//===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a model runner using Tensorflow C APIs, allowing the // loading of a model from a command line option. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/TensorSpec.h" #include "llvm/Config/config.h" #if defined(LLVM_HAVE_TFLITE) #include "llvm/ADT/BitVector.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/InlineSizeEstimatorAnalysis.h" #include "llvm/Analysis/MLInlineAdvisor.h" #include "llvm/Analysis/ModelUnderTrainingRunner.h" #include "llvm/Analysis/NoInferenceModelRunner.h" #include "llvm/Analysis/Utils/TFUtils.h" #include "llvm/Analysis/Utils/TrainingLogger.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ManagedStatic.h" #include #include using namespace llvm; static cl::opt TrainingLog( "training-log", cl::Hidden, cl::desc("Path where the development - mode inlining log is saved.")); static cl::opt TFModelUnderTrainingPath( "ml-inliner-model-under-training", cl::Hidden, cl::desc(R"(Path to SavedModel from the previous training iteration. The directory is also expected to contain a JSON specification of the outputs expected to be logged, where the first entry must be the inlining decision. The file containing the specification should be called output_spec.json. The expected JSON value is an array of dictionaries. Each dictionary should have 2 keys: - "tensor_spec, followed by the TensorSpec description of the output; and - "logging_name", a string indicating the name to use when logging the output values. Example: [ { "logging_name" : "some_name", "tensor_spec" : { "name" : "model_name", "port" : 0, "shape" : [2, 3], "type" : "float" } } ] The first value must always correspond to the decision.)")); static cl::opt TFOutputSpecOverride( "ml-inliner-output-spec-override", cl::Hidden, cl::desc("Override the path to the output spec json file. See " "-ml-inliner-model-under-training documentation for the " "specification of that file.")); static cl::opt TFFeedPrefix("ml-inliner-trained-model-feed-prefix", cl::Hidden, cl::init("action_"), cl::desc("Prefix for feature names.")); namespace { /// An InlineEvent, used by TrainingLogger. struct InlineEvent { /// What the default policy's decision would have been. int64_t DefaultDecision = 0; /// What we advised. When training off the default policy, this is the same as /// DefaultDecision. int64_t AdvisedDecision = 0; /// What actually happened. This would be 'false' in the case of an inline /// error, even if AdvisedDecision were true, otherwise it agrees with /// AdvisedDecision. bool Effect = false; /// What the change in size was: size_after - size_before int64_t Reward = 0; }; /// Collect data we may use for training a model. class TrainingLogger final { public: TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR); /// Log one inlining event. void logInlineEvent(const InlineEvent &Event, const MLModelRunner &ModelRunner); private: StringRef LogFileName; const ModelUnderTrainingRunner *const MUTR; std::unique_ptr L; BitVector Effects; /// Set these 2 clearly OOB, to make sure we set them later. size_t DefaultDecisionPos = std::numeric_limits::max(); size_t DecisionPos = std::numeric_limits::max(); }; /// An extension of the MLInlineAdvisor for the 'development' mode, targeting /// the offline training scenario. Note that training happens outside of the /// compiler, this facility is concerned with producing training data ("logs"). /// This InlineAdvisor can operate in the following modes: /// /// 1) collect logs for the default policy. This is useful for bootstrapping /// training, which will be considerably faster by starting from a reasonable /// policy. /// /// 2) collect logs for the ML policy, using a model from a previous /// training. Potentially, that model uses internally some small random /// perturbation of its weights, to induce exploration (setting this up is the /// responsibility of the training algorithm). The logs would then be used to /// retrain and improve on this model. /// /// 3) use the provided model, with no logging. This is useful for end to end /// validation - the model, in this case, is a release candidate and shouldn't /// have random perturbations. It is a convenience feature: rather than needing /// to take the release candidate model and compile it in 'release' mode, /// validate it, then potentially discard it, it's easier to just pass the model /// to the