchInst(BranchInst &BI) { // We model unconditional branches as essentially free -- they really // shouldn't exist at all, but handling them makes the behavior of the // inliner more regular and predictable. Interestingly, conditional branches // which will fold away are also free. return BI.isUnconditional() || isa(BI.getCondition()) || BI.getMetadata(LLVMContext::MD_make_implicit) || isa_and_nonnull( SimplifiedValues.lookup(BI.getCondition())); } bool CallAnalyzer::visitSelectInst(SelectInst &SI) { bool CheckSROA = SI.getType()->isPointerTy(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); Constant *TrueC = dyn_cast(TrueVal); if (!TrueC) TrueC = SimplifiedValues.lookup(TrueVal); Constant *FalseC = dyn_cast(FalseVal); if (!FalseC) FalseC = SimplifiedValues.lookup(FalseVal); Constant *CondC = dyn_cast_or_null(SimplifiedValues.lookup(SI.getCondition())); if (!CondC) { // Select C, X, X => X if (TrueC == FalseC && TrueC) { SimplifiedValues[&SI] = TrueC; return true; } if (!CheckSROA) return Base::visitSelectInst(SI); std::pair TrueBaseAndOffset = ConstantOffsetPtrs.lookup(TrueVal); std::pair FalseBaseAndOffset = ConstantOffsetPtrs.lookup(FalseVal); if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) SROAArgValues[&SI] = SROAArg; return true; } return Base::visitSelectInst(SI); } // Select condition is a constant. Value *SelectedV = CondC->isAllOnesValue() ? TrueVal : (CondC->isNullValue()) ? FalseVal : nullptr; if (!SelectedV) { // Condition is a vector constant that is not all 1s or all 0s. If all // operands are constants, ConstantFoldSelectInstruction() can handle the // cases such as select vectors. if (TrueC && FalseC) { if (auto *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) { SimplifiedValues[&SI] = C; return true; } } return Base::visitSelectInst(SI); } // Condition is either all 1s or all 0s. SI can be simplified. if (Constant *SelectedC = dyn_cast(SelectedV)) { SimplifiedValues[&SI] = SelectedC; return true; } if (!CheckSROA) return true; std::pair BaseAndOffset = ConstantOffsetPtrs.lookup(SelectedV); if (BaseAndOffset.first) { ConstantOffsetPtrs[&SI] = BaseAndOffset; if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) SROAArgValues[&SI] = SROAArg; } return true; } bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { // We model unconditional switches as free, see the comments on handling // branches. if (isa(SI.getCondition())) return true; if (Value *V = SimplifiedValues.lookup(SI.getCondition())) if (isa(V)) return true; // Assume the most general case where the switch is lowered into // either a jump table, bit test, or a balanced binary tree consisting of // case clusters without merging adjacent clusters with the same // destination. We do not consider the switches that are lowered with a mix // of jump table/bit test/binary search tree. The cost of the switch is // proportional to the size of the tree or the size of jump table range. // // NB: We convert large switches which are just used to initialize large phi // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent // inlining those. It will prevent inlining in cases where the optimization // does not (yet) fire. unsigned JumpTableSize = 0; BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; unsigned NumCaseCluster = TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); onFinalizeSwitch(JumpTableSize, NumCaseCluster); return false; } bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { // We never want to inline functions that contain an indirectbr. This is // incorrect because all the blockaddress's (in static global initializers // for example) would be referring to the original function, and this // indirect jump would jump from the inlined copy of the function into the // original function which is extremely undefined behavior. // FIXME: This logic isn't really right; we can safely inline functions with // indirectbr's as long as no other function or global references the // blockaddress of a block within the current function. HasIndirectBr = true; return false; } bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { // FIXME: It's not clear that a single instruction is an accurate model for // the inline cost of a resume instruction. return false; } bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { // FIXME: It's not clear that a single instruction is an accurate model for // the inline cost of a cleanupret instruction. return false; } bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { // FIXME: It's not clear that a single instruction is an accurate model for // the inline cost of a catchret instruction. return false; } bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { // FIXME: It might be reasonably to discount the cost of instructions leading // to unreachable as they have the lowest possible impact on both runtime and // code size. return true; // No actual code is needed for unreachable. } bool CallAnalyzer::visitInstruction(Instruction &I) { // Some instructions are free. All of the free intrinsics can also be // handled by SROA, etc. if (TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == TargetTransformInfo::TCC_Free) return true; // We found something we don't understand or can't handle. Mark any SROA-able // values in the operand list as no longer viable. for (const Use &Op : I.operands()) disableSROA(Op); return false; } /// Analyze a basic block for its contribution to the inline cost. /// /// This method walks the analyzer over every instruction in the given basic /// block and accounts for their cost during inlining at this callsite. It /// aborts early if the threshold has been exceeded or an impossible to inline /// construct has been detected. It returns false if inlining is no longer /// viable, and true if inlining remains viable. InlineResult CallAnalyzer::analyzeBlock(BasicBlock *BB, SmallPtrSetImpl &EphValues) { for (Instruction &I : *BB) { // FIXME: Currently, the number of instructions in a function regardless of // our ability to simplify them during inline to constants or dead code, // are actually used by the vector bonus heuristic. As long as that's true, // we have to special case debug intrinsics here to prevent differences in // inlining due to debug symbols. Eventually, the number of unsimplified // instructions shouldn't factor into the cost computation, but until then, // hack around it here. // Similarly, skip pseudo-probes. if (I.isDebugOrPseudoInst()) continue; // Skip ephemeral values. if (EphValues.count(&I)) continue; ++NumInstructions; if (isa(I) || I.getType()->isVectorTy()) ++NumVectorInstructions; // If the instruction simplified to a constant, there is no cost to this // instruction. Visit the instructions using our InstVisitor to account for // all of the per-instruction logic. The visit tree returns true if we // consumed the instruction in any way, and false if the instruction's base // cost should count against inlining. onInstructionAnalysisStart(&I); if (Base::visit(&I)) ++NumInstructionsSimplified; else onMissedSimplification(); onInstructionAnalysisFinish(&I); using namespace ore; // If the visit this instruction detected an uninlinable pattern, abort. InlineResult IR = InlineResult::success(); if (IsRecursiveCall && !AllowRecursiveCall) IR = InlineResult::failure("recursive"); else if (ExposesReturnsTwice) IR = InlineResult::failure("exposes returns twice"); else if (HasDynamicAlloca) IR = InlineResult::failure("dynamic alloca"); else if (HasIndirectBr) IR = InlineResult::failure("indirect branch"); else if (HasUninlineableIntrinsic) IR = InlineResult::failure("uninlinable intrinsic"); else if (InitsVargArgs) IR = InlineResult::failure("varargs"); if (!IR.isSuccess()) { if (ORE) ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", &CandidateCall) << NV("Callee", &F) << " has uninlinable pattern (" << NV("InlineResult", IR.getFailureReason()) << ") and cost is not fully computed"; }); return IR; } // If the caller is a recursive function then we don't want to inline // functions which allocate a lot of stack space because it would increase // the caller stack usage dramatically. if (IsCallerRecursive && AllocatedSize > RecurStackSizeThreshold) { auto IR = InlineResult::failure("recursive and allocates too much stack space"); if (ORE) ORE->emit([&]() { return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", &CandidateCall) << NV("Callee", &F) << " is " << NV("InlineResult", IR.getFailureReason()) << ". Cost is not fully computed"; }); return IR; } if (shouldStop()) return InlineResult::failure( "Call site analysis is not favorable to inlining."); } return InlineResult::success(); } /// Compute the base pointer and cumulative constant offsets for V. /// /// This strips all constant offsets off of V, leaving it the base pointer, and /// accumulates the total constant offset applied in the returned constant. It /// returns 0 if V is not a pointer, and returns the constant '0' if there are /// no constant offsets applied. ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { if (!V->getType()->isPointerTy()) return nullptr; unsigned AS = V->getType()->getPointerAddressSpace(); unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); APInt Offset = APInt::getZero(IntPtrWidth); // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. SmallPtrSet Visited; Visited.insert(V); do { if (GEPOperator *GEP = dyn_cast(V)) { if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) return nullptr; V = GEP->getPointerOperand(); } else if (Operator::getOpcode(V) == Instruction::BitCast) { V = cast(V)->getOperand(0); } else if (GlobalAlias *GA = dyn_cast(V)) { if (GA->isInterposable()) break; V = GA->getAliasee(); } else { break; } assert(V->getType()->isPointerTy() && "Unexpected operand type!"); } while (Visited.insert(V).second); Type *IdxPtrTy = DL.getIndexType(V->getType()); return cast(ConstantInt::get(IdxPtrTy, Offset)); } /// Find dead blocks due to deleted CFG edges during inlining. /// /// If we know the successor of the current block, \p CurrBB, has to be \p /// NextBB, the other successors of \p CurrBB are dead if these successors have /// no live incoming CFG edges. If one block is found to be dead, we can /// continue growing the dead block list by checking the successors of the dead /// blocks to see if all their incoming edges are dead or not. void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { // A CFG edge is dead if the predecessor is dead or the predecessor has a // known successor which is not the one under exam. return (DeadBlocks.count(Pred) || (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); }; auto IsNewlyDead = [&](BasicBlock *BB) { // If all the edges to a block are dead, the block is also dead. return (!DeadBlocks.count(BB) && llvm::all_of(predecessors(BB), [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); }; for (BasicBlock *Succ : successors(CurrBB)) { if (Succ == NextBB || !IsNewlyDead(Succ)) continue; SmallVector NewDead; NewDead.push_back(Succ); while (!NewDead.empty()) { BasicBlock *Dead = NewDead.pop_back_val(); if (DeadBlocks.insert(Dead).second) // Continue growing the dead block lists. for (BasicBlock *S : successors(Dead)) if (IsNewlyDead(S)) NewDead.push_back(S); } } } /// Analyze a call site for potential inlining. /// /// Returns true if inlining this call is viable, and false if it is not /// viable. It computes the cost and adjusts the threshold based on numerous /// factors and heuristics. If this method returns false but the computed cost /// is below the computed threshold, then inlining was forcibly disabled by /// some artifact of the routine. InlineResult CallAnalyzer::analyze() { ++NumCallsAnalyzed; auto Result = onAnalysisStart(); if (!Result.isSuccess()) return Result; if (F.empty()) return InlineResult::success(); Function *Caller = CandidateCall.getFunction(); // Check if the caller function is recursive itself. for (User *U : Caller->users()) { CallBase *Call = dyn_cast(U); if (Call && Call->getFunction() == Caller) { IsCallerRecursive = true; break; } } // Populate our simplified values by mapping from function arguments to call // arguments with known important simplifications. auto CAI = CandidateCall.arg_begin(); for (Argument &FAI : F.args()) { assert(CAI != CandidateCall.arg_end()); if (Constant *C = dyn_cast(CAI)) SimplifiedValues[&FAI] = C; Value *PtrArg = *CAI; if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); // We can SROA any pointer arguments derived from alloca instructions. if (auto *SROAArg = dyn_cast(PtrArg)) { SROAArgValues[&FAI] = SROAArg; onInitializeSROAArg(SROAArg); EnabledSROAAllocas.insert(SROAArg); } } ++CAI; } NumConstantArgs = SimplifiedValues.size(); NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); NumAllocaArgs = SROAArgValues.size(); // FIXME: If a caller has multiple calls to a callee, we end up recomputing // the ephemeral values multiple times (and they're completely determined by // the callee, so this is purely duplicate work). SmallPtrSet EphValues; CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); // The worklist of live basic blocks in the callee *after* inlining. We avoid // adding basic blocks of the callee which can be proven to be dead for this // particular call site in order to get more accurate cost estimates. This // requires a somewhat heavyweight iteration pattern: we need to walk the // basic blocks in a breadth-first order as we insert live successors. To // accomplish this, prioritizing for small iterations because we exit after // crossing our threshold, we use a small-size optimized SetVector. typedef SmallSetVector BBSetVector; BBSetVector BBWorklist; BBWorklist.insert(&F.getEntryBlock()); // Note that we *must not* cache the size, this loop grows the worklist. for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { if (shouldStop()) break; BasicBlock *BB = BBWorklist[Idx]; if (BB->empty()) continue; onBlockStart(BB); // Disallow inlining a blockaddress with uses other than strictly callbr. // A blockaddress only has defined behavior for an indirect branch in the // same function, and we do not currently support inlining indirect // branches. But, the inliner may not see an indirect branch that ends up // being dead code at a particular call site. If the blockaddress escapes // the function, e.g., via a global variable, inlining may lead to an // invalid cross-function reference. // FIXME: pr/39560: continue relaxing this overt restriction. if (BB->hasAddressTaken()) for (User *U : BlockAddress::get(&*BB)->users()) if (!isa(*U)) return InlineResult::failure("blockaddress used outside of callbr"); // Analyze the cost of this block. If we blow through the threshold, this // returns false, and we can bail on out. InlineResult IR = analyzeBlock(BB, EphValues); if (!IR.isSuccess()) return IR; Instruction *TI = BB->getTerminator(); // Add in the live successors by first checking whether we have terminator // that may be simplified based on the values simplified by this call. if (BranchInst *BI = dyn_cast(TI)) { if (BI->isConditional()) { Value *Cond = BI->getCondition(); if (ConstantInt *SimpleCond = dyn_cast_or_null(SimplifiedValues.lookup(Cond))) { BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); BBWorklist.insert(NextBB); KnownSuccessors[BB] = NextBB; findDeadBlocks(BB, NextBB); continue; } } } else if (SwitchInst *SI = dyn_cast(TI)) { Value *Cond = SI->getCondition(); if (ConstantInt *SimpleCond = dyn_cast_or_null(SimplifiedValues.lookup(Cond))) { BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); BBWorklist.insert(NextBB); KnownSuccessors[BB] = NextBB; findDeadBlocks(BB, NextBB); continue; } } // If we're unable to select a particular successor, just count all of // them. for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; ++TIdx) BBWorklist.insert(TI->getSuccessor(TIdx)); onBlockAnalyzed(BB); } // If this is a noduplicate call, we can still inline as long as // inlining this would cause the removal of the caller (so the instruction // is not actually duplicated, just moved). if (!isSoleCallToLocalFunction(CandidateCall, F) && ContainsNoDuplicateCall) return InlineResult::failure("noduplicate"); // If the callee's stack size exceeds the user-specified threshold, // do not let it be inlined. // The command line option overrides a limit set in the function attributes. size_t FinalStackSizeThreshold = StackSizeThreshold; if (!StackSizeThreshold.getNumOccurrences()) if (std::optional AttrMaxStackSize = getStringFnAttrAsInt( Caller, InlineConstants::MaxInlineStackSizeAttributeName)) FinalStackSizeThreshold = *AttrMaxStackSize; if (AllocatedSize > FinalStackSizeThreshold) return InlineResult::failure("stacksize"); return finalizeAnalysis(); } void InlineCostCallAnalyzer::print(raw_ostream &OS) { #define DEBUG_PRINT_STAT(x) OS << " " #x ": " << x << "\n" if (PrintInstructionComments) F.print(OS, &Writer); DEBUG_PRINT_STAT(NumConstantArgs); DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); DEBUG_PRINT_STAT(NumAllocaArgs); DEBUG_PRINT_STAT(NumConstantPtrCmps); DEBUG_PRINT_STAT(NumConstantPtrDiffs); DEBUG_PRINT_STAT(NumInstructionsSimplified); DEBUG_PRINT_STAT(NumInstructions); DEBUG_PRINT_STAT(SROACostSavings); DEBUG_PRINT_STAT(SROACostSavingsLost); DEBUG_PRINT_STAT(LoadEliminationCost); DEBUG_PRINT_STAT(ContainsNoDuplicateCall); DEBUG_PRINT_STAT(Cost); DEBUG_PRINT_STAT(Threshold); #undef DEBUG_PRINT_STAT } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// Dump stats about this call's analysis. LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); } #endif /// Test that there are no attribute conflicts between Caller and Callee /// that prevent inlining. static bool functionsHaveCompatibleAttributes( Function *Caller, Function *Callee, TargetTransformInfo &TTI, function_ref &GetTLI) { // Note that CalleeTLI must be a copy not a reference. The legacy pass manager // caches the most recently created TLI in the TargetLibraryInfoWrapperPass // object, and always returns the same object (which is overwritten on each // GetTLI call). Therefore we copy the first result. auto CalleeTLI = GetTLI(*Callee); return (IgnoreTTIInlineCompatible || TTI.areInlineCompatible(Caller, Callee)) && GetTLI(*Caller).areInlineCompatible(CalleeTLI, InlineCallerSupersetNoBuiltin) && AttributeFuncs::areInlineCompatible(*Caller, *Callee); } int llvm::getCallsiteCost(const CallBase &Call, const DataLayout &DL) { int64_t Cost = 0; for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { if (Call.isByValArgument(I)) { // We approximate the number of loads and stores needed by dividing the // size of the byval type by the target's pointer size. PointerType *PTy = cast(Call.getArgOperand(I)->getType()); unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); unsigned AS = PTy->getAddressSpace(); unsigned PointerSize = DL.getPointerSizeInBits(AS); // Ceiling division. unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; // If it generates more than 8 stores it is likely to be expanded as an // inline memcpy so we take that as an upper bound. Otherwise we assume // one load and one store per word copied. // FIXME: The maxStoresPerMemcpy setting from the target should be used // here instead of a magic number of 8, but it's not available via // DataLayout. NumStores = std::min(NumStores, 8U); Cost += 2 * NumStores * InstrCost; } else { // For non-byval arguments subtract off one instruction per call // argument. Cost += InstrCost; } } // The call instruction also disappears after inlining. Cost += InstrCost; Cost += CallPenalty; return std::min(Cost, INT_MAX); } InlineCost llvm::getInlineCost( CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, function_ref GetAssumptionCache, function_ref GetTLI, function_ref GetBFI, ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); } std::optional llvm::getInliningCostEstimate( CallBase &Call, TargetTransformInfo &CalleeTTI, function_ref GetAssumptionCache, function_ref GetBFI, ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { const InlineParams Params = {/* DefaultThreshold*/ 0, /*HintThreshold*/ {}, /*ColdThreshold*/ {}, /*OptSizeThreshold*/ {}, /*OptMinSizeThreshold*/ {}, /*HotCallSiteThreshold*/ {}, /*LocallyHotCallSiteThreshold*/ {}, /*ColdCallSiteThreshold*/ {}, /*ComputeFullInlineCost*/ true, /*EnableDeferral*/ true}; InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, true, /*IgnoreThreshold*/ true); auto R = CA.analyze(); if (!R.isSuccess()) return std::nullopt; return CA.getCost(); } std::optional llvm::getInliningCostFeatures( CallBase &Call, TargetTransformInfo &CalleeTTI, function_ref GetAssumptionCache, function_ref GetBFI, ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, *Call.getCalledFunction(), Call); auto R = CFA.analyze(); if (!R.isSuccess()) return std::nullopt; return CFA.features(); } std::optional llvm::getAttributeBasedInliningDecision( CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, function_ref GetTLI) { // Cannot inline indirect calls. if (!Callee) return InlineResult::failure("indirect call"); // When callee coroutine function is inlined into caller coroutine function // before coro-split pass, // coro-early pass can not handle this quiet well. // So we won't inline the coroutine function if it have not been unsplited if (Callee->isPresplitCoroutine()) return InlineResult::failure("unsplited coroutine call"); // Never inline calls with byval arguments that does not have the alloca // address space. Since byval arguments can be replaced with a copy to an // alloca, the inlined code would need to be adjusted to handle that the // argument is in the alloca address space (so it is a little bit complicated // to solve). unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) if (Call.isByValArgument(I)) { PointerType *PTy = cast(Call.getArgOperand(I)->getType()); if (PTy->getAddressSpace() != AllocaAS) return InlineResult::failure("byval arguments without alloca" " address space"); } // Calls to functions with always-inline attributes should be inlined // whenever possible. if (Call.hasFnAttr(Attribute::AlwaysInline)) { if (Call.getAttributes().hasFnAttr(Attribute::NoInline)) return InlineResult::failure("noinline