//===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains routines that help determine which pointers are captured. // A pointer value is captured if the function makes a copy of any part of the // pointer that outlives the call. Not being captured means, more or less, that // the pointer is only dereferenced and not stored in a global. Returning part // of the pointer as the function return value may or may not count as capturing // the pointer, depending on the context. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/CaptureTracking.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/CommandLine.h" using namespace llvm; #define DEBUG_TYPE "capture-tracking" STATISTIC(NumCaptured, "Number of pointers maybe captured"); STATISTIC(NumNotCaptured, "Number of pointers not captured"); STATISTIC(NumCapturedBefore, "Number of pointers maybe captured before"); STATISTIC(NumNotCapturedBefore, "Number of pointers not captured before"); /// The default value for MaxUsesToExplore argument. It's relatively small to /// keep the cost of analysis reasonable for clients like BasicAliasAnalysis, /// where the results can't be cached. /// TODO: we should probably introduce a caching CaptureTracking analysis and /// use it where possible. The caching version can use much higher limit or /// don't have this cap at all. static cl::opt DefaultMaxUsesToExplore("capture-tracking-max-uses-to-explore", cl::Hidden, cl::desc("Maximal number of uses to explore."), cl::init(100)); unsigned llvm::getDefaultMaxUsesToExploreForCaptureTracking() { return DefaultMaxUsesToExplore; } CaptureTracker::~CaptureTracker() = default; bool CaptureTracker::shouldExplore(const Use *U) { return true; } bool CaptureTracker::isDereferenceableOrNull(Value *O, const DataLayout &DL) { // An inbounds GEP can either be a valid pointer (pointing into // or to the end of an allocation), or be null in the default // address space. So for an inbounds GEP there is no way to let // the pointer escape using clever GEP hacking because doing so // would make the pointer point outside of the allocated object // and thus make the GEP result a poison value. Similarly, other // dereferenceable pointers cannot be manipulated without producing // poison. if (auto *GEP = dyn_cast(O)) if (GEP->isInBounds()) return true; bool CanBeNull, CanBeFreed; return O->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); } namespace { struct SimpleCaptureTracker : public CaptureTracker { explicit SimpleCaptureTracker( const SmallPtrSetImpl &EphValues, bool ReturnCaptures) : EphValues(EphValues), ReturnCaptures(ReturnCaptures) {} void tooManyUses() override { Captured = true; } bool captured(const Use *U) override { if (isa(U->getUser()) && !ReturnCaptures) return false; if (EphValues.contains(U->getUser())) return false; Captured = true; return true; } const SmallPtrSetImpl &EphValues; bool ReturnCaptures; bool Captured = false; }; /// Only find pointer captures which happen before the given instruction. Uses /// the dominator tree to determine whether one instruction is before another. /// Only support the case where the Value is defined in the same basic block /// as the given instruction and the use. struct CapturesBefore : public CaptureTracker { CapturesBefore(bool ReturnCaptures, const Instruction *I, const DominatorTree *DT, bool IncludeI, const LoopInfo *LI) : BeforeHere(I), DT(DT), ReturnCaptures(ReturnCaptures), IncludeI(IncludeI), LI(LI) {} void tooManyUses() override { Captured = true; } bool isSafeToPrune(Instruction *I) { if (BeforeHere == I) return !IncludeI; // We explore this usage only if the usage can reach "BeforeHere". // If use is not reachable from entry, there is no need to explore. if (!DT->isReachableFromEntry(I->getParent())) return true; // Check whether there is a path from I to BeforeHere. return !isPotentiallyReachable(I, BeforeHere, nullptr, DT, LI); } bool captured(const Use *U) override { Instruction *I = cast(U->getUser()); if (isa(I) && !ReturnCaptures) return false; // Check isSafeToPrune() here rather than in shouldExplore() to avoid // an expensive reachability query for every instruction we look at. // Instead