//===-- ConstantFolding.cpp - Fold instructions into constants ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines routines for folding instructions into constants. // // Also, to supplement the basic IR ConstantExpr simplifications, // this file defines some additional folding routines that can make use of // DataLayout information. These functions cannot go in IR due to library // dependency issues. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/ConstantFolding.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/Config/config.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantFold.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAArch64.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsARM.h" #include "llvm/IR/IntrinsicsWebAssembly.h" #include "llvm/IR/IntrinsicsX86.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include #include #include #include #include using namespace llvm; namespace { //===----------------------------------------------------------------------===// // Constant Folding internal helper functions //===----------------------------------------------------------------------===// static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, Constant *C, Type *SrcEltTy, unsigned NumSrcElts, const DataLayout &DL) { // Now that we know that the input value is a vector of integers, just shift // and insert them into our result. unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); for (unsigned i = 0; i != NumSrcElts; ++i) { Constant *Element; if (DL.isLittleEndian()) Element = C->getAggregateElement(NumSrcElts - i - 1); else Element = C->getAggregateElement(i); if (Element && isa(Element)) { Result <<= BitShift; continue; } auto *ElementCI = dyn_cast_or_null(Element); if (!ElementCI) return ConstantExpr::getBitCast(C, DestTy); Result <<= BitShift; Result |= ElementCI->getValue().zext(Result.getBitWidth()); } return nullptr; } /// Constant fold bitcast, symbolically evaluating it with DataLayout. /// This always returns a non-null constant, but it may be a /// ConstantExpr if unfoldable. Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && "Invalid constantexpr bitcast!"); // Catch the obvious splat cases. if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL)) return Res; if (auto *VTy = dyn_cast(C->getType())) { // Handle a vector->scalar integer/fp cast. if (isa(DestTy) || DestTy->isFloatingPointTy()) { unsigned NumSrcElts = cast(VTy)->getNumElements(); Type *SrcEltTy = VTy->getElementType(); // If the vector is a vector of floating point, convert it to vector of int // to simplify things. if (SrcEltTy->isFloatingPointTy()) { unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); auto *SrcIVTy = FixedVectorType::get( IntegerType::get(C->getContext(), FPWidth), NumSrcElts); // Ask IR to do the conversion now that #elts line up. C = ConstantExpr::getBitCast(C, SrcIVTy); } APInt Result(DL.getTypeSizeInBits(DestTy), 0); if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, SrcEltTy, NumSrcElts, DL)) return CE; if (isa(DestTy)) return ConstantInt::get(DestTy, Result); APFloat FP(DestTy->getFltSemantics(), Result); return ConstantFP::get(DestTy->getContext(), FP); } } // The code below only handles casts to vectors currently. auto *DestVTy = dyn_cast(DestTy); if (!DestVTy) return ConstantExpr::getBitCast(C, DestTy); // If this is a scalar -> vector cast, convert the input into a <1 x scalar> // vector so the code below can handle it uniformly. if (isa(C) || isa(C)) { Constant *Ops = C; // don't take the address of C! return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); } // If this is a bitcast from constant vector -> vector, fold it. if (!isa(C) && !isa(C)) return ConstantExpr::getBitCast(C, DestTy); // If the element types match, IR can fold it. unsigned NumDstElt = cast(DestVTy)->getNumElements(); unsigned NumSrcElt = cast(C->getType())->getNumElements(); if (NumDstElt == NumSrcElt) return ConstantExpr::getBitCast(C, DestTy); Type *SrcEltTy = cast(C->getType())->getElementType(); Type *DstEltTy = DestVTy->getElementType(); // Otherwise, we're changing the number of elements in a vector, which // requires endianness information to do the right thing. For example, // bitcast (<2 x i64> to <4 x i32>) // folds to (little endian): // <4 x i32> // and to (big endian): // <4 x i32> // First thing is first. We only want to think about integer here, so if // we have something in FP form, recast it as integer. if (DstEltTy->isFloatingPointTy()) { // Fold to an vector of integers with same size as our FP type. unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); auto *DestIVTy = FixedVectorType::get( IntegerType::get(C->getContext(), FPWidth), NumDstElt); // Recursively handle this integer conversion, if possible. C = FoldBitCast(C, DestIVTy, DL); // Finally, IR can handle this now that #elts line up. return ConstantExpr::getBitCast(C, DestTy); } // Okay, we know the destination is integer, if the input is FP, convert // it to integer first. if (SrcEltTy->isFloatingPointTy()) { unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); auto *SrcIVTy = FixedVectorType::get( IntegerType::get(C->getContext(), FPWidth), NumSrcElt); // Ask IR to do the conversion now that #elts line up. C = ConstantExpr::getBitCast(C, SrcIVTy); // If IR wasn't able to fold it, bail out. if (!isa(C) && // FIXME: Remove ConstantVector. !isa(C)) return C; } // Now we know that the input and output vectors are both integer vectors // of the same size, and that their #elements is not the same. Do the // conversion here, which depends on whether the input or output has // more elements. bool isLittleEndian = DL.isLittleEndian(); SmallVector Result; if (NumDstElt < NumSrcElt) { // Handle: bitcast (<4 x i32> to <2 x i64>) Constant *Zero = Constant::getNullValue(DstEltTy); unsigned Ratio = NumSrcElt/NumDstElt; unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); unsigned SrcElt = 0; for (unsigned i = 0; i != NumDstElt; ++i) { // Build each element of the result. Constant *Elt = Zero; unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); for (unsigned j = 0; j != Ratio; ++j) { Constant *Src = C->getAggregateElement(SrcElt++); if (Src && isa(Src)) Src = Constant::getNullValue( cast(C->getType())->getElementType()); else Src = dyn_cast_or_null(Src); if (!Src) // Reject constantexpr elements. return ConstantExpr::getBitCast(C, DestTy); // Zero extend the element to the right size. Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(), DL); assert(Src && "Constant folding cannot fail on plain integers"); // Shift it to the right place, depending on endianness. Src = ConstantFoldBinaryOpOperands( Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt), DL); assert(Src && "Constant folding cannot fail on plain integers"); ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; // Mix it in. Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL); assert(Elt && "Constant folding cannot fail on plain integers"); } Result.push_back(Elt); } return ConstantVector::get(Result); } // Handle: bitcast (<2 x i64> to <4 x i32>) unsigned Ratio = NumDstElt/NumSrcElt; unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); // Loop over each source value, expanding into multiple results. for (unsigned i = 0; i != NumSrcElt; ++i) { auto *Element = C->getAggregateElement(i); if (!Element) // Reject constantexpr elements. return ConstantExpr::getBitCast(C, DestTy); if (isa(Element)) { // Correctly Propagate undef values. Result.append(Ratio, UndefValue::get(DstEltTy)); continue; } auto *Src = dyn_cast(Element); if (!Src) return ConstantExpr::getBitCast(C, DestTy); unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); for (unsigned j = 0; j != Ratio; ++j) { // Shift the piece of the value into the right place, depending on // endianness. APInt Elt = Src->getValue().lshr(ShiftAmt); ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; // Truncate and remember this piece. Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize))); } } return ConstantVector::get(Result); } } // end anonymous namespace /// If this constant is a constant offset from a global, return the global and /// the constant. Because of constantexprs, this function is recursive. bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv) { if (DSOEquiv) *DSOEquiv = nullptr; // Trivial case, constant is the global. if ((GV = dyn_cast(C))) { unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); Offset = APInt(BitWidth, 0); return true; } if (auto *FoundDSOEquiv = dyn_cast(C)) { if (DSOEquiv) *DSOEquiv = FoundDSOEquiv; GV = FoundDSOEquiv->getGlobalValue(); unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); Offset = APInt(BitWidth, 0); return true; } // Otherwise, if this isn't a constant expr, bail out. auto *CE = dyn_cast(C); if (!CE) return false; // Look through ptr->int and ptr->ptr casts. if (CE->getOpcode() == Instruction::PtrToInt || CE->getOpcode() == Instruction::BitCast) return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, DSOEquiv); // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) auto *GEP = dyn_cast(CE); if (!GEP) return false; unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); APInt TmpOffset(BitWidth, 0); // If the base isn't a global+constant, we aren't either. if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, DSOEquiv)) return false; // Otherwise, add any offset that our operands provide. if (!GEP->accumulateConstantOffset(DL, TmpOffset)) return false; Offset = TmpOffset; return true; } Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL) { do { Type *SrcTy = C->getType(); if (SrcTy == DestTy) return C; TypeSize DestSize = DL.getTypeSizeInBits(DestTy); TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); if (!TypeSize::isKnownGE(SrcSize, DestSize)) return nullptr; // Catch the obvious splat cases (since all-zeros can coerce non-integral // pointers legally). if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL)) return Res; // If the type sizes are the same and a cast is legal, just directly // cast the constant. // But be careful not to coerce non-integral pointers illegally. if (SrcSize == DestSize && DL.isNonIntegralPointerType(SrcTy->getScalarType()) == DL.isNonIntegralPointerType(DestTy->getScalarType())) { Instruction::CastOps Cast = Instruction::BitCast; // If we are going from a pointer to int or vice versa, we spell the cast // differently. if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) Cast = Instruction::IntToPtr; else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) Cast = Instruction::PtrToInt; if (CastInst::castIsValid(Cast, C, DestTy)) return ConstantFoldCastOperand(Cast, C, DestTy, DL); } // If this isn't an aggregate type, there is nothing we can do to drill down // and find a bitcastable constant. if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) return nullptr; // We're simulating a load through a pointer that was bitcast to point to // a different type, so we can try to walk down through the initial // elements of an aggregate to see if some part of the aggregate is // castable to implement the "load" semantic model. if (SrcTy->isStructTy()) { // Struct types might have leading zero-length elements like [0 x i32], // which are certainly not what we are looking for, so skip them. unsigned Elem = 0; Constant *ElemC; do { ElemC = C->getAggregateElement(Elem++); } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); C = ElemC; } else { // For non-byte-sized vector elements, the first element is not // necessarily located at the vector base address. if (auto *VT = dyn_cast(SrcTy)) if (!DL.typeSizeEqualsStoreSize(VT->getElementType())) return nullptr; C = C->getAggregateElement(0u); } } while (C); return nullptr; } namespace { /// Recursive helper to read bits out of global. C is the constant being copied /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy /// results into and BytesLeft is the number of bytes left in /// the CurPtr buffer. DL is the DataLayout. bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, unsigned BytesLeft, const DataLayout &DL) { assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && "Out of range access"); // If this element is zero or undefined, we can just return since *CurPtr is // zero initialized. if (isa(C) || isa(C)) return true; if (auto *CI = dyn_cast(C)) { if ((CI->getBitWidth() & 7) != 0) return false; const APInt &Val = CI->getValue(); unsigned IntBytes = unsigned(CI->getBitWidth()/8); for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { unsigned n = ByteOffset; if (!DL.isLittleEndian()) n = IntBytes - n - 1; CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue(); ++ByteOffset; } return true; } if (auto *CFP = dyn_cast(C)) { if (CFP->getType()->isDoubleTy()) { C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); } if (CFP->getType()->isFloatTy()){ C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); } if (CFP->getType()->isHalfTy()){ C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); } return false; } if (auto *CS = dyn_cast(C)) { const StructLayout *SL = DL.getStructLayout(CS->getType()); unsigned Index = SL->getElementContainingOffset(ByteOffset); uint64_t CurEltOffset = SL->getElementOffset(Index); ByteOffset -= CurEltOffset; while (true) { // If the element access is to the element itself and not to tail padding, // read the bytes from the element. uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); if (ByteOffset < EltSize && !