call site attribute"); auto IsViable = isInlineViable(*Callee); if (IsViable.isSuccess()) return InlineResult::success(); return InlineResult::failure(IsViable.getFailureReason()); } // Never inline functions with conflicting attributes (unless callee has // always-inline attribute). Function *Caller = Call.getCaller(); if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) return InlineResult::failure("conflicting attributes"); // Don't inline this call if the caller has the optnone attribute. if (Caller->hasOptNone()) return InlineResult::failure("optnone attribute"); // Don't inline a function that treats null pointer as valid into a caller // that does not have this attribute. if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) return InlineResult::failure("nullptr definitions incompatible"); // Don't inline functions which can be interposed at link-time. if (Callee->isInterposable()) return InlineResult::failure("interposable"); // Don't inline functions marked noinline. if (Callee->hasFnAttribute(Attribute::NoInline)) return InlineResult::failure("noinline function attribute"); // Don't inline call sites marked noinline. if (Call.isNoInline()) return InlineResult::failure("noinline call site attribute"); return std::nullopt; } InlineCost llvm::getInlineCost( CallBase &Call, Function *Callee, const InlineParams &Params, TargetTransformInfo &CalleeTTI, function_ref GetAssumptionCache, function_ref GetTLI, function_ref GetBFI, ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { auto UserDecision = llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); if (UserDecision) { if (UserDecision->isSuccess()) return llvm::InlineCost::getAlways("always inline attribute"); return llvm::InlineCost::getNever(UserDecision->getFailureReason()); } LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() << "... (caller:" << Call.getCaller()->getName() << ")\n"); InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE); InlineResult ShouldInline = CA.analyze(); LLVM_DEBUG(CA.dump()); // Always make cost benefit based decision explicit. // We use always/never here since threshold is not meaningful, // as it's not what drives cost-benefit analysis. if (CA.wasDecidedByCostBenefit()) { if (ShouldInline.isSuccess()) return InlineCost::getAlways("benefit over cost", CA.getCostBenefitPair()); else return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); } if (CA.wasDecidedByCostThreshold()) return InlineCost::get(CA.getCost(), CA.getThreshold(), CA.getStaticBonusApplied()); // No details on how the decision was made, simply return always or never. return ShouldInline.isSuccess() ? InlineCost::getAlways("empty function") : InlineCost::getNever(ShouldInline.getFailureReason()); } InlineResult llvm::isInlineViable(Function &F) { bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); for (BasicBlock &BB : F) { // Disallow inlining of functions which contain indirect branches. if (isa(BB.getTerminator())) return InlineResult::failure("contains indirect branches"); // Disallow inlining of blockaddresses which are used by non-callbr // instructions. if (BB.hasAddressTaken()) for (User *U : BlockAddress::get(&BB)->users()) if (!isa(*U)) return InlineResult::failure("blockaddress used outside of callbr"); for (auto &II : BB) { CallBase *Call = dyn_cast(&II); if (!Call) continue; // Disallow recursive calls. Function *Callee = Call->getCalledFunction(); if (&F == Callee) return InlineResult::failure("recursive call"); // Disallow calls which expose returns-twice to a function not previously // attributed as such. if (!ReturnsTwice && isa(Call) && cast(Call)->canReturnTwice()) return InlineResult::failure("exposes returns-twice attribute"); if (Callee) switch (Callee->getIntrinsicID()) { default: break; case llvm::Intrinsic::icall_branch_funnel: // Disallow inlining of @llvm.icall.branch.funnel because current // backend can't separate call targets from call arguments. return InlineResult::failure( "disallowed inlining of @llvm.icall.branch.funnel"); case llvm::Intrinsic::localescape: // Disallow inlining functions that call @llvm.localescape. Doing this // correctly would require major changes to the inliner. return InlineResult::failure( "disallowed inlining of @llvm.localescape"); case llvm::Intrinsic::vastart: // Disallow inlining of functions that initialize VarArgs with // va_start. return InlineResult::failure( "contains VarArgs initialized with