we only do one for actual capturing candidates. if (isSafeToPrune(I)) return false; Captured = true; return true; } const Instruction *BeforeHere; const DominatorTree *DT; bool ReturnCaptures; bool IncludeI; bool Captured = false; const LoopInfo *LI; }; /// Find the 'earliest' instruction before which the pointer is known not to /// be captured. Here an instruction A is considered earlier than instruction /// B, if A dominates B. If 2 escapes do not dominate each other, the /// terminator of the common dominator is chosen. If not all uses cannot be /// analyzed, the earliest escape is set to the first instruction in the /// function entry block. // NOTE: Users have to make sure instructions compared against the earliest // escape are not in a cycle. struct EarliestCaptures : public CaptureTracker { EarliestCaptures(bool ReturnCaptures, Function &F, const DominatorTree &DT, const SmallPtrSetImpl &EphValues) : EphValues(EphValues), DT(DT), ReturnCaptures(ReturnCaptures), F(F) {} void tooManyUses() override { Captured = true; EarliestCapture = &*F.getEntryBlock().begin(); } bool captured(const Use *U) override { Instruction *I = cast(U->getUser()); if (isa(I) && !ReturnCaptures) return false; if (EphValues.contains(I)) return false; if (!EarliestCapture) { EarliestCapture = I; } else if (EarliestCapture->getParent() == I->getParent()) { if (I->comesBefore(EarliestCapture)) EarliestCapture = I; } else { BasicBlock *CurrentBB = I->getParent(); BasicBlock *EarliestBB = EarliestCapture->getParent(); if (DT.dominates(EarliestBB, CurrentBB)) { // EarliestCapture already comes before the current use. } else if (DT.dominates(CurrentBB, EarliestBB)) { EarliestCapture = I; } else { // Otherwise find the nearest common dominator and use its terminator. auto *NearestCommonDom = DT.findNearestCommonDominator(CurrentBB, EarliestBB); EarliestCapture = NearestCommonDom->getTerminator(); } } Captured = true; // Return false to continue analysis; we need to see all potential // captures. return false; } const SmallPtrSetImpl &EphValues; Instruction *EarliestCapture = nullptr; const DominatorTree &DT; bool ReturnCaptures; bool Captured = false; Function &F; }; } /// PointerMayBeCaptured - Return true if this pointer value may be captured /// by the enclosing function (which is required to exist). This routine can /// be expensive, so consider caching the results. The boolean ReturnCaptures /// specifies whether returning the value (or part of it) from the function /// counts as capturing it or not. The boolean StoreCaptures specified whether /// storing the value (or part of it) into memory anywhere automatically /// counts as capturing it or not. bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures, bool StoreCaptures, unsigned MaxUsesToExplore) { SmallPtrSet Empty; return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures, Empty, MaxUsesToExplore); } /// Variant of the above function which accepts a set of Values that are /// ephemeral and cannot cause pointers to escape. bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures, bool StoreCaptures, const SmallPtrSetImpl &EphValues, unsigned MaxUsesToExplore) { assert(!isa(V) && "It doesn't make sense to ask whether a global is captured."); // TODO: If StoreCaptures is not true, we could do Fancy analysis // to determine whether this store is not actually an escape point. // In that case, BasicAliasAnalysis should be updated as well to // take advantage of this. (void)StoreCaptures; SimpleCaptureTracker SCT(EphValues, ReturnCaptures); PointerMayBeCaptured(V, &SCT, MaxUsesToExplore); if (SCT.Captured) ++NumCaptured; else ++NumNotCaptured; return SCT.Captured; } /// PointerMayBeCapturedBefore - Return true if this pointer value may be /// captured by the enclosing function (which is required to exist). If a /// DominatorTree is provided, only captures which happen before the given /// instruction are considered. This routine can be expensive, so consider /// caching the results. The boolean ReturnCaptures specifies whether /// returning the value (or part of it) from the function counts as capturing /// it or not. The boolean