compiler, albeit compilation would be slower, as a one-off. Once the /// model behaves satisfactorily, it can be compiled AOT, for efficiency, in /// release mode. The expectation is that a well-trained model provides a good /// policy over a sufficiently diverse codebase, over many changes (i.e. /// training happens seldom). class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor { public: DevelopmentModeMLInlineAdvisor( Module &M, ModuleAnalysisManager &MAM, std::unique_ptr ModelRunner, std::function GetDefaultAdvice, std::unique_ptr Logger); size_t getTotalSizeEstimate(); void updateNativeSizeEstimate(int64_t Change) { *CurrentNativeSize += Change; } void resetNativeSize(Function *F) { PreservedAnalyses PA = PreservedAnalyses::all(); PA.abandon(); FAM.invalidate(*F, PA); } std::unique_ptr getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override; std::optional getNativeSizeEstimate(const Function &F) const; private: bool isLogging() const { return !!Logger; } std::unique_ptr getMandatoryAdviceImpl(CallBase &CB) override; const bool IsDoingInference; std::unique_ptr Logger; const std::optional InitialNativeSize; std::optional CurrentNativeSize; }; /// A variant of MLInlineAdvice that tracks all non-trivial inlining /// decisions, for training/logging. class LoggingMLInlineAdvice : public MLInlineAdvice { public: LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB, OptimizationRemarkEmitter &ORE, bool Recommendation, TrainingLogger &Logger, std::optional CallerSizeEstimateBefore, std::optional CalleeSizeEstimateBefore, bool DefaultDecision, bool Mandatory = false) : MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger), CallerSizeEstimateBefore(CallerSizeEstimateBefore), CalleeSizeEstimateBefore(CalleeSizeEstimateBefore), DefaultDecision(DefaultDecision), Mandatory(Mandatory) {} virtual ~LoggingMLInlineAdvice() = default; private: DevelopmentModeMLInlineAdvisor *getAdvisor() const { return static_cast(Advisor); } void recordInliningImpl() override { MLInlineAdvice::recordInliningImpl(); getAdvisor()->resetNativeSize(Caller); int Reward = std::numeric_limits::max(); if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && !getAdvisor()->isForcedToStop()) { int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller) + *CalleeSizeEstimateBefore; Reward = NativeSizeAfter - (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); getAdvisor()->updateNativeSizeEstimate(Reward); } log(Reward, /*Success=*/true); } void recordInliningWithCalleeDeletedImpl() override { MLInlineAdvice::recordInliningWithCalleeDeletedImpl(); getAdvisor()->resetNativeSize(Caller); if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && !getAdvisor()->isForcedToStop()) { int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller); int Reward = NativeSizeAfter - (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); getAdvisor()->updateNativeSizeEstimate(Reward); log(Reward, /*Success=*/true); } else { log(NoReward, /*Success=*/true); } } void recordUnsuccessfulInliningImpl(const InlineResult &Result) override { MLInlineAdvice::recordUnsuccessfulInliningImpl(Result); log(NoReward, /*Success=*/false); } void recordUnattemptedInliningImpl() override { MLInlineAdvice::recordUnattemptedInliningImpl(); log(NoReward, /*Success=*/false); } void log(int64_t Reward, bool Success) { if (Mandatory) return; InlineEvent Event; Event.AdvisedDecision = isInliningRecommended(); Event.DefaultDecision = DefaultDecision; Event.Effect = Success; Event.Reward = Reward; Logger.logInlineEvent(Event, getAdvisor()->getModelRunner()); } static const int64_t NoReward = 0; TrainingLogger &Logger; const std::optional CallerSizeEstimateBefore; const std::optional CalleeSizeEstimateBefore; const int64_t DefaultDecision; const int64_t Mandatory; }; static const std::vector TrainingOnlyFeatures{ TensorSpec::createSpec(TFFeedPrefix + "inlining_default", {1}), TensorSpec::createSpec(TFFeedPrefix + "discount", {1}), TensorSpec::createSpec(TFFeedPrefix + "reward", {1}), TensorSpec::createSpec(TFFeedPrefix + "step_type", {1})}; static const std::vector getInputFeatures() { std::vector InputSpecs; for (size_t I = 0; I < NumberOfFeatures; ++I) InputSpecs.push_back(TensorSpec::createSpec( TFFeedPrefix + FeatureMap[I].name(), FeatureMap[I].shape())); append_range(InputSpecs, TrainingOnlyFeatures); return InputSpecs; } } // namespace