va_start"); } } } return InlineResult::success(); } // APIs to create InlineParams based on command line flags and/or other // parameters. InlineParams llvm::getInlineParams(int Threshold) { InlineParams Params; // This field is the threshold to use for a callee by default. This is // derived from one or more of: // * optimization or size-optimization levels, // * a value passed to createFunctionInliningPass function, or // * the -inline-threshold flag. // If the -inline-threshold flag is explicitly specified, that is used // irrespective of anything else. if (InlineThreshold.getNumOccurrences() > 0) Params.DefaultThreshold = InlineThreshold; else Params.DefaultThreshold = Threshold; // Set the HintThreshold knob from the -inlinehint-threshold. Params.HintThreshold = HintThreshold; // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. Params.HotCallSiteThreshold = HotCallSiteThreshold; // If the -locally-hot-callsite-threshold is explicitly specified, use it to // populate LocallyHotCallSiteThreshold. Later, we populate // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if // we know that optimization level is O3 (in the getInlineParams variant that // takes the opt and size levels). // FIXME: Remove this check (and make the assignment unconditional) after // addressing size regression issues at O2. if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; // Set the ColdCallSiteThreshold knob from the // -inline-cold-callsite-threshold. Params.ColdCallSiteThreshold = ColdCallSiteThreshold; // Set the OptMinSizeThreshold and OptSizeThreshold params only if the // -inlinehint-threshold commandline option is not explicitly given. If that // option is present, then its value applies even for callees with size and // minsize attributes. // If the -inline-threshold is not specified, set the ColdThreshold from the // -inlinecold-threshold even if it is not explicitly passed. If // -inline-threshold is specified, then -inlinecold-threshold needs to be // explicitly specified to set the ColdThreshold knob if (InlineThreshold.getNumOccurrences() == 0) { Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; Params.ColdThreshold = ColdThreshold; } else if (ColdThreshold.getNumOccurrences() > 0) { Params.ColdThreshold = ColdThreshold; } return Params; } InlineParams llvm::getInlineParams() { return getInlineParams(DefaultThreshold); } // Compute the default threshold for inlining based on the opt level and the // size opt level. static int computeThresholdFromOptLevels(unsigned OptLevel, unsigned SizeOptLevel) { if (OptLevel > 2) return InlineConstants::OptAggressiveThreshold; if (SizeOptLevel == 1) // -Os return InlineConstants::OptSizeThreshold; if (SizeOptLevel == 2) // -Oz return InlineConstants::OptMinSizeThreshold; return DefaultThreshold; } InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { auto Params = getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); // At O3, use the value of -locally-hot-callsite-threshold option to populate // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only // when it is specified explicitly. if (OptLevel > 2) Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; return Params; } PreservedAnalyses InlineCostAnnotationPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) { PrintInstructionComments = true; std::function GetAssumptionCache = [&](Function &F) -> AssumptionCache & { return FAM.getResult(F); }; Module *M = F.getParent(); ProfileSummaryInfo PSI(*M); DataLayout DL(M); TargetTransformInfo TTI(DL); // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. // In the current implementation, the type of InlineParams doesn't matter as // the pass serves only for verification of inliner's decisions. // We can add a flag which determines InlineParams for this run. Right now, // the default InlineParams are used. const InlineParams Params = llvm::getInlineParams(); for (BasicBlock &BB : F) { for (Instruction &I : BB) { if (CallInst *CI = dyn_cast(&I)) { Function *CalledFunction = CI->getCalledFunction(); if (!CalledFunction || CalledFunction->isDeclaration()) continue; OptimizationRemarkEmitter ORE(CalledFunction); InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, GetAssumptionCache, nullptr, &PSI, &ORE); ICCA.analyze(); OS << " Analyzing call of " << CalledFunction->getName() << "... (caller:" << CI->getCaller()->getName() << ")\n"; ICCA.print(OS); OS << "\n"; } } } return PreservedAnalyses::all(); }