StoreCaptures specified whether storing the value /// (or part of it) into memory anywhere automatically counts as capturing it /// or not. bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, bool StoreCaptures, const Instruction *I, const DominatorTree *DT, bool IncludeI, unsigned MaxUsesToExplore, const LoopInfo *LI) { assert(!isa(V) && "It doesn't make sense to ask whether a global is captured."); if (!DT) return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures, MaxUsesToExplore); // TODO: See comment in PointerMayBeCaptured regarding what could be done // with StoreCaptures. CapturesBefore CB(ReturnCaptures, I, DT, IncludeI, LI); PointerMayBeCaptured(V, &CB, MaxUsesToExplore); if (CB.Captured) ++NumCapturedBefore; else ++NumNotCapturedBefore; return CB.Captured; } Instruction * llvm::FindEarliestCapture(const Value *V, Function &F, bool ReturnCaptures, bool StoreCaptures, const DominatorTree &DT, const SmallPtrSetImpl &EphValues, unsigned MaxUsesToExplore) { assert(!isa(V) && "It doesn't make sense to ask whether a global is captured."); EarliestCaptures CB(ReturnCaptures, F, DT, EphValues); PointerMayBeCaptured(V, &CB, MaxUsesToExplore); if (CB.Captured) ++NumCapturedBefore; else ++NumNotCapturedBefore; return CB.EarliestCapture; } UseCaptureKind llvm::DetermineUseCaptureKind( const Use &U, function_ref IsDereferenceableOrNull) { Instruction *I = cast(U.getUser()); switch (I->getOpcode()) { case Instruction::Call: case Instruction::Invoke: { auto *Call = cast(I); // Not captured if the callee is readonly, doesn't return a copy through // its return value and doesn't unwind (a readonly function can leak bits // by throwing an exception or not depending on the input value). if (Call->onlyReadsMemory() && Call->doesNotThrow() && Call->getType()->isVoidTy()) return UseCaptureKind::NO_CAPTURE; // The pointer is not captured if returned pointer is not captured. // NOTE: CaptureTracking users should not assume that only functions // marked with nocapture do not capture. This means that places like // getUnderlyingObject in ValueTracking or DecomposeGEPExpression // in BasicAA also need to know about this property. if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call, true)) return UseCaptureKind::PASSTHROUGH; // Volatile operations effectively capture the memory location that they // load and store to. if (auto *MI = dyn_cast(Call)) if (MI->isVolatile()) return UseCaptureKind::MAY_CAPTURE; // Calling a function pointer does not in itself cause the pointer to // be captured. This is a subtle point considering that (for example) // the callee might return its own address. It is analogous to saying // that loading a value from a pointer does not cause the pointer to be // captured, even though the loaded value might be the pointer itself // (think of self-referential objects). if (Call->isCallee(&U)) return UseCaptureKind::NO_CAPTURE; // Not captured if only passed via 'nocapture' arguments. if (Call->isDataOperand(&U) && !Call->doesNotCapture(Call->getDataOperandNo(&U))) { // The parameter is not marked 'nocapture' - captured. return UseCaptureKind::MAY_CAPTURE; } return UseCaptureKind::NO_CAPTURE; } case Instruction::Load: // Volatile loads make the address observable. if (cast(I)->isVolatile()) return UseCaptureKind::MAY_CAPTURE; return UseCaptureKind::NO_CAPTURE; case Instruction::VAArg: // "va-arg" from a pointer does not cause it to be captured. return UseCaptureKind::NO_CAPTURE; case Instruction::Store: // Stored the pointer - conservatively assume it may be captured. // Volatile stores make the address observable. if (U.getOperandNo() == 0 || cast(I)->isVolatile()) return UseCaptureKind::MAY_CAPTURE; return UseCaptureKind::NO_CAPTURE; case Instruction::AtomicRMW: { // atomicrmw conceptually includes both a load and store from // the same location. // As with a store, the location being accessed is not captured, // but the value being stored is. // Volatile stores make the address observable. auto *ARMWI = cast(I); if (U.getOperandNo() == 1 || ARMWI->isVolatile()) return UseCaptureKind::MAY_CAPTURE; return UseCaptureKind::NO_CAPTURE; } case Instruction::AtomicCmpXchg: { // cmpxchg conceptually includes both a load and store from // the same location. // As with a store, the location being accessed is not captured, // but the value being stored is. // Volatile stores make the address observable. auto *ACXI = cast(I); if (U.getOperandNo() == 1 || U.getOperandNo() == 2 || ACXI->isVolatile()) return UseCaptureKind::MAY_CAPTURE; return UseCaptureKind::NO_CAPTURE; } case Instruction::BitCast: case Instruction::GetElementPtr: case Instruction::PHI: case Instruction::Select: case Instruction::AddrSpaceCast: // The original value is not captured via this if the new value isn't. return UseCaptureKind::PASSTHROUGH; case Instruction::ICmp: { unsigned Idx = U.getOperandNo(); unsigned OtherIdx = 1 - Idx; if (auto *CPN = dyn_cast(I->getOperand(OtherIdx))) { // Don't count comparisons of a no-alias return value against null as // captures. This allows us to ignore comparisons of malloc results // with null, for example. if (CPN->getType()->getAddressSpace() == 0) if (isNoAliasCall(U.get()->stripPointerCasts())) return UseCaptureKind::NO_CAPTURE; if (!I->getFunction()->nullPointerIsDefined()) { auto *O = I->getOperand(Idx)->stripPointerCastsSameRepresentation(); // Comparing a dereferenceable_or_null pointer against null cannot // lead to pointer escapes, because if it is not null it must be a // valid (in-bounds) pointer. const DataLayout &DL = I->getModule()->getDataLayout(); if (IsDereferenceableOrNull && IsDereferenceableOrNull(O, DL)) return UseCaptureKind::NO_CAPTURE; } } // Comparison against value stored in global variable. Given the pointer // does not escape, its value cannot be guessed and stored separately in a // global variable. auto *LI = dyn_cast(I->getOperand(OtherIdx)); if (LI && isa(LI->getPointerOperand())) return UseCaptureKind::NO_CAPTURE; // Otherwise, be conservative. There are crazy ways to capture pointers // using comparisons. return UseCaptureKind::MAY_CAPTURE; } default: // Something else - be conservative and say it is captured. return UseCaptureKind::MAY_CAPTURE; } } void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker, unsigned MaxUsesToExplore) { assert(V->getType()->isPointerTy() && "Capture is for pointers only!"); if (MaxUsesToExplore == 0) MaxUsesToExplore = DefaultMaxUsesToExplore; SmallVector Worklist; Worklist.reserve(getDefaultMaxUsesToExploreForCaptureTracking()); SmallSet Visited; auto AddUses = [&](const Value *V) { for (const Use &U : V->uses()) { // If there are lots of uses, conservatively say that the value // is captured to avoid taking too much compile time. if (Visited.size() >= MaxUsesToExplore) { Tracker->tooManyUses(); return false; } if (!Visited.insert(&U).second) continue; if (!Tracker->shouldExplore(&U)) continue; Worklist.push_back(&U); } return true; }; if (!AddUses(V)) return; auto IsDereferenceableOrNull = [Tracker](Value *V, const DataLayout &DL) { return Tracker->isDereferenceableOrNull(V, DL); }; while (!Worklist.empty()) { const Use *U = Worklist.pop_back_val(); switch (DetermineUseCaptureKind(*U, IsDereferenceableOrNull)) { case UseCaptureKind::NO_CAPTURE: continue; case UseCaptureKind::MAY_CAPTURE: if (Tracker->captured(U)) return; continue; case UseCaptureKind::PASSTHROUGH: if (!AddUses(U->getUser())) return; continue; } } // All uses examined. } bool llvm::isNonEscapingLocalObject( const Value *V, SmallDenseMap *IsCapturedCache) { SmallDenseMap::iterator CacheIt; if (IsCapturedCache) { bool Inserted; std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false}); if (!Inserted) // Found cached result, return it! return CacheIt->second; } // If this is an identified function-local object, check to see if it escapes. if (isIdentifiedFunctionLocal(V)) { // Set StoreCaptures to True so that we can assume in our callers that the // pointer is not the result of a load instruction. Currently // PointerMayBeCaptured doesn't have any special analysis for the // StoreCaptures=false case; if it did, our callers could be refined to be // more precise. auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); if (IsCapturedCache) CacheIt->second = Ret; return Ret; } return false; }