//===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Analysis/ConstraintSystem.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include using namespace llvm; #define DEBUG_TYPE "constraint-system" bool ConstraintSystem::eliminateUsingFM() { // Implementation of Fourier–Motzkin elimination, with some tricks from the // paper Pugh, William. "The Omega test: a fast and practical integer // programming algorithm for dependence // analysis." // Supercomputing'91: Proceedings of the 1991 ACM/ // IEEE conference on Supercomputing. IEEE, 1991. assert(!Constraints.empty() && "should only be called for non-empty constraint systems"); unsigned NumVariables = Constraints[0].size(); SmallVector, 4> NewSystem; unsigned NumConstraints = Constraints.size(); uint32_t NewGCD = 1; // FIXME do not use copy for (unsigned R1 = 0; R1 < NumConstraints; R1++) { if (Constraints[R1][1] == 0) { SmallVector NR; NR.push_back(Constraints[R1][0]); for (unsigned i = 2; i < NumVariables; i++) { NR.push_back(Constraints[R1][i]); } NewSystem.push_back(std::move(NR)); continue; } // FIXME do not use copy for (unsigned R2 = R1 + 1; R2 < NumConstraints; R2++) { if (R1 == R2) continue; // FIXME: can we do better than just dropping things here? if (Constraints[R2][1] == 0) continue; if ((Constraints[R1][1] < 0 && Constraints[R2][1] < 0) || (Constraints[R1][1] > 0 && Constraints[R2][1] > 0)) continue; unsigned LowerR = R1; unsigned UpperR = R2; if (Constraints[UpperR][1] < 0) std::swap(LowerR, UpperR); SmallVector NR; for (unsigned I = 0; I < NumVariables; I++) { if (I == 1) continue; int64_t M1, M2, N; if (MulOverflow(Constraints[UpperR][I], ((-1) * Constraints[LowerR][1] / GCD), M1)) return false; if (MulOverflow(Constraints[LowerR][I], (Constraints[UpperR][1] / GCD), M2)) return false; if (AddOverflow(M1, M2, N)) return false; NR.push_back(N); NewGCD = APIntOps::GreatestCommonDivisor({32, (uint32_t)NR.back()}, {32, NewGCD}) .getZExtValue(); } NewSystem.push_back(std::move(NR)); // Give up if the new system gets too big. if (NewSystem.size() > 500) return false; } } Constraints = std::move(NewSystem); GCD = NewGCD; return true; } bool ConstraintSystem::mayHaveSolutionImpl() { while (!Constraints.empty() && Constraints[0].size() > 1) { if (!eliminateUsingFM()) return true; } if (Constraints.empty() || Constraints[0].size() > 1) return true; return all_of(Constraints, [](auto &R) { return R[0] >= 0; }); } void ConstraintSystem::dump(ArrayRef Names) const { if (Constraints.empty()) return; for (const auto &Row : Constraints) { SmallVector Parts; for (unsigned I = 1, S = Row.size(); I < S; ++I) { if (Row[I] == 0) continue; std::string Coefficient; if (Row[I] != 1) Coefficient = std::to_string(Row[I]) + " * "; Parts.push_back(Coefficient + Names[I - 1]); } assert(!Parts.empty() && "need to have at least some parts"); LLVM_DEBUG(dbgs() << join(Parts, std::string(" + ")) << " <= " << std::to_string(Row[0]) << "\n"); } } void ConstraintSystem::dump() const { SmallVector Names; for (unsigned i = 1; i < Constraints.back().size(); ++i) Names.push_back("x" + std::to_string(i)); LLVM_DEBUG(dbgs() << "---\n"); dump(Names); } bool ConstraintSystem::mayHaveSolution() { LLVM_DEBUG(dump()); bool HasSolution = mayHaveSolutionImpl(); LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat") << "\n"); return HasSolution; } bool ConstraintSystem::isConditionImplied(SmallVector R) const { // If all variable coefficients are 0, we have 'C >= 0'. If the constant is >= // 0, R is always true, regardless of the system. if (all_of(ArrayRef(R).drop_front(1), [](int64_t C) { return C == 0; })) return R[0] >= 0; // If there is no solution with the negation of R added to the system, the // condition must hold based on the existing constraints. R = ConstraintSystem::negate(R); auto NewSystem = *this; NewSystem.addVariableRow(R); return !NewSystem.mayHaveSolution(); }