TrainingLogger::TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR) : LogFileName(LogFileName), MUTR(MUTR) { // The first output is the inlining decision. std::vector FT(FeatureMap.begin(), FeatureMap.end()); if (MUTR) append_range(FT, MUTR->extraOutputsForLoggingSpecs()); DefaultDecisionPos = FT.size(); FT.push_back(DefaultDecisionSpec); DecisionPos = FT.size(); FT.push_back(InlineDecisionSpec); std::error_code EC; auto OS = std::make_unique(TrainingLog, EC); if (EC) dbgs() << (EC.message() + ":" + TrainingLog); L = std::make_unique( std::move(OS), FT, TensorSpec::createSpec(RewardName, {1}), InlineSizeEstimatorAnalysis::isEvaluatorRequested()); L->switchContext(""); } /// Log one inlining event. void TrainingLogger::logInlineEvent(const InlineEvent &Event, const MLModelRunner &ModelRunner) { L->startObservation(); size_t CurrentFeature = 0; for (; CurrentFeature < NumberOfFeatures; ++CurrentFeature) L->logTensorValue(CurrentFeature, reinterpret_cast( ModelRunner.getTensorUntyped(CurrentFeature))); if (MUTR) for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size(); ++I) { const char *RawData = reinterpret_cast(MUTR->getUntypedExtraOutputValue(I)); L->logTensorValue(CurrentFeature, RawData); ++CurrentFeature; } assert(CurrentFeature == DefaultDecisionPos); L->logTensorValue(DefaultDecisionPos, reinterpret_cast(&Event.DefaultDecision)); L->logTensorValue(DecisionPos, reinterpret_cast(&Event.AdvisedDecision)); L->endObservation(); if (InlineSizeEstimatorAnalysis::isEvaluatorRequested()) L->logReward(Event.Reward); // For debugging / later use Effects.push_back(Event.Effect); } DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor( Module &M, ModuleAnalysisManager &MAM, std::unique_ptr ModelRunner, std::function GetDefaultAdvice, std::unique_ptr Logger) : MLInlineAdvisor(M, MAM, std::move(ModelRunner), GetDefaultAdvice), IsDoingInference(isa(getModelRunner())), Logger(std::move(Logger)), InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0), CurrentNativeSize(InitialNativeSize) { // We cannot have the case of neither inference nor logging. assert(IsDoingInference || isLogging()); } std::optional DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const { if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) return std::nullopt; auto &R = FAM.getResult(const_cast(F)); if (!R) { F.getParent()->getContext().emitError( "Native size estimator is not present."); return 0; } return *R; } std::unique_ptr DevelopmentModeMLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) { return std::make_unique( /*Advisor=*/this, /*CB=*/CB, /*ORE=*/getCallerORE(CB), /*Recommendation=*/true, /*Logger=*/*Logger, /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), /*CalleeSizeEstimateBefore=*/ getNativeSizeEstimate(*CB.getCalledFunction()), /*DefaultDecision=*/true, /*Mandatory*/ true); } std::unique_ptr DevelopmentModeMLInlineAdvisor::getAdviceFromModel( CallBase &CB, OptimizationRemarkEmitter &ORE) { if (IsDoingInference && !isLogging()) return MLInlineAdvisor::getAdviceFromModel(CB, ORE); bool DefaultAdvice = GetDefaultAdvice(CB); auto Recommendation = IsDoingInference ? static_cast(ModelRunner->evaluate()) : DefaultAdvice; return std::make_unique( /*Advisor=*/this, /*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation, /*Logger=*/*Logger, /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), /*CalleeSizeEstimateBefore=*/ getNativeSizeEstimate(*CB.getCalledFunction()), /*DefaultDecision=*/DefaultAdvice); } size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() { if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) return 0; size_t Ret = 0; for (auto &F : M) { if (F.isDeclaration()) continue; Ret += *getNativeSizeEstimate(F); } return Ret; } std::unique_ptr llvm::getDevelopmentModeAdvisor( Module &M, ModuleAnalysisManager &MAM, std::function GetDefaultAdvice) { auto &Ctx = M.getContext(); std::unique_ptr Runner; if (TFModelUnderTrainingPath.empty()) Runner.reset(new NoInferenceModelRunner(Ctx, getInputFeatures())); else Runner = ModelUnderTrainingRunner::createAndEnsureValid( Ctx, TFModelUnderTrainingPath, DecisionName, getInputFeatures(), TFOutputSpecOverride); if (!Runner) return nullptr; std::unique_ptr Logger; if (!TrainingLog.empty()) Logger = std::make_unique( TrainingLog, dyn_cast(Runner.get())); return std::make_unique( M, MAM, std::move(Runner), GetDefaultAdvice, std::move(Logger)); } #endif // defined(LLVM_HAVE_TFLITE)