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, BytesLeft, DL)) return false; ++Index; // Check to see if we read from the last struct element, if so we're done. if (Index == CS->getType()->getNumElements()) return true; // If we read all of the bytes we needed from this element we're done. uint64_t NextEltOffset = SL->getElementOffset(Index); if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) return true; // Move to the next element of the struct. CurPtr += NextEltOffset - CurEltOffset - ByteOffset; BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; ByteOffset = 0; CurEltOffset = NextEltOffset; } // not reached. } if (isa(C) || isa(C) || isa(C)) { uint64_t NumElts, EltSize; Type *EltTy; if (auto *AT = dyn_cast(C->getType())) { NumElts = AT->getNumElements(); EltTy = AT->getElementType(); EltSize = DL.getTypeAllocSize(EltTy); } else { NumElts = cast(C->getType())->getNumElements(); EltTy = cast(C->getType())->getElementType(); // TODO: For non-byte-sized vectors, current implementation assumes there is // padding to the next byte boundary between elements. if (!DL.typeSizeEqualsStoreSize(EltTy)) return false; EltSize = DL.getTypeStoreSize(EltTy); } uint64_t Index = ByteOffset / EltSize; uint64_t Offset = ByteOffset - Index * EltSize; for (; Index != NumElts; ++Index) { if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, BytesLeft, DL)) return false; uint64_t BytesWritten = EltSize - Offset; assert(BytesWritten <= EltSize && "Not indexing into this element?"); if (BytesWritten >= BytesLeft) return true; Offset = 0; BytesLeft -= BytesWritten; CurPtr += BytesWritten; } return true; } if (auto *CE = dyn_cast(C)) { if (CE->getOpcode() == Instruction::IntToPtr && CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, BytesLeft, DL); } } // Otherwise, unknown initializer type. return false; } Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, int64_t Offset, const DataLayout &DL) { // Bail out early. Not expect to load from scalable global variable. if (isa(LoadTy)) return nullptr; auto *IntType = dyn_cast(LoadTy); // If this isn't an integer load we can't fold it directly. if (!IntType) { // If this is a non-integer load, we can try folding it as an int load and // then bitcast the result. This can be useful for union cases. Note // that address spaces don't matter here since we're not going to result in // an actual new load. if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() && !LoadTy->isVectorTy()) return nullptr; Type *MapTy = Type::getIntNTy(C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedValue()); if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && !LoadTy->isX86_AMXTy()) // Materializing a zero can be done trivially without a bitcast return Constant::getNullValue(LoadTy); Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; Res = FoldBitCast(Res, CastTy, DL); if (LoadTy->isPtrOrPtrVectorTy()) { // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && !LoadTy->isX86_AMXTy()) return Constant::getNullValue(LoadTy); if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) // Be careful not to replace a load of an addrspace value with an inttoptr here return nullptr; Res = ConstantExpr::getIntToPtr(Res, LoadTy); } return Res; } return nullptr; } unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; if (BytesLoaded > 32 || BytesLoaded == 0) return nullptr; // If we're not accessing anything in this constant, the result is undefined. if (Offset <= -1 * static_cast(BytesLoaded)) return PoisonValue::get(IntType); // TODO: We should be able to support scalable types. TypeSize InitializerSize = DL.getTypeAllocSize(C->getType()); if (InitializerSize.isScalable()) return nullptr; // If we're not accessing anything in this constant, the result is undefined. if (Offset >= (int64_t)InitializerSize.getFixedValue()) return PoisonValue::get(IntType); unsigned char RawBytes[32] = {0}; unsigned char *CurPtr = RawBytes; unsigned BytesLeft = BytesLoaded; // If we're loading off the beginning of the global, some bytes may be valid. if (Offset < 0) { CurPtr += -Offset; BytesLeft += Offset; Offset = 0; } if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) return nullptr; APInt ResultVal = APInt(IntType->getBitWidth(), 0); if (DL.isLittleEndian()) { ResultVal = RawBytes[BytesLoaded - 1]; for (unsigned i = 1; i != BytesLoaded; ++i) { ResultVal <<= 8; ResultVal |= RawBytes[BytesLoaded - 1 - i]; } } else { ResultVal = RawBytes[0]; for (unsigned i = 1; i != BytesLoaded; ++i) { ResultVal <<= 8; ResultVal |= RawBytes[i]; } } return ConstantInt::get(IntType->getContext(), ResultVal); } } // anonymous namespace // If GV is a constant with an initializer read its representation starting // at Offset and return it as a constant array of unsigned char. Otherwise // return null. Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset) { if (!GV->isConstant() || !GV->hasDefinitiveInitializer()) return nullptr; const DataLayout &DL = GV->getDataLayout(); Constant *Init = const_cast(GV->getInitializer()); TypeSize InitSize = DL.getTypeAllocSize(Init->getType()); if (InitSize < Offset) return nullptr; uint64_t NBytes = InitSize - Offset; if (NBytes > UINT16_MAX) // Bail for large initializers in excess of 64K to avoid allocating // too much memory. // Offset is assumed to be less than or equal than InitSize (this // is enforced in ReadDataFromGlobal). return nullptr; SmallVector RawBytes(static_cast(NBytes)); unsigned char *CurPtr = RawBytes.data(); if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL)) return nullptr; return ConstantDataArray::get(GV->getContext(), RawBytes); } /// If this Offset points exactly to the start of an aggregate element, return /// that element, otherwise return nullptr. Constant *getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL) { if (Offset.isZero()) return Base; if (!isa(Base) && !isa(Base)) return nullptr; Type *ElemTy = Base->getType(); SmallVector Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); if (!Offset.isZero() || !Indices[0].isZero()) return nullptr; Constant *C = Base; for (const APInt &Index : drop_begin(Indices)) { if (Index.isNegative() || Index.getActiveBits() >= 32) return nullptr; C = C->getAggregateElement(Index.getZExtValue()); if (!C) return nullptr; } return C; } Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL) { if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) return Result; // Explicitly check for out-of-bounds access, so we return poison even if the // constant is a uniform value. TypeSize Size = DL.getTypeAllocSize(C->getType()); if (!Size.isScalable() && Offset.sge(Size.getFixedValue())) return PoisonValue::get(Ty); // Try an offset-independent fold of a uniform value. if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL)) return Result; // Try hard to fold loads from bitcasted strange and non-type-safe things. if (Offset.getSignificantBits() <= 64) if (Constant *Result = FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL)) return Result; return nullptr; } Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, const DataLayout &DL) { return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); } Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL) { // We can only fold loads from constant globals with a definitive initializer. // Check this upfront, to skip expensive offset calculations. auto *GV = dyn_cast(getUnderlyingObject(C)); if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) return nullptr; C = cast(C->stripAndAccumulateConstantOffsets( DL, Offset, /* AllowNonInbounds */ true)); if (C == GV) if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL)) return Result; // If this load comes from anywhere in a uniform constant global, the value // is always the same, regardless of the loaded offset. return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL); } Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, const DataLayout &DL) { APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL); } Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL) { if (isa(C)) return PoisonValue::get(Ty); if (isa(C)) return UndefValue::get(Ty); // If padding is needed when storing C to memory, then it isn't considered as // uniform. if (!DL.typeSizeEqualsStoreSize(C->getType())) return nullptr; if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy()) return Constant::getNullValue(Ty); if (C->isAllOnesValue() && (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy())) return Constant::getAllOnesValue(Ty); return nullptr; } namespace { /// One of Op0/Op1 is a constant expression. /// Attempt to symbolically evaluate the result of a binary operator merging /// these together. If target data info is available, it is provided as DL, /// otherwise DL is null. Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, const DataLayout &DL) { // SROA // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute // bits. if (Opc == Instruction::And) { KnownBits Known0 = computeKnownBits(Op0, DL); KnownBits Known1 = computeKnownBits(Op1, DL); if ((Known1.One | Known0.Zero).isAllOnes()) { // All the bits of Op0 that the 'and' could be masking are already zero. return Op0; } if ((Known0.One | Known1.Zero).isAllOnes()) { // All the bits of Op1 that the 'and' could be masking are already zero. return Op1; } Known0 &= Known1; if (Known0.isConstant()) return ConstantInt::get(Op0->getType(), Known0.getConstant()); } // If the constant expr is something like &A[123] - &A[4].f, fold this into a // constant. This happens frequently when iterating over a global array. if (Opc == Instruction::Sub) { GlobalValue *GV1, *GV2; APInt Offs1, Offs2; if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. // PtrToInt may change the bitwidth so we have convert to the right size // first. return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - Offs2.zextOrTrunc(OpSize)); } } return nullptr; } /// If array indices are not pointer-sized integers, explicitly cast them so /// that they aren't implicitly casted by the getelementptr. Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef Ops, Type *ResultTy, GEPNoWrapFlags NW, std::optional InRange, const DataLayout &DL, const TargetLibraryInfo *TLI) { Type *IntIdxTy = DL.getIndexType(ResultTy); Type *IntIdxScalarTy = IntIdxTy->getScalarType(); bool Any = false; SmallVector NewIdxs; for (unsigned i = 1, e = Ops.size(); i != e; ++i) { if ((i == 1 || !isa(GetElementPtrInst::getIndexedType( SrcElemTy, Ops.slice(1, i - 1)))) && Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { Any = true; Type *NewType = Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy; Constant *NewIdx = ConstantFoldCastOperand( CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType, DL); if (!NewIdx) return nullptr; NewIdxs.push_back(NewIdx); } else NewIdxs.push_back(Ops[i]); } if (!Any) return nullptr; Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange); return ConstantFoldConstant(C, DL, TLI); } /// If we can symbolically evaluate the GEP constant expression, do so. Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, ArrayRef Ops, const DataLayout &DL, const TargetLibraryInfo *TLI) { Type *SrcElemTy = GEP->getSourceElementType(); Type *ResTy = GEP->getType(); if (!SrcElemTy->isSized() || isa(SrcElemTy)) return nullptr; if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(), GEP->getInRange(), DL, TLI)) return C; Constant *Ptr = Ops[0]; if (!Ptr->getType()->isPointerTy()) return nullptr; Type *IntIdxTy = DL.getIndexType(Ptr->getType()); for (unsigned i = 1, e = Ops.size(); i != e; ++i) if (!isa(Ops[i])) return nullptr; unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); APInt Offset = APInt( BitWidth, DL.getIndexedOffsetInType( SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1))); std::optional InRange = GEP->getInRange(); if (InRange) InRange = InRange->sextOrTrunc(BitWidth); // If this is a GEP of a GEP, fold it all into a single GEP. GEPNoWrapFlags NW = GEP->getNoWrapFlags(); bool Overflow = false; while (auto *GEP = dyn_cast(Ptr)) { NW &= GEP->getNoWrapFlags(); SmallVector NestedOps(llvm::drop_begin(GEP->operands())); // Do not try the incorporate the sub-GEP if some index is not a number. bool AllConstantInt = true; for (Value *NestedOp : NestedOps) if (!isa(NestedOp)) { AllConstantInt = false; break; } if (!AllConstantInt) break; // TODO: Try to intersect two inrange attributes? if (!InRange) { InRange = GEP->getInRange(); if (InRange) // Adjust inrange by offset until now. InRange = InRange->sextOrTrunc(BitWidth).subtract(Offset); } Ptr = cast(GEP->getOperand(0)); SrcElemTy = GEP->getSourceElementType(); Offset = Offset.sadd_ov( APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)), Overflow); } // Preserving nusw (without inbounds) also requires that the offset // additions did not overflow. if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow) NW = NW.withoutNoUnsignedSignedWrap(); // If the base value for this address is a literal integer value, fold the // getelementptr to the resulting integer value casted to the pointer type. APInt BasePtr(BitWidth, 0); if (auto *CE = dyn_cast(Ptr)) { if (CE->getOpcode() == Instruction::IntToPtr) { if (auto *Base = dyn_cast(CE->getOperand(0))) BasePtr = Base->getValue().zextOrTrunc(BitWidth); } } auto *PTy = cast(Ptr->getType()); if ((Ptr->isNullValue() || BasePtr != 0) && !DL.isNonIntegralPointerType(PTy)) { Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); return ConstantExpr::getIntToPtr(C, ResTy); } // Try to infer inbounds for GEPs of globals. // TODO(gep_nowrap): Also infer nuw flag. if (!NW.isInBounds() && Offset.isNonNegative()) { bool CanBeNull, CanBeFreed; uint64_t DerefBytes = Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes)) NW |= GEPNoWrapFlags::inBounds(); } // Otherwise canonicalize this to a single ptradd. LLVMContext &Ctx = Ptr->getContext(); return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ctx), Ptr, ConstantInt::get(Ctx, Offset), NW, InRange); } /// Attempt to constant fold an instruction with the /// specified opcode and operands. If successful, the constant result is /// returned, if not, null is returned. Note that this function can fail when /// attempting to fold instructions like loads and stores, which have no /// constant expression form. Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, ArrayRef Ops, const DataLayout &DL, const TargetLibraryInfo *TLI, bool AllowNonDeterministic) { Type *DestTy = InstOrCE->getType(); if (Instruction::isUnaryOp(Opcode)) return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); if (Instruction::isBinaryOp(Opcode)) { switch (Opcode) { default: break; case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: // Handle floating point instructions separately to account for denormals // TODO: If a constant expression is being folded rather than an // instruction, denormals will not be flushed/treated as zero if (const auto *I = dyn_cast(InstOrCE)) { return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I, AllowNonDeterministic); } } return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); } if (Instruction::isCast(Opcode)) return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); if (auto *GEP = dyn_cast(InstOrCE)) { Type *SrcElemTy = GEP->getSourceElementType(); if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy)) return nullptr; if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) return C; return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1), GEP->getNoWrapFlags(), GEP->getInRange()); } if (auto *CE = dyn_cast(InstOrCE)) return CE->getWithOperands(Ops); switch (Opcode) { default: return nullptr; case Instruction::ICmp: case Instruction::FCmp: { auto *C = cast(InstOrCE); return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1], DL, TLI, C); } case Instruction::Freeze: return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; case Instruction::Call: if (auto *F = dyn_cast(Ops.back())) { const auto *Call = cast(InstOrCE); if (canConstantFoldCallTo(Call, F)) return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI, AllowNonDeterministic); } return nullptr; case Instruction::Select: return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]); case Instruction::ExtractElement: return ConstantExpr::getExtractElement(Ops[0], Ops[1]); case Instruction::ExtractValue: return ConstantFoldExtractValueInstruction( Ops[0], cast(InstOrCE)->getIndices()); case Instruction::InsertElement: return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); case Instruction::InsertValue: return ConstantFoldInsertValueInstruction( Ops[0], Ops[1], cast(InstOrCE)->getIndices()); case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector( Ops[0], Ops[1], cast(InstOrCE)->getShuffleMask()); case Instruction::Load: { const auto *LI = dyn_cast(InstOrCE); if (LI->isVolatile()) return nullptr; return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); } } } } // end anonymous namespace //===----------------------------------------------------------------------===// // Constant Folding public APIs //===----------------------------------------------------------------------===// namespace { Constant * ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI, SmallDenseMap &FoldedOps) { if (!isa(C) && !isa(C)) return const_cast(C); SmallVector Ops; for (const Use &OldU : C->operands()) { Constant *OldC = cast(&OldU); Constant *NewC = OldC; // Recursively fold the ConstantExpr's operands. If we have already folded // a ConstantExpr, we don't have to process it again. if (isa(OldC) || isa(OldC)) { auto It = FoldedOps.find(OldC); if (It == FoldedOps.end()) { NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); FoldedOps.insert({OldC, NewC}); } else { NewC = It->second; } } Ops.push_back(NewC); } if (auto *CE = dyn_cast(C)) { if (Constant *Res = ConstantFoldInstOperandsImpl( CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true)) return Res; return const_cast(C); } assert(isa(C)); return ConstantVector::get(Ops); } } // end anonymous namespace Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI) { // Handle PHI nodes quickly here... if (auto *PN = dyn_cast(I)) { Constant *CommonValue = nullptr; SmallDenseMap FoldedOps; for (Value *Incoming : PN->incoming_values()) { // If the incoming value is undef then skip it. Note that while we could // skip the value if it is equal to the phi node itself we choose not to // because that would break the rule that constant folding only applies if // all operands are constants. if (isa(Incoming)) continue; // If the incoming value is not a constant, then give up. auto *C = dyn_cast(Incoming); if (!C) return nullptr; // Fold the PHI's operands. C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); // If the incoming value is a different constant to // the one we saw previously, then give up. if (CommonValue && C != CommonValue) return nullptr; CommonValue = C; } // If we reach here, all incoming values are the same constant or undef. return CommonValue ? CommonValue : UndefValue::get(PN->getType()); } // Scan the operand list, checking to see if they are all constants, if so, // hand off to ConstantFoldInstOperandsImpl. if (!all_of(I->operands(), [](Use &U) { return isa(U); })) return nullptr; SmallDenseMap FoldedOps; SmallVector Ops; for (const Use &OpU : I->operands()) { auto *Op = cast(&OpU); // Fold the Instruction's operands. Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); Ops.push_back(Op); } return ConstantFoldInstOperands(I, Ops, DL, TLI); } Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI) { SmallDenseMap FoldedOps; return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); } Constant *llvm::ConstantFoldInstOperands(Instruction *I, ArrayRef Ops, const DataLayout &DL, const TargetLibraryInfo *TLI, bool AllowNonDeterministic) { return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI, AllowNonDeterministic); } Constant *llvm::ConstantFoldCompareInstOperands( unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL, const TargetLibraryInfo *TLI, const Instruction *I) { CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate; // fold: icmp (inttoptr x), null -> icmp x, 0 // fold: icmp null, (inttoptr x) -> icmp 0, x // fold: icmp (ptrtoint x), 0 -> icmp x, null // fold: icmp 0, (ptrtoint x) -> icmp null, x // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y // // FIXME: The following comment is out of data and the DataLayout is here now. // ConstantExpr::getCompare cannot do this, because it doesn't have DL // around to know if bit truncation is happening. if (auto *CE0 = dyn_cast(Ops0)) { if (Ops1->isNullValue()) { if (CE0->getOpcode() == Instruction::IntToPtr) { Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); // Convert the integer value to the right size to ensure we get the // proper extension or truncation. if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, /*IsSigned*/ false, DL)) { Constant *Null = Constant::getNullValue(C->getType()); return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); } } // Only do this transformation if the int is intptrty in size, otherwise // there is a truncation or extension that we aren't modeling. if (CE0->getOpcode() == Instruction::PtrToInt) { Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); if (CE0->getType() == IntPtrTy) { Constant *C = CE0->getOperand(0); Constant *Null = Constant::getNullValue(C->getType()); return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); } } } if (auto *CE1 = dyn_cast(Ops1)) { if (CE0->getOpcode() == CE1->getOpcode()) { if (CE0->getOpcode() == Instruction::IntToPtr) { Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); // Convert the integer value to the right size to ensure we get the // proper extension or truncation. Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, /*IsSigned*/ false, DL); Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy, /*IsSigned*/ false, DL); if (C0 && C1) return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); } // Only do this transformation if the int is intptrty in size, otherwise // there is a truncation or extension that we aren't modeling. if (CE0->getOpcode() == Instruction::PtrToInt) { Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); if (CE0->getType() == IntPtrTy && CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { return ConstantFoldCompareInstOperands( Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); } } } } // Convert pointer comparison (base+offset1) pred (base+offset2) into // offset1 pred offset2, for the case where the offset is inbounds. This // only works for equality and unsigned comparison, as inbounds permits // crossing the sign boundary. However, the offset comparison itself is // signed. if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) { unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType()); APInt Offset0(IndexWidth, 0); Value *Stripped0 = Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0); APInt Offset1(IndexWidth, 0); Value *Stripped1 = Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1); if (Stripped0 == Stripped1) return ConstantInt::getBool( Ops0->getContext(), ICmpInst::compare(Offset0, Offset1, ICmpInst::getSignedPredicate(Predicate))); } } else if (isa(Ops1)) { // If RHS is a constant expression, but the left side isn't, swap the // operands and try again. Predicate = ICmpInst::getSwappedPredicate(Predicate); return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); } // Flush any denormal constant float input according to denormal handling // mode. Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false); if (!Ops0) return nullptr; Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false); if (!Ops1) return nullptr; return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1); } Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL) { assert(Instruction::isUnaryOp(Opcode)); return ConstantFoldUnaryInstruction(Opcode, Op); } Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL) { assert(Instruction::isBinaryOp(Opcode)); if (isa(LHS) || isa(RHS)) if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) return C; if (ConstantExpr::isDesirableBinOp(Opcode)) return ConstantExpr::get(Opcode, LHS, RHS); return ConstantFoldBinaryInstruction(Opcode, LHS, RHS); } Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput) { if (!I || !I->getParent() || !I->getFunction()) return Operand; ConstantFP *CFP = dyn_cast(Operand); if (!CFP) return Operand; const APFloat &APF = CFP->getValueAPF(); // TODO: Should this canonicalize nans? if (!APF.isDenormal()) return Operand; Type *Ty = CFP->getType(); DenormalMode DenormMode = I->getFunction()->getDenormalMode(Ty->getFltSemantics()); DenormalMode::DenormalModeKind Mode = IsOutput ? DenormMode.Output : DenormMode.Input; switch (Mode) { default: llvm_unreachable("unknown denormal mode"); case DenormalMode::Dynamic: return nullptr; case DenormalMode::IEEE: return Operand; case DenormalMode::PreserveSign: if (APF.isDenormal()) { return ConstantFP::get( Ty->getContext(), APFloat::getZero(Ty->getFltSemantics(), APF.isNegative())); } return Operand; case DenormalMode::PositiveZero: if (APF.isDenormal()) { return ConstantFP::get(Ty->getContext(), APFloat::getZero(Ty->getFltSemantics(), false)); } return Operand; } return Operand; } Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic) { if (Instruction::isBinaryOp(Opcode)) { // Flush denormal inputs if needed. Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false); if (!Op0) return nullptr; Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false); if (!Op1) return nullptr; // If nsz or an algebraic FMF flag is set, the result of the FP operation // may change due to future optimization. Don't constant fold them if // non-deterministic results are not allowed. if (!AllowNonDeterministic) if (auto *FP = dyn_cast_or_null(I)) if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() || FP->hasAllowContract() || FP->hasAllowReciprocal()) return nullptr; // Calculate constant result. Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL); if (!C) return nullptr; // Flush denormal output if needed. C = FlushFPConstant(C, I, /* IsOutput */ true); if (!C) return nullptr; // The precise NaN value is non-deterministic. if (!AllowNonDeterministic && C->isNaN()) return nullptr; return C; } // If instruction lacks a parent/function and the denormal mode cannot be // determined, use the default (IEEE). return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL); } Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL) { assert(Instruction::isCast(Opcode)); switch (Opcode) { default: llvm_unreachable("Missing case"); case Instruction::PtrToInt: if (auto *CE = dyn_cast(C)) { Constant *FoldedValue = nullptr; // If the input is a inttoptr, eliminate the pair. This requires knowing // the width of a pointer, so it can't be done in ConstantExpr::getCast. if (CE->getOpcode() == Instruction::IntToPtr) { // zext/trunc the inttoptr to pointer size. FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), DL.getIntPtrType(CE->getType()), /*IsSigned=*/false, DL); } else if (auto *GEP = dyn_cast(CE)) { // If we have GEP, we can perform the following folds: // (ptrtoint (gep null, x)) -> x // (ptrtoint (gep (gep null, x), y) -> x + y, etc. unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); APInt BaseOffset(BitWidth, 0); auto *Base = cast(GEP->stripAndAccumulateConstantOffsets( DL, BaseOffset, /*AllowNonInbounds=*/true)); if (Base->isNullValue()) { FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); } else { // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V if (GEP->getNumIndices() == 1 && GEP->getSourceElementType()->isIntegerTy(8)) { auto *Ptr = cast(GEP->getPointerOperand()); auto *Sub = dyn_cast(GEP->getOperand(1)); Type *IntIdxTy = DL.getIndexType(Ptr->getType()); if (Sub && Sub->getType() == IntIdxTy && Sub->getOpcode() == Instruction::Sub && Sub->getOperand(0)->isNullValue()) FoldedValue = ConstantExpr::getSub( ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1)); } } } if (FoldedValue) { // Do a zext or trunc to get to the ptrtoint dest size. return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false, DL); } } break; case Instruction::IntToPtr: // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if // the int size is >= the ptr size and the address spaces are the same. // This requires knowing the width of a pointer, so it can't be done in // ConstantExpr::getCast. if (auto *CE = dyn_cast(C)) { if (CE->getOpcode() == Instruction::PtrToInt) { Constant *SrcPtr = CE->getOperand(0); unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); if (MidIntSize >= SrcPtrSize) { unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); if (SrcAS == DestTy->getPointerAddressSpace()) return FoldBitCast(CE->getOperand(0), DestTy, DL); } } } break; case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::AddrSpaceCast: break; case Instruction::BitCast: return FoldBitCast(C, DestTy, DL); } if (ConstantExpr::isDesirableCastOp(Opcode)) return ConstantExpr::getCast(Opcode, C, DestTy); return ConstantFoldCastInstruction(Opcode, C, DestTy); } Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL) { Type *SrcTy = C->getType(); if (SrcTy == DestTy) return C; if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL); if (IsSigned) return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL); return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL); } //===----------------------------------------------------------------------===// // Constant Folding for Calls // bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { if (Call->isNoBuiltin()) return false; if (Call->getFunctionType() != F->getFunctionType()) return false; switch (F->getIntrinsicID()) { // Operations that do not operate floating-point numbers and do not depend on // FP environment can be folded even in strictfp functions. case Intrinsic::bswap: case Intrinsic::ctpop: case Intrinsic::ctlz: case Intrinsic::cttz: case Intrinsic::fshl: case Intrinsic::fshr: case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: case Intrinsic::masked_load: case Intrinsic::get_active_lane_mask: case Intrinsic::abs: case Intrinsic::smax: case Intrinsic::smin: case Intrinsic::umax: case Intrinsic::umin: case Intrinsic::scmp: case Intrinsic::ucmp: case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: case Intrinsic::sadd_sat: case Intrinsic::uadd_sat: case Intrinsic::ssub_sat: case Intrinsic::usub_sat: case Intrinsic::smul_fix: case Intrinsic::smul_fix_sat: case Intrinsic::bitreverse: case Intrinsic::is_constant: case Intrinsic::vector_reduce_add: case Intrinsic::vector_reduce_mul: case Intrinsic::vector_reduce_and: case Intrinsic::vector_reduce_or: case Intrinsic::vector_reduce_xor: case Intrinsic::vector_reduce_smin: case Intrinsic::vector_reduce_smax: case Intrinsic::vector_reduce_umin: case Intrinsic::vector_reduce_umax: // Target intrinsics case Intrinsic::amdgcn_perm: case Intrinsic::amdgcn_wave_reduce_umin: case Intrinsic::amdgcn_wave_reduce_umax: case Intrinsic::amdgcn_s_wqm: case Intrinsic::amdgcn_s_quadmask: case Intrinsic::amdgcn_s_bitreplicate: case Intrinsic::arm_mve_vctp8: case Intrinsic::arm_mve_vctp16: case Intrinsic::arm_mve_vctp32: case Intrinsic::arm_mve_vctp64: case Intrinsic::aarch64_sve_convert_from_svbool: // WebAssembly float semantics are always known case Intrinsic::wasm_trunc_signed: case Intrinsic::wasm_trunc_unsigned: return true; // Floating point operations cannot be folded in strictfp functions in // general case. They can be folded if FP environment is known to compiler. case Intrinsic::minnum: case Intrinsic::maxnum: case Intrinsic::minimum: case Intrinsic::maximum: case Intrinsic::log: case Intrinsic::log2: case Intrinsic::log10: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::exp10: case Intrinsic::sqrt: case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::pow: case Intrinsic::powi: case Intrinsic::ldexp: case Intrinsic::fma: case Intrinsic::fmuladd: case Intrinsic::frexp: case Intrinsic::fptoui_sat: case Intrinsic::fptosi_sat: case Intrinsic::convert_from_fp16: case Intrinsic::convert_to_fp16: case Intrinsic::amdgcn_cos: case Intrinsic::amdgcn_cubeid: case Intrinsic::amdgcn_cubema: case Intrinsic::amdgcn_cubesc: case Intrinsic::amdgcn_cubetc: case Intrinsic::amdgcn_fmul_legacy: case Intrinsic::amdgcn_fma_legacy: case Intrinsic::amdgcn_fract: case Intrinsic::amdgcn_sin: // The intrinsics below depend on rounding mode in MXCSR. case Intrinsic::x86_sse_cvtss2si: case Intrinsic::x86_sse_cvtss2si64: case Intrinsic::x86_sse_cvttss2si: case Intrinsic::x86_sse_cvttss2si64: case Intrinsic::x86_sse2_cvtsd2si: case Intrinsic::x86_sse2_cvtsd2si64: case Intrinsic::x86_sse2_cvttsd2si: case Intrinsic::x86_sse2_cvttsd2si64: case Intrinsic::x86_avx512_vcvtss2si32: case Intrinsic::x86_avx512_vcvtss2si64: case Intrinsic::x86_avx512_cvttss2si: case Intrinsic::x86_avx512_cvttss2si64: case Intrinsic::x86_avx512_vcvtsd2si32: case Intrinsic::x86_avx512_vcvtsd2si64: case Intrinsic::x86_avx512_cvttsd2si: case Intrinsic::x86_avx512_cvttsd2si64: case Intrinsic::x86_avx512_vcvtss2usi32: case Intrinsic::x86_avx512_vcvtss2usi64: case Intrinsic::x86_avx512_cvttss2usi: case Intrinsic::x86_avx512_cvttss2usi64: case Intrinsic::x86_avx512_vcvtsd2usi32: case Intrinsic::x86_avx512_vcvtsd2usi64: case Intrinsic::x86_avx512_cvttsd2usi: case Intrinsic::x86_avx512_cvttsd2usi64: return !Call->isStrictFP(); // Sign operations are actually bitwise operations, they do not raise // exceptions even for SNANs. case Intrinsic::fabs: case Intrinsic::copysign: case Intrinsic::is_fpclass: // Non-constrained variants of rounding operations means default FP // environment, they can be folded in any case. case Intrinsic::ceil: case Intrinsic::floor: case Intrinsic::round: case Intrinsic::roundeven: case Intrinsic::trunc: case Intrinsic::nearbyint: case Intrinsic::rint: case Intrinsic::canonicalize: // Constrained intrinsics can be folded if FP environment is known // to compiler. case Intrinsic::experimental_constrained_fma: case Intrinsic::experimental_constrained_fmuladd: case Intrinsic::experimental_constrained_fadd: case Intrinsic::experimental_constrained_fsub: case Intrinsic::experimental_constrained_fmul: case Intrinsic::experimental_constrained_fdiv: case Intrinsic::experimental_constrained_frem: case Intrinsic::experimental_constrained_ceil: case Intrinsic::experimental_constrained_floor: case Intrinsic::experimental_constrained_round: case Intrinsic::experimental_constrained_roundeven: case Intrinsic::experimental_constrained_trunc: case Intrinsic::experimental_constrained_nearbyint: case Intrinsic::experimental_constrained_rint: case Intrinsic::experimental_constrained_fcmp: case Intrinsic::experimental_constrained_fcmps: return true; default: return false; case Intrinsic::not_intrinsic: break; } if (!F->hasName() || Call->isStrictFP()) return false; // In these cases, the check of the length is required. We don't want to // return true for a name like "cos\0blah" which strcmp would return equal to // "cos", but has length 8. StringRef Name = F->getName(); switch (Name[0]) { default: return false; case 'a': return Name == "acos" || Name == "acosf" || Name == "asin" || Name == "asinf" || Name == "atan" || Name == "atanf" || Name == "atan2" || Name == "atan2f"; case 'c': return Name == "ceil" || Name == "ceilf" || Name == "cos" || Name == "cosf" || Name == "cosh" || Name == "coshf"; case 'e': return Name == "exp" || Name == "expf" || Name == "exp2" || Name == "exp2f"; case 'f': return Name == "fabs" || Name == "fabsf" || Name == "floor" || Name == "floorf" || Name == "fmod" || Name == "fmodf"; case 'l': return Name == "log" || Name == "logf" || Name == "log2" || Name == "log2f" || Name == "log10" || Name == "log10f" || Name == "logl"; case 'n': return Name == "nearbyint" || Name == "nearbyintf"; case 'p': return Name == "pow" || Name == "powf"; case 'r': return Name == "remainder" || Name == "remainderf" || Name == "rint" || Name == "rintf" || Name == "round" || Name == "roundf"; case 's': return Name == "sin" || Name == "sinf" || Name == "sinh" || Name == "sinhf" || Name == "sqrt" || Name == "sqrtf"; case 't': return Name == "tan" || Name == "tanf" || Name == "tanh" || Name == "tanhf" || Name == "trunc" || Name == "truncf"; case '_': // Check for various function names that get used for the math functions // when the header files are preprocessed with the macro // __FINITE_MATH_ONLY__ enabled. // The '12' here is the length of the shortest name that can match. // We need to check the size before looking at Name[1] and Name[2] // so we may as well check a limit that will eliminate mismatches. if (Name.size() < 12 || Name[1] != '_') return false; switch (Name[2]) { default: return false; case 'a': return Name == "__acos_finite" || Name == "__acosf_finite" || Name == "__asin_finite" || Name == "__asinf_finite" || Name == "__atan2_finite" || Name == "__atan2f_finite"; case 'c': return Name == "__cosh_finite" || Name == "__coshf_finite"; case 'e': return Name == "__exp_finite" || Name == "__expf_finite" || Name == "__exp2_finite" || Name == "__exp2f_finite"; case 'l': return Name == "__log_finite" || Name == "__logf_finite" || Name == "__log10_finite" || Name == "__log10f_finite"; case 'p': return Name == "__pow_finite" || Name == "__powf_finite"; case 's': return Name == "__sinh_finite" || Name == "__sinhf_finite"; } } } namespace { Constant *GetConstantFoldFPValue(double V, Type *Ty) { if (Ty->isHalfTy() || Ty->isFloatTy()) { APFloat APF(V); bool unused; APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); return ConstantFP::get(Ty->getContext(), APF); } if (Ty->isDoubleTy()) return ConstantFP::get(Ty->getContext(), APFloat(V)); llvm_unreachable("Can only constant fold half/float/double"); } #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) { if (Ty->isFP128Ty()) return ConstantFP::get(Ty, V); llvm_unreachable("Can only constant fold fp128"); } #endif /// Clear the floating-point exception state. inline void llvm_fenv_clearexcept() { #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT feclearexcept(FE_ALL_EXCEPT); #endif errno = 0; } /// Test if a floating-point exception was raised. inline bool llvm_fenv_testexcept() { int errno_val = errno; if (errno_val == ERANGE || errno_val == EDOM) return true; #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) return true; #endif return false; } Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, Type *Ty) { llvm_fenv_clearexcept(); double Result = NativeFP(V.convertToDouble()); if (llvm_fenv_testexcept()) { llvm_fenv_clearexcept(); return nullptr; } return GetConstantFoldFPValue(Result, Ty); } #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V, Type *Ty) { llvm_fenv_clearexcept(); float128 Result = NativeFP(V.convertToQuad()); if (llvm_fenv_testexcept()) { llvm_fenv_clearexcept(); return nullptr; } return GetConstantFoldFPValue128(Result, Ty); } #endif Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), const APFloat &V, const APFloat &W, Type *Ty) { llvm_fenv_clearexcept(); double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); if (llvm_fenv_testexcept()) { llvm_fenv_clearexcept(); return nullptr; } return GetConstantFoldFPValue(Result, Ty); } Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { FixedVectorType *VT = dyn_cast(Op->getType()); if (!VT) return nullptr; // This isn't strictly necessary, but handle the special/common case of zero: // all integer reductions of a zero input produce zero. if (isa(Op)) return ConstantInt::get(VT->getElementType(), 0); // This is the same as the underlying binops - poison propagates. if (isa(Op) || Op->containsPoisonElement()) return PoisonValue::get(VT->getElementType()); // TODO: Handle undef. if (!isa(Op) && !isa(Op)) return nullptr; auto *EltC = dyn_cast(Op->getAggregateElement(0U)); if (!EltC) return nullptr; APInt Acc = EltC->getValue(); for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { if (!(EltC = dyn_cast(Op->getAggregateElement(I)))) return nullptr; const APInt &X = EltC->getValue(); switch (IID) { case Intrinsic::vector_reduce_add: Acc = Acc + X; break; case Intrinsic::vector_reduce_mul: Acc = Acc * X; break; case Intrinsic::vector_reduce_and: Acc = Acc & X; break; case Intrinsic::vector_reduce_or: Acc = Acc | X; break; case Intrinsic::vector_reduce_xor: Acc = Acc ^ X; break; case Intrinsic::vector_reduce_smin: Acc = APIntOps::smin(Acc, X); break; case Intrinsic::vector_reduce_smax: Acc = APIntOps::smax(Acc, X); break; case Intrinsic::vector_reduce_umin: Acc = APIntOps::umin(Acc, X); break; case Intrinsic::vector_reduce_umax: Acc = APIntOps::umax(Acc, X); break; } } return ConstantInt::get(Op->getContext(), Acc); } /// Attempt to fold an SSE floating point to integer conversion of a constant /// floating point. If roundTowardZero is false, the default IEEE rounding is /// used (toward nearest, ties to even). This matches the behavior of the /// non-truncating SSE instructions in the default rounding mode. The desired /// integer type Ty is used to select how many bits are available for the /// result. Returns null if the conversion cannot be performed, otherwise /// returns the Constant value resulting from the conversion. Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, Type *Ty, bool IsSigned) { // All of these conversion intrinsics form an integer of at most 64bits. unsigned ResultWidth = Ty->getIntegerBitWidth(); assert(ResultWidth <= 64 && "Can only constant fold conversions to 64 and 32 bit ints"); uint64_t UIntVal; bool isExact = false; APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero : APFloat::rmNearestTiesToEven; APFloat::opStatus status = Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth, IsSigned, mode, &isExact); if (status != APFloat::opOK && (!roundTowardZero || status != APFloat::opInexact)) return nullptr; return ConstantInt::get(Ty, UIntVal, IsSigned); } double getValueAsDouble(ConstantFP *Op) { Type *Ty = Op->getType(); if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return Op->getValueAPF().convertToDouble(); bool unused; APFloat APF = Op->getValueAPF(); APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); return APF.convertToDouble(); } static bool getConstIntOrUndef(Value *Op, const APInt *&C) { if (auto *CI = dyn_cast(Op)) { C = &CI->getValue(); return true; } if (isa(Op)) { C = nullptr; return true; } return false; } /// Checks if the given intrinsic call, which evaluates to constant, is allowed /// to be folded. /// /// \param CI Constrained intrinsic call. /// \param St Exception flags raised during constant evaluation. static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, APFloat::opStatus St) { std::optional ORM = CI->getRoundingMode(); std::optional EB = CI->getExceptionBehavior(); // If the operation does not change exception status flags, it is safe // to fold. if (St == APFloat::opStatus::opOK) return true; // If evaluation raised FP exception, the result can depend on rounding // mode. If the latter is unknown, folding is not possible. if (ORM && *ORM == RoundingMode::Dynamic) return false; // If FP exceptions are ignored, fold the call, even if such exception is // raised. if (EB && *EB != fp::ExceptionBehavior::ebStrict) return true; // Leave the calculation for runtime so that exception flags be correctly set // in hardware. return false; } /// Returns the rounding mode that should be used for constant evaluation. static RoundingMode getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { std::optional ORM = CI->getRoundingMode(); if (!ORM || *ORM == RoundingMode::Dynamic) // Even if the rounding mode is unknown, try evaluating the operation. // If it does not raise inexact exception, rounding was not applied, // so the result is exact and does not depend on rounding mode. Whether // other FP exceptions are raised, it does not depend on rounding mode. return RoundingMode::NearestTiesToEven; return *ORM; } /// Try to constant fold llvm.canonicalize for the given caller and value. static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI, const APFloat &Src) { // Zero, positive and negative, is always OK to fold. if (Src.isZero()) { // Get a fresh 0, since ppc_fp128 does have non-canonical zeros. return ConstantFP::get( CI->getContext(), APFloat::getZero(Src.getSemantics(), Src.isNegative())); } if (!Ty->isIEEELikeFPTy()) return nullptr; // Zero is always canonical and the sign must be preserved. // // Denorms and nans may have special encodings, but it should be OK to fold a // totally average number. if (Src.isNormal() || Src.isInfinity()) return ConstantFP::get(CI->getContext(), Src); if (Src.isDenormal() && CI->getParent() && CI->getFunction()) { DenormalMode DenormMode = CI->getFunction()->getDenormalMode(Src.getSemantics()); if (DenormMode == DenormalMode::getIEEE()) return ConstantFP::get(CI->getContext(), Src); if (DenormMode.Input == DenormalMode::Dynamic) return nullptr; // If we know if either input or output is flushed, we can fold. if ((DenormMode.Input == DenormalMode::Dynamic && DenormMode.Output == DenormalMode::IEEE) || (DenormMode.Input == DenormalMode::IEEE && DenormMode.Output == DenormalMode::Dynamic)) return nullptr; bool IsPositive = (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero || (DenormMode.Output == DenormalMode::PositiveZero && DenormMode.Input == DenormalMode::IEEE)); return ConstantFP::get(CI->getContext(), APFloat::getZero(Src.getSemantics(), !IsPositive)); } return nullptr; } static Constant *ConstantFoldScalarCall1(StringRef Name, Intrinsic::ID IntrinsicID, Type *Ty, ArrayRef Operands, const TargetLibraryInfo *TLI, const CallBase *Call) { assert(Operands.size() == 1 && "Wrong number of operands."); if (IntrinsicID == Intrinsic::is_constant) { // We know we have a "Constant" argument. But we want to only // return true for manifest constants, not those that depend on // constants with unknowable values, e.g. GlobalValue or BlockAddress. if (Operands[0]->isManifestConstant()) return ConstantInt::getTrue(Ty->getContext()); return nullptr; } if (isa(Operands[0])) { // TODO: All of these operations should probably propagate poison. if (IntrinsicID == Intrinsic::canonicalize) return PoisonValue::get(Ty); } if (isa(Operands[0])) { // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. // ctpop() is between 0 and bitwidth, pick 0 for undef. // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). if (IntrinsicID == Intrinsic::cos || IntrinsicID == Intrinsic::ctpop || IntrinsicID == Intrinsic::fptoui_sat || IntrinsicID == Intrinsic::fptosi_sat || IntrinsicID == Intrinsic::canonicalize) return Constant::getNullValue(Ty); if (IntrinsicID == Intrinsic::bswap || IntrinsicID == Intrinsic::bitreverse || IntrinsicID == Intrinsic::launder_invariant_group || IntrinsicID == Intrinsic::strip_invariant_group) return Operands[0]; } if (isa(Operands[0])) { // launder(null) == null == strip(null) iff in addrspace 0 if (IntrinsicID == Intrinsic::launder_invariant_group || IntrinsicID == Intrinsic::strip_invariant_group) { // If instruction is not yet put in a basic block (e.g. when cloning // a function during inlining), Call's caller may not be available. // So check Call's BB first before querying Call->getCaller. const Function *Caller = Call->getParent() ? Call->getCaller() : nullptr; if (Caller && !NullPointerIsDefined( Caller, Operands[0]->getType()->getPointerAddressSpace())) { return Operands[0]; } return nullptr; } } if (auto *Op = dyn_cast(Operands[0])) { if (IntrinsicID == Intrinsic::convert_to_fp16) { APFloat Val(Op->getValueAPF()); bool lost = false; Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); } APFloat U = Op->getValueAPF(); if (IntrinsicID == Intrinsic::wasm_trunc_signed || IntrinsicID == Intrinsic::wasm_trunc_unsigned) { bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; if (U.isNaN()) return nullptr; unsigned Width = Ty->getIntegerBitWidth(); APSInt Int(Width, !Signed); bool IsExact = false; APFloat::opStatus Status = U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); if (Status == APFloat::opOK || Status == APFloat::opInexact) return ConstantInt::get(Ty, Int); return nullptr; } if (IntrinsicID == Intrinsic::fptoui_sat || IntrinsicID == Intrinsic::fptosi_sat) { // convertToInteger() already has the desired saturation semantics. APSInt Int(Ty->getIntegerBitWidth(), IntrinsicID == Intrinsic::fptoui_sat); bool IsExact; U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); return ConstantInt::get(Ty, Int); } if (IntrinsicID == Intrinsic::canonicalize) return constantFoldCanonicalize(Ty, Call, U); #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) if (Ty->isFP128Ty()) { if (IntrinsicID == Intrinsic::log) { float128 Result = logf128(Op->getValueAPF().convertToQuad()); return GetConstantFoldFPValue128(Result, Ty); } LibFunc Fp128Func = NotLibFunc; if (TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) && Fp128Func == LibFunc_logl) return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty); } #endif if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) return nullptr; // Use internal versions of these intrinsics. if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { U.roundToIntegral(APFloat::rmNearestTiesToEven); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::round) { U.roundToIntegral(APFloat::rmNearestTiesToAway); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::roundeven) { U.roundToIntegral(APFloat::rmNearestTiesToEven); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::ceil) { U.roundToIntegral(APFloat::rmTowardPositive); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::floor) { U.roundToIntegral(APFloat::rmTowardNegative); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::trunc) { U.roundToIntegral(APFloat::rmTowardZero); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::fabs) { U.clearSign(); return ConstantFP::get(Ty->getContext(), U); } if (IntrinsicID == Intrinsic::amdgcn_fract) { // The v_fract instruction behaves like the OpenCL spec, which defines // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is // there to prevent fract(-small) from returning 1.0. It returns the // largest positive floating-point number less than 1.0." APFloat FloorU(U); FloorU.roundToIntegral(APFloat::rmTowardNegative); APFloat FractU(U - FloorU); APFloat AlmostOne(U.getSemantics(), 1); AlmostOne.next(/*nextDown*/ true); return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); } // Rounding operations (floor, trunc, ceil, round and nearbyint) do not // raise FP exceptions, unless the argument is signaling NaN. std::optional RM; switch (IntrinsicID) { default: break; case Intrinsic::experimental_constrained_nearbyint: case Intrinsic::experimental_constrained_rint: { auto CI = cast(Call); RM = CI->getRoundingMode(); if (!RM || *RM == RoundingMode::Dynamic) return nullptr; break; } case Intrinsic::experimental_constrained_round: RM = APFloat::rmNearestTiesToAway; break; case Intrinsic::experimental_constrained_ceil: RM = APFloat::rmTowardPositive; break; case Intrinsic::experimental_constrained_floor: RM = APFloat::rmTowardNegative; break; case Intrinsic::experimental_constrained_trunc: RM = APFloat::rmTowardZero; break; } if (RM) { auto CI = cast(Call); if (U.isFinite()) { APFloat::opStatus St = U.roundToIntegral(*RM); if (IntrinsicID == Intrinsic::experimental_constrained_rint && St == APFloat::opInexact) { std::optional EB = CI->getExceptionBehavior(); if (EB && *EB == fp::ebStrict) return nullptr; } } else if (U.isSignaling()) { std::optional EB = CI->getExceptionBehavior(); if (EB && *EB != fp::ebIgnore) return nullptr; U = APFloat::getQNaN(U.getSemantics()); } return ConstantFP::get(Ty->getContext(), U); } /// We only fold functions with finite arguments. Folding NaN and inf is /// likely to be aborted with an exception anyway, and some host libms /// have known errors raising exceptions. if (!U.isFinite()) return nullptr; /// Currently APFloat versions of these functions do not exist, so we use /// the host native double versions. Float versions are not called /// directly but for all these it is true (float)(f((double)arg)) == /// f(arg). Long double not supported yet. const APFloat &APF = Op->getValueAPF(); switch (IntrinsicID) { default: break; case Intrinsic::log: return ConstantFoldFP(log, APF, Ty); case Intrinsic::log2: // TODO: What about hosts that lack a C99 library? return ConstantFoldFP(log2, APF, Ty); case Intrinsic::log10: // TODO: What about hosts that lack a C99 library? return ConstantFoldFP(log10, APF, Ty); case Intrinsic::exp: return ConstantFoldFP(exp, APF, Ty); case Intrinsic::exp2: // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); case Intrinsic::exp10: // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library. return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty); case Intrinsic::sin: return ConstantFoldFP(sin, APF, Ty); case Intrinsic::cos: return ConstantFoldFP(cos, APF, Ty); case Intrinsic::sqrt: return ConstantFoldFP(sqrt, APF, Ty); case Intrinsic::amdgcn_cos: case Intrinsic::amdgcn_sin: { double V = getValueAsDouble(Op); if (V < -256.0 || V > 256.0) // The gfx8 and gfx9 architectures handle arguments outside the range // [-256, 256] differently. This should be a rare case so bail out // rather than trying to handle the difference. return nullptr; bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; double V4 = V * 4.0; if (V4 == floor(V4)) { // Force exact results for quarter-integer inputs. const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; } else { if (IsCos) V = cos(V * 2.0 * numbers::pi); else V = sin(V * 2.0 * numbers::pi); } return GetConstantFoldFPValue(V, Ty); } } if (!TLI) return nullptr; LibFunc Func = NotLibFunc; if (!TLI->getLibFunc(Name, Func)) return nullptr; switch (Func) { default: break; case LibFunc_acos: case LibFunc_acosf: case LibFunc_acos_finite: case LibFunc_acosf_finite: if (TLI->has(Func)) return ConstantFoldFP(acos, APF, Ty); break; case LibFunc_asin: case LibFunc_asinf: case LibFunc_asin_finite: case LibFunc_asinf_finite: if (TLI->has(Func)) return ConstantFoldFP(asin, APF, Ty); break; case LibFunc_atan: case LibFunc_atanf: if (TLI->has(Func)) return ConstantFoldFP(atan, APF, Ty); break; case LibFunc_ceil: case LibFunc_ceilf: if (TLI->has(Func)) { U.roundToIntegral(APFloat::rmTowardPositive); return ConstantFP::get(Ty->getContext(), U); } break; case LibFunc_cos: case LibFunc_cosf: if (TLI->has(Func)) return ConstantFoldFP(cos, APF, Ty); break; case LibFunc_cosh: case LibFunc_coshf: case LibFunc_cosh_finite: case LibFunc_coshf_finite: if (TLI->has(Func)) return ConstantFoldFP(cosh, APF, Ty); break; case LibFunc_exp: case LibFunc_expf: case LibFunc_exp_finite: case LibFunc_expf_finite: if (TLI->has(Func)) return ConstantFoldFP(exp, APF, Ty); break; case LibFunc_exp2: case LibFunc_exp2f: case LibFunc_exp2_finite: case LibFunc_exp2f_finite: if (TLI->has(Func)) // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); break; case LibFunc_fabs: case LibFunc_fabsf: if (TLI->has(Func)) { U.clearSign(); return ConstantFP::get(Ty->getContext(), U); } break; case LibFunc_floor: case LibFunc_floorf: if (TLI->has(Func)) { U.roundToIntegral(APFloat::rmTowardNegative); return ConstantFP::get(Ty->getContext(), U); } break; case LibFunc_log: case LibFunc_logf: case LibFunc_log_finite: case LibFunc_logf_finite: if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) return ConstantFoldFP(log, APF, Ty); break; case LibFunc_log2: case LibFunc_log2f: case LibFunc_log2_finite: case LibFunc_log2f_finite: if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) // TODO: What about hosts that lack a C99 library? return ConstantFoldFP(log2, APF, Ty); break; case LibFunc_log10: case LibFunc_log10f: case LibFunc_log10_finite: case LibFunc_log10f_finite: if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) // TODO: What about hosts that lack a C99 library? return ConstantFoldFP(log10, APF, Ty); break; case LibFunc_logl: return nullptr; case LibFunc_nearbyint: case LibFunc_nearbyintf: case LibFunc_rint: case LibFunc_rintf: if (TLI->has(Func)) { U.roundToIntegral(APFloat::rmNearestTiesToEven); return ConstantFP::get(Ty->getContext(), U); } break; case LibFunc_round: case LibFunc_roundf: if (TLI->has(Func)) { U.roundToIntegral(APFloat::rmNearestTiesToAway); return ConstantFP::get(Ty->getContext(), U); } break; case LibFunc_sin: case LibFunc_sinf: if (TLI->has(Func)) return ConstantFoldFP(sin, APF, Ty); break; case LibFunc_sinh: case LibFunc_sinhf: case LibFunc_sinh_finite: case LibFunc_sinhf_finite: if (TLI->has(Func)) return ConstantFoldFP(sinh, APF, Ty); break; case LibFunc_sqrt: case LibFunc_sqrtf: if (!APF.isNegative() && TLI->has(Func)) return ConstantFoldFP(sqrt, APF, Ty); break; case LibFunc_tan: case LibFunc_tanf: if (TLI->has(Func)) return ConstantFoldFP(tan, APF, Ty); break; case LibFunc_tanh: case LibFunc_tanhf: if (TLI->has(Func)) return ConstantFoldFP(tanh, APF, Ty); break; case LibFunc_trunc: case LibFunc_truncf: if (TLI->has(Func)) { U.roundToIntegral(APFloat::rmTowardZero); return ConstantFP::get(Ty->getContext(), U); } break; } return nullptr; } if (auto *Op = dyn_cast(Operands[0])) { switch (IntrinsicID) { case Intrinsic::bswap: return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); case Intrinsic::ctpop: return ConstantInt::get(Ty, Op->getValue().popcount()); case Intrinsic::bitreverse: return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); case Intrinsic::convert_from_fp16: { APFloat Val(APFloat::IEEEhalf(), Op->getValue()); bool lost = false; APFloat::opStatus status = Val.convert( Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); // Conversion is always precise. (void)status; assert(status != APFloat::opInexact && !lost && "Precision lost during fp16 constfolding"); return ConstantFP::get(Ty->getContext(), Val); } case Intrinsic::amdgcn_s_wqm: { uint64_t Val = Op->getZExtValue(); Val |= (Val & 0x5555555555555555ULL) << 1 | ((Val >> 1) & 0x5555555555555555ULL); Val |= (Val & 0x3333333333333333ULL) << 2 | ((Val >> 2) & 0x3333333333333333ULL); return ConstantInt::get(Ty, Val); } case Intrinsic::amdgcn_s_quadmask: { uint64_t Val = Op->getZExtValue(); uint64_t QuadMask = 0; for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) { if (!(Val & 0xF)) continue; QuadMask |= (1ULL << I); } return ConstantInt::get(Ty, QuadMask); } case Intrinsic::amdgcn_s_bitreplicate: { uint64_t Val = Op->getZExtValue(); Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16; Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8; Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4; Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2; Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1; Val = Val | Val << 1; return ConstantInt::get(Ty, Val); } default: return nullptr; } } switch (IntrinsicID) { default: break; case Intrinsic::vector_reduce_add: case Intrinsic::vector_reduce_mul: case Intrinsic::vector_reduce_and: case Intrinsic::vector_reduce_or: case Intrinsic::vector_reduce_xor: case Intrinsic::vector_reduce_smin: case Intrinsic::vector_reduce_smax: case Intrinsic::vector_reduce_umin: case Intrinsic::vector_reduce_umax: if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) return C; break; } // Support ConstantVector in case we have an Undef in the top. if (isa(Operands[0]) || isa(Operands[0])) { auto *Op = cast(Operands[0]); switch (IntrinsicID) { default: break; case Intrinsic::x86_sse_cvtss2si: case Intrinsic::x86_sse_cvtss2si64: case Intrinsic::x86_sse2_cvtsd2si: case Intrinsic::x86_sse2_cvtsd2si64: if (ConstantFP *FPOp = dyn_cast_or_null(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/false, Ty, /*IsSigned*/true); break; case Intrinsic::x86_sse_cvttss2si: case Intrinsic::x86_sse_cvttss2si64: case Intrinsic::x86_sse2_cvttsd2si: case Intrinsic::x86_sse2_cvttsd2si64: if (ConstantFP *FPOp = dyn_cast_or_null(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/true, Ty, /*IsSigned*/true); break; } } return nullptr; } static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2, const ConstrainedFPIntrinsic *Call) { APFloat::opStatus St = APFloat::opOK; auto *FCmp = cast(Call); FCmpInst::Predicate Cond = FCmp->getPredicate(); if (FCmp->isSignaling()) { if (Op1.isNaN() || Op2.isNaN()) St = APFloat::opInvalidOp; } else { if (Op1.isSignaling() || Op2.isSignaling()) St = APFloat::opInvalidOp; } bool Result = FCmpInst::compare(Op1, Op2, Cond); if (mayFoldConstrained(const_cast(FCmp), St)) return ConstantInt::get(Call->getType()->getScalarType(), Result); return nullptr; } static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty, ArrayRef Operands, const TargetLibraryInfo *TLI) { if (!TLI) return nullptr; LibFunc Func = NotLibFunc; if (!TLI->getLibFunc(Name, Func)) return nullptr; const auto *Op1 = dyn_cast(Operands[0]); if (!Op1) return nullptr; const auto *Op2 = dyn_cast(Operands[1]); if (!Op2) return nullptr; const APFloat &Op1V = Op1->getValueAPF(); const APFloat &Op2V = Op2->getValueAPF(); switch (Func) { default: break; case LibFunc_pow: case LibFunc_powf: case LibFunc_pow_finite: case LibFunc_powf_finite: if (TLI->has(Func)) return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); break; case LibFunc_fmod: case LibFunc_fmodf: if (TLI->has(Func)) { APFloat V = Op1->getValueAPF(); if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) return ConstantFP::get(Ty->getContext(), V); } break; case LibFunc_remainder: case LibFunc_remainderf: if (TLI->has(Func)) { APFloat V = Op1->getValueAPF(); if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) return ConstantFP::get(Ty->getContext(), V); } break; case LibFunc_atan2: case LibFunc_atan2f: // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm // (Solaris), so we do not assume a known result for that. if (Op1V.isZero() && Op2V.isZero()) return nullptr; [[fallthrough]]; case LibFunc_atan2_finite: case LibFunc_atan2f_finite: if (TLI->has(Func)) return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); break; } return nullptr; } static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty, ArrayRef Operands, const CallBase *Call) { assert(Operands.size() == 2 && "Wrong number of operands."); if (Ty->isFloatingPointTy()) { // TODO: We should have undef handling for all of the FP intrinsics that // are attempted to be folded in this function. bool IsOp0Undef = isa(Operands[0]); bool IsOp1Undef = isa(Operands[1]); switch (IntrinsicID) { case Intrinsic::maxnum: case Intrinsic::minnum: case Intrinsic::maximum: case Intrinsic::minimum: // If one argument is undef, return the other argument. if (IsOp0Undef) return Operands[1]; if (IsOp1Undef) return Operands[0]; break; } } if (const auto *Op1 = dyn_cast(Operands[0])) { const APFloat &Op1V = Op1->getValueAPF(); if (const auto *Op2 = dyn_cast(Operands[1])) { if (Op2->getType() != Op1->getType()) return nullptr; const APFloat &Op2V = Op2->getValueAPF(); if (const auto *ConstrIntr = dyn_cast_if_present(Call)) { RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); APFloat Res = Op1V; APFloat::opStatus St; switch (IntrinsicID) { default: return nullptr; case Intrinsic::experimental_constrained_fadd: St = Res.add(Op2V, RM); break; case Intrinsic::experimental_constrained_fsub: St = Res.subtract(Op2V, RM); break; case Intrinsic::experimental_constrained_fmul: St = Res.multiply(Op2V, RM); break; case Intrinsic::experimental_constrained_fdiv: St = Res.divide(Op2V, RM); break; case Intrinsic::experimental_constrained_frem: St = Res.mod(Op2V); break; case Intrinsic::experimental_constrained_fcmp: case Intrinsic::experimental_constrained_fcmps: return evaluateCompare(Op1V, Op2V, ConstrIntr); } if (mayFoldConstrained(const_cast(ConstrIntr), St)) return ConstantFP::get(Ty->getContext(), Res); return nullptr; } switch (IntrinsicID) { default: break; case Intrinsic::copysign: return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); case Intrinsic::minnum: return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); case Intrinsic::maxnum: return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); case Intrinsic::minimum: return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); case Intrinsic::maximum: return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); } if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) return nullptr; switch (IntrinsicID) { default: break; case Intrinsic::pow: return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); case Intrinsic::amdgcn_fmul_legacy: // The legacy behaviour is that multiplying +/- 0.0 by anything, even // NaN or infinity, gives +0.0. if (Op1V.isZero() || Op2V.isZero()) return ConstantFP::getZero(Ty); return ConstantFP::get(Ty->getContext(), Op1V * Op2V); } } else if (auto *Op2C = dyn_cast(Operands[1])) { switch (IntrinsicID) { case Intrinsic::ldexp: { return ConstantFP::get( Ty->getContext(), scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven)); } case Intrinsic::is_fpclass: { FPClassTest Mask = static_cast(Op2C->getZExtValue()); bool Result = ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) || ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) || ((Mask & fcNegInf) && Op1V.isNegInfinity()) || ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) || ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) || ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) || ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) || ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) || ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) || ((Mask & fcPosInf) && Op1V.isPosInfinity()); return ConstantInt::get(Ty, Result); } case Intrinsic::powi: { int Exp = static_cast(Op2C->getSExtValue()); switch (Ty->getTypeID()) { case Type::HalfTyID: case Type::FloatTyID: { APFloat Res(static_cast(std::pow(Op1V.convertToFloat(), Exp))); if (Ty->isHalfTy()) { bool Unused; Res.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Unused); } return ConstantFP::get(Ty->getContext(), Res); } case Type::DoubleTyID: return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp)); default: return nullptr; } } default: break; } } return nullptr; } if (Operands[0]->getType()->isIntegerTy() && Operands[1]->getType()->isIntegerTy()) { const APInt *C0, *C1; if (!getConstIntOrUndef(Operands[0], C0) || !getConstIntOrUndef(Operands[1], C1)) return nullptr; switch (IntrinsicID) { default: break; case Intrinsic::smax: case Intrinsic::smin: case Intrinsic::umax: case Intrinsic::umin: // This is the same as for binary ops - poison propagates. // TODO: Poison handling should be consolidated. if (isa(Operands[0]) || isa(Operands[1])) return PoisonValue::get(Ty); if (!C0 && !C1) return UndefValue::get(Ty); if (!C0 || !C1) return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty); return ConstantInt::get( Ty, ICmpInst::compare(*C0, *C1, MinMaxIntrinsic::getPredicate(IntrinsicID)) ? *C0 : *C1); case Intrinsic::scmp: case Intrinsic::ucmp: if (isa(Operands[0]) || isa(Operands[1])) return PoisonValue::get(Ty); if (!C0 || !C1) return ConstantInt::get(Ty, 0); int Res; if (IntrinsicID == Intrinsic::scmp) Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0; else Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0; return ConstantInt::get(Ty, Res, /*IsSigned=*/true); case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: // X - undef -> { 0, false } // undef - X -> { 0, false } if (!C0 || !C1) return Constant::getNullValue(Ty); [[fallthrough]]; case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: // X + undef -> { -1, false } // undef + x -> { -1, false } if (!C0 || !C1) { return ConstantStruct::get( cast(Ty), {Constant::getAllOnesValue(Ty->getStructElementType(0)), Constant::getNullValue(Ty->getStructElementType(1))}); } [[fallthrough]]; case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: { // undef * X -> { 0, false } // X * undef -> { 0, false } if (!C0 || !C1) return Constant::getNullValue(Ty); APInt Res; bool Overflow; switch (IntrinsicID) { default: llvm_unreachable("Invalid case"); case Intrinsic::sadd_with_overflow: Res = C0->sadd_ov(*C1, Overflow); break; case Intrinsic::uadd_with_overflow: Res = C0->uadd_ov(*C1, Overflow); break; case Intrinsic::ssub_with_overflow: Res = C0->ssub_ov(*C1, Overflow); break; case Intrinsic::usub_with_overflow: Res = C0->usub_ov(*C1, Overflow); break; case Intrinsic::smul_with_overflow: Res = C0->smul_ov(*C1, Overflow); break; case Intrinsic::umul_with_overflow: Res = C0->umul_ov(*C1, Overflow); break; } Constant *Ops[] = { ConstantInt::get(Ty->getContext(), Res), ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) }; return ConstantStruct::get(cast(Ty), Ops); } case Intrinsic::uadd_sat: case Intrinsic::sadd_sat: // This is the same as for binary ops - poison propagates. // TODO: Poison handling should be consolidated. if (isa(Operands[0]) || isa(Operands[1])) return PoisonValue::get(Ty); if (!C0 && !C1) return UndefValue::get(Ty); if (!C0 || !C1) return Constant::getAllOnesValue(Ty); if (IntrinsicID == Intrinsic::uadd_sat) return ConstantInt::get(Ty, C0->uadd_sat(*C1)); else return ConstantInt::get(Ty, C0->sadd_sat(*C1)); case Intrinsic::usub_sat: case Intrinsic::ssub_sat: // This is the same as for binary ops - poison propagates. // TODO: Poison handling should be consolidated. if (isa(Operands[0]) || isa(Operands[1])) return PoisonValue::get(Ty); if (!C0 && !C1) return UndefValue::get(Ty); if (!C0 || !C1) return Constant::getNullValue(Ty); if (IntrinsicID == Intrinsic::usub_sat) return ConstantInt::get(Ty, C0->usub_sat(*C1)); else return ConstantInt::get(Ty, C0->ssub_sat(*C1)); case Intrinsic::cttz: case Intrinsic::ctlz: assert(C1 && "Must be constant int"); // cttz(0, 1) and ctlz(0, 1) are poison. if (C1->isOne() && (!C0 || C0->isZero())) return PoisonValue::get(Ty); if (!C0) return Constant::getNullValue(Ty); if (IntrinsicID == Intrinsic::cttz) return ConstantInt::get(Ty, C0->countr_zero()); else return ConstantInt::get(Ty, C0->countl_zero()); case Intrinsic::abs: assert(C1 && "Must be constant int"); assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1"); // Undef or minimum val operand with poison min --> undef if (C1->isOne() && (!C0 || C0->isMinSignedValue())) return UndefValue::get(Ty); // Undef operand with no poison min --> 0 (sign bit must be clear) if (!C0) return Constant::getNullValue(Ty); return ConstantInt::get(Ty, C0->abs()); case Intrinsic::amdgcn_wave_reduce_umin: case Intrinsic::amdgcn_wave_reduce_umax: return dyn_cast(Operands[0]); } return nullptr; } // Support ConstantVector in case we have an Undef in the top. if ((isa(Operands[0]) || isa(Operands[0])) && // Check for default rounding mode. // FIXME: Support other rounding modes? isa(Operands[1]) && cast(Operands[1])->getValue() == 4) { auto *Op = cast(Operands[0]); switch (IntrinsicID) { default: break; case Intrinsic::x86_avx512_vcvtss2si32: case Intrinsic::x86_avx512_vcvtss2si64: case Intrinsic::x86_avx512_vcvtsd2si32: case Intrinsic::x86_avx512_vcvtsd2si64: if (ConstantFP *FPOp = dyn_cast_or_null(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/false, Ty, /*IsSigned*/true); break; case Intrinsic::x86_avx512_vcvtss2usi32: case Intrinsic::x86_avx512_vcvtss2usi64: case Intrinsic::x86_avx512_vcvtsd2usi32: case Intrinsic::x86_avx512_vcvtsd2usi64: if (ConstantFP *FPOp = dyn_cast_or_null(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/false, Ty, /*IsSigned*/false); break; case Intrinsic::x86_avx512_cvttss2si: case Intrinsic::x86_avx512_cvttss2si64: case Intrinsic::x86_avx512_cvttsd2si: case Intrinsic::x86_avx512_cvttsd2si64: if (ConstantFP *FPOp = dyn_cast_or_null(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/true, Ty, /*IsSigned*/true); break; case Intrinsic::x86_avx512_cvttss2usi: case Intrinsic::x86_avx512_cvttss2usi64: case Intrinsic::x86_avx512_cvttsd2usi: case Intrinsic::x86_avx512_cvttsd2usi64: if (ConstantFP *FPOp = dyn_cast_or_null(Op->getAggregateElement(0U))) return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), /*roundTowardZero=*/true, Ty, /*IsSigned*/false); break; } } return nullptr; } static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, const APFloat &S0, const APFloat &S1, const APFloat &S2) { unsigned ID; const fltSemantics &Sem = S0.getSemantics(); APFloat MA(Sem), SC(Sem), TC(Sem); if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { // S2 < 0 ID = 5; SC = -S0; } else { ID = 4; SC = S0; } MA = S2; TC = -S1; } else if (abs(S1) >= abs(S0)) { if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { // S1 < 0 ID = 3; TC = -S2; } else { ID = 2; TC = S2; } MA = S1; SC = S0; } else { if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { // S0 < 0 ID = 1; SC = S2; } else { ID = 0; SC = -S2; } MA = S0; TC = -S1; } switch (IntrinsicID) { default: llvm_unreachable("unhandled amdgcn cube intrinsic"); case Intrinsic::amdgcn_cubeid: return APFloat(Sem, ID); case Intrinsic::amdgcn_cubema: return MA + MA; case Intrinsic::amdgcn_cubesc: return SC; case Intrinsic::amdgcn_cubetc: return TC; } } static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef Operands, Type *Ty) { const APInt *C0, *C1, *C2; if (!getConstIntOrUndef(Operands[0], C0) || !getConstIntOrUndef(Operands[1], C1) || !getConstIntOrUndef(Operands[2], C2)) return nullptr; if (!C2) return UndefValue::get(Ty); APInt Val(32, 0); unsigned NumUndefBytes = 0; for (unsigned I = 0; I < 32; I += 8) { unsigned Sel = C2->extractBitsAsZExtValue(8, I); unsigned B = 0; if (Sel >= 13) B = 0xff; else if (Sel == 12) B = 0x00; else { const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; if (!Src) ++NumUndefBytes; else if (Sel < 8) B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); else B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; } Val.insertBits(B, I, 8); } if (NumUndefBytes == 4) return UndefValue::get(Ty); return ConstantInt::get(Ty, Val); } static Constant *ConstantFoldScalarCall3(StringRef Name, Intrinsic::ID IntrinsicID, Type *Ty, ArrayRef Operands, const TargetLibraryInfo *TLI, const CallBase *Call) { assert(Operands.size() == 3 && "Wrong number of operands."); if (const auto *Op1 = dyn_cast(Operands[0])) { if (const auto *Op2 = dyn_cast(Operands[1])) { if (const auto *Op3 = dyn_cast(Operands[2])) { const APFloat &C1 = Op1->getValueAPF(); const APFloat &C2 = Op2->getValueAPF(); const APFloat &C3 = Op3->getValueAPF(); if (const auto *ConstrIntr = dyn_cast(Call)) { RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); APFloat Res = C1; APFloat::opStatus St; switch (IntrinsicID) { default: return nullptr; case Intrinsic::experimental_constrained_fma: case Intrinsic::experimental_constrained_fmuladd: St = Res.fusedMultiplyAdd(C2, C3, RM); break; } if (mayFoldConstrained( const_cast(ConstrIntr), St)) return ConstantFP::get(Ty->getContext(), Res); return nullptr; } switch (IntrinsicID) { default: break; case Intrinsic::amdgcn_fma_legacy: { // The legacy behaviour is that multiplying +/- 0.0 by anything, even // NaN or infinity, gives +0.0. if (C1.isZero() || C2.isZero()) { // It's tempting to just return C3 here, but that would give the // wrong result if C3 was -0.0. return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); } [[fallthrough]]; } case Intrinsic::fma: case Intrinsic::fmuladd: { APFloat V = C1; V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); return ConstantFP::get(Ty->getContext(), V); } case Intrinsic::amdgcn_cubeid: case Intrinsic::amdgcn_cubema: case Intrinsic::amdgcn_cubesc: case Intrinsic::amdgcn_cubetc: { APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); return ConstantFP::get(Ty->getContext(), V); } } } } } if (IntrinsicID == Intrinsic::smul_fix || IntrinsicID == Intrinsic::smul_fix_sat) { // poison * C -> poison // C * poison -> poison if (isa(Operands[0]) || isa(Operands[1])) return PoisonValue::get(Ty); const APInt *C0, *C1; if (!getConstIntOrUndef(Operands[0], C0) || !getConstIntOrUndef(Operands[1], C1)) return nullptr; // undef * C -> 0 // C * undef -> 0 if (!C0 || !C1) return Constant::getNullValue(Ty); // This code performs rounding towards negative infinity in case the result // cannot be represented exactly for the given scale. Targets that do care // about rounding should use a target hook for specifying how rounding // should be done, and provide their own folding to be consistent with // rounding. This is the same approach as used by // DAGTypeLegalizer::ExpandIntRes_MULFIX. unsigned Scale = cast(Operands[2])->getZExtValue(); unsigned Width = C0->getBitWidth(); assert(Scale < Width && "Illegal scale."); unsigned ExtendedWidth = Width * 2; APInt Product = (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale); if (IntrinsicID == Intrinsic::smul_fix_sat) { APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth); APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth); Product = APIntOps::smin(Product, Max); Product = APIntOps::smax(Product, Min); } return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); } if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { const APInt *C0, *C1, *C2; if (!getConstIntOrUndef(Operands[0], C0) || !getConstIntOrUndef(Operands[1], C1) || !getConstIntOrUndef(Operands[2], C2)) return nullptr; bool IsRight = IntrinsicID == Intrinsic::fshr; if (!C2) return Operands[IsRight ? 1 : 0]; if (!C0 && !C1) return UndefValue::get(Ty); // The shift amount is interpreted as modulo the bitwidth. If the shift // amount is effectively 0, avoid UB due to oversized inverse shift below. unsigned BitWidth = C2->getBitWidth(); unsigned ShAmt = C2->urem(BitWidth); if (!ShAmt) return Operands[IsRight ? 1 : 0]; // (C0 << ShlAmt) | (C1 >> LshrAmt) unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; if (!C0) return ConstantInt::get(Ty, C1->lshr(LshrAmt)); if (!C1) return ConstantInt::get(Ty, C0->shl(ShlAmt)); return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); } if (IntrinsicID == Intrinsic::amdgcn_perm) return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); return nullptr; } static Constant *ConstantFoldScalarCall(StringRef Name, Intrinsic::ID IntrinsicID, Type *Ty, ArrayRef Operands, const TargetLibraryInfo *TLI, const CallBase *Call) { if (Operands.size() == 1) return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); if (Operands.size() == 2) { if (Constant *FoldedLibCall = ConstantFoldLibCall2(Name, Ty, Operands, TLI)) { return FoldedLibCall; } return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call); } if (Operands.size() == 3) return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); return nullptr; } static Constant *ConstantFoldFixedVectorCall( StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, ArrayRef Operands, const DataLayout &DL, const TargetLibraryInfo *TLI, const CallBase *Call) { SmallVector Result(FVTy->getNumElements()); SmallVector Lane(Operands.size()); Type *Ty = FVTy->getElementType(); switch (IntrinsicID) { case Intrinsic::masked_load: { auto *SrcPtr = Operands[0]; auto *Mask = Operands[2]; auto *Passthru = Operands[3]; Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); SmallVector NewElements; for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { auto *MaskElt = Mask->getAggregateElement(I); if (!MaskElt) break; auto *PassthruElt = Passthru->getAggregateElement(I); auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; if (isa(MaskElt)) { if (PassthruElt) NewElements.push_back(PassthruElt); else if (VecElt) NewElements.push_back(VecElt); else return nullptr; } if (MaskElt->isNullValue()) { if (!PassthruElt) return nullptr; NewElements.push_back(PassthruElt); } else if (MaskElt->isOneValue()) { if (!VecElt) return nullptr; NewElements.push_back(VecElt); } else { return nullptr; } } if (NewElements.size() != FVTy->getNumElements()) return nullptr; return ConstantVector::get(NewElements); } case Intrinsic::arm_mve_vctp8: case Intrinsic::arm_mve_vctp16: case Intrinsic::arm_mve_vctp32: case Intrinsic::arm_mve_vctp64: { if (auto *Op = dyn_cast(Operands[0])) { unsigned Lanes = FVTy->getNumElements(); uint64_t Limit = Op->getZExtValue(); SmallVector NCs; for (unsigned i = 0; i < Lanes; i++) { if (i < Limit) NCs.push_back(ConstantInt::getTrue(Ty)); else NCs.push_back(ConstantInt::getFalse(Ty)); } return ConstantVector::get(NCs); } return nullptr; } case Intrinsic::get_active_lane_mask: { auto *Op0 = dyn_cast(Operands[0]); auto *Op1 = dyn_cast(Operands[1]); if (Op0 && Op1) { unsigned Lanes = FVTy->getNumElements(); uint64_t Base = Op0->getZExtValue(); uint64_t Limit = Op1->getZExtValue(); SmallVector NCs; for (unsigned i = 0; i < Lanes; i++) { if (Base + i < Limit) NCs.push_back(ConstantInt::getTrue(Ty)); else NCs.push_back(ConstantInt::getFalse(Ty)); } return ConstantVector::get(NCs); } return nullptr; } default: break; } for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { // Gather a column of constants. for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { // Some intrinsics use a scalar type for certain arguments. if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) { Lane[J] = Operands[J]; continue; } Constant *Agg = Operands[J]->getAggregateElement(I); if (!Agg) return nullptr; Lane[J] = Agg; } // Use the regular scalar folding to simplify this column. Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); if (!Folded) return nullptr; Result[I] = Folded; } return ConstantVector::get(Result); } static Constant *ConstantFoldScalableVectorCall( StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, ArrayRef Operands, const DataLayout &DL, const TargetLibraryInfo *TLI, const CallBase *Call) { switch (IntrinsicID) { case Intrinsic::aarch64_sve_convert_from_svbool: { auto *Src = dyn_cast(Operands[0]); if (!Src || !Src->isNullValue()) break; return ConstantInt::getFalse(SVTy); } default: break; } return nullptr; } static std::pair ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) { if (isa(Op)) return {Op, PoisonValue::get(IntTy)}; auto *ConstFP = dyn_cast(Op); if (!ConstFP) return {}; const APFloat &U = ConstFP->getValueAPF(); int FrexpExp; APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven); Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant); // The exponent is an "unspecified value" for inf/nan. We use zero to avoid // using undef. Constant *Result1 = FrexpMant.isFinite() ? ConstantInt::get(IntTy, FrexpExp) : ConstantInt::getNullValue(IntTy); return {Result0, Result1}; } /// Handle intrinsics that return tuples, which may be tuples of vectors. static Constant * ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID, StructType *StTy, ArrayRef Operands, const DataLayout &DL, const TargetLibraryInfo *TLI, const CallBase *Call) { switch (IntrinsicID) { case Intrinsic::frexp: { Type *Ty0 = StTy->getContainedType(0); Type *Ty1 = StTy->getContainedType(1)->getScalarType(); if (auto *FVTy0 = dyn_cast(Ty0)) { SmallVector Results0(FVTy0->getNumElements()); SmallVector Results1(FVTy0->getNumElements()); for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) { Constant *Lane = Operands[0]->getAggregateElement(I); std::tie(Results0[I], Results1[I]) = ConstantFoldScalarFrexpCall(Lane, Ty1); if (!Results0[I]) return nullptr; } return ConstantStruct::get(StTy, ConstantVector::get(Results0), ConstantVector::get(Results1)); } auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1); if (!Result0) return nullptr; return ConstantStruct::get(StTy, Result0, Result1); } default: // TODO: Constant folding of vector intrinsics that fall through here does // not work (e.g. overflow intrinsics) return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call); } return nullptr; } } // end anonymous namespace Constant *llvm::ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource) { return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS}, dyn_cast_if_present(FMFSource)); } Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef Operands, const TargetLibraryInfo *TLI, bool AllowNonDeterministic) { if (Call->isNoBuiltin()) return nullptr; if (!F->hasName()) return nullptr; // If this is not an intrinsic and not recognized as a library call, bail out. Intrinsic::ID IID = F->getIntrinsicID(); if (IID == Intrinsic::not_intrinsic) { if (!TLI) return nullptr; LibFunc LibF; if (!TLI->getLibFunc(*F, LibF)) return nullptr; } // Conservatively assume that floating-point libcalls may be // non-deterministic. Type *Ty = F->getReturnType(); if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy()) return nullptr; StringRef Name = F->getName(); if (auto *FVTy = dyn_cast(Ty)) return ConstantFoldFixedVectorCall( Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call); if (auto *SVTy = dyn_cast(Ty)) return ConstantFoldScalableVectorCall( Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call); if (auto *StTy = dyn_cast(Ty)) return ConstantFoldStructCall(Name, IID, StTy, Operands, F->getDataLayout(), TLI, Call); // TODO: If this is a library function, we already discovered that above, // so we should pass the LibFunc, not the name (and it might be better // still to separate intrinsic handling from libcalls). return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call); } bool llvm::isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI) { // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap // (and to some extent ConstantFoldScalarCall). if (Call->isNoBuiltin() || Call->isStrictFP()) return false; Function *F = Call->getCalledFunction(); if (!F) return false; LibFunc Func; if (!TLI || !TLI->getLibFunc(*F, Func)) return false; if (Call->arg_size() == 1) { if (ConstantFP *OpC = dyn_cast(Call->getArgOperand(0))) { const APFloat &Op = OpC->getValueAPF(); switch (Func) { case LibFunc_logl: case LibFunc_log: case LibFunc_logf: case LibFunc_log2l: case LibFunc_log2: case LibFunc_log2f: case LibFunc_log10l: case LibFunc_log10: case LibFunc_log10f: return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); case LibFunc_expl: case LibFunc_exp: case LibFunc_expf: // FIXME: These boundaries are slightly conservative. if (OpC->getType()->isDoubleTy()) return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); if (OpC->getType()->isFloatTy()) return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); break; case LibFunc_exp2l: case LibFunc_exp2: case LibFunc_exp2f: // FIXME: These boundaries are slightly conservative. if (OpC->getType()->isDoubleTy()) return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); if (OpC->getType()->isFloatTy()) return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); break; case LibFunc_sinl: case LibFunc_sin: case LibFunc_sinf: case LibFunc_cosl: case LibFunc_cos: case LibFunc_cosf: return !Op.isInfinity(); case LibFunc_tanl: case LibFunc_tan: case LibFunc_tanf: { // FIXME: Stop using the host math library. // FIXME: The computation isn't done in the right precision. Type *Ty = OpC->getType(); if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; break; } case LibFunc_atan: case LibFunc_atanf: case LibFunc_atanl: // Per POSIX, this MAY fail if Op is denormal. We choose not failing. return true; case LibFunc_asinl: case LibFunc_asin: case LibFunc_asinf: case LibFunc_acosl: case LibFunc_acos: case LibFunc_acosf: return !(Op < APFloat(Op.getSemantics(), "-1") || Op > APFloat(Op.getSemantics(), "1")); case LibFunc_sinh: case LibFunc_cosh: case LibFunc_sinhf: case LibFunc_coshf: case LibFunc_sinhl: case LibFunc_coshl: // FIXME: These boundaries are slightly conservative. if (OpC->getType()->isDoubleTy()) return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); if (OpC->getType()->isFloatTy()) return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); break; case LibFunc_sqrtl: case LibFunc_sqrt: case LibFunc_sqrtf: return Op.isNaN() || Op.isZero() || !Op.isNegative(); // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, // maybe others? default: break; } } } if (Call->arg_size() == 2) { ConstantFP *Op0C = dyn_cast(Call->getArgOperand(0)); ConstantFP *Op1C = dyn_cast(Call->getArgOperand(1)); if (Op0C && Op1C) { const APFloat &Op0 = Op0C->getValueAPF(); const APFloat &Op1 = Op1C->getValueAPF(); switch (Func) { case LibFunc_powl: case LibFunc_pow: case LibFunc_powf: { // FIXME: Stop using the host math library. // FIXME: The computation isn't done in the right precision. Type *Ty = Op0C->getType(); if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { if (Ty == Op1C->getType()) return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; } break; } case LibFunc_fmodl: case LibFunc_fmod: case LibFunc_fmodf: case LibFunc_remainderl: case LibFunc_remainder: case LibFunc_remainderf: return Op0.isNaN() || Op1.isNaN() || (!Op0.isInfinity() && !Op1.isZero()); case LibFunc_atan2: case LibFunc_atan2f: case LibFunc_atan2l: // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and // GLIBC and MSVC do not appear to raise an error on those, we // cannot rely on that behavior. POSIX and C11 say that a domain error // may occur, so allow for that possibility. return !Op0.isZero() || !Op1.isZero(); default: break; } } } return false; } void TargetFolder